2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
6 * Interactivity improvements by Mike Galbraith
9 * Various enhancements by Dmitry Adamushko.
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
16 * Scaled math optimizations by Thomas Gleixner
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
33 #include <trace/events/sched.h>
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 static unsigned int sched_nr_latency = 8;
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
96 * The exponential sliding window over which load is averaged for shares
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 #ifdef CONFIG_CFS_BANDWIDTH
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
111 * default: 5 msec, units: microseconds
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
141 * This idea comes from the SD scheduler of Con Kolivas:
143 static int get_update_sysctl_factor(void)
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
152 case SCHED_TUNABLESCALING_LINEAR:
155 case SCHED_TUNABLESCALING_LOG:
157 factor = 1 + ilog2(cpus);
164 static void update_sysctl(void)
166 unsigned int factor = get_update_sysctl_factor();
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
176 void sched_init_granularity(void)
181 #if BITS_PER_LONG == 32
182 # define WMULT_CONST (~0UL)
184 # define WMULT_CONST (1UL << 32)
187 #define WMULT_SHIFT 32
190 * Shift right and round:
192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
195 * delta *= weight / lw
198 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
211 tmp = (u64)delta_exec;
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
221 lw->inv_weight = WMULT_CONST / w;
225 * Check whether we'd overflow the 64-bit multiplication:
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
237 const struct sched_class fair_sched_class;
239 /**************************************************************
240 * CFS operations on generic schedulable entities:
243 #ifdef CONFIG_FAIR_GROUP_SCHED
245 /* cpu runqueue to which this cfs_rq is attached */
246 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
251 /* An entity is a task if it doesn't "own" a runqueue */
252 #define entity_is_task(se) (!se->my_q)
254 static inline struct task_struct *task_of(struct sched_entity *se)
256 #ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
259 return container_of(se, struct task_struct, se);
262 /* Walk up scheduling entities hierarchy */
263 #define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
266 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
271 /* runqueue on which this entity is (to be) queued */
272 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
277 /* runqueue "owned" by this group */
278 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
283 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
288 if (!cfs_rq->on_list) {
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
305 /* We should have no load, but we need to update last_decay. */
306 update_cfs_rq_blocked_load(cfs_rq, 0);
310 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
318 /* Iterate thr' all leaf cfs_rq's on a runqueue */
319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
322 /* Do the two (enqueued) entities belong to the same group ? */
324 is_same_group(struct sched_entity *se, struct sched_entity *pse)
326 if (se->cfs_rq == pse->cfs_rq)
332 static inline struct sched_entity *parent_entity(struct sched_entity *se)
337 /* return depth at which a sched entity is present in the hierarchy */
338 static inline int depth_se(struct sched_entity *se)
342 for_each_sched_entity(se)
349 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
351 int se_depth, pse_depth;
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
364 while (se_depth > pse_depth) {
366 *se = parent_entity(*se);
369 while (pse_depth > se_depth) {
371 *pse = parent_entity(*pse);
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
380 #else /* !CONFIG_FAIR_GROUP_SCHED */
382 static inline struct task_struct *task_of(struct sched_entity *se)
384 return container_of(se, struct task_struct, se);
387 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
389 return container_of(cfs_rq, struct rq, cfs);
392 #define entity_is_task(se) 1
394 #define for_each_sched_entity(se) \
395 for (; se; se = NULL)
397 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
399 return &task_rq(p)->cfs;
402 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
410 /* runqueue "owned" by this group */
411 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
416 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
420 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
428 is_same_group(struct sched_entity *se, struct sched_entity *pse)
433 static inline struct sched_entity *parent_entity(struct sched_entity *se)
439 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
443 #endif /* CONFIG_FAIR_GROUP_SCHED */
445 static __always_inline
446 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
448 /**************************************************************
449 * Scheduling class tree data structure manipulation methods:
452 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
454 s64 delta = (s64)(vruntime - max_vruntime);
456 max_vruntime = vruntime;
461 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
463 s64 delta = (s64)(vruntime - min_vruntime);
465 min_vruntime = vruntime;
470 static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
473 return (s64)(a->vruntime - b->vruntime) < 0;
476 static void update_min_vruntime(struct cfs_rq *cfs_rq)
478 u64 vruntime = cfs_rq->min_vruntime;
481 vruntime = cfs_rq->curr->vruntime;
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
489 vruntime = se->vruntime;
491 vruntime = min_vruntime(vruntime, se->vruntime);
494 /* ensure we never gain time by being placed backwards. */
495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
503 * Enqueue an entity into the rb-tree:
505 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
513 * Find the right place in the rbtree:
517 entry = rb_entry(parent, struct sched_entity, run_node);
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
522 if (entity_before(se, entry)) {
523 link = &parent->rb_left;
525 link = &parent->rb_right;
531 * Maintain a cache of leftmost tree entries (it is frequently
535 cfs_rq->rb_leftmost = &se->run_node;
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
541 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
553 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
555 struct rb_node *left = cfs_rq->rb_leftmost;
560 return rb_entry(left, struct sched_entity, run_node);
563 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
565 struct rb_node *next = rb_next(&se->run_node);
570 return rb_entry(next, struct sched_entity, run_node);
573 #ifdef CONFIG_SCHED_DEBUG
574 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
581 return rb_entry(last, struct sched_entity, run_node);
584 /**************************************************************
585 * Scheduling class statistics methods:
588 int sched_proc_update_handler(struct ctl_table *table, int write,
589 void __user *buffer, size_t *lenp,
592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593 int factor = get_update_sysctl_factor();
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
601 #define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
615 static inline unsigned long
616 calc_delta_fair(unsigned long delta, struct sched_entity *se)
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
625 * The idea is to set a period in which each task runs once.
627 * When there are too many tasks (sched_nr_latency) we have to stretch
628 * this period because otherwise the slices get too small.
630 * p = (nr <= nl) ? l : l*nr/nl
632 static u64 __sched_period(unsigned long nr_running)
634 u64 period = sysctl_sched_latency;
635 unsigned long nr_latency = sched_nr_latency;
637 if (unlikely(nr_running > nr_latency)) {
638 period = sysctl_sched_min_granularity;
639 period *= nr_running;
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
651 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
655 for_each_sched_entity(se) {
656 struct load_weight *load;
657 struct load_weight lw;
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
662 if (unlikely(!se->on_rq)) {
665 update_load_add(&lw, se->load.weight);
668 slice = calc_delta_mine(slice, se->load.weight, load);
674 * We calculate the vruntime slice of a to-be-inserted task.
678 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
684 static inline void __update_task_entity_contrib(struct sched_entity *se);
686 /* Give new task start runnable values to heavy its load in infant time */
687 void init_task_runnable_average(struct task_struct *p)
691 p->se.avg.decay_count = 0;
692 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
693 p->se.avg.runnable_avg_sum = slice;
694 p->se.avg.runnable_avg_period = slice;
695 __update_task_entity_contrib(&p->se);
698 void init_task_runnable_average(struct task_struct *p)
704 * Update the current task's runtime statistics. Skip current tasks that
705 * are not in our scheduling class.
708 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
709 unsigned long delta_exec)
711 unsigned long delta_exec_weighted;
713 schedstat_set(curr->statistics.exec_max,
714 max((u64)delta_exec, curr->statistics.exec_max));
716 curr->sum_exec_runtime += delta_exec;
717 schedstat_add(cfs_rq, exec_clock, delta_exec);
718 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
720 curr->vruntime += delta_exec_weighted;
721 update_min_vruntime(cfs_rq);
724 static void update_curr(struct cfs_rq *cfs_rq)
726 struct sched_entity *curr = cfs_rq->curr;
727 u64 now = rq_clock_task(rq_of(cfs_rq));
728 unsigned long delta_exec;
734 * Get the amount of time the current task was running
735 * since the last time we changed load (this cannot
736 * overflow on 32 bits):
738 delta_exec = (unsigned long)(now - curr->exec_start);
742 __update_curr(cfs_rq, curr, delta_exec);
743 curr->exec_start = now;
745 if (entity_is_task(curr)) {
746 struct task_struct *curtask = task_of(curr);
748 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
749 cpuacct_charge(curtask, delta_exec);
750 account_group_exec_runtime(curtask, delta_exec);
753 account_cfs_rq_runtime(cfs_rq, delta_exec);
757 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
763 * Task is being enqueued - update stats:
765 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 * Are we enqueueing a waiting task? (for current tasks
769 * a dequeue/enqueue event is a NOP)
771 if (se != cfs_rq->curr)
772 update_stats_wait_start(cfs_rq, se);
776 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
783 #ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se)) {
785 trace_sched_stat_wait(task_of(se),
786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
789 schedstat_set(se->statistics.wait_start, 0);
793 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
796 * Mark the end of the wait period if dequeueing a
799 if (se != cfs_rq->curr)
800 update_stats_wait_end(cfs_rq, se);
804 * We are picking a new current task - update its stats:
807 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
810 * We are starting a new run period:
812 se->exec_start = rq_clock_task(rq_of(cfs_rq));
815 /**************************************************
816 * Scheduling class queueing methods:
819 #ifdef CONFIG_NUMA_BALANCING
821 * Approximate time to scan a full NUMA task in ms. The task scan period is
822 * calculated based on the tasks virtual memory size and
823 * numa_balancing_scan_size.
825 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
826 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
827 unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
829 /* Portion of address space to scan in MB */
830 unsigned int sysctl_numa_balancing_scan_size = 256;
832 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
833 unsigned int sysctl_numa_balancing_scan_delay = 1000;
835 static unsigned int task_nr_scan_windows(struct task_struct *p)
837 unsigned long rss = 0;
838 unsigned long nr_scan_pages;
841 * Calculations based on RSS as non-present and empty pages are skipped
842 * by the PTE scanner and NUMA hinting faults should be trapped based
845 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
846 rss = get_mm_rss(p->mm);
850 rss = round_up(rss, nr_scan_pages);
851 return rss / nr_scan_pages;
854 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
855 #define MAX_SCAN_WINDOW 2560
857 static unsigned int task_scan_min(struct task_struct *p)
859 unsigned int scan, floor;
860 unsigned int windows = 1;
862 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
863 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
864 floor = 1000 / windows;
866 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
867 return max_t(unsigned int, floor, scan);
870 static unsigned int task_scan_max(struct task_struct *p)
872 unsigned int smin = task_scan_min(p);
875 /* Watch for min being lower than max due to floor calculations */
876 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
877 return max(smin, smax);
881 * Once a preferred node is selected the scheduler balancer will prefer moving
882 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
883 * scans. This will give the process the chance to accumulate more faults on
884 * the preferred node but still allow the scheduler to move the task again if
885 * the nodes CPUs are overloaded.
887 unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
889 static inline int task_faults_idx(int nid, int priv)
891 return 2 * nid + priv;
894 static inline unsigned long task_faults(struct task_struct *p, int nid)
899 return p->numa_faults[task_faults_idx(nid, 0)] +
900 p->numa_faults[task_faults_idx(nid, 1)];
903 static unsigned long weighted_cpuload(const int cpu);
904 static unsigned long source_load(int cpu, int type);
905 static unsigned long target_load(int cpu, int type);
906 static unsigned long power_of(int cpu);
907 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
912 unsigned long faults;
915 struct task_numa_env {
916 struct task_struct *p;
918 int src_cpu, src_nid;
919 int dst_cpu, dst_nid;
921 struct numa_stats src_stats, dst_stats;
923 unsigned long best_load;
927 static int task_numa_migrate(struct task_struct *p)
929 int node_cpu = cpumask_first(cpumask_of_node(p->numa_preferred_nid));
930 struct task_numa_env env = {
932 .src_cpu = task_cpu(p),
933 .src_nid = cpu_to_node(task_cpu(p)),
935 .dst_nid = p->numa_preferred_nid,
936 .best_load = ULONG_MAX,
937 .best_cpu = task_cpu(p),
939 struct sched_domain *sd;
941 struct task_group *tg = task_group(p);
942 unsigned long weight;
944 int imbalance_pct, idx = -1;
947 * Find the lowest common scheduling domain covering the nodes of both
948 * the CPU the task is currently running on and the target NUMA node.
951 for_each_domain(env.src_cpu, sd) {
952 if (cpumask_test_cpu(node_cpu, sched_domain_span(sd))) {
954 * busy_idx is used for the load decision as it is the
955 * same index used by the regular load balancer for an
959 imbalance_pct = sd->imbalance_pct;
965 if (WARN_ON_ONCE(idx == -1))
969 * XXX the below is mostly nicked from wake_affine(); we should
970 * see about sharing a bit if at all possible; also it might want
971 * some per entity weight love.
973 weight = p->se.load.weight;
974 env.src_stats.load = source_load(env.src_cpu, idx);
975 env.src_stats.eff_load = 100 + (imbalance_pct - 100) / 2;
976 env.src_stats.eff_load *= power_of(env.src_cpu);
977 env.src_stats.eff_load *= env.src_stats.load + effective_load(tg, env.src_cpu, -weight, -weight);
979 for_each_cpu(cpu, cpumask_of_node(env.dst_nid)) {
981 env.dst_stats.load = target_load(cpu, idx);
983 /* If the CPU is idle, use it */
984 if (!env.dst_stats.load) {
989 /* Otherwise check the target CPU load */
990 env.dst_stats.eff_load = 100;
991 env.dst_stats.eff_load *= power_of(cpu);
992 env.dst_stats.eff_load *= env.dst_stats.load + effective_load(tg, cpu, weight, weight);
995 * Destination is considered balanced if the destination CPU is
996 * less loaded than the source CPU. Unfortunately there is a
997 * risk that a task running on a lightly loaded CPU will not
998 * migrate to its preferred node due to load imbalances.
1000 balanced = (env.dst_stats.eff_load <= env.src_stats.eff_load);
1004 if (env.dst_stats.eff_load < env.best_load) {
1005 env.best_load = env.dst_stats.eff_load;
1011 return migrate_task_to(p, env.best_cpu);
1014 static void task_numa_placement(struct task_struct *p)
1016 int seq, nid, max_nid = -1;
1017 unsigned long max_faults = 0;
1019 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1020 if (p->numa_scan_seq == seq)
1022 p->numa_scan_seq = seq;
1023 p->numa_migrate_seq++;
1024 p->numa_scan_period_max = task_scan_max(p);
1026 /* Find the node with the highest number of faults */
1027 for_each_online_node(nid) {
1028 unsigned long faults;
1031 for (priv = 0; priv < 2; priv++) {
1032 i = task_faults_idx(nid, priv);
1034 /* Decay existing window, copy faults since last scan */
1035 p->numa_faults[i] >>= 1;
1036 p->numa_faults[i] += p->numa_faults_buffer[i];
1037 p->numa_faults_buffer[i] = 0;
1040 /* Find maximum private faults */
1041 faults = p->numa_faults[task_faults_idx(nid, 1)];
1042 if (faults > max_faults) {
1043 max_faults = faults;
1049 * Record the preferred node as the node with the most faults,
1050 * requeue the task to be running on the idlest CPU on the
1051 * preferred node and reset the scanning rate to recheck
1052 * the working set placement.
1054 if (max_faults && max_nid != p->numa_preferred_nid) {
1055 /* Update the preferred nid and migrate task if possible */
1056 p->numa_preferred_nid = max_nid;
1057 p->numa_migrate_seq = 1;
1058 task_numa_migrate(p);
1063 * Got a PROT_NONE fault for a page on @node.
1065 void task_numa_fault(int last_nidpid, int node, int pages, bool migrated)
1067 struct task_struct *p = current;
1070 if (!numabalancing_enabled)
1073 /* for example, ksmd faulting in a user's mm */
1078 * First accesses are treated as private, otherwise consider accesses
1079 * to be private if the accessing pid has not changed
1081 if (!nidpid_pid_unset(last_nidpid))
1082 priv = ((p->pid & LAST__PID_MASK) == nidpid_to_pid(last_nidpid));
1086 /* Allocate buffer to track faults on a per-node basis */
1087 if (unlikely(!p->numa_faults)) {
1088 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
1090 /* numa_faults and numa_faults_buffer share the allocation */
1091 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1092 if (!p->numa_faults)
1095 BUG_ON(p->numa_faults_buffer);
1096 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
1100 * If pages are properly placed (did not migrate) then scan slower.
1101 * This is reset periodically in case of phase changes
1104 /* Initialise if necessary */
1105 if (!p->numa_scan_period_max)
1106 p->numa_scan_period_max = task_scan_max(p);
1108 p->numa_scan_period = min(p->numa_scan_period_max,
1109 p->numa_scan_period + 10);
1112 task_numa_placement(p);
1114 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
1117 static void reset_ptenuma_scan(struct task_struct *p)
1119 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1120 p->mm->numa_scan_offset = 0;
1124 * The expensive part of numa migration is done from task_work context.
1125 * Triggered from task_tick_numa().
1127 void task_numa_work(struct callback_head *work)
1129 unsigned long migrate, next_scan, now = jiffies;
1130 struct task_struct *p = current;
1131 struct mm_struct *mm = p->mm;
1132 struct vm_area_struct *vma;
1133 unsigned long start, end;
1134 unsigned long nr_pte_updates = 0;
1137 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1139 work->next = work; /* protect against double add */
1141 * Who cares about NUMA placement when they're dying.
1143 * NOTE: make sure not to dereference p->mm before this check,
1144 * exit_task_work() happens _after_ exit_mm() so we could be called
1145 * without p->mm even though we still had it when we enqueued this
1148 if (p->flags & PF_EXITING)
1151 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1152 mm->numa_next_scan = now +
1153 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1154 mm->numa_next_reset = now +
1155 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1159 * Reset the scan period if enough time has gone by. Objective is that
1160 * scanning will be reduced if pages are properly placed. As tasks
1161 * can enter different phases this needs to be re-examined. Lacking
1162 * proper tracking of reference behaviour, this blunt hammer is used.
1164 migrate = mm->numa_next_reset;
1165 if (time_after(now, migrate)) {
1166 p->numa_scan_period = task_scan_min(p);
1167 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1168 xchg(&mm->numa_next_reset, next_scan);
1172 * Enforce maximal scan/migration frequency..
1174 migrate = mm->numa_next_scan;
1175 if (time_before(now, migrate))
1178 if (p->numa_scan_period == 0) {
1179 p->numa_scan_period_max = task_scan_max(p);
1180 p->numa_scan_period = task_scan_min(p);
1183 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1184 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1188 * Delay this task enough that another task of this mm will likely win
1189 * the next time around.
1191 p->node_stamp += 2 * TICK_NSEC;
1193 start = mm->numa_scan_offset;
1194 pages = sysctl_numa_balancing_scan_size;
1195 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1199 down_read(&mm->mmap_sem);
1200 vma = find_vma(mm, start);
1202 reset_ptenuma_scan(p);
1206 for (; vma; vma = vma->vm_next) {
1207 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1211 start = max(start, vma->vm_start);
1212 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1213 end = min(end, vma->vm_end);
1214 nr_pte_updates += change_prot_numa(vma, start, end);
1217 * Scan sysctl_numa_balancing_scan_size but ensure that
1218 * at least one PTE is updated so that unused virtual
1219 * address space is quickly skipped.
1222 pages -= (end - start) >> PAGE_SHIFT;
1227 } while (end != vma->vm_end);
1232 * If the whole process was scanned without updates then no NUMA
1233 * hinting faults are being recorded and scan rate should be lower.
1235 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1236 p->numa_scan_period = min(p->numa_scan_period_max,
1237 p->numa_scan_period << 1);
1239 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1240 mm->numa_next_scan = next_scan;
1244 * It is possible to reach the end of the VMA list but the last few
1245 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1246 * would find the !migratable VMA on the next scan but not reset the
1247 * scanner to the start so check it now.
1250 mm->numa_scan_offset = start;
1252 reset_ptenuma_scan(p);
1253 up_read(&mm->mmap_sem);
1257 * Drive the periodic memory faults..
1259 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1261 struct callback_head *work = &curr->numa_work;
1265 * We don't care about NUMA placement if we don't have memory.
1267 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1271 * Using runtime rather than walltime has the dual advantage that
1272 * we (mostly) drive the selection from busy threads and that the
1273 * task needs to have done some actual work before we bother with
1276 now = curr->se.sum_exec_runtime;
1277 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1279 if (now - curr->node_stamp > period) {
1280 if (!curr->node_stamp)
1281 curr->numa_scan_period = task_scan_min(curr);
1282 curr->node_stamp += period;
1284 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1285 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1286 task_work_add(curr, work, true);
1291 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1294 #endif /* CONFIG_NUMA_BALANCING */
1297 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1299 update_load_add(&cfs_rq->load, se->load.weight);
1300 if (!parent_entity(se))
1301 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1303 if (entity_is_task(se))
1304 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1306 cfs_rq->nr_running++;
1310 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1312 update_load_sub(&cfs_rq->load, se->load.weight);
1313 if (!parent_entity(se))
1314 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1315 if (entity_is_task(se))
1316 list_del_init(&se->group_node);
1317 cfs_rq->nr_running--;
1320 #ifdef CONFIG_FAIR_GROUP_SCHED
1322 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1327 * Use this CPU's actual weight instead of the last load_contribution
1328 * to gain a more accurate current total weight. See
1329 * update_cfs_rq_load_contribution().
1331 tg_weight = atomic_long_read(&tg->load_avg);
1332 tg_weight -= cfs_rq->tg_load_contrib;
1333 tg_weight += cfs_rq->load.weight;
1338 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1340 long tg_weight, load, shares;
1342 tg_weight = calc_tg_weight(tg, cfs_rq);
1343 load = cfs_rq->load.weight;
1345 shares = (tg->shares * load);
1347 shares /= tg_weight;
1349 if (shares < MIN_SHARES)
1350 shares = MIN_SHARES;
1351 if (shares > tg->shares)
1352 shares = tg->shares;
1356 # else /* CONFIG_SMP */
1357 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1361 # endif /* CONFIG_SMP */
1362 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1363 unsigned long weight)
1366 /* commit outstanding execution time */
1367 if (cfs_rq->curr == se)
1368 update_curr(cfs_rq);
1369 account_entity_dequeue(cfs_rq, se);
1372 update_load_set(&se->load, weight);
1375 account_entity_enqueue(cfs_rq, se);
1378 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1380 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1382 struct task_group *tg;
1383 struct sched_entity *se;
1387 se = tg->se[cpu_of(rq_of(cfs_rq))];
1388 if (!se || throttled_hierarchy(cfs_rq))
1391 if (likely(se->load.weight == tg->shares))
1394 shares = calc_cfs_shares(cfs_rq, tg);
1396 reweight_entity(cfs_rq_of(se), se, shares);
1398 #else /* CONFIG_FAIR_GROUP_SCHED */
1399 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1402 #endif /* CONFIG_FAIR_GROUP_SCHED */
1406 * We choose a half-life close to 1 scheduling period.
1407 * Note: The tables below are dependent on this value.
1409 #define LOAD_AVG_PERIOD 32
1410 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1411 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1413 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1414 static const u32 runnable_avg_yN_inv[] = {
1415 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1416 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1417 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1418 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1419 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1420 0x85aac367, 0x82cd8698,
1424 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1425 * over-estimates when re-combining.
1427 static const u32 runnable_avg_yN_sum[] = {
1428 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1429 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1430 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1435 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1437 static __always_inline u64 decay_load(u64 val, u64 n)
1439 unsigned int local_n;
1443 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1446 /* after bounds checking we can collapse to 32-bit */
1450 * As y^PERIOD = 1/2, we can combine
1451 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1452 * With a look-up table which covers k^n (n<PERIOD)
1454 * To achieve constant time decay_load.
1456 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1457 val >>= local_n / LOAD_AVG_PERIOD;
1458 local_n %= LOAD_AVG_PERIOD;
1461 val *= runnable_avg_yN_inv[local_n];
1462 /* We don't use SRR here since we always want to round down. */
1467 * For updates fully spanning n periods, the contribution to runnable
1468 * average will be: \Sum 1024*y^n
1470 * We can compute this reasonably efficiently by combining:
1471 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1473 static u32 __compute_runnable_contrib(u64 n)
1477 if (likely(n <= LOAD_AVG_PERIOD))
1478 return runnable_avg_yN_sum[n];
1479 else if (unlikely(n >= LOAD_AVG_MAX_N))
1480 return LOAD_AVG_MAX;
1482 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1484 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1485 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1487 n -= LOAD_AVG_PERIOD;
1488 } while (n > LOAD_AVG_PERIOD);
1490 contrib = decay_load(contrib, n);
1491 return contrib + runnable_avg_yN_sum[n];
1495 * We can represent the historical contribution to runnable average as the
1496 * coefficients of a geometric series. To do this we sub-divide our runnable
1497 * history into segments of approximately 1ms (1024us); label the segment that
1498 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1500 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1502 * (now) (~1ms ago) (~2ms ago)
1504 * Let u_i denote the fraction of p_i that the entity was runnable.
1506 * We then designate the fractions u_i as our co-efficients, yielding the
1507 * following representation of historical load:
1508 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1510 * We choose y based on the with of a reasonably scheduling period, fixing:
1513 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1514 * approximately half as much as the contribution to load within the last ms
1517 * When a period "rolls over" and we have new u_0`, multiplying the previous
1518 * sum again by y is sufficient to update:
1519 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1520 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1522 static __always_inline int __update_entity_runnable_avg(u64 now,
1523 struct sched_avg *sa,
1527 u32 runnable_contrib;
1528 int delta_w, decayed = 0;
1530 delta = now - sa->last_runnable_update;
1532 * This should only happen when time goes backwards, which it
1533 * unfortunately does during sched clock init when we swap over to TSC.
1535 if ((s64)delta < 0) {
1536 sa->last_runnable_update = now;
1541 * Use 1024ns as the unit of measurement since it's a reasonable
1542 * approximation of 1us and fast to compute.
1547 sa->last_runnable_update = now;
1549 /* delta_w is the amount already accumulated against our next period */
1550 delta_w = sa->runnable_avg_period % 1024;
1551 if (delta + delta_w >= 1024) {
1552 /* period roll-over */
1556 * Now that we know we're crossing a period boundary, figure
1557 * out how much from delta we need to complete the current
1558 * period and accrue it.
1560 delta_w = 1024 - delta_w;
1562 sa->runnable_avg_sum += delta_w;
1563 sa->runnable_avg_period += delta_w;
1567 /* Figure out how many additional periods this update spans */
1568 periods = delta / 1024;
1571 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1573 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1576 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1577 runnable_contrib = __compute_runnable_contrib(periods);
1579 sa->runnable_avg_sum += runnable_contrib;
1580 sa->runnable_avg_period += runnable_contrib;
1583 /* Remainder of delta accrued against u_0` */
1585 sa->runnable_avg_sum += delta;
1586 sa->runnable_avg_period += delta;
1591 /* Synchronize an entity's decay with its parenting cfs_rq.*/
1592 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1594 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1595 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1597 decays -= se->avg.decay_count;
1601 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1602 se->avg.decay_count = 0;
1607 #ifdef CONFIG_FAIR_GROUP_SCHED
1608 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1611 struct task_group *tg = cfs_rq->tg;
1614 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1615 tg_contrib -= cfs_rq->tg_load_contrib;
1617 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1618 atomic_long_add(tg_contrib, &tg->load_avg);
1619 cfs_rq->tg_load_contrib += tg_contrib;
1624 * Aggregate cfs_rq runnable averages into an equivalent task_group
1625 * representation for computing load contributions.
1627 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1628 struct cfs_rq *cfs_rq)
1630 struct task_group *tg = cfs_rq->tg;
1633 /* The fraction of a cpu used by this cfs_rq */
1634 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1635 sa->runnable_avg_period + 1);
1636 contrib -= cfs_rq->tg_runnable_contrib;
1638 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1639 atomic_add(contrib, &tg->runnable_avg);
1640 cfs_rq->tg_runnable_contrib += contrib;
1644 static inline void __update_group_entity_contrib(struct sched_entity *se)
1646 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1647 struct task_group *tg = cfs_rq->tg;
1652 contrib = cfs_rq->tg_load_contrib * tg->shares;
1653 se->avg.load_avg_contrib = div_u64(contrib,
1654 atomic_long_read(&tg->load_avg) + 1);
1657 * For group entities we need to compute a correction term in the case
1658 * that they are consuming <1 cpu so that we would contribute the same
1659 * load as a task of equal weight.
1661 * Explicitly co-ordinating this measurement would be expensive, but
1662 * fortunately the sum of each cpus contribution forms a usable
1663 * lower-bound on the true value.
1665 * Consider the aggregate of 2 contributions. Either they are disjoint
1666 * (and the sum represents true value) or they are disjoint and we are
1667 * understating by the aggregate of their overlap.
1669 * Extending this to N cpus, for a given overlap, the maximum amount we
1670 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1671 * cpus that overlap for this interval and w_i is the interval width.
1673 * On a small machine; the first term is well-bounded which bounds the
1674 * total error since w_i is a subset of the period. Whereas on a
1675 * larger machine, while this first term can be larger, if w_i is the
1676 * of consequential size guaranteed to see n_i*w_i quickly converge to
1677 * our upper bound of 1-cpu.
1679 runnable_avg = atomic_read(&tg->runnable_avg);
1680 if (runnable_avg < NICE_0_LOAD) {
1681 se->avg.load_avg_contrib *= runnable_avg;
1682 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1686 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1687 int force_update) {}
1688 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1689 struct cfs_rq *cfs_rq) {}
1690 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1693 static inline void __update_task_entity_contrib(struct sched_entity *se)
1697 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1698 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1699 contrib /= (se->avg.runnable_avg_period + 1);
1700 se->avg.load_avg_contrib = scale_load(contrib);
1703 /* Compute the current contribution to load_avg by se, return any delta */
1704 static long __update_entity_load_avg_contrib(struct sched_entity *se)
1706 long old_contrib = se->avg.load_avg_contrib;
1708 if (entity_is_task(se)) {
1709 __update_task_entity_contrib(se);
1711 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1712 __update_group_entity_contrib(se);
1715 return se->avg.load_avg_contrib - old_contrib;
1718 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1721 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1722 cfs_rq->blocked_load_avg -= load_contrib;
1724 cfs_rq->blocked_load_avg = 0;
1727 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1729 /* Update a sched_entity's runnable average */
1730 static inline void update_entity_load_avg(struct sched_entity *se,
1733 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1738 * For a group entity we need to use their owned cfs_rq_clock_task() in
1739 * case they are the parent of a throttled hierarchy.
1741 if (entity_is_task(se))
1742 now = cfs_rq_clock_task(cfs_rq);
1744 now = cfs_rq_clock_task(group_cfs_rq(se));
1746 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1749 contrib_delta = __update_entity_load_avg_contrib(se);
1755 cfs_rq->runnable_load_avg += contrib_delta;
1757 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1761 * Decay the load contributed by all blocked children and account this so that
1762 * their contribution may appropriately discounted when they wake up.
1764 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1766 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1769 decays = now - cfs_rq->last_decay;
1770 if (!decays && !force_update)
1773 if (atomic_long_read(&cfs_rq->removed_load)) {
1774 unsigned long removed_load;
1775 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
1776 subtract_blocked_load_contrib(cfs_rq, removed_load);
1780 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1782 atomic64_add(decays, &cfs_rq->decay_counter);
1783 cfs_rq->last_decay = now;
1786 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1789 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1791 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
1792 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
1795 /* Add the load generated by se into cfs_rq's child load-average */
1796 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1797 struct sched_entity *se,
1801 * We track migrations using entity decay_count <= 0, on a wake-up
1802 * migration we use a negative decay count to track the remote decays
1803 * accumulated while sleeping.
1805 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1806 * are seen by enqueue_entity_load_avg() as a migration with an already
1807 * constructed load_avg_contrib.
1809 if (unlikely(se->avg.decay_count <= 0)) {
1810 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
1811 if (se->avg.decay_count) {
1813 * In a wake-up migration we have to approximate the
1814 * time sleeping. This is because we can't synchronize
1815 * clock_task between the two cpus, and it is not
1816 * guaranteed to be read-safe. Instead, we can
1817 * approximate this using our carried decays, which are
1818 * explicitly atomically readable.
1820 se->avg.last_runnable_update -= (-se->avg.decay_count)
1822 update_entity_load_avg(se, 0);
1823 /* Indicate that we're now synchronized and on-rq */
1824 se->avg.decay_count = 0;
1829 * Task re-woke on same cpu (or else migrate_task_rq_fair()
1830 * would have made count negative); we must be careful to avoid
1831 * double-accounting blocked time after synchronizing decays.
1833 se->avg.last_runnable_update += __synchronize_entity_decay(se)
1837 /* migrated tasks did not contribute to our blocked load */
1839 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1840 update_entity_load_avg(se, 0);
1843 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1844 /* we force update consideration on load-balancer moves */
1845 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1849 * Remove se's load from this cfs_rq child load-average, if the entity is
1850 * transitioning to a blocked state we track its projected decay using
1853 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1854 struct sched_entity *se,
1857 update_entity_load_avg(se, 1);
1858 /* we force update consideration on load-balancer moves */
1859 update_cfs_rq_blocked_load(cfs_rq, !sleep);
1861 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1863 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1864 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1865 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
1869 * Update the rq's load with the elapsed running time before entering
1870 * idle. if the last scheduled task is not a CFS task, idle_enter will
1871 * be the only way to update the runnable statistic.
1873 void idle_enter_fair(struct rq *this_rq)
1875 update_rq_runnable_avg(this_rq, 1);
1879 * Update the rq's load with the elapsed idle time before a task is
1880 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1881 * be the only way to update the runnable statistic.
1883 void idle_exit_fair(struct rq *this_rq)
1885 update_rq_runnable_avg(this_rq, 0);
1889 static inline void update_entity_load_avg(struct sched_entity *se,
1890 int update_cfs_rq) {}
1891 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1892 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1893 struct sched_entity *se,
1895 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1896 struct sched_entity *se,
1898 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1899 int force_update) {}
1902 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1904 #ifdef CONFIG_SCHEDSTATS
1905 struct task_struct *tsk = NULL;
1907 if (entity_is_task(se))
1910 if (se->statistics.sleep_start) {
1911 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
1916 if (unlikely(delta > se->statistics.sleep_max))
1917 se->statistics.sleep_max = delta;
1919 se->statistics.sleep_start = 0;
1920 se->statistics.sum_sleep_runtime += delta;
1923 account_scheduler_latency(tsk, delta >> 10, 1);
1924 trace_sched_stat_sleep(tsk, delta);
1927 if (se->statistics.block_start) {
1928 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
1933 if (unlikely(delta > se->statistics.block_max))
1934 se->statistics.block_max = delta;
1936 se->statistics.block_start = 0;
1937 se->statistics.sum_sleep_runtime += delta;
1940 if (tsk->in_iowait) {
1941 se->statistics.iowait_sum += delta;
1942 se->statistics.iowait_count++;
1943 trace_sched_stat_iowait(tsk, delta);
1946 trace_sched_stat_blocked(tsk, delta);
1949 * Blocking time is in units of nanosecs, so shift by
1950 * 20 to get a milliseconds-range estimation of the
1951 * amount of time that the task spent sleeping:
1953 if (unlikely(prof_on == SLEEP_PROFILING)) {
1954 profile_hits(SLEEP_PROFILING,
1955 (void *)get_wchan(tsk),
1958 account_scheduler_latency(tsk, delta >> 10, 0);
1964 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1966 #ifdef CONFIG_SCHED_DEBUG
1967 s64 d = se->vruntime - cfs_rq->min_vruntime;
1972 if (d > 3*sysctl_sched_latency)
1973 schedstat_inc(cfs_rq, nr_spread_over);
1978 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1980 u64 vruntime = cfs_rq->min_vruntime;
1983 * The 'current' period is already promised to the current tasks,
1984 * however the extra weight of the new task will slow them down a
1985 * little, place the new task so that it fits in the slot that
1986 * stays open at the end.
1988 if (initial && sched_feat(START_DEBIT))
1989 vruntime += sched_vslice(cfs_rq, se);
1991 /* sleeps up to a single latency don't count. */
1993 unsigned long thresh = sysctl_sched_latency;
1996 * Halve their sleep time's effect, to allow
1997 * for a gentler effect of sleepers:
1999 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2005 /* ensure we never gain time by being placed backwards. */
2006 se->vruntime = max_vruntime(se->vruntime, vruntime);
2009 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2012 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2015 * Update the normalized vruntime before updating min_vruntime
2016 * through calling update_curr().
2018 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2019 se->vruntime += cfs_rq->min_vruntime;
2022 * Update run-time statistics of the 'current'.
2024 update_curr(cfs_rq);
2025 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2026 account_entity_enqueue(cfs_rq, se);
2027 update_cfs_shares(cfs_rq);
2029 if (flags & ENQUEUE_WAKEUP) {
2030 place_entity(cfs_rq, se, 0);
2031 enqueue_sleeper(cfs_rq, se);
2034 update_stats_enqueue(cfs_rq, se);
2035 check_spread(cfs_rq, se);
2036 if (se != cfs_rq->curr)
2037 __enqueue_entity(cfs_rq, se);
2040 if (cfs_rq->nr_running == 1) {
2041 list_add_leaf_cfs_rq(cfs_rq);
2042 check_enqueue_throttle(cfs_rq);
2046 static void __clear_buddies_last(struct sched_entity *se)
2048 for_each_sched_entity(se) {
2049 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2050 if (cfs_rq->last == se)
2051 cfs_rq->last = NULL;
2057 static void __clear_buddies_next(struct sched_entity *se)
2059 for_each_sched_entity(se) {
2060 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2061 if (cfs_rq->next == se)
2062 cfs_rq->next = NULL;
2068 static void __clear_buddies_skip(struct sched_entity *se)
2070 for_each_sched_entity(se) {
2071 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2072 if (cfs_rq->skip == se)
2073 cfs_rq->skip = NULL;
2079 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2081 if (cfs_rq->last == se)
2082 __clear_buddies_last(se);
2084 if (cfs_rq->next == se)
2085 __clear_buddies_next(se);
2087 if (cfs_rq->skip == se)
2088 __clear_buddies_skip(se);
2091 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2094 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2097 * Update run-time statistics of the 'current'.
2099 update_curr(cfs_rq);
2100 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2102 update_stats_dequeue(cfs_rq, se);
2103 if (flags & DEQUEUE_SLEEP) {
2104 #ifdef CONFIG_SCHEDSTATS
2105 if (entity_is_task(se)) {
2106 struct task_struct *tsk = task_of(se);
2108 if (tsk->state & TASK_INTERRUPTIBLE)
2109 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2110 if (tsk->state & TASK_UNINTERRUPTIBLE)
2111 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2116 clear_buddies(cfs_rq, se);
2118 if (se != cfs_rq->curr)
2119 __dequeue_entity(cfs_rq, se);
2121 account_entity_dequeue(cfs_rq, se);
2124 * Normalize the entity after updating the min_vruntime because the
2125 * update can refer to the ->curr item and we need to reflect this
2126 * movement in our normalized position.
2128 if (!(flags & DEQUEUE_SLEEP))
2129 se->vruntime -= cfs_rq->min_vruntime;
2131 /* return excess runtime on last dequeue */
2132 return_cfs_rq_runtime(cfs_rq);
2134 update_min_vruntime(cfs_rq);
2135 update_cfs_shares(cfs_rq);
2139 * Preempt the current task with a newly woken task if needed:
2142 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2144 unsigned long ideal_runtime, delta_exec;
2145 struct sched_entity *se;
2148 ideal_runtime = sched_slice(cfs_rq, curr);
2149 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2150 if (delta_exec > ideal_runtime) {
2151 resched_task(rq_of(cfs_rq)->curr);
2153 * The current task ran long enough, ensure it doesn't get
2154 * re-elected due to buddy favours.
2156 clear_buddies(cfs_rq, curr);
2161 * Ensure that a task that missed wakeup preemption by a
2162 * narrow margin doesn't have to wait for a full slice.
2163 * This also mitigates buddy induced latencies under load.
2165 if (delta_exec < sysctl_sched_min_granularity)
2168 se = __pick_first_entity(cfs_rq);
2169 delta = curr->vruntime - se->vruntime;
2174 if (delta > ideal_runtime)
2175 resched_task(rq_of(cfs_rq)->curr);
2179 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2181 /* 'current' is not kept within the tree. */
2184 * Any task has to be enqueued before it get to execute on
2185 * a CPU. So account for the time it spent waiting on the
2188 update_stats_wait_end(cfs_rq, se);
2189 __dequeue_entity(cfs_rq, se);
2192 update_stats_curr_start(cfs_rq, se);
2194 #ifdef CONFIG_SCHEDSTATS
2196 * Track our maximum slice length, if the CPU's load is at
2197 * least twice that of our own weight (i.e. dont track it
2198 * when there are only lesser-weight tasks around):
2200 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2201 se->statistics.slice_max = max(se->statistics.slice_max,
2202 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2205 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2209 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2212 * Pick the next process, keeping these things in mind, in this order:
2213 * 1) keep things fair between processes/task groups
2214 * 2) pick the "next" process, since someone really wants that to run
2215 * 3) pick the "last" process, for cache locality
2216 * 4) do not run the "skip" process, if something else is available
2218 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2220 struct sched_entity *se = __pick_first_entity(cfs_rq);
2221 struct sched_entity *left = se;
2224 * Avoid running the skip buddy, if running something else can
2225 * be done without getting too unfair.
2227 if (cfs_rq->skip == se) {
2228 struct sched_entity *second = __pick_next_entity(se);
2229 if (second && wakeup_preempt_entity(second, left) < 1)
2234 * Prefer last buddy, try to return the CPU to a preempted task.
2236 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2240 * Someone really wants this to run. If it's not unfair, run it.
2242 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2245 clear_buddies(cfs_rq, se);
2250 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2252 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2255 * If still on the runqueue then deactivate_task()
2256 * was not called and update_curr() has to be done:
2259 update_curr(cfs_rq);
2261 /* throttle cfs_rqs exceeding runtime */
2262 check_cfs_rq_runtime(cfs_rq);
2264 check_spread(cfs_rq, prev);
2266 update_stats_wait_start(cfs_rq, prev);
2267 /* Put 'current' back into the tree. */
2268 __enqueue_entity(cfs_rq, prev);
2269 /* in !on_rq case, update occurred at dequeue */
2270 update_entity_load_avg(prev, 1);
2272 cfs_rq->curr = NULL;
2276 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2279 * Update run-time statistics of the 'current'.
2281 update_curr(cfs_rq);
2284 * Ensure that runnable average is periodically updated.
2286 update_entity_load_avg(curr, 1);
2287 update_cfs_rq_blocked_load(cfs_rq, 1);
2288 update_cfs_shares(cfs_rq);
2290 #ifdef CONFIG_SCHED_HRTICK
2292 * queued ticks are scheduled to match the slice, so don't bother
2293 * validating it and just reschedule.
2296 resched_task(rq_of(cfs_rq)->curr);
2300 * don't let the period tick interfere with the hrtick preemption
2302 if (!sched_feat(DOUBLE_TICK) &&
2303 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2307 if (cfs_rq->nr_running > 1)
2308 check_preempt_tick(cfs_rq, curr);
2312 /**************************************************
2313 * CFS bandwidth control machinery
2316 #ifdef CONFIG_CFS_BANDWIDTH
2318 #ifdef HAVE_JUMP_LABEL
2319 static struct static_key __cfs_bandwidth_used;
2321 static inline bool cfs_bandwidth_used(void)
2323 return static_key_false(&__cfs_bandwidth_used);
2326 void account_cfs_bandwidth_used(int enabled, int was_enabled)
2328 /* only need to count groups transitioning between enabled/!enabled */
2329 if (enabled && !was_enabled)
2330 static_key_slow_inc(&__cfs_bandwidth_used);
2331 else if (!enabled && was_enabled)
2332 static_key_slow_dec(&__cfs_bandwidth_used);
2334 #else /* HAVE_JUMP_LABEL */
2335 static bool cfs_bandwidth_used(void)
2340 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2341 #endif /* HAVE_JUMP_LABEL */
2344 * default period for cfs group bandwidth.
2345 * default: 0.1s, units: nanoseconds
2347 static inline u64 default_cfs_period(void)
2349 return 100000000ULL;
2352 static inline u64 sched_cfs_bandwidth_slice(void)
2354 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2358 * Replenish runtime according to assigned quota and update expiration time.
2359 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2360 * additional synchronization around rq->lock.
2362 * requires cfs_b->lock
2364 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2368 if (cfs_b->quota == RUNTIME_INF)
2371 now = sched_clock_cpu(smp_processor_id());
2372 cfs_b->runtime = cfs_b->quota;
2373 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2376 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2378 return &tg->cfs_bandwidth;
2381 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2382 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2384 if (unlikely(cfs_rq->throttle_count))
2385 return cfs_rq->throttled_clock_task;
2387 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2390 /* returns 0 on failure to allocate runtime */
2391 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2393 struct task_group *tg = cfs_rq->tg;
2394 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2395 u64 amount = 0, min_amount, expires;
2397 /* note: this is a positive sum as runtime_remaining <= 0 */
2398 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2400 raw_spin_lock(&cfs_b->lock);
2401 if (cfs_b->quota == RUNTIME_INF)
2402 amount = min_amount;
2405 * If the bandwidth pool has become inactive, then at least one
2406 * period must have elapsed since the last consumption.
2407 * Refresh the global state and ensure bandwidth timer becomes
2410 if (!cfs_b->timer_active) {
2411 __refill_cfs_bandwidth_runtime(cfs_b);
2412 __start_cfs_bandwidth(cfs_b);
2415 if (cfs_b->runtime > 0) {
2416 amount = min(cfs_b->runtime, min_amount);
2417 cfs_b->runtime -= amount;
2421 expires = cfs_b->runtime_expires;
2422 raw_spin_unlock(&cfs_b->lock);
2424 cfs_rq->runtime_remaining += amount;
2426 * we may have advanced our local expiration to account for allowed
2427 * spread between our sched_clock and the one on which runtime was
2430 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2431 cfs_rq->runtime_expires = expires;
2433 return cfs_rq->runtime_remaining > 0;
2437 * Note: This depends on the synchronization provided by sched_clock and the
2438 * fact that rq->clock snapshots this value.
2440 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2442 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2444 /* if the deadline is ahead of our clock, nothing to do */
2445 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2448 if (cfs_rq->runtime_remaining < 0)
2452 * If the local deadline has passed we have to consider the
2453 * possibility that our sched_clock is 'fast' and the global deadline
2454 * has not truly expired.
2456 * Fortunately we can check determine whether this the case by checking
2457 * whether the global deadline has advanced.
2460 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2461 /* extend local deadline, drift is bounded above by 2 ticks */
2462 cfs_rq->runtime_expires += TICK_NSEC;
2464 /* global deadline is ahead, expiration has passed */
2465 cfs_rq->runtime_remaining = 0;
2469 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2470 unsigned long delta_exec)
2472 /* dock delta_exec before expiring quota (as it could span periods) */
2473 cfs_rq->runtime_remaining -= delta_exec;
2474 expire_cfs_rq_runtime(cfs_rq);
2476 if (likely(cfs_rq->runtime_remaining > 0))
2480 * if we're unable to extend our runtime we resched so that the active
2481 * hierarchy can be throttled
2483 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2484 resched_task(rq_of(cfs_rq)->curr);
2487 static __always_inline
2488 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2490 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2493 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2496 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2498 return cfs_bandwidth_used() && cfs_rq->throttled;
2501 /* check whether cfs_rq, or any parent, is throttled */
2502 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2504 return cfs_bandwidth_used() && cfs_rq->throttle_count;
2508 * Ensure that neither of the group entities corresponding to src_cpu or
2509 * dest_cpu are members of a throttled hierarchy when performing group
2510 * load-balance operations.
2512 static inline int throttled_lb_pair(struct task_group *tg,
2513 int src_cpu, int dest_cpu)
2515 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2517 src_cfs_rq = tg->cfs_rq[src_cpu];
2518 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2520 return throttled_hierarchy(src_cfs_rq) ||
2521 throttled_hierarchy(dest_cfs_rq);
2524 /* updated child weight may affect parent so we have to do this bottom up */
2525 static int tg_unthrottle_up(struct task_group *tg, void *data)
2527 struct rq *rq = data;
2528 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2530 cfs_rq->throttle_count--;
2532 if (!cfs_rq->throttle_count) {
2533 /* adjust cfs_rq_clock_task() */
2534 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
2535 cfs_rq->throttled_clock_task;
2542 static int tg_throttle_down(struct task_group *tg, void *data)
2544 struct rq *rq = data;
2545 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2547 /* group is entering throttled state, stop time */
2548 if (!cfs_rq->throttle_count)
2549 cfs_rq->throttled_clock_task = rq_clock_task(rq);
2550 cfs_rq->throttle_count++;
2555 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2557 struct rq *rq = rq_of(cfs_rq);
2558 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2559 struct sched_entity *se;
2560 long task_delta, dequeue = 1;
2562 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2564 /* freeze hierarchy runnable averages while throttled */
2566 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2569 task_delta = cfs_rq->h_nr_running;
2570 for_each_sched_entity(se) {
2571 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2572 /* throttled entity or throttle-on-deactivate */
2577 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2578 qcfs_rq->h_nr_running -= task_delta;
2580 if (qcfs_rq->load.weight)
2585 rq->nr_running -= task_delta;
2587 cfs_rq->throttled = 1;
2588 cfs_rq->throttled_clock = rq_clock(rq);
2589 raw_spin_lock(&cfs_b->lock);
2590 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2591 raw_spin_unlock(&cfs_b->lock);
2594 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2596 struct rq *rq = rq_of(cfs_rq);
2597 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2598 struct sched_entity *se;
2602 se = cfs_rq->tg->se[cpu_of(rq)];
2604 cfs_rq->throttled = 0;
2606 update_rq_clock(rq);
2608 raw_spin_lock(&cfs_b->lock);
2609 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
2610 list_del_rcu(&cfs_rq->throttled_list);
2611 raw_spin_unlock(&cfs_b->lock);
2613 /* update hierarchical throttle state */
2614 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2616 if (!cfs_rq->load.weight)
2619 task_delta = cfs_rq->h_nr_running;
2620 for_each_sched_entity(se) {
2624 cfs_rq = cfs_rq_of(se);
2626 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2627 cfs_rq->h_nr_running += task_delta;
2629 if (cfs_rq_throttled(cfs_rq))
2634 rq->nr_running += task_delta;
2636 /* determine whether we need to wake up potentially idle cpu */
2637 if (rq->curr == rq->idle && rq->cfs.nr_running)
2638 resched_task(rq->curr);
2641 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2642 u64 remaining, u64 expires)
2644 struct cfs_rq *cfs_rq;
2645 u64 runtime = remaining;
2648 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2650 struct rq *rq = rq_of(cfs_rq);
2652 raw_spin_lock(&rq->lock);
2653 if (!cfs_rq_throttled(cfs_rq))
2656 runtime = -cfs_rq->runtime_remaining + 1;
2657 if (runtime > remaining)
2658 runtime = remaining;
2659 remaining -= runtime;
2661 cfs_rq->runtime_remaining += runtime;
2662 cfs_rq->runtime_expires = expires;
2664 /* we check whether we're throttled above */
2665 if (cfs_rq->runtime_remaining > 0)
2666 unthrottle_cfs_rq(cfs_rq);
2669 raw_spin_unlock(&rq->lock);
2680 * Responsible for refilling a task_group's bandwidth and unthrottling its
2681 * cfs_rqs as appropriate. If there has been no activity within the last
2682 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2683 * used to track this state.
2685 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2687 u64 runtime, runtime_expires;
2688 int idle = 1, throttled;
2690 raw_spin_lock(&cfs_b->lock);
2691 /* no need to continue the timer with no bandwidth constraint */
2692 if (cfs_b->quota == RUNTIME_INF)
2695 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2696 /* idle depends on !throttled (for the case of a large deficit) */
2697 idle = cfs_b->idle && !throttled;
2698 cfs_b->nr_periods += overrun;
2700 /* if we're going inactive then everything else can be deferred */
2704 __refill_cfs_bandwidth_runtime(cfs_b);
2707 /* mark as potentially idle for the upcoming period */
2712 /* account preceding periods in which throttling occurred */
2713 cfs_b->nr_throttled += overrun;
2716 * There are throttled entities so we must first use the new bandwidth
2717 * to unthrottle them before making it generally available. This
2718 * ensures that all existing debts will be paid before a new cfs_rq is
2721 runtime = cfs_b->runtime;
2722 runtime_expires = cfs_b->runtime_expires;
2726 * This check is repeated as we are holding onto the new bandwidth
2727 * while we unthrottle. This can potentially race with an unthrottled
2728 * group trying to acquire new bandwidth from the global pool.
2730 while (throttled && runtime > 0) {
2731 raw_spin_unlock(&cfs_b->lock);
2732 /* we can't nest cfs_b->lock while distributing bandwidth */
2733 runtime = distribute_cfs_runtime(cfs_b, runtime,
2735 raw_spin_lock(&cfs_b->lock);
2737 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2740 /* return (any) remaining runtime */
2741 cfs_b->runtime = runtime;
2743 * While we are ensured activity in the period following an
2744 * unthrottle, this also covers the case in which the new bandwidth is
2745 * insufficient to cover the existing bandwidth deficit. (Forcing the
2746 * timer to remain active while there are any throttled entities.)
2751 cfs_b->timer_active = 0;
2752 raw_spin_unlock(&cfs_b->lock);
2757 /* a cfs_rq won't donate quota below this amount */
2758 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2759 /* minimum remaining period time to redistribute slack quota */
2760 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2761 /* how long we wait to gather additional slack before distributing */
2762 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2764 /* are we near the end of the current quota period? */
2765 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2767 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2770 /* if the call-back is running a quota refresh is already occurring */
2771 if (hrtimer_callback_running(refresh_timer))
2774 /* is a quota refresh about to occur? */
2775 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2776 if (remaining < min_expire)
2782 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2784 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2786 /* if there's a quota refresh soon don't bother with slack */
2787 if (runtime_refresh_within(cfs_b, min_left))
2790 start_bandwidth_timer(&cfs_b->slack_timer,
2791 ns_to_ktime(cfs_bandwidth_slack_period));
2794 /* we know any runtime found here is valid as update_curr() precedes return */
2795 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2797 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2798 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2800 if (slack_runtime <= 0)
2803 raw_spin_lock(&cfs_b->lock);
2804 if (cfs_b->quota != RUNTIME_INF &&
2805 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2806 cfs_b->runtime += slack_runtime;
2808 /* we are under rq->lock, defer unthrottling using a timer */
2809 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2810 !list_empty(&cfs_b->throttled_cfs_rq))
2811 start_cfs_slack_bandwidth(cfs_b);
2813 raw_spin_unlock(&cfs_b->lock);
2815 /* even if it's not valid for return we don't want to try again */
2816 cfs_rq->runtime_remaining -= slack_runtime;
2819 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2821 if (!cfs_bandwidth_used())
2824 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2827 __return_cfs_rq_runtime(cfs_rq);
2831 * This is done with a timer (instead of inline with bandwidth return) since
2832 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2834 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2836 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2839 /* confirm we're still not at a refresh boundary */
2840 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2843 raw_spin_lock(&cfs_b->lock);
2844 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2845 runtime = cfs_b->runtime;
2848 expires = cfs_b->runtime_expires;
2849 raw_spin_unlock(&cfs_b->lock);
2854 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2856 raw_spin_lock(&cfs_b->lock);
2857 if (expires == cfs_b->runtime_expires)
2858 cfs_b->runtime = runtime;
2859 raw_spin_unlock(&cfs_b->lock);
2863 * When a group wakes up we want to make sure that its quota is not already
2864 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2865 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2867 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2869 if (!cfs_bandwidth_used())
2872 /* an active group must be handled by the update_curr()->put() path */
2873 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2876 /* ensure the group is not already throttled */
2877 if (cfs_rq_throttled(cfs_rq))
2880 /* update runtime allocation */
2881 account_cfs_rq_runtime(cfs_rq, 0);
2882 if (cfs_rq->runtime_remaining <= 0)
2883 throttle_cfs_rq(cfs_rq);
2886 /* conditionally throttle active cfs_rq's from put_prev_entity() */
2887 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2889 if (!cfs_bandwidth_used())
2892 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2896 * it's possible for a throttled entity to be forced into a running
2897 * state (e.g. set_curr_task), in this case we're finished.
2899 if (cfs_rq_throttled(cfs_rq))
2902 throttle_cfs_rq(cfs_rq);
2905 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2907 struct cfs_bandwidth *cfs_b =
2908 container_of(timer, struct cfs_bandwidth, slack_timer);
2909 do_sched_cfs_slack_timer(cfs_b);
2911 return HRTIMER_NORESTART;
2914 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2916 struct cfs_bandwidth *cfs_b =
2917 container_of(timer, struct cfs_bandwidth, period_timer);
2923 now = hrtimer_cb_get_time(timer);
2924 overrun = hrtimer_forward(timer, now, cfs_b->period);
2929 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2932 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2935 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2937 raw_spin_lock_init(&cfs_b->lock);
2939 cfs_b->quota = RUNTIME_INF;
2940 cfs_b->period = ns_to_ktime(default_cfs_period());
2942 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2943 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2944 cfs_b->period_timer.function = sched_cfs_period_timer;
2945 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2946 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2949 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2951 cfs_rq->runtime_enabled = 0;
2952 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2955 /* requires cfs_b->lock, may release to reprogram timer */
2956 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2959 * The timer may be active because we're trying to set a new bandwidth
2960 * period or because we're racing with the tear-down path
2961 * (timer_active==0 becomes visible before the hrtimer call-back
2962 * terminates). In either case we ensure that it's re-programmed
2964 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2965 raw_spin_unlock(&cfs_b->lock);
2966 /* ensure cfs_b->lock is available while we wait */
2967 hrtimer_cancel(&cfs_b->period_timer);
2969 raw_spin_lock(&cfs_b->lock);
2970 /* if someone else restarted the timer then we're done */
2971 if (cfs_b->timer_active)
2975 cfs_b->timer_active = 1;
2976 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2979 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2981 hrtimer_cancel(&cfs_b->period_timer);
2982 hrtimer_cancel(&cfs_b->slack_timer);
2985 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
2987 struct cfs_rq *cfs_rq;
2989 for_each_leaf_cfs_rq(rq, cfs_rq) {
2990 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2992 if (!cfs_rq->runtime_enabled)
2996 * clock_task is not advancing so we just need to make sure
2997 * there's some valid quota amount
2999 cfs_rq->runtime_remaining = cfs_b->quota;
3000 if (cfs_rq_throttled(cfs_rq))
3001 unthrottle_cfs_rq(cfs_rq);
3005 #else /* CONFIG_CFS_BANDWIDTH */
3006 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3008 return rq_clock_task(rq_of(cfs_rq));
3011 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3012 unsigned long delta_exec) {}
3013 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3014 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3015 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3017 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3022 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3027 static inline int throttled_lb_pair(struct task_group *tg,
3028 int src_cpu, int dest_cpu)
3033 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3035 #ifdef CONFIG_FAIR_GROUP_SCHED
3036 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3039 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3043 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3044 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3046 #endif /* CONFIG_CFS_BANDWIDTH */
3048 /**************************************************
3049 * CFS operations on tasks:
3052 #ifdef CONFIG_SCHED_HRTICK
3053 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3055 struct sched_entity *se = &p->se;
3056 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3058 WARN_ON(task_rq(p) != rq);
3060 if (cfs_rq->nr_running > 1) {
3061 u64 slice = sched_slice(cfs_rq, se);
3062 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3063 s64 delta = slice - ran;
3072 * Don't schedule slices shorter than 10000ns, that just
3073 * doesn't make sense. Rely on vruntime for fairness.
3076 delta = max_t(s64, 10000LL, delta);
3078 hrtick_start(rq, delta);
3083 * called from enqueue/dequeue and updates the hrtick when the
3084 * current task is from our class and nr_running is low enough
3087 static void hrtick_update(struct rq *rq)
3089 struct task_struct *curr = rq->curr;
3091 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3094 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3095 hrtick_start_fair(rq, curr);
3097 #else /* !CONFIG_SCHED_HRTICK */
3099 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3103 static inline void hrtick_update(struct rq *rq)
3109 * The enqueue_task method is called before nr_running is
3110 * increased. Here we update the fair scheduling stats and
3111 * then put the task into the rbtree:
3114 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3116 struct cfs_rq *cfs_rq;
3117 struct sched_entity *se = &p->se;
3119 for_each_sched_entity(se) {
3122 cfs_rq = cfs_rq_of(se);
3123 enqueue_entity(cfs_rq, se, flags);
3126 * end evaluation on encountering a throttled cfs_rq
3128 * note: in the case of encountering a throttled cfs_rq we will
3129 * post the final h_nr_running increment below.
3131 if (cfs_rq_throttled(cfs_rq))
3133 cfs_rq->h_nr_running++;
3135 flags = ENQUEUE_WAKEUP;
3138 for_each_sched_entity(se) {
3139 cfs_rq = cfs_rq_of(se);
3140 cfs_rq->h_nr_running++;
3142 if (cfs_rq_throttled(cfs_rq))
3145 update_cfs_shares(cfs_rq);
3146 update_entity_load_avg(se, 1);
3150 update_rq_runnable_avg(rq, rq->nr_running);
3156 static void set_next_buddy(struct sched_entity *se);
3159 * The dequeue_task method is called before nr_running is
3160 * decreased. We remove the task from the rbtree and
3161 * update the fair scheduling stats:
3163 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3165 struct cfs_rq *cfs_rq;
3166 struct sched_entity *se = &p->se;
3167 int task_sleep = flags & DEQUEUE_SLEEP;
3169 for_each_sched_entity(se) {
3170 cfs_rq = cfs_rq_of(se);
3171 dequeue_entity(cfs_rq, se, flags);
3174 * end evaluation on encountering a throttled cfs_rq
3176 * note: in the case of encountering a throttled cfs_rq we will
3177 * post the final h_nr_running decrement below.
3179 if (cfs_rq_throttled(cfs_rq))
3181 cfs_rq->h_nr_running--;
3183 /* Don't dequeue parent if it has other entities besides us */
3184 if (cfs_rq->load.weight) {
3186 * Bias pick_next to pick a task from this cfs_rq, as
3187 * p is sleeping when it is within its sched_slice.
3189 if (task_sleep && parent_entity(se))
3190 set_next_buddy(parent_entity(se));
3192 /* avoid re-evaluating load for this entity */
3193 se = parent_entity(se);
3196 flags |= DEQUEUE_SLEEP;
3199 for_each_sched_entity(se) {
3200 cfs_rq = cfs_rq_of(se);
3201 cfs_rq->h_nr_running--;
3203 if (cfs_rq_throttled(cfs_rq))
3206 update_cfs_shares(cfs_rq);
3207 update_entity_load_avg(se, 1);
3212 update_rq_runnable_avg(rq, 1);
3218 /* Used instead of source_load when we know the type == 0 */
3219 static unsigned long weighted_cpuload(const int cpu)
3221 return cpu_rq(cpu)->cfs.runnable_load_avg;
3225 * Return a low guess at the load of a migration-source cpu weighted
3226 * according to the scheduling class and "nice" value.
3228 * We want to under-estimate the load of migration sources, to
3229 * balance conservatively.
3231 static unsigned long source_load(int cpu, int type)
3233 struct rq *rq = cpu_rq(cpu);
3234 unsigned long total = weighted_cpuload(cpu);
3236 if (type == 0 || !sched_feat(LB_BIAS))
3239 return min(rq->cpu_load[type-1], total);
3243 * Return a high guess at the load of a migration-target cpu weighted
3244 * according to the scheduling class and "nice" value.
3246 static unsigned long target_load(int cpu, int type)
3248 struct rq *rq = cpu_rq(cpu);
3249 unsigned long total = weighted_cpuload(cpu);
3251 if (type == 0 || !sched_feat(LB_BIAS))
3254 return max(rq->cpu_load[type-1], total);
3257 static unsigned long power_of(int cpu)
3259 return cpu_rq(cpu)->cpu_power;
3262 static unsigned long cpu_avg_load_per_task(int cpu)
3264 struct rq *rq = cpu_rq(cpu);
3265 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3266 unsigned long load_avg = rq->cfs.runnable_load_avg;
3269 return load_avg / nr_running;
3274 static void record_wakee(struct task_struct *p)
3277 * Rough decay (wiping) for cost saving, don't worry
3278 * about the boundary, really active task won't care
3281 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3282 current->wakee_flips = 0;
3283 current->wakee_flip_decay_ts = jiffies;
3286 if (current->last_wakee != p) {
3287 current->last_wakee = p;
3288 current->wakee_flips++;
3292 static void task_waking_fair(struct task_struct *p)
3294 struct sched_entity *se = &p->se;
3295 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3298 #ifndef CONFIG_64BIT
3299 u64 min_vruntime_copy;
3302 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3304 min_vruntime = cfs_rq->min_vruntime;
3305 } while (min_vruntime != min_vruntime_copy);
3307 min_vruntime = cfs_rq->min_vruntime;
3310 se->vruntime -= min_vruntime;
3314 #ifdef CONFIG_FAIR_GROUP_SCHED
3316 * effective_load() calculates the load change as seen from the root_task_group
3318 * Adding load to a group doesn't make a group heavier, but can cause movement
3319 * of group shares between cpus. Assuming the shares were perfectly aligned one
3320 * can calculate the shift in shares.
3322 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3323 * on this @cpu and results in a total addition (subtraction) of @wg to the
3324 * total group weight.
3326 * Given a runqueue weight distribution (rw_i) we can compute a shares
3327 * distribution (s_i) using:
3329 * s_i = rw_i / \Sum rw_j (1)
3331 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3332 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3333 * shares distribution (s_i):
3335 * rw_i = { 2, 4, 1, 0 }
3336 * s_i = { 2/7, 4/7, 1/7, 0 }
3338 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3339 * task used to run on and the CPU the waker is running on), we need to
3340 * compute the effect of waking a task on either CPU and, in case of a sync
3341 * wakeup, compute the effect of the current task going to sleep.
3343 * So for a change of @wl to the local @cpu with an overall group weight change
3344 * of @wl we can compute the new shares distribution (s'_i) using:
3346 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3348 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3349 * differences in waking a task to CPU 0. The additional task changes the
3350 * weight and shares distributions like:
3352 * rw'_i = { 3, 4, 1, 0 }
3353 * s'_i = { 3/8, 4/8, 1/8, 0 }
3355 * We can then compute the difference in effective weight by using:
3357 * dw_i = S * (s'_i - s_i) (3)
3359 * Where 'S' is the group weight as seen by its parent.
3361 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3362 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3363 * 4/7) times the weight of the group.
3365 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3367 struct sched_entity *se = tg->se[cpu];
3369 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
3372 for_each_sched_entity(se) {
3378 * W = @wg + \Sum rw_j
3380 W = wg + calc_tg_weight(tg, se->my_q);
3385 w = se->my_q->load.weight + wl;
3388 * wl = S * s'_i; see (2)
3391 wl = (w * tg->shares) / W;
3396 * Per the above, wl is the new se->load.weight value; since
3397 * those are clipped to [MIN_SHARES, ...) do so now. See
3398 * calc_cfs_shares().
3400 if (wl < MIN_SHARES)
3404 * wl = dw_i = S * (s'_i - s_i); see (3)
3406 wl -= se->load.weight;
3409 * Recursively apply this logic to all parent groups to compute
3410 * the final effective load change on the root group. Since
3411 * only the @tg group gets extra weight, all parent groups can
3412 * only redistribute existing shares. @wl is the shift in shares
3413 * resulting from this level per the above.
3422 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3429 static int wake_wide(struct task_struct *p)
3431 int factor = this_cpu_read(sd_llc_size);
3434 * Yeah, it's the switching-frequency, could means many wakee or
3435 * rapidly switch, use factor here will just help to automatically
3436 * adjust the loose-degree, so bigger node will lead to more pull.
3438 if (p->wakee_flips > factor) {
3440 * wakee is somewhat hot, it needs certain amount of cpu
3441 * resource, so if waker is far more hot, prefer to leave
3444 if (current->wakee_flips > (factor * p->wakee_flips))
3451 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3453 s64 this_load, load;
3454 int idx, this_cpu, prev_cpu;
3455 unsigned long tl_per_task;
3456 struct task_group *tg;
3457 unsigned long weight;
3461 * If we wake multiple tasks be careful to not bounce
3462 * ourselves around too much.
3468 this_cpu = smp_processor_id();
3469 prev_cpu = task_cpu(p);
3470 load = source_load(prev_cpu, idx);
3471 this_load = target_load(this_cpu, idx);
3474 * If sync wakeup then subtract the (maximum possible)
3475 * effect of the currently running task from the load
3476 * of the current CPU:
3479 tg = task_group(current);
3480 weight = current->se.load.weight;
3482 this_load += effective_load(tg, this_cpu, -weight, -weight);
3483 load += effective_load(tg, prev_cpu, 0, -weight);
3487 weight = p->se.load.weight;
3490 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3491 * due to the sync cause above having dropped this_load to 0, we'll
3492 * always have an imbalance, but there's really nothing you can do
3493 * about that, so that's good too.
3495 * Otherwise check if either cpus are near enough in load to allow this
3496 * task to be woken on this_cpu.
3498 if (this_load > 0) {
3499 s64 this_eff_load, prev_eff_load;
3501 this_eff_load = 100;
3502 this_eff_load *= power_of(prev_cpu);
3503 this_eff_load *= this_load +
3504 effective_load(tg, this_cpu, weight, weight);
3506 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3507 prev_eff_load *= power_of(this_cpu);
3508 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3510 balanced = this_eff_load <= prev_eff_load;
3515 * If the currently running task will sleep within
3516 * a reasonable amount of time then attract this newly
3519 if (sync && balanced)
3522 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3523 tl_per_task = cpu_avg_load_per_task(this_cpu);
3526 (this_load <= load &&
3527 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3529 * This domain has SD_WAKE_AFFINE and
3530 * p is cache cold in this domain, and
3531 * there is no bad imbalance.
3533 schedstat_inc(sd, ttwu_move_affine);
3534 schedstat_inc(p, se.statistics.nr_wakeups_affine);
3542 * find_idlest_group finds and returns the least busy CPU group within the
3545 static struct sched_group *
3546 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3547 int this_cpu, int load_idx)
3549 struct sched_group *idlest = NULL, *group = sd->groups;
3550 unsigned long min_load = ULONG_MAX, this_load = 0;
3551 int imbalance = 100 + (sd->imbalance_pct-100)/2;
3554 unsigned long load, avg_load;
3558 /* Skip over this group if it has no CPUs allowed */
3559 if (!cpumask_intersects(sched_group_cpus(group),
3560 tsk_cpus_allowed(p)))
3563 local_group = cpumask_test_cpu(this_cpu,
3564 sched_group_cpus(group));
3566 /* Tally up the load of all CPUs in the group */
3569 for_each_cpu(i, sched_group_cpus(group)) {
3570 /* Bias balancing toward cpus of our domain */
3572 load = source_load(i, load_idx);
3574 load = target_load(i, load_idx);
3579 /* Adjust by relative CPU power of the group */
3580 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3583 this_load = avg_load;
3584 } else if (avg_load < min_load) {
3585 min_load = avg_load;
3588 } while (group = group->next, group != sd->groups);
3590 if (!idlest || 100*this_load < imbalance*min_load)
3596 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3599 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3601 unsigned long load, min_load = ULONG_MAX;
3605 /* Traverse only the allowed CPUs */
3606 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3607 load = weighted_cpuload(i);
3609 if (load < min_load || (load == min_load && i == this_cpu)) {
3619 * Try and locate an idle CPU in the sched_domain.
3621 static int select_idle_sibling(struct task_struct *p, int target)
3623 struct sched_domain *sd;
3624 struct sched_group *sg;
3625 int i = task_cpu(p);
3627 if (idle_cpu(target))
3631 * If the prevous cpu is cache affine and idle, don't be stupid.
3633 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3637 * Otherwise, iterate the domains and find an elegible idle cpu.
3639 sd = rcu_dereference(per_cpu(sd_llc, target));
3640 for_each_lower_domain(sd) {
3643 if (!cpumask_intersects(sched_group_cpus(sg),
3644 tsk_cpus_allowed(p)))
3647 for_each_cpu(i, sched_group_cpus(sg)) {
3648 if (i == target || !idle_cpu(i))
3652 target = cpumask_first_and(sched_group_cpus(sg),
3653 tsk_cpus_allowed(p));
3657 } while (sg != sd->groups);
3664 * sched_balance_self: balance the current task (running on cpu) in domains
3665 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3668 * Balance, ie. select the least loaded group.
3670 * Returns the target CPU number, or the same CPU if no balancing is needed.
3672 * preempt must be disabled.
3675 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3677 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3678 int cpu = smp_processor_id();
3679 int prev_cpu = task_cpu(p);
3681 int want_affine = 0;
3682 int sync = wake_flags & WF_SYNC;
3684 if (p->nr_cpus_allowed == 1)
3687 if (sd_flag & SD_BALANCE_WAKE) {
3688 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3694 for_each_domain(cpu, tmp) {
3695 if (!(tmp->flags & SD_LOAD_BALANCE))
3699 * If both cpu and prev_cpu are part of this domain,
3700 * cpu is a valid SD_WAKE_AFFINE target.
3702 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3703 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3708 if (tmp->flags & sd_flag)
3713 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3716 new_cpu = select_idle_sibling(p, prev_cpu);
3721 int load_idx = sd->forkexec_idx;
3722 struct sched_group *group;
3725 if (!(sd->flags & sd_flag)) {
3730 if (sd_flag & SD_BALANCE_WAKE)
3731 load_idx = sd->wake_idx;
3733 group = find_idlest_group(sd, p, cpu, load_idx);
3739 new_cpu = find_idlest_cpu(group, p, cpu);
3740 if (new_cpu == -1 || new_cpu == cpu) {
3741 /* Now try balancing at a lower domain level of cpu */
3746 /* Now try balancing at a lower domain level of new_cpu */
3748 weight = sd->span_weight;
3750 for_each_domain(cpu, tmp) {
3751 if (weight <= tmp->span_weight)
3753 if (tmp->flags & sd_flag)
3756 /* while loop will break here if sd == NULL */
3765 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3766 * cfs_rq_of(p) references at time of call are still valid and identify the
3767 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3768 * other assumptions, including the state of rq->lock, should be made.
3771 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3773 struct sched_entity *se = &p->se;
3774 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3777 * Load tracking: accumulate removed load so that it can be processed
3778 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3779 * to blocked load iff they have a positive decay-count. It can never
3780 * be negative here since on-rq tasks have decay-count == 0.
3782 if (se->avg.decay_count) {
3783 se->avg.decay_count = -__synchronize_entity_decay(se);
3784 atomic_long_add(se->avg.load_avg_contrib,
3785 &cfs_rq->removed_load);
3788 #endif /* CONFIG_SMP */
3790 static unsigned long
3791 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3793 unsigned long gran = sysctl_sched_wakeup_granularity;
3796 * Since its curr running now, convert the gran from real-time
3797 * to virtual-time in his units.
3799 * By using 'se' instead of 'curr' we penalize light tasks, so
3800 * they get preempted easier. That is, if 'se' < 'curr' then
3801 * the resulting gran will be larger, therefore penalizing the
3802 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3803 * be smaller, again penalizing the lighter task.
3805 * This is especially important for buddies when the leftmost
3806 * task is higher priority than the buddy.
3808 return calc_delta_fair(gran, se);
3812 * Should 'se' preempt 'curr'.
3826 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3828 s64 gran, vdiff = curr->vruntime - se->vruntime;
3833 gran = wakeup_gran(curr, se);
3840 static void set_last_buddy(struct sched_entity *se)
3842 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3845 for_each_sched_entity(se)
3846 cfs_rq_of(se)->last = se;
3849 static void set_next_buddy(struct sched_entity *se)
3851 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3854 for_each_sched_entity(se)
3855 cfs_rq_of(se)->next = se;
3858 static void set_skip_buddy(struct sched_entity *se)
3860 for_each_sched_entity(se)
3861 cfs_rq_of(se)->skip = se;
3865 * Preempt the current task with a newly woken task if needed:
3867 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3869 struct task_struct *curr = rq->curr;
3870 struct sched_entity *se = &curr->se, *pse = &p->se;
3871 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3872 int scale = cfs_rq->nr_running >= sched_nr_latency;
3873 int next_buddy_marked = 0;
3875 if (unlikely(se == pse))
3879 * This is possible from callers such as move_task(), in which we
3880 * unconditionally check_prempt_curr() after an enqueue (which may have
3881 * lead to a throttle). This both saves work and prevents false
3882 * next-buddy nomination below.
3884 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3887 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3888 set_next_buddy(pse);
3889 next_buddy_marked = 1;
3893 * We can come here with TIF_NEED_RESCHED already set from new task
3896 * Note: this also catches the edge-case of curr being in a throttled
3897 * group (e.g. via set_curr_task), since update_curr() (in the
3898 * enqueue of curr) will have resulted in resched being set. This
3899 * prevents us from potentially nominating it as a false LAST_BUDDY
3902 if (test_tsk_need_resched(curr))
3905 /* Idle tasks are by definition preempted by non-idle tasks. */
3906 if (unlikely(curr->policy == SCHED_IDLE) &&
3907 likely(p->policy != SCHED_IDLE))
3911 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3912 * is driven by the tick):
3914 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3917 find_matching_se(&se, &pse);
3918 update_curr(cfs_rq_of(se));
3920 if (wakeup_preempt_entity(se, pse) == 1) {
3922 * Bias pick_next to pick the sched entity that is
3923 * triggering this preemption.
3925 if (!next_buddy_marked)
3926 set_next_buddy(pse);
3935 * Only set the backward buddy when the current task is still
3936 * on the rq. This can happen when a wakeup gets interleaved
3937 * with schedule on the ->pre_schedule() or idle_balance()
3938 * point, either of which can * drop the rq lock.
3940 * Also, during early boot the idle thread is in the fair class,
3941 * for obvious reasons its a bad idea to schedule back to it.
3943 if (unlikely(!se->on_rq || curr == rq->idle))
3946 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3950 static struct task_struct *pick_next_task_fair(struct rq *rq)
3952 struct task_struct *p;
3953 struct cfs_rq *cfs_rq = &rq->cfs;
3954 struct sched_entity *se;
3956 if (!cfs_rq->nr_running)
3960 se = pick_next_entity(cfs_rq);
3961 set_next_entity(cfs_rq, se);
3962 cfs_rq = group_cfs_rq(se);
3966 if (hrtick_enabled(rq))
3967 hrtick_start_fair(rq, p);
3973 * Account for a descheduled task:
3975 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3977 struct sched_entity *se = &prev->se;
3978 struct cfs_rq *cfs_rq;
3980 for_each_sched_entity(se) {
3981 cfs_rq = cfs_rq_of(se);
3982 put_prev_entity(cfs_rq, se);
3987 * sched_yield() is very simple
3989 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3991 static void yield_task_fair(struct rq *rq)
3993 struct task_struct *curr = rq->curr;
3994 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3995 struct sched_entity *se = &curr->se;
3998 * Are we the only task in the tree?
4000 if (unlikely(rq->nr_running == 1))
4003 clear_buddies(cfs_rq, se);
4005 if (curr->policy != SCHED_BATCH) {
4006 update_rq_clock(rq);
4008 * Update run-time statistics of the 'current'.
4010 update_curr(cfs_rq);
4012 * Tell update_rq_clock() that we've just updated,
4013 * so we don't do microscopic update in schedule()
4014 * and double the fastpath cost.
4016 rq->skip_clock_update = 1;
4022 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4024 struct sched_entity *se = &p->se;
4026 /* throttled hierarchies are not runnable */
4027 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4030 /* Tell the scheduler that we'd really like pse to run next. */
4033 yield_task_fair(rq);
4039 /**************************************************
4040 * Fair scheduling class load-balancing methods.
4044 * The purpose of load-balancing is to achieve the same basic fairness the
4045 * per-cpu scheduler provides, namely provide a proportional amount of compute
4046 * time to each task. This is expressed in the following equation:
4048 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4050 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4051 * W_i,0 is defined as:
4053 * W_i,0 = \Sum_j w_i,j (2)
4055 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4056 * is derived from the nice value as per prio_to_weight[].
4058 * The weight average is an exponential decay average of the instantaneous
4061 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4063 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4064 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4065 * can also include other factors [XXX].
4067 * To achieve this balance we define a measure of imbalance which follows
4068 * directly from (1):
4070 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4072 * We them move tasks around to minimize the imbalance. In the continuous
4073 * function space it is obvious this converges, in the discrete case we get
4074 * a few fun cases generally called infeasible weight scenarios.
4077 * - infeasible weights;
4078 * - local vs global optima in the discrete case. ]
4083 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4084 * for all i,j solution, we create a tree of cpus that follows the hardware
4085 * topology where each level pairs two lower groups (or better). This results
4086 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4087 * tree to only the first of the previous level and we decrease the frequency
4088 * of load-balance at each level inv. proportional to the number of cpus in
4094 * \Sum { --- * --- * 2^i } = O(n) (5)
4096 * `- size of each group
4097 * | | `- number of cpus doing load-balance
4099 * `- sum over all levels
4101 * Coupled with a limit on how many tasks we can migrate every balance pass,
4102 * this makes (5) the runtime complexity of the balancer.
4104 * An important property here is that each CPU is still (indirectly) connected
4105 * to every other cpu in at most O(log n) steps:
4107 * The adjacency matrix of the resulting graph is given by:
4110 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4113 * And you'll find that:
4115 * A^(log_2 n)_i,j != 0 for all i,j (7)
4117 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4118 * The task movement gives a factor of O(m), giving a convergence complexity
4121 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4126 * In order to avoid CPUs going idle while there's still work to do, new idle
4127 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4128 * tree itself instead of relying on other CPUs to bring it work.
4130 * This adds some complexity to both (5) and (8) but it reduces the total idle
4138 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4141 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4146 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4148 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4150 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4153 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4154 * rewrite all of this once again.]
4157 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4159 #define LBF_ALL_PINNED 0x01
4160 #define LBF_NEED_BREAK 0x02
4161 #define LBF_DST_PINNED 0x04
4162 #define LBF_SOME_PINNED 0x08
4165 struct sched_domain *sd;
4173 struct cpumask *dst_grpmask;
4175 enum cpu_idle_type idle;
4177 /* The set of CPUs under consideration for load-balancing */
4178 struct cpumask *cpus;
4183 unsigned int loop_break;
4184 unsigned int loop_max;
4188 * move_task - move a task from one runqueue to another runqueue.
4189 * Both runqueues must be locked.
4191 static void move_task(struct task_struct *p, struct lb_env *env)
4193 deactivate_task(env->src_rq, p, 0);
4194 set_task_cpu(p, env->dst_cpu);
4195 activate_task(env->dst_rq, p, 0);
4196 check_preempt_curr(env->dst_rq, p, 0);
4197 #ifdef CONFIG_NUMA_BALANCING
4198 if (p->numa_preferred_nid != -1) {
4199 int src_nid = cpu_to_node(env->src_cpu);
4200 int dst_nid = cpu_to_node(env->dst_cpu);
4203 * If the load balancer has moved the task then limit
4204 * migrations from taking place in the short term in
4205 * case this is a short-lived migration.
4207 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4208 p->numa_migrate_seq = 0;
4214 * Is this task likely cache-hot:
4217 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4221 if (p->sched_class != &fair_sched_class)
4224 if (unlikely(p->policy == SCHED_IDLE))
4228 * Buddy candidates are cache hot:
4230 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4231 (&p->se == cfs_rq_of(&p->se)->next ||
4232 &p->se == cfs_rq_of(&p->se)->last))
4235 if (sysctl_sched_migration_cost == -1)
4237 if (sysctl_sched_migration_cost == 0)
4240 delta = now - p->se.exec_start;
4242 return delta < (s64)sysctl_sched_migration_cost;
4245 #ifdef CONFIG_NUMA_BALANCING
4246 /* Returns true if the destination node has incurred more faults */
4247 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4249 int src_nid, dst_nid;
4251 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4252 !(env->sd->flags & SD_NUMA)) {
4256 src_nid = cpu_to_node(env->src_cpu);
4257 dst_nid = cpu_to_node(env->dst_cpu);
4259 if (src_nid == dst_nid ||
4260 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4263 if (dst_nid == p->numa_preferred_nid ||
4264 task_faults(p, dst_nid) > task_faults(p, src_nid))
4271 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4273 int src_nid, dst_nid;
4275 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4278 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4281 src_nid = cpu_to_node(env->src_cpu);
4282 dst_nid = cpu_to_node(env->dst_cpu);
4284 if (src_nid == dst_nid ||
4285 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4288 if (task_faults(p, dst_nid) < task_faults(p, src_nid))
4295 static inline bool migrate_improves_locality(struct task_struct *p,
4301 static inline bool migrate_degrades_locality(struct task_struct *p,
4309 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4312 int can_migrate_task(struct task_struct *p, struct lb_env *env)
4314 int tsk_cache_hot = 0;
4316 * We do not migrate tasks that are:
4317 * 1) throttled_lb_pair, or
4318 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4319 * 3) running (obviously), or
4320 * 4) are cache-hot on their current CPU.
4322 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4325 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4328 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4330 env->flags |= LBF_SOME_PINNED;
4333 * Remember if this task can be migrated to any other cpu in
4334 * our sched_group. We may want to revisit it if we couldn't
4335 * meet load balance goals by pulling other tasks on src_cpu.
4337 * Also avoid computing new_dst_cpu if we have already computed
4338 * one in current iteration.
4340 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4343 /* Prevent to re-select dst_cpu via env's cpus */
4344 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4345 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4346 env->flags |= LBF_DST_PINNED;
4347 env->new_dst_cpu = cpu;
4355 /* Record that we found atleast one task that could run on dst_cpu */
4356 env->flags &= ~LBF_ALL_PINNED;
4358 if (task_running(env->src_rq, p)) {
4359 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4364 * Aggressive migration if:
4365 * 1) destination numa is preferred
4366 * 2) task is cache cold, or
4367 * 3) too many balance attempts have failed.
4369 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4371 tsk_cache_hot = migrate_degrades_locality(p, env);
4373 if (migrate_improves_locality(p, env)) {
4374 #ifdef CONFIG_SCHEDSTATS
4375 if (tsk_cache_hot) {
4376 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4377 schedstat_inc(p, se.statistics.nr_forced_migrations);
4383 if (!tsk_cache_hot ||
4384 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4386 if (tsk_cache_hot) {
4387 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4388 schedstat_inc(p, se.statistics.nr_forced_migrations);
4394 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4399 * move_one_task tries to move exactly one task from busiest to this_rq, as
4400 * part of active balancing operations within "domain".
4401 * Returns 1 if successful and 0 otherwise.
4403 * Called with both runqueues locked.
4405 static int move_one_task(struct lb_env *env)
4407 struct task_struct *p, *n;
4409 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4410 if (!can_migrate_task(p, env))
4415 * Right now, this is only the second place move_task()
4416 * is called, so we can safely collect move_task()
4417 * stats here rather than inside move_task().
4419 schedstat_inc(env->sd, lb_gained[env->idle]);
4425 static unsigned long task_h_load(struct task_struct *p);
4427 static const unsigned int sched_nr_migrate_break = 32;
4430 * move_tasks tries to move up to imbalance weighted load from busiest to
4431 * this_rq, as part of a balancing operation within domain "sd".
4432 * Returns 1 if successful and 0 otherwise.
4434 * Called with both runqueues locked.
4436 static int move_tasks(struct lb_env *env)
4438 struct list_head *tasks = &env->src_rq->cfs_tasks;
4439 struct task_struct *p;
4443 if (env->imbalance <= 0)
4446 while (!list_empty(tasks)) {
4447 p = list_first_entry(tasks, struct task_struct, se.group_node);
4450 /* We've more or less seen every task there is, call it quits */
4451 if (env->loop > env->loop_max)
4454 /* take a breather every nr_migrate tasks */
4455 if (env->loop > env->loop_break) {
4456 env->loop_break += sched_nr_migrate_break;
4457 env->flags |= LBF_NEED_BREAK;
4461 if (!can_migrate_task(p, env))
4464 load = task_h_load(p);
4466 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4469 if ((load / 2) > env->imbalance)
4474 env->imbalance -= load;
4476 #ifdef CONFIG_PREEMPT
4478 * NEWIDLE balancing is a source of latency, so preemptible
4479 * kernels will stop after the first task is pulled to minimize
4480 * the critical section.
4482 if (env->idle == CPU_NEWLY_IDLE)
4487 * We only want to steal up to the prescribed amount of
4490 if (env->imbalance <= 0)
4495 list_move_tail(&p->se.group_node, tasks);
4499 * Right now, this is one of only two places move_task() is called,
4500 * so we can safely collect move_task() stats here rather than
4501 * inside move_task().
4503 schedstat_add(env->sd, lb_gained[env->idle], pulled);
4508 #ifdef CONFIG_FAIR_GROUP_SCHED
4510 * update tg->load_weight by folding this cpu's load_avg
4512 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4514 struct sched_entity *se = tg->se[cpu];
4515 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4517 /* throttled entities do not contribute to load */
4518 if (throttled_hierarchy(cfs_rq))
4521 update_cfs_rq_blocked_load(cfs_rq, 1);
4524 update_entity_load_avg(se, 1);
4526 * We pivot on our runnable average having decayed to zero for
4527 * list removal. This generally implies that all our children
4528 * have also been removed (modulo rounding error or bandwidth
4529 * control); however, such cases are rare and we can fix these
4532 * TODO: fix up out-of-order children on enqueue.
4534 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4535 list_del_leaf_cfs_rq(cfs_rq);
4537 struct rq *rq = rq_of(cfs_rq);
4538 update_rq_runnable_avg(rq, rq->nr_running);
4542 static void update_blocked_averages(int cpu)
4544 struct rq *rq = cpu_rq(cpu);
4545 struct cfs_rq *cfs_rq;
4546 unsigned long flags;
4548 raw_spin_lock_irqsave(&rq->lock, flags);
4549 update_rq_clock(rq);
4551 * Iterates the task_group tree in a bottom up fashion, see
4552 * list_add_leaf_cfs_rq() for details.
4554 for_each_leaf_cfs_rq(rq, cfs_rq) {
4556 * Note: We may want to consider periodically releasing
4557 * rq->lock about these updates so that creating many task
4558 * groups does not result in continually extending hold time.
4560 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4563 raw_spin_unlock_irqrestore(&rq->lock, flags);
4567 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
4568 * This needs to be done in a top-down fashion because the load of a child
4569 * group is a fraction of its parents load.
4571 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
4573 struct rq *rq = rq_of(cfs_rq);
4574 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
4575 unsigned long now = jiffies;
4578 if (cfs_rq->last_h_load_update == now)
4581 cfs_rq->h_load_next = NULL;
4582 for_each_sched_entity(se) {
4583 cfs_rq = cfs_rq_of(se);
4584 cfs_rq->h_load_next = se;
4585 if (cfs_rq->last_h_load_update == now)
4590 cfs_rq->h_load = cfs_rq->runnable_load_avg;
4591 cfs_rq->last_h_load_update = now;
4594 while ((se = cfs_rq->h_load_next) != NULL) {
4595 load = cfs_rq->h_load;
4596 load = div64_ul(load * se->avg.load_avg_contrib,
4597 cfs_rq->runnable_load_avg + 1);
4598 cfs_rq = group_cfs_rq(se);
4599 cfs_rq->h_load = load;
4600 cfs_rq->last_h_load_update = now;
4604 static unsigned long task_h_load(struct task_struct *p)
4606 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4608 update_cfs_rq_h_load(cfs_rq);
4609 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4610 cfs_rq->runnable_load_avg + 1);
4613 static inline void update_blocked_averages(int cpu)
4617 static unsigned long task_h_load(struct task_struct *p)
4619 return p->se.avg.load_avg_contrib;
4623 /********** Helpers for find_busiest_group ************************/
4625 * sg_lb_stats - stats of a sched_group required for load_balancing
4627 struct sg_lb_stats {
4628 unsigned long avg_load; /*Avg load across the CPUs of the group */
4629 unsigned long group_load; /* Total load over the CPUs of the group */
4630 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4631 unsigned long load_per_task;
4632 unsigned long group_power;
4633 unsigned int sum_nr_running; /* Nr tasks running in the group */
4634 unsigned int group_capacity;
4635 unsigned int idle_cpus;
4636 unsigned int group_weight;
4637 int group_imb; /* Is there an imbalance in the group ? */
4638 int group_has_capacity; /* Is there extra capacity in the group? */
4642 * sd_lb_stats - Structure to store the statistics of a sched_domain
4643 * during load balancing.
4645 struct sd_lb_stats {
4646 struct sched_group *busiest; /* Busiest group in this sd */
4647 struct sched_group *local; /* Local group in this sd */
4648 unsigned long total_load; /* Total load of all groups in sd */
4649 unsigned long total_pwr; /* Total power of all groups in sd */
4650 unsigned long avg_load; /* Average load across all groups in sd */
4652 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
4653 struct sg_lb_stats local_stat; /* Statistics of the local group */
4656 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
4659 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4660 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4661 * We must however clear busiest_stat::avg_load because
4662 * update_sd_pick_busiest() reads this before assignment.
4664 *sds = (struct sd_lb_stats){
4676 * get_sd_load_idx - Obtain the load index for a given sched domain.
4677 * @sd: The sched_domain whose load_idx is to be obtained.
4678 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4680 * Return: The load index.
4682 static inline int get_sd_load_idx(struct sched_domain *sd,
4683 enum cpu_idle_type idle)
4689 load_idx = sd->busy_idx;
4692 case CPU_NEWLY_IDLE:
4693 load_idx = sd->newidle_idx;
4696 load_idx = sd->idle_idx;
4703 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4705 return SCHED_POWER_SCALE;
4708 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4710 return default_scale_freq_power(sd, cpu);
4713 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4715 unsigned long weight = sd->span_weight;
4716 unsigned long smt_gain = sd->smt_gain;
4723 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4725 return default_scale_smt_power(sd, cpu);
4728 static unsigned long scale_rt_power(int cpu)
4730 struct rq *rq = cpu_rq(cpu);
4731 u64 total, available, age_stamp, avg;
4734 * Since we're reading these variables without serialization make sure
4735 * we read them once before doing sanity checks on them.
4737 age_stamp = ACCESS_ONCE(rq->age_stamp);
4738 avg = ACCESS_ONCE(rq->rt_avg);
4740 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
4742 if (unlikely(total < avg)) {
4743 /* Ensures that power won't end up being negative */
4746 available = total - avg;
4749 if (unlikely((s64)total < SCHED_POWER_SCALE))
4750 total = SCHED_POWER_SCALE;
4752 total >>= SCHED_POWER_SHIFT;
4754 return div_u64(available, total);
4757 static void update_cpu_power(struct sched_domain *sd, int cpu)
4759 unsigned long weight = sd->span_weight;
4760 unsigned long power = SCHED_POWER_SCALE;
4761 struct sched_group *sdg = sd->groups;
4763 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4764 if (sched_feat(ARCH_POWER))
4765 power *= arch_scale_smt_power(sd, cpu);
4767 power *= default_scale_smt_power(sd, cpu);
4769 power >>= SCHED_POWER_SHIFT;
4772 sdg->sgp->power_orig = power;
4774 if (sched_feat(ARCH_POWER))
4775 power *= arch_scale_freq_power(sd, cpu);
4777 power *= default_scale_freq_power(sd, cpu);
4779 power >>= SCHED_POWER_SHIFT;
4781 power *= scale_rt_power(cpu);
4782 power >>= SCHED_POWER_SHIFT;
4787 cpu_rq(cpu)->cpu_power = power;
4788 sdg->sgp->power = power;
4791 void update_group_power(struct sched_domain *sd, int cpu)
4793 struct sched_domain *child = sd->child;
4794 struct sched_group *group, *sdg = sd->groups;
4795 unsigned long power, power_orig;
4796 unsigned long interval;
4798 interval = msecs_to_jiffies(sd->balance_interval);
4799 interval = clamp(interval, 1UL, max_load_balance_interval);
4800 sdg->sgp->next_update = jiffies + interval;
4803 update_cpu_power(sd, cpu);
4807 power_orig = power = 0;
4809 if (child->flags & SD_OVERLAP) {
4811 * SD_OVERLAP domains cannot assume that child groups
4812 * span the current group.
4815 for_each_cpu(cpu, sched_group_cpus(sdg)) {
4816 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
4818 power_orig += sg->sgp->power_orig;
4819 power += sg->sgp->power;
4823 * !SD_OVERLAP domains can assume that child groups
4824 * span the current group.
4827 group = child->groups;
4829 power_orig += group->sgp->power_orig;
4830 power += group->sgp->power;
4831 group = group->next;
4832 } while (group != child->groups);
4835 sdg->sgp->power_orig = power_orig;
4836 sdg->sgp->power = power;
4840 * Try and fix up capacity for tiny siblings, this is needed when
4841 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4842 * which on its own isn't powerful enough.
4844 * See update_sd_pick_busiest() and check_asym_packing().
4847 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4850 * Only siblings can have significantly less than SCHED_POWER_SCALE
4852 if (!(sd->flags & SD_SHARE_CPUPOWER))
4856 * If ~90% of the cpu_power is still there, we're good.
4858 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4865 * Group imbalance indicates (and tries to solve) the problem where balancing
4866 * groups is inadequate due to tsk_cpus_allowed() constraints.
4868 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
4869 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
4872 * { 0 1 2 3 } { 4 5 6 7 }
4875 * If we were to balance group-wise we'd place two tasks in the first group and
4876 * two tasks in the second group. Clearly this is undesired as it will overload
4877 * cpu 3 and leave one of the cpus in the second group unused.
4879 * The current solution to this issue is detecting the skew in the first group
4880 * by noticing the lower domain failed to reach balance and had difficulty
4881 * moving tasks due to affinity constraints.
4883 * When this is so detected; this group becomes a candidate for busiest; see
4884 * update_sd_pick_busiest(). And calculcate_imbalance() and
4885 * find_busiest_group() avoid some of the usual balance conditions to allow it
4886 * to create an effective group imbalance.
4888 * This is a somewhat tricky proposition since the next run might not find the
4889 * group imbalance and decide the groups need to be balanced again. A most
4890 * subtle and fragile situation.
4893 static inline int sg_imbalanced(struct sched_group *group)
4895 return group->sgp->imbalance;
4899 * Compute the group capacity.
4901 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
4902 * first dividing out the smt factor and computing the actual number of cores
4903 * and limit power unit capacity with that.
4905 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
4907 unsigned int capacity, smt, cpus;
4908 unsigned int power, power_orig;
4910 power = group->sgp->power;
4911 power_orig = group->sgp->power_orig;
4912 cpus = group->group_weight;
4914 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
4915 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
4916 capacity = cpus / smt; /* cores */
4918 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
4920 capacity = fix_small_capacity(env->sd, group);
4926 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4927 * @env: The load balancing environment.
4928 * @group: sched_group whose statistics are to be updated.
4929 * @load_idx: Load index of sched_domain of this_cpu for load calc.
4930 * @local_group: Does group contain this_cpu.
4931 * @sgs: variable to hold the statistics for this group.
4933 static inline void update_sg_lb_stats(struct lb_env *env,
4934 struct sched_group *group, int load_idx,
4935 int local_group, struct sg_lb_stats *sgs)
4937 unsigned long nr_running;
4941 memset(sgs, 0, sizeof(*sgs));
4943 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4944 struct rq *rq = cpu_rq(i);
4946 nr_running = rq->nr_running;
4948 /* Bias balancing toward cpus of our domain */
4950 load = target_load(i, load_idx);
4952 load = source_load(i, load_idx);
4954 sgs->group_load += load;
4955 sgs->sum_nr_running += nr_running;
4956 sgs->sum_weighted_load += weighted_cpuload(i);
4961 /* Adjust by relative CPU power of the group */
4962 sgs->group_power = group->sgp->power;
4963 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
4965 if (sgs->sum_nr_running)
4966 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4968 sgs->group_weight = group->group_weight;
4970 sgs->group_imb = sg_imbalanced(group);
4971 sgs->group_capacity = sg_capacity(env, group);
4973 if (sgs->group_capacity > sgs->sum_nr_running)
4974 sgs->group_has_capacity = 1;
4978 * update_sd_pick_busiest - return 1 on busiest group
4979 * @env: The load balancing environment.
4980 * @sds: sched_domain statistics
4981 * @sg: sched_group candidate to be checked for being the busiest
4982 * @sgs: sched_group statistics
4984 * Determine if @sg is a busier group than the previously selected
4987 * Return: %true if @sg is a busier group than the previously selected
4988 * busiest group. %false otherwise.
4990 static bool update_sd_pick_busiest(struct lb_env *env,
4991 struct sd_lb_stats *sds,
4992 struct sched_group *sg,
4993 struct sg_lb_stats *sgs)
4995 if (sgs->avg_load <= sds->busiest_stat.avg_load)
4998 if (sgs->sum_nr_running > sgs->group_capacity)
5005 * ASYM_PACKING needs to move all the work to the lowest
5006 * numbered CPUs in the group, therefore mark all groups
5007 * higher than ourself as busy.
5009 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5010 env->dst_cpu < group_first_cpu(sg)) {
5014 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5022 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5023 * @env: The load balancing environment.
5024 * @balance: Should we balance.
5025 * @sds: variable to hold the statistics for this sched_domain.
5027 static inline void update_sd_lb_stats(struct lb_env *env,
5028 struct sd_lb_stats *sds)
5030 struct sched_domain *child = env->sd->child;
5031 struct sched_group *sg = env->sd->groups;
5032 struct sg_lb_stats tmp_sgs;
5033 int load_idx, prefer_sibling = 0;
5035 if (child && child->flags & SD_PREFER_SIBLING)
5038 load_idx = get_sd_load_idx(env->sd, env->idle);
5041 struct sg_lb_stats *sgs = &tmp_sgs;
5044 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5047 sgs = &sds->local_stat;
5049 if (env->idle != CPU_NEWLY_IDLE ||
5050 time_after_eq(jiffies, sg->sgp->next_update))
5051 update_group_power(env->sd, env->dst_cpu);
5054 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5060 * In case the child domain prefers tasks go to siblings
5061 * first, lower the sg capacity to one so that we'll try
5062 * and move all the excess tasks away. We lower the capacity
5063 * of a group only if the local group has the capacity to fit
5064 * these excess tasks, i.e. nr_running < group_capacity. The
5065 * extra check prevents the case where you always pull from the
5066 * heaviest group when it is already under-utilized (possible
5067 * with a large weight task outweighs the tasks on the system).
5069 if (prefer_sibling && sds->local &&
5070 sds->local_stat.group_has_capacity)
5071 sgs->group_capacity = min(sgs->group_capacity, 1U);
5073 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5075 sds->busiest_stat = *sgs;
5079 /* Now, start updating sd_lb_stats */
5080 sds->total_load += sgs->group_load;
5081 sds->total_pwr += sgs->group_power;
5084 } while (sg != env->sd->groups);
5088 * check_asym_packing - Check to see if the group is packed into the
5091 * This is primarily intended to used at the sibling level. Some
5092 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5093 * case of POWER7, it can move to lower SMT modes only when higher
5094 * threads are idle. When in lower SMT modes, the threads will
5095 * perform better since they share less core resources. Hence when we
5096 * have idle threads, we want them to be the higher ones.
5098 * This packing function is run on idle threads. It checks to see if
5099 * the busiest CPU in this domain (core in the P7 case) has a higher
5100 * CPU number than the packing function is being run on. Here we are
5101 * assuming lower CPU number will be equivalent to lower a SMT thread
5104 * Return: 1 when packing is required and a task should be moved to
5105 * this CPU. The amount of the imbalance is returned in *imbalance.
5107 * @env: The load balancing environment.
5108 * @sds: Statistics of the sched_domain which is to be packed
5110 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5114 if (!(env->sd->flags & SD_ASYM_PACKING))
5120 busiest_cpu = group_first_cpu(sds->busiest);
5121 if (env->dst_cpu > busiest_cpu)
5124 env->imbalance = DIV_ROUND_CLOSEST(
5125 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5132 * fix_small_imbalance - Calculate the minor imbalance that exists
5133 * amongst the groups of a sched_domain, during
5135 * @env: The load balancing environment.
5136 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
5139 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5141 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5142 unsigned int imbn = 2;
5143 unsigned long scaled_busy_load_per_task;
5144 struct sg_lb_stats *local, *busiest;
5146 local = &sds->local_stat;
5147 busiest = &sds->busiest_stat;
5149 if (!local->sum_nr_running)
5150 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5151 else if (busiest->load_per_task > local->load_per_task)
5154 scaled_busy_load_per_task =
5155 (busiest->load_per_task * SCHED_POWER_SCALE) /
5156 busiest->group_power;
5158 if (busiest->avg_load + scaled_busy_load_per_task >=
5159 local->avg_load + (scaled_busy_load_per_task * imbn)) {
5160 env->imbalance = busiest->load_per_task;
5165 * OK, we don't have enough imbalance to justify moving tasks,
5166 * however we may be able to increase total CPU power used by
5170 pwr_now += busiest->group_power *
5171 min(busiest->load_per_task, busiest->avg_load);
5172 pwr_now += local->group_power *
5173 min(local->load_per_task, local->avg_load);
5174 pwr_now /= SCHED_POWER_SCALE;
5176 /* Amount of load we'd subtract */
5177 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5178 busiest->group_power;
5179 if (busiest->avg_load > tmp) {
5180 pwr_move += busiest->group_power *
5181 min(busiest->load_per_task,
5182 busiest->avg_load - tmp);
5185 /* Amount of load we'd add */
5186 if (busiest->avg_load * busiest->group_power <
5187 busiest->load_per_task * SCHED_POWER_SCALE) {
5188 tmp = (busiest->avg_load * busiest->group_power) /
5191 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5194 pwr_move += local->group_power *
5195 min(local->load_per_task, local->avg_load + tmp);
5196 pwr_move /= SCHED_POWER_SCALE;
5198 /* Move if we gain throughput */
5199 if (pwr_move > pwr_now)
5200 env->imbalance = busiest->load_per_task;
5204 * calculate_imbalance - Calculate the amount of imbalance present within the
5205 * groups of a given sched_domain during load balance.
5206 * @env: load balance environment
5207 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
5209 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5211 unsigned long max_pull, load_above_capacity = ~0UL;
5212 struct sg_lb_stats *local, *busiest;
5214 local = &sds->local_stat;
5215 busiest = &sds->busiest_stat;
5217 if (busiest->group_imb) {
5219 * In the group_imb case we cannot rely on group-wide averages
5220 * to ensure cpu-load equilibrium, look at wider averages. XXX
5222 busiest->load_per_task =
5223 min(busiest->load_per_task, sds->avg_load);
5227 * In the presence of smp nice balancing, certain scenarios can have
5228 * max load less than avg load(as we skip the groups at or below
5229 * its cpu_power, while calculating max_load..)
5231 if (busiest->avg_load <= sds->avg_load ||
5232 local->avg_load >= sds->avg_load) {
5234 return fix_small_imbalance(env, sds);
5237 if (!busiest->group_imb) {
5239 * Don't want to pull so many tasks that a group would go idle.
5240 * Except of course for the group_imb case, since then we might
5241 * have to drop below capacity to reach cpu-load equilibrium.
5243 load_above_capacity =
5244 (busiest->sum_nr_running - busiest->group_capacity);
5246 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5247 load_above_capacity /= busiest->group_power;
5251 * We're trying to get all the cpus to the average_load, so we don't
5252 * want to push ourselves above the average load, nor do we wish to
5253 * reduce the max loaded cpu below the average load. At the same time,
5254 * we also don't want to reduce the group load below the group capacity
5255 * (so that we can implement power-savings policies etc). Thus we look
5256 * for the minimum possible imbalance.
5258 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5260 /* How much load to actually move to equalise the imbalance */
5261 env->imbalance = min(
5262 max_pull * busiest->group_power,
5263 (sds->avg_load - local->avg_load) * local->group_power
5264 ) / SCHED_POWER_SCALE;
5267 * if *imbalance is less than the average load per runnable task
5268 * there is no guarantee that any tasks will be moved so we'll have
5269 * a think about bumping its value to force at least one task to be
5272 if (env->imbalance < busiest->load_per_task)
5273 return fix_small_imbalance(env, sds);
5276 /******* find_busiest_group() helpers end here *********************/
5279 * find_busiest_group - Returns the busiest group within the sched_domain
5280 * if there is an imbalance. If there isn't an imbalance, and
5281 * the user has opted for power-savings, it returns a group whose
5282 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5283 * such a group exists.
5285 * Also calculates the amount of weighted load which should be moved
5286 * to restore balance.
5288 * @env: The load balancing environment.
5290 * Return: - The busiest group if imbalance exists.
5291 * - If no imbalance and user has opted for power-savings balance,
5292 * return the least loaded group whose CPUs can be
5293 * put to idle by rebalancing its tasks onto our group.
5295 static struct sched_group *find_busiest_group(struct lb_env *env)
5297 struct sg_lb_stats *local, *busiest;
5298 struct sd_lb_stats sds;
5300 init_sd_lb_stats(&sds);
5303 * Compute the various statistics relavent for load balancing at
5306 update_sd_lb_stats(env, &sds);
5307 local = &sds.local_stat;
5308 busiest = &sds.busiest_stat;
5310 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5311 check_asym_packing(env, &sds))
5314 /* There is no busy sibling group to pull tasks from */
5315 if (!sds.busiest || busiest->sum_nr_running == 0)
5318 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5321 * If the busiest group is imbalanced the below checks don't
5322 * work because they assume all things are equal, which typically
5323 * isn't true due to cpus_allowed constraints and the like.
5325 if (busiest->group_imb)
5328 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
5329 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5330 !busiest->group_has_capacity)
5334 * If the local group is more busy than the selected busiest group
5335 * don't try and pull any tasks.
5337 if (local->avg_load >= busiest->avg_load)
5341 * Don't pull any tasks if this group is already above the domain
5344 if (local->avg_load >= sds.avg_load)
5347 if (env->idle == CPU_IDLE) {
5349 * This cpu is idle. If the busiest group load doesn't
5350 * have more tasks than the number of available cpu's and
5351 * there is no imbalance between this and busiest group
5352 * wrt to idle cpu's, it is balanced.
5354 if ((local->idle_cpus < busiest->idle_cpus) &&
5355 busiest->sum_nr_running <= busiest->group_weight)
5359 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5360 * imbalance_pct to be conservative.
5362 if (100 * busiest->avg_load <=
5363 env->sd->imbalance_pct * local->avg_load)
5368 /* Looks like there is an imbalance. Compute it */
5369 calculate_imbalance(env, &sds);
5378 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5380 static struct rq *find_busiest_queue(struct lb_env *env,
5381 struct sched_group *group)
5383 struct rq *busiest = NULL, *rq;
5384 unsigned long busiest_load = 0, busiest_power = 1;
5387 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5388 unsigned long power = power_of(i);
5389 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5394 capacity = fix_small_capacity(env->sd, group);
5397 wl = weighted_cpuload(i);
5400 * When comparing with imbalance, use weighted_cpuload()
5401 * which is not scaled with the cpu power.
5403 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
5407 * For the load comparisons with the other cpu's, consider
5408 * the weighted_cpuload() scaled with the cpu power, so that
5409 * the load can be moved away from the cpu that is potentially
5410 * running at a lower capacity.
5412 * Thus we're looking for max(wl_i / power_i), crosswise
5413 * multiplication to rid ourselves of the division works out
5414 * to: wl_i * power_j > wl_j * power_i; where j is our
5417 if (wl * busiest_power > busiest_load * power) {
5419 busiest_power = power;
5428 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5429 * so long as it is large enough.
5431 #define MAX_PINNED_INTERVAL 512
5433 /* Working cpumask for load_balance and load_balance_newidle. */
5434 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5436 static int need_active_balance(struct lb_env *env)
5438 struct sched_domain *sd = env->sd;
5440 if (env->idle == CPU_NEWLY_IDLE) {
5443 * ASYM_PACKING needs to force migrate tasks from busy but
5444 * higher numbered CPUs in order to pack all tasks in the
5445 * lowest numbered CPUs.
5447 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
5451 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5454 static int active_load_balance_cpu_stop(void *data);
5456 static int should_we_balance(struct lb_env *env)
5458 struct sched_group *sg = env->sd->groups;
5459 struct cpumask *sg_cpus, *sg_mask;
5460 int cpu, balance_cpu = -1;
5463 * In the newly idle case, we will allow all the cpu's
5464 * to do the newly idle load balance.
5466 if (env->idle == CPU_NEWLY_IDLE)
5469 sg_cpus = sched_group_cpus(sg);
5470 sg_mask = sched_group_mask(sg);
5471 /* Try to find first idle cpu */
5472 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5473 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5480 if (balance_cpu == -1)
5481 balance_cpu = group_balance_cpu(sg);
5484 * First idle cpu or the first cpu(busiest) in this sched group
5485 * is eligible for doing load balancing at this and above domains.
5487 return balance_cpu == env->dst_cpu;
5491 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5492 * tasks if there is an imbalance.
5494 static int load_balance(int this_cpu, struct rq *this_rq,
5495 struct sched_domain *sd, enum cpu_idle_type idle,
5496 int *continue_balancing)
5498 int ld_moved, cur_ld_moved, active_balance = 0;
5499 struct sched_domain *sd_parent = sd->parent;
5500 struct sched_group *group;
5502 unsigned long flags;
5503 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
5505 struct lb_env env = {
5507 .dst_cpu = this_cpu,
5509 .dst_grpmask = sched_group_cpus(sd->groups),
5511 .loop_break = sched_nr_migrate_break,
5516 * For NEWLY_IDLE load_balancing, we don't need to consider
5517 * other cpus in our group
5519 if (idle == CPU_NEWLY_IDLE)
5520 env.dst_grpmask = NULL;
5522 cpumask_copy(cpus, cpu_active_mask);
5524 schedstat_inc(sd, lb_count[idle]);
5527 if (!should_we_balance(&env)) {
5528 *continue_balancing = 0;
5532 group = find_busiest_group(&env);
5534 schedstat_inc(sd, lb_nobusyg[idle]);
5538 busiest = find_busiest_queue(&env, group);
5540 schedstat_inc(sd, lb_nobusyq[idle]);
5544 BUG_ON(busiest == env.dst_rq);
5546 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5549 if (busiest->nr_running > 1) {
5551 * Attempt to move tasks. If find_busiest_group has found
5552 * an imbalance but busiest->nr_running <= 1, the group is
5553 * still unbalanced. ld_moved simply stays zero, so it is
5554 * correctly treated as an imbalance.
5556 env.flags |= LBF_ALL_PINNED;
5557 env.src_cpu = busiest->cpu;
5558 env.src_rq = busiest;
5559 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
5562 local_irq_save(flags);
5563 double_rq_lock(env.dst_rq, busiest);
5566 * cur_ld_moved - load moved in current iteration
5567 * ld_moved - cumulative load moved across iterations
5569 cur_ld_moved = move_tasks(&env);
5570 ld_moved += cur_ld_moved;
5571 double_rq_unlock(env.dst_rq, busiest);
5572 local_irq_restore(flags);
5575 * some other cpu did the load balance for us.
5577 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5578 resched_cpu(env.dst_cpu);
5580 if (env.flags & LBF_NEED_BREAK) {
5581 env.flags &= ~LBF_NEED_BREAK;
5586 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5587 * us and move them to an alternate dst_cpu in our sched_group
5588 * where they can run. The upper limit on how many times we
5589 * iterate on same src_cpu is dependent on number of cpus in our
5592 * This changes load balance semantics a bit on who can move
5593 * load to a given_cpu. In addition to the given_cpu itself
5594 * (or a ilb_cpu acting on its behalf where given_cpu is
5595 * nohz-idle), we now have balance_cpu in a position to move
5596 * load to given_cpu. In rare situations, this may cause
5597 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5598 * _independently_ and at _same_ time to move some load to
5599 * given_cpu) causing exceess load to be moved to given_cpu.
5600 * This however should not happen so much in practice and
5601 * moreover subsequent load balance cycles should correct the
5602 * excess load moved.
5604 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
5606 /* Prevent to re-select dst_cpu via env's cpus */
5607 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5609 env.dst_rq = cpu_rq(env.new_dst_cpu);
5610 env.dst_cpu = env.new_dst_cpu;
5611 env.flags &= ~LBF_DST_PINNED;
5613 env.loop_break = sched_nr_migrate_break;
5616 * Go back to "more_balance" rather than "redo" since we
5617 * need to continue with same src_cpu.
5623 * We failed to reach balance because of affinity.
5626 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
5628 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5629 *group_imbalance = 1;
5630 } else if (*group_imbalance)
5631 *group_imbalance = 0;
5634 /* All tasks on this runqueue were pinned by CPU affinity */
5635 if (unlikely(env.flags & LBF_ALL_PINNED)) {
5636 cpumask_clear_cpu(cpu_of(busiest), cpus);
5637 if (!cpumask_empty(cpus)) {
5639 env.loop_break = sched_nr_migrate_break;
5647 schedstat_inc(sd, lb_failed[idle]);
5649 * Increment the failure counter only on periodic balance.
5650 * We do not want newidle balance, which can be very
5651 * frequent, pollute the failure counter causing
5652 * excessive cache_hot migrations and active balances.
5654 if (idle != CPU_NEWLY_IDLE)
5655 sd->nr_balance_failed++;
5657 if (need_active_balance(&env)) {
5658 raw_spin_lock_irqsave(&busiest->lock, flags);
5660 /* don't kick the active_load_balance_cpu_stop,
5661 * if the curr task on busiest cpu can't be
5664 if (!cpumask_test_cpu(this_cpu,
5665 tsk_cpus_allowed(busiest->curr))) {
5666 raw_spin_unlock_irqrestore(&busiest->lock,
5668 env.flags |= LBF_ALL_PINNED;
5669 goto out_one_pinned;
5673 * ->active_balance synchronizes accesses to
5674 * ->active_balance_work. Once set, it's cleared
5675 * only after active load balance is finished.
5677 if (!busiest->active_balance) {
5678 busiest->active_balance = 1;
5679 busiest->push_cpu = this_cpu;
5682 raw_spin_unlock_irqrestore(&busiest->lock, flags);
5684 if (active_balance) {
5685 stop_one_cpu_nowait(cpu_of(busiest),
5686 active_load_balance_cpu_stop, busiest,
5687 &busiest->active_balance_work);
5691 * We've kicked active balancing, reset the failure
5694 sd->nr_balance_failed = sd->cache_nice_tries+1;
5697 sd->nr_balance_failed = 0;
5699 if (likely(!active_balance)) {
5700 /* We were unbalanced, so reset the balancing interval */
5701 sd->balance_interval = sd->min_interval;
5704 * If we've begun active balancing, start to back off. This
5705 * case may not be covered by the all_pinned logic if there
5706 * is only 1 task on the busy runqueue (because we don't call
5709 if (sd->balance_interval < sd->max_interval)
5710 sd->balance_interval *= 2;
5716 schedstat_inc(sd, lb_balanced[idle]);
5718 sd->nr_balance_failed = 0;
5721 /* tune up the balancing interval */
5722 if (((env.flags & LBF_ALL_PINNED) &&
5723 sd->balance_interval < MAX_PINNED_INTERVAL) ||
5724 (sd->balance_interval < sd->max_interval))
5725 sd->balance_interval *= 2;
5733 * idle_balance is called by schedule() if this_cpu is about to become
5734 * idle. Attempts to pull tasks from other CPUs.
5736 void idle_balance(int this_cpu, struct rq *this_rq)
5738 struct sched_domain *sd;
5739 int pulled_task = 0;
5740 unsigned long next_balance = jiffies + HZ;
5743 this_rq->idle_stamp = rq_clock(this_rq);
5745 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5749 * Drop the rq->lock, but keep IRQ/preempt disabled.
5751 raw_spin_unlock(&this_rq->lock);
5753 update_blocked_averages(this_cpu);
5755 for_each_domain(this_cpu, sd) {
5756 unsigned long interval;
5757 int continue_balancing = 1;
5758 u64 t0, domain_cost;
5760 if (!(sd->flags & SD_LOAD_BALANCE))
5763 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
5766 if (sd->flags & SD_BALANCE_NEWIDLE) {
5767 t0 = sched_clock_cpu(this_cpu);
5769 /* If we've pulled tasks over stop searching: */
5770 pulled_task = load_balance(this_cpu, this_rq,
5772 &continue_balancing);
5774 domain_cost = sched_clock_cpu(this_cpu) - t0;
5775 if (domain_cost > sd->max_newidle_lb_cost)
5776 sd->max_newidle_lb_cost = domain_cost;
5778 curr_cost += domain_cost;
5781 interval = msecs_to_jiffies(sd->balance_interval);
5782 if (time_after(next_balance, sd->last_balance + interval))
5783 next_balance = sd->last_balance + interval;
5785 this_rq->idle_stamp = 0;
5791 raw_spin_lock(&this_rq->lock);
5793 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5795 * We are going idle. next_balance may be set based on
5796 * a busy processor. So reset next_balance.
5798 this_rq->next_balance = next_balance;
5801 if (curr_cost > this_rq->max_idle_balance_cost)
5802 this_rq->max_idle_balance_cost = curr_cost;
5806 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5807 * running tasks off the busiest CPU onto idle CPUs. It requires at
5808 * least 1 task to be running on each physical CPU where possible, and
5809 * avoids physical / logical imbalances.
5811 static int active_load_balance_cpu_stop(void *data)
5813 struct rq *busiest_rq = data;
5814 int busiest_cpu = cpu_of(busiest_rq);
5815 int target_cpu = busiest_rq->push_cpu;
5816 struct rq *target_rq = cpu_rq(target_cpu);
5817 struct sched_domain *sd;
5819 raw_spin_lock_irq(&busiest_rq->lock);
5821 /* make sure the requested cpu hasn't gone down in the meantime */
5822 if (unlikely(busiest_cpu != smp_processor_id() ||
5823 !busiest_rq->active_balance))
5826 /* Is there any task to move? */
5827 if (busiest_rq->nr_running <= 1)
5831 * This condition is "impossible", if it occurs
5832 * we need to fix it. Originally reported by
5833 * Bjorn Helgaas on a 128-cpu setup.
5835 BUG_ON(busiest_rq == target_rq);
5837 /* move a task from busiest_rq to target_rq */
5838 double_lock_balance(busiest_rq, target_rq);
5840 /* Search for an sd spanning us and the target CPU. */
5842 for_each_domain(target_cpu, sd) {
5843 if ((sd->flags & SD_LOAD_BALANCE) &&
5844 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5849 struct lb_env env = {
5851 .dst_cpu = target_cpu,
5852 .dst_rq = target_rq,
5853 .src_cpu = busiest_rq->cpu,
5854 .src_rq = busiest_rq,
5858 schedstat_inc(sd, alb_count);
5860 if (move_one_task(&env))
5861 schedstat_inc(sd, alb_pushed);
5863 schedstat_inc(sd, alb_failed);
5866 double_unlock_balance(busiest_rq, target_rq);
5868 busiest_rq->active_balance = 0;
5869 raw_spin_unlock_irq(&busiest_rq->lock);
5873 #ifdef CONFIG_NO_HZ_COMMON
5875 * idle load balancing details
5876 * - When one of the busy CPUs notice that there may be an idle rebalancing
5877 * needed, they will kick the idle load balancer, which then does idle
5878 * load balancing for all the idle CPUs.
5881 cpumask_var_t idle_cpus_mask;
5883 unsigned long next_balance; /* in jiffy units */
5884 } nohz ____cacheline_aligned;
5886 static inline int find_new_ilb(int call_cpu)
5888 int ilb = cpumask_first(nohz.idle_cpus_mask);
5890 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5897 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5898 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5899 * CPU (if there is one).
5901 static void nohz_balancer_kick(int cpu)
5905 nohz.next_balance++;
5907 ilb_cpu = find_new_ilb(cpu);
5909 if (ilb_cpu >= nr_cpu_ids)
5912 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5915 * Use smp_send_reschedule() instead of resched_cpu().
5916 * This way we generate a sched IPI on the target cpu which
5917 * is idle. And the softirq performing nohz idle load balance
5918 * will be run before returning from the IPI.
5920 smp_send_reschedule(ilb_cpu);
5924 static inline void nohz_balance_exit_idle(int cpu)
5926 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5927 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5928 atomic_dec(&nohz.nr_cpus);
5929 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5933 static inline void set_cpu_sd_state_busy(void)
5935 struct sched_domain *sd;
5938 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
5940 if (!sd || !sd->nohz_idle)
5944 for (; sd; sd = sd->parent)
5945 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5950 void set_cpu_sd_state_idle(void)
5952 struct sched_domain *sd;
5955 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
5957 if (!sd || sd->nohz_idle)
5961 for (; sd; sd = sd->parent)
5962 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5968 * This routine will record that the cpu is going idle with tick stopped.
5969 * This info will be used in performing idle load balancing in the future.
5971 void nohz_balance_enter_idle(int cpu)
5974 * If this cpu is going down, then nothing needs to be done.
5976 if (!cpu_active(cpu))
5979 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5982 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5983 atomic_inc(&nohz.nr_cpus);
5984 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5987 static int sched_ilb_notifier(struct notifier_block *nfb,
5988 unsigned long action, void *hcpu)
5990 switch (action & ~CPU_TASKS_FROZEN) {
5992 nohz_balance_exit_idle(smp_processor_id());
6000 static DEFINE_SPINLOCK(balancing);
6003 * Scale the max load_balance interval with the number of CPUs in the system.
6004 * This trades load-balance latency on larger machines for less cross talk.
6006 void update_max_interval(void)
6008 max_load_balance_interval = HZ*num_online_cpus()/10;
6012 * It checks each scheduling domain to see if it is due to be balanced,
6013 * and initiates a balancing operation if so.
6015 * Balancing parameters are set up in init_sched_domains.
6017 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6019 int continue_balancing = 1;
6020 struct rq *rq = cpu_rq(cpu);
6021 unsigned long interval;
6022 struct sched_domain *sd;
6023 /* Earliest time when we have to do rebalance again */
6024 unsigned long next_balance = jiffies + 60*HZ;
6025 int update_next_balance = 0;
6026 int need_serialize, need_decay = 0;
6029 update_blocked_averages(cpu);
6032 for_each_domain(cpu, sd) {
6034 * Decay the newidle max times here because this is a regular
6035 * visit to all the domains. Decay ~1% per second.
6037 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6038 sd->max_newidle_lb_cost =
6039 (sd->max_newidle_lb_cost * 253) / 256;
6040 sd->next_decay_max_lb_cost = jiffies + HZ;
6043 max_cost += sd->max_newidle_lb_cost;
6045 if (!(sd->flags & SD_LOAD_BALANCE))
6049 * Stop the load balance at this level. There is another
6050 * CPU in our sched group which is doing load balancing more
6053 if (!continue_balancing) {
6059 interval = sd->balance_interval;
6060 if (idle != CPU_IDLE)
6061 interval *= sd->busy_factor;
6063 /* scale ms to jiffies */
6064 interval = msecs_to_jiffies(interval);
6065 interval = clamp(interval, 1UL, max_load_balance_interval);
6067 need_serialize = sd->flags & SD_SERIALIZE;
6069 if (need_serialize) {
6070 if (!spin_trylock(&balancing))
6074 if (time_after_eq(jiffies, sd->last_balance + interval)) {
6075 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6077 * The LBF_DST_PINNED logic could have changed
6078 * env->dst_cpu, so we can't know our idle
6079 * state even if we migrated tasks. Update it.
6081 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6083 sd->last_balance = jiffies;
6086 spin_unlock(&balancing);
6088 if (time_after(next_balance, sd->last_balance + interval)) {
6089 next_balance = sd->last_balance + interval;
6090 update_next_balance = 1;
6095 * Ensure the rq-wide value also decays but keep it at a
6096 * reasonable floor to avoid funnies with rq->avg_idle.
6098 rq->max_idle_balance_cost =
6099 max((u64)sysctl_sched_migration_cost, max_cost);
6104 * next_balance will be updated only when there is a need.
6105 * When the cpu is attached to null domain for ex, it will not be
6108 if (likely(update_next_balance))
6109 rq->next_balance = next_balance;
6112 #ifdef CONFIG_NO_HZ_COMMON
6114 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6115 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6117 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6119 struct rq *this_rq = cpu_rq(this_cpu);
6123 if (idle != CPU_IDLE ||
6124 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6127 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6128 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6132 * If this cpu gets work to do, stop the load balancing
6133 * work being done for other cpus. Next load
6134 * balancing owner will pick it up.
6139 rq = cpu_rq(balance_cpu);
6141 raw_spin_lock_irq(&rq->lock);
6142 update_rq_clock(rq);
6143 update_idle_cpu_load(rq);
6144 raw_spin_unlock_irq(&rq->lock);
6146 rebalance_domains(balance_cpu, CPU_IDLE);
6148 if (time_after(this_rq->next_balance, rq->next_balance))
6149 this_rq->next_balance = rq->next_balance;
6151 nohz.next_balance = this_rq->next_balance;
6153 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6157 * Current heuristic for kicking the idle load balancer in the presence
6158 * of an idle cpu is the system.
6159 * - This rq has more than one task.
6160 * - At any scheduler domain level, this cpu's scheduler group has multiple
6161 * busy cpu's exceeding the group's power.
6162 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6163 * domain span are idle.
6165 static inline int nohz_kick_needed(struct rq *rq, int cpu)
6167 unsigned long now = jiffies;
6168 struct sched_domain *sd;
6170 if (unlikely(idle_cpu(cpu)))
6174 * We may be recently in ticked or tickless idle mode. At the first
6175 * busy tick after returning from idle, we will update the busy stats.
6177 set_cpu_sd_state_busy();
6178 nohz_balance_exit_idle(cpu);
6181 * None are in tickless mode and hence no need for NOHZ idle load
6184 if (likely(!atomic_read(&nohz.nr_cpus)))
6187 if (time_before(now, nohz.next_balance))
6190 if (rq->nr_running >= 2)
6194 for_each_domain(cpu, sd) {
6195 struct sched_group *sg = sd->groups;
6196 struct sched_group_power *sgp = sg->sgp;
6197 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
6199 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
6200 goto need_kick_unlock;
6202 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6203 && (cpumask_first_and(nohz.idle_cpus_mask,
6204 sched_domain_span(sd)) < cpu))
6205 goto need_kick_unlock;
6207 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6219 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6223 * run_rebalance_domains is triggered when needed from the scheduler tick.
6224 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6226 static void run_rebalance_domains(struct softirq_action *h)
6228 int this_cpu = smp_processor_id();
6229 struct rq *this_rq = cpu_rq(this_cpu);
6230 enum cpu_idle_type idle = this_rq->idle_balance ?
6231 CPU_IDLE : CPU_NOT_IDLE;
6233 rebalance_domains(this_cpu, idle);
6236 * If this cpu has a pending nohz_balance_kick, then do the
6237 * balancing on behalf of the other idle cpus whose ticks are
6240 nohz_idle_balance(this_cpu, idle);
6243 static inline int on_null_domain(int cpu)
6245 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
6249 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
6251 void trigger_load_balance(struct rq *rq, int cpu)
6253 /* Don't need to rebalance while attached to NULL domain */
6254 if (time_after_eq(jiffies, rq->next_balance) &&
6255 likely(!on_null_domain(cpu)))
6256 raise_softirq(SCHED_SOFTIRQ);
6257 #ifdef CONFIG_NO_HZ_COMMON
6258 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
6259 nohz_balancer_kick(cpu);
6263 static void rq_online_fair(struct rq *rq)
6268 static void rq_offline_fair(struct rq *rq)
6272 /* Ensure any throttled groups are reachable by pick_next_task */
6273 unthrottle_offline_cfs_rqs(rq);
6276 #endif /* CONFIG_SMP */
6279 * scheduler tick hitting a task of our scheduling class:
6281 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6283 struct cfs_rq *cfs_rq;
6284 struct sched_entity *se = &curr->se;
6286 for_each_sched_entity(se) {
6287 cfs_rq = cfs_rq_of(se);
6288 entity_tick(cfs_rq, se, queued);
6291 if (numabalancing_enabled)
6292 task_tick_numa(rq, curr);
6294 update_rq_runnable_avg(rq, 1);
6298 * called on fork with the child task as argument from the parent's context
6299 * - child not yet on the tasklist
6300 * - preemption disabled
6302 static void task_fork_fair(struct task_struct *p)
6304 struct cfs_rq *cfs_rq;
6305 struct sched_entity *se = &p->se, *curr;
6306 int this_cpu = smp_processor_id();
6307 struct rq *rq = this_rq();
6308 unsigned long flags;
6310 raw_spin_lock_irqsave(&rq->lock, flags);
6312 update_rq_clock(rq);
6314 cfs_rq = task_cfs_rq(current);
6315 curr = cfs_rq->curr;
6318 * Not only the cpu but also the task_group of the parent might have
6319 * been changed after parent->se.parent,cfs_rq were copied to
6320 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6321 * of child point to valid ones.
6324 __set_task_cpu(p, this_cpu);
6327 update_curr(cfs_rq);
6330 se->vruntime = curr->vruntime;
6331 place_entity(cfs_rq, se, 1);
6333 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
6335 * Upon rescheduling, sched_class::put_prev_task() will place
6336 * 'current' within the tree based on its new key value.
6338 swap(curr->vruntime, se->vruntime);
6339 resched_task(rq->curr);
6342 se->vruntime -= cfs_rq->min_vruntime;
6344 raw_spin_unlock_irqrestore(&rq->lock, flags);
6348 * Priority of the task has changed. Check to see if we preempt
6352 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6358 * Reschedule if we are currently running on this runqueue and
6359 * our priority decreased, or if we are not currently running on
6360 * this runqueue and our priority is higher than the current's
6362 if (rq->curr == p) {
6363 if (p->prio > oldprio)
6364 resched_task(rq->curr);
6366 check_preempt_curr(rq, p, 0);
6369 static void switched_from_fair(struct rq *rq, struct task_struct *p)
6371 struct sched_entity *se = &p->se;
6372 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6375 * Ensure the task's vruntime is normalized, so that when its
6376 * switched back to the fair class the enqueue_entity(.flags=0) will
6377 * do the right thing.
6379 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6380 * have normalized the vruntime, if it was !on_rq, then only when
6381 * the task is sleeping will it still have non-normalized vruntime.
6383 if (!se->on_rq && p->state != TASK_RUNNING) {
6385 * Fix up our vruntime so that the current sleep doesn't
6386 * cause 'unlimited' sleep bonus.
6388 place_entity(cfs_rq, se, 0);
6389 se->vruntime -= cfs_rq->min_vruntime;
6394 * Remove our load from contribution when we leave sched_fair
6395 * and ensure we don't carry in an old decay_count if we
6398 if (se->avg.decay_count) {
6399 __synchronize_entity_decay(se);
6400 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
6406 * We switched to the sched_fair class.
6408 static void switched_to_fair(struct rq *rq, struct task_struct *p)
6414 * We were most likely switched from sched_rt, so
6415 * kick off the schedule if running, otherwise just see
6416 * if we can still preempt the current task.
6419 resched_task(rq->curr);
6421 check_preempt_curr(rq, p, 0);
6424 /* Account for a task changing its policy or group.
6426 * This routine is mostly called to set cfs_rq->curr field when a task
6427 * migrates between groups/classes.
6429 static void set_curr_task_fair(struct rq *rq)
6431 struct sched_entity *se = &rq->curr->se;
6433 for_each_sched_entity(se) {
6434 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6436 set_next_entity(cfs_rq, se);
6437 /* ensure bandwidth has been allocated on our new cfs_rq */
6438 account_cfs_rq_runtime(cfs_rq, 0);
6442 void init_cfs_rq(struct cfs_rq *cfs_rq)
6444 cfs_rq->tasks_timeline = RB_ROOT;
6445 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6446 #ifndef CONFIG_64BIT
6447 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6450 atomic64_set(&cfs_rq->decay_counter, 1);
6451 atomic_long_set(&cfs_rq->removed_load, 0);
6455 #ifdef CONFIG_FAIR_GROUP_SCHED
6456 static void task_move_group_fair(struct task_struct *p, int on_rq)
6458 struct cfs_rq *cfs_rq;
6460 * If the task was not on the rq at the time of this cgroup movement
6461 * it must have been asleep, sleeping tasks keep their ->vruntime
6462 * absolute on their old rq until wakeup (needed for the fair sleeper
6463 * bonus in place_entity()).
6465 * If it was on the rq, we've just 'preempted' it, which does convert
6466 * ->vruntime to a relative base.
6468 * Make sure both cases convert their relative position when migrating
6469 * to another cgroup's rq. This does somewhat interfere with the
6470 * fair sleeper stuff for the first placement, but who cares.
6473 * When !on_rq, vruntime of the task has usually NOT been normalized.
6474 * But there are some cases where it has already been normalized:
6476 * - Moving a forked child which is waiting for being woken up by
6477 * wake_up_new_task().
6478 * - Moving a task which has been woken up by try_to_wake_up() and
6479 * waiting for actually being woken up by sched_ttwu_pending().
6481 * To prevent boost or penalty in the new cfs_rq caused by delta
6482 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6484 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
6488 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6489 set_task_rq(p, task_cpu(p));
6491 cfs_rq = cfs_rq_of(&p->se);
6492 p->se.vruntime += cfs_rq->min_vruntime;
6495 * migrate_task_rq_fair() will have removed our previous
6496 * contribution, but we must synchronize for ongoing future
6499 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6500 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6505 void free_fair_sched_group(struct task_group *tg)
6509 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6511 for_each_possible_cpu(i) {
6513 kfree(tg->cfs_rq[i]);
6522 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6524 struct cfs_rq *cfs_rq;
6525 struct sched_entity *se;
6528 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6531 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6535 tg->shares = NICE_0_LOAD;
6537 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6539 for_each_possible_cpu(i) {
6540 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6541 GFP_KERNEL, cpu_to_node(i));
6545 se = kzalloc_node(sizeof(struct sched_entity),
6546 GFP_KERNEL, cpu_to_node(i));
6550 init_cfs_rq(cfs_rq);
6551 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6562 void unregister_fair_sched_group(struct task_group *tg, int cpu)
6564 struct rq *rq = cpu_rq(cpu);
6565 unsigned long flags;
6568 * Only empty task groups can be destroyed; so we can speculatively
6569 * check on_list without danger of it being re-added.
6571 if (!tg->cfs_rq[cpu]->on_list)
6574 raw_spin_lock_irqsave(&rq->lock, flags);
6575 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6576 raw_spin_unlock_irqrestore(&rq->lock, flags);
6579 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6580 struct sched_entity *se, int cpu,
6581 struct sched_entity *parent)
6583 struct rq *rq = cpu_rq(cpu);
6587 init_cfs_rq_runtime(cfs_rq);
6589 tg->cfs_rq[cpu] = cfs_rq;
6592 /* se could be NULL for root_task_group */
6597 se->cfs_rq = &rq->cfs;
6599 se->cfs_rq = parent->my_q;
6602 update_load_set(&se->load, 0);
6603 se->parent = parent;
6606 static DEFINE_MUTEX(shares_mutex);
6608 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6611 unsigned long flags;
6614 * We can't change the weight of the root cgroup.
6619 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6621 mutex_lock(&shares_mutex);
6622 if (tg->shares == shares)
6625 tg->shares = shares;
6626 for_each_possible_cpu(i) {
6627 struct rq *rq = cpu_rq(i);
6628 struct sched_entity *se;
6631 /* Propagate contribution to hierarchy */
6632 raw_spin_lock_irqsave(&rq->lock, flags);
6634 /* Possible calls to update_curr() need rq clock */
6635 update_rq_clock(rq);
6636 for_each_sched_entity(se)
6637 update_cfs_shares(group_cfs_rq(se));
6638 raw_spin_unlock_irqrestore(&rq->lock, flags);
6642 mutex_unlock(&shares_mutex);
6645 #else /* CONFIG_FAIR_GROUP_SCHED */
6647 void free_fair_sched_group(struct task_group *tg) { }
6649 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6654 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6656 #endif /* CONFIG_FAIR_GROUP_SCHED */
6659 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6661 struct sched_entity *se = &task->se;
6662 unsigned int rr_interval = 0;
6665 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6668 if (rq->cfs.load.weight)
6669 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6675 * All the scheduling class methods:
6677 const struct sched_class fair_sched_class = {
6678 .next = &idle_sched_class,
6679 .enqueue_task = enqueue_task_fair,
6680 .dequeue_task = dequeue_task_fair,
6681 .yield_task = yield_task_fair,
6682 .yield_to_task = yield_to_task_fair,
6684 .check_preempt_curr = check_preempt_wakeup,
6686 .pick_next_task = pick_next_task_fair,
6687 .put_prev_task = put_prev_task_fair,
6690 .select_task_rq = select_task_rq_fair,
6691 .migrate_task_rq = migrate_task_rq_fair,
6693 .rq_online = rq_online_fair,
6694 .rq_offline = rq_offline_fair,
6696 .task_waking = task_waking_fair,
6699 .set_curr_task = set_curr_task_fair,
6700 .task_tick = task_tick_fair,
6701 .task_fork = task_fork_fair,
6703 .prio_changed = prio_changed_fair,
6704 .switched_from = switched_from_fair,
6705 .switched_to = switched_to_fair,
6707 .get_rr_interval = get_rr_interval_fair,
6709 #ifdef CONFIG_FAIR_GROUP_SCHED
6710 .task_move_group = task_move_group_fair,
6714 #ifdef CONFIG_SCHED_DEBUG
6715 void print_cfs_stats(struct seq_file *m, int cpu)
6717 struct cfs_rq *cfs_rq;
6720 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6721 print_cfs_rq(m, cpu, cfs_rq);
6726 __init void init_sched_fair_class(void)
6729 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6731 #ifdef CONFIG_NO_HZ_COMMON
6732 nohz.next_balance = jiffies;
6733 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6734 cpu_notifier(sched_ilb_notifier, 0);