2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 #include "xfs_trans.h"
24 #include "xfs_mount.h"
25 #include "xfs_bmap_btree.h"
26 #include "xfs_alloc.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_inode_item.h"
31 #include "xfs_error.h"
32 #include "xfs_vnodeops.h"
33 #include "xfs_da_btree.h"
34 #include "xfs_ioctl.h"
35 #include "xfs_trace.h"
37 #include <linux/dcache.h>
38 #include <linux/falloc.h>
40 static const struct vm_operations_struct xfs_file_vm_ops;
43 * Locking primitives for read and write IO paths to ensure we consistently use
44 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
51 if (type & XFS_IOLOCK_EXCL)
52 mutex_lock(&VFS_I(ip)->i_mutex);
61 xfs_iunlock(ip, type);
62 if (type & XFS_IOLOCK_EXCL)
63 mutex_unlock(&VFS_I(ip)->i_mutex);
71 xfs_ilock_demote(ip, type);
72 if (type & XFS_IOLOCK_EXCL)
73 mutex_unlock(&VFS_I(ip)->i_mutex);
79 * xfs_iozero clears the specified range of buffer supplied,
80 * and marks all the affected blocks as valid and modified. If
81 * an affected block is not allocated, it will be allocated. If
82 * an affected block is not completely overwritten, and is not
83 * valid before the operation, it will be read from disk before
84 * being partially zeroed.
88 struct xfs_inode *ip, /* inode */
89 loff_t pos, /* offset in file */
90 size_t count) /* size of data to zero */
93 struct address_space *mapping;
96 mapping = VFS_I(ip)->i_mapping;
98 unsigned offset, bytes;
101 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
102 bytes = PAGE_CACHE_SIZE - offset;
106 status = pagecache_write_begin(NULL, mapping, pos, bytes,
107 AOP_FLAG_UNINTERRUPTIBLE,
112 zero_user(page, offset, bytes);
114 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
116 WARN_ON(status <= 0); /* can't return less than zero! */
126 * Fsync operations on directories are much simpler than on regular files,
127 * as there is no file data to flush, and thus also no need for explicit
128 * cache flush operations, and there are no non-transaction metadata updates
129 * on directories either.
138 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
139 struct xfs_mount *mp = ip->i_mount;
142 trace_xfs_dir_fsync(ip);
144 xfs_ilock(ip, XFS_ILOCK_SHARED);
145 if (xfs_ipincount(ip))
146 lsn = ip->i_itemp->ili_last_lsn;
147 xfs_iunlock(ip, XFS_ILOCK_SHARED);
151 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
161 struct inode *inode = file->f_mapping->host;
162 struct xfs_inode *ip = XFS_I(inode);
163 struct xfs_mount *mp = ip->i_mount;
168 trace_xfs_file_fsync(ip);
170 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
174 if (XFS_FORCED_SHUTDOWN(mp))
175 return -XFS_ERROR(EIO);
177 xfs_iflags_clear(ip, XFS_ITRUNCATED);
179 if (mp->m_flags & XFS_MOUNT_BARRIER) {
181 * If we have an RT and/or log subvolume we need to make sure
182 * to flush the write cache the device used for file data
183 * first. This is to ensure newly written file data make
184 * it to disk before logging the new inode size in case of
185 * an extending write.
187 if (XFS_IS_REALTIME_INODE(ip))
188 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
189 else if (mp->m_logdev_targp != mp->m_ddev_targp)
190 xfs_blkdev_issue_flush(mp->m_ddev_targp);
194 * All metadata updates are logged, which means that we just have
195 * to flush the log up to the latest LSN that touched the inode.
197 xfs_ilock(ip, XFS_ILOCK_SHARED);
198 if (xfs_ipincount(ip)) {
200 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
201 lsn = ip->i_itemp->ili_last_lsn;
203 xfs_iunlock(ip, XFS_ILOCK_SHARED);
206 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
209 * If we only have a single device, and the log force about was
210 * a no-op we might have to flush the data device cache here.
211 * This can only happen for fdatasync/O_DSYNC if we were overwriting
212 * an already allocated file and thus do not have any metadata to
215 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
216 mp->m_logdev_targp == mp->m_ddev_targp &&
217 !XFS_IS_REALTIME_INODE(ip) &&
219 xfs_blkdev_issue_flush(mp->m_ddev_targp);
227 const struct iovec *iovp,
228 unsigned long nr_segs,
231 struct file *file = iocb->ki_filp;
232 struct inode *inode = file->f_mapping->host;
233 struct xfs_inode *ip = XFS_I(inode);
234 struct xfs_mount *mp = ip->i_mount;
240 XFS_STATS_INC(xs_read_calls);
242 BUG_ON(iocb->ki_pos != pos);
244 if (unlikely(file->f_flags & O_DIRECT))
245 ioflags |= IO_ISDIRECT;
246 if (file->f_mode & FMODE_NOCMTIME)
249 ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
253 if (unlikely(ioflags & IO_ISDIRECT)) {
254 xfs_buftarg_t *target =
255 XFS_IS_REALTIME_INODE(ip) ?
256 mp->m_rtdev_targp : mp->m_ddev_targp;
257 if ((iocb->ki_pos & target->bt_smask) ||
258 (size & target->bt_smask)) {
259 if (iocb->ki_pos == i_size_read(inode))
261 return -XFS_ERROR(EINVAL);
265 n = mp->m_super->s_maxbytes - iocb->ki_pos;
266 if (n <= 0 || size == 0)
272 if (XFS_FORCED_SHUTDOWN(mp))
276 * Locking is a bit tricky here. If we take an exclusive lock
277 * for direct IO, we effectively serialise all new concurrent
278 * read IO to this file and block it behind IO that is currently in
279 * progress because IO in progress holds the IO lock shared. We only
280 * need to hold the lock exclusive to blow away the page cache, so
281 * only take lock exclusively if the page cache needs invalidation.
282 * This allows the normal direct IO case of no page cache pages to
283 * proceeed concurrently without serialisation.
285 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
286 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
287 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
288 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
290 if (inode->i_mapping->nrpages) {
291 ret = -xfs_flushinval_pages(ip,
292 (iocb->ki_pos & PAGE_CACHE_MASK),
293 -1, FI_REMAPF_LOCKED);
295 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
299 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
302 trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
304 ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
306 XFS_STATS_ADD(xs_read_bytes, ret);
308 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
313 xfs_file_splice_read(
316 struct pipe_inode_info *pipe,
320 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
324 XFS_STATS_INC(xs_read_calls);
326 if (infilp->f_mode & FMODE_NOCMTIME)
329 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
332 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
334 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
336 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
338 XFS_STATS_ADD(xs_read_bytes, ret);
340 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
345 * xfs_file_splice_write() does not use xfs_rw_ilock() because
346 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
347 * couuld cause lock inversions between the aio_write path and the splice path
348 * if someone is doing concurrent splice(2) based writes and write(2) based
349 * writes to the same inode. The only real way to fix this is to re-implement
350 * the generic code here with correct locking orders.
353 xfs_file_splice_write(
354 struct pipe_inode_info *pipe,
355 struct file *outfilp,
360 struct inode *inode = outfilp->f_mapping->host;
361 struct xfs_inode *ip = XFS_I(inode);
365 XFS_STATS_INC(xs_write_calls);
367 if (outfilp->f_mode & FMODE_NOCMTIME)
370 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
373 xfs_ilock(ip, XFS_IOLOCK_EXCL);
375 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
377 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
379 XFS_STATS_ADD(xs_write_bytes, ret);
381 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
386 * This routine is called to handle zeroing any space in the last block of the
387 * file that is beyond the EOF. We do this since the size is being increased
388 * without writing anything to that block and we don't want to read the
389 * garbage on the disk.
391 STATIC int /* error (positive) */
393 struct xfs_inode *ip,
397 struct xfs_mount *mp = ip->i_mount;
398 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
399 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
403 struct xfs_bmbt_irec imap;
405 xfs_ilock(ip, XFS_ILOCK_EXCL);
406 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
407 xfs_iunlock(ip, XFS_ILOCK_EXCL);
414 * If the block underlying isize is just a hole, then there
415 * is nothing to zero.
417 if (imap.br_startblock == HOLESTARTBLOCK)
420 zero_len = mp->m_sb.sb_blocksize - zero_offset;
421 if (isize + zero_len > offset)
422 zero_len = offset - isize;
423 return xfs_iozero(ip, isize, zero_len);
427 * Zero any on disk space between the current EOF and the new, larger EOF.
429 * This handles the normal case of zeroing the remainder of the last block in
430 * the file and the unusual case of zeroing blocks out beyond the size of the
431 * file. This second case only happens with fixed size extents and when the
432 * system crashes before the inode size was updated but after blocks were
435 * Expects the iolock to be held exclusive, and will take the ilock internally.
437 int /* error (positive) */
439 struct xfs_inode *ip,
440 xfs_off_t offset, /* starting I/O offset */
441 xfs_fsize_t isize) /* current inode size */
443 struct xfs_mount *mp = ip->i_mount;
444 xfs_fileoff_t start_zero_fsb;
445 xfs_fileoff_t end_zero_fsb;
446 xfs_fileoff_t zero_count_fsb;
447 xfs_fileoff_t last_fsb;
448 xfs_fileoff_t zero_off;
449 xfs_fsize_t zero_len;
452 struct xfs_bmbt_irec imap;
454 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
455 ASSERT(offset > isize);
458 * First handle zeroing the block on which isize resides.
460 * We only zero a part of that block so it is handled specially.
462 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
463 error = xfs_zero_last_block(ip, offset, isize);
469 * Calculate the range between the new size and the old where blocks
470 * needing to be zeroed may exist.
472 * To get the block where the last byte in the file currently resides,
473 * we need to subtract one from the size and truncate back to a block
474 * boundary. We subtract 1 in case the size is exactly on a block
477 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
478 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
479 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
480 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
481 if (last_fsb == end_zero_fsb) {
483 * The size was only incremented on its last block.
484 * We took care of that above, so just return.
489 ASSERT(start_zero_fsb <= end_zero_fsb);
490 while (start_zero_fsb <= end_zero_fsb) {
492 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
494 xfs_ilock(ip, XFS_ILOCK_EXCL);
495 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
497 xfs_iunlock(ip, XFS_ILOCK_EXCL);
503 if (imap.br_state == XFS_EXT_UNWRITTEN ||
504 imap.br_startblock == HOLESTARTBLOCK) {
505 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
506 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
511 * There are blocks we need to zero.
513 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
514 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
516 if ((zero_off + zero_len) > offset)
517 zero_len = offset - zero_off;
519 error = xfs_iozero(ip, zero_off, zero_len);
523 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
524 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
531 * Common pre-write limit and setup checks.
533 * Called with the iolocked held either shared and exclusive according to
534 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
535 * if called for a direct write beyond i_size.
538 xfs_file_aio_write_checks(
544 struct inode *inode = file->f_mapping->host;
545 struct xfs_inode *ip = XFS_I(inode);
549 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
554 * If the offset is beyond the size of the file, we need to zero any
555 * blocks that fall between the existing EOF and the start of this
556 * write. If zeroing is needed and we are currently holding the
557 * iolock shared, we need to update it to exclusive which implies
558 * having to redo all checks before.
560 if (*pos > i_size_read(inode)) {
561 if (*iolock == XFS_IOLOCK_SHARED) {
562 xfs_rw_iunlock(ip, *iolock);
563 *iolock = XFS_IOLOCK_EXCL;
564 xfs_rw_ilock(ip, *iolock);
567 error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
573 * Updating the timestamps will grab the ilock again from
574 * xfs_fs_dirty_inode, so we have to call it after dropping the
575 * lock above. Eventually we should look into a way to avoid
576 * the pointless lock roundtrip.
578 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
579 error = file_update_time(file);
585 * If we're writing the file then make sure to clear the setuid and
586 * setgid bits if the process is not being run by root. This keeps
587 * people from modifying setuid and setgid binaries.
589 return file_remove_suid(file);
593 * xfs_file_dio_aio_write - handle direct IO writes
595 * Lock the inode appropriately to prepare for and issue a direct IO write.
596 * By separating it from the buffered write path we remove all the tricky to
597 * follow locking changes and looping.
599 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
600 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
601 * pages are flushed out.
603 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
604 * allowing them to be done in parallel with reads and other direct IO writes.
605 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
606 * needs to do sub-block zeroing and that requires serialisation against other
607 * direct IOs to the same block. In this case we need to serialise the
608 * submission of the unaligned IOs so that we don't get racing block zeroing in
609 * the dio layer. To avoid the problem with aio, we also need to wait for
610 * outstanding IOs to complete so that unwritten extent conversion is completed
611 * before we try to map the overlapping block. This is currently implemented by
612 * hitting it with a big hammer (i.e. inode_dio_wait()).
614 * Returns with locks held indicated by @iolock and errors indicated by
615 * negative return values.
618 xfs_file_dio_aio_write(
620 const struct iovec *iovp,
621 unsigned long nr_segs,
625 struct file *file = iocb->ki_filp;
626 struct address_space *mapping = file->f_mapping;
627 struct inode *inode = mapping->host;
628 struct xfs_inode *ip = XFS_I(inode);
629 struct xfs_mount *mp = ip->i_mount;
631 size_t count = ocount;
632 int unaligned_io = 0;
634 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
635 mp->m_rtdev_targp : mp->m_ddev_targp;
637 if ((pos & target->bt_smask) || (count & target->bt_smask))
638 return -XFS_ERROR(EINVAL);
640 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
644 * We don't need to take an exclusive lock unless there page cache needs
645 * to be invalidated or unaligned IO is being executed. We don't need to
646 * consider the EOF extension case here because
647 * xfs_file_aio_write_checks() will relock the inode as necessary for
648 * EOF zeroing cases and fill out the new inode size as appropriate.
650 if (unaligned_io || mapping->nrpages)
651 iolock = XFS_IOLOCK_EXCL;
653 iolock = XFS_IOLOCK_SHARED;
654 xfs_rw_ilock(ip, iolock);
657 * Recheck if there are cached pages that need invalidate after we got
658 * the iolock to protect against other threads adding new pages while
659 * we were waiting for the iolock.
661 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
662 xfs_rw_iunlock(ip, iolock);
663 iolock = XFS_IOLOCK_EXCL;
664 xfs_rw_ilock(ip, iolock);
667 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
671 if (mapping->nrpages) {
672 ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
679 * If we are doing unaligned IO, wait for all other IO to drain,
680 * otherwise demote the lock if we had to flush cached pages
683 inode_dio_wait(inode);
684 else if (iolock == XFS_IOLOCK_EXCL) {
685 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
686 iolock = XFS_IOLOCK_SHARED;
689 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
690 ret = generic_file_direct_write(iocb, iovp,
691 &nr_segs, pos, &iocb->ki_pos, count, ocount);
694 xfs_rw_iunlock(ip, iolock);
696 /* No fallback to buffered IO on errors for XFS. */
697 ASSERT(ret < 0 || ret == count);
702 xfs_file_buffered_aio_write(
704 const struct iovec *iovp,
705 unsigned long nr_segs,
709 struct file *file = iocb->ki_filp;
710 struct address_space *mapping = file->f_mapping;
711 struct inode *inode = mapping->host;
712 struct xfs_inode *ip = XFS_I(inode);
715 int iolock = XFS_IOLOCK_EXCL;
716 size_t count = ocount;
718 xfs_rw_ilock(ip, iolock);
720 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
724 /* We can write back this queue in page reclaim */
725 current->backing_dev_info = mapping->backing_dev_info;
728 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
729 ret = generic_file_buffered_write(iocb, iovp, nr_segs,
730 pos, &iocb->ki_pos, count, ret);
732 * if we just got an ENOSPC, flush the inode now we aren't holding any
733 * page locks and retry *once*
735 if (ret == -ENOSPC && !enospc) {
737 ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
742 current->backing_dev_info = NULL;
744 xfs_rw_iunlock(ip, iolock);
751 const struct iovec *iovp,
752 unsigned long nr_segs,
755 struct file *file = iocb->ki_filp;
756 struct address_space *mapping = file->f_mapping;
757 struct inode *inode = mapping->host;
758 struct xfs_inode *ip = XFS_I(inode);
762 XFS_STATS_INC(xs_write_calls);
764 BUG_ON(iocb->ki_pos != pos);
766 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
773 sb_start_write(inode->i_sb);
775 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
780 if (unlikely(file->f_flags & O_DIRECT))
781 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
783 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
789 XFS_STATS_ADD(xs_write_bytes, ret);
791 /* Handle various SYNC-type writes */
792 err = generic_write_sync(file, pos, ret);
798 sb_end_write(inode->i_sb);
809 struct inode *inode = file->f_path.dentry->d_inode;
813 xfs_inode_t *ip = XFS_I(inode);
814 int cmd = XFS_IOC_RESVSP;
815 int attr_flags = XFS_ATTR_NOLOCK;
817 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
824 xfs_ilock(ip, XFS_IOLOCK_EXCL);
826 if (mode & FALLOC_FL_PUNCH_HOLE)
827 cmd = XFS_IOC_UNRESVSP;
829 /* check the new inode size is valid before allocating */
830 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
831 offset + len > i_size_read(inode)) {
832 new_size = offset + len;
833 error = inode_newsize_ok(inode, new_size);
838 if (file->f_flags & O_DSYNC)
839 attr_flags |= XFS_ATTR_SYNC;
841 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
845 /* Change file size if needed */
849 iattr.ia_valid = ATTR_SIZE;
850 iattr.ia_size = new_size;
851 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
855 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
865 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
867 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
877 struct xfs_inode *ip = XFS_I(inode);
881 error = xfs_file_open(inode, file);
886 * If there are any blocks, read-ahead block 0 as we're almost
887 * certain to have the next operation be a read there.
889 mode = xfs_ilock_map_shared(ip);
890 if (ip->i_d.di_nextents > 0)
891 xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
892 xfs_iunlock(ip, mode);
901 return -xfs_release(XFS_I(inode));
910 struct inode *inode = filp->f_path.dentry->d_inode;
911 xfs_inode_t *ip = XFS_I(inode);
916 * The Linux API doesn't pass down the total size of the buffer
917 * we read into down to the filesystem. With the filldir concept
918 * it's not needed for correct information, but the XFS dir2 leaf
919 * code wants an estimate of the buffer size to calculate it's
920 * readahead window and size the buffers used for mapping to
923 * Try to give it an estimate that's good enough, maybe at some
924 * point we can change the ->readdir prototype to include the
925 * buffer size. For now we use the current glibc buffer size.
927 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
929 error = xfs_readdir(ip, dirent, bufsize,
930 (xfs_off_t *)&filp->f_pos, filldir);
939 struct vm_area_struct *vma)
941 vma->vm_ops = &xfs_file_vm_ops;
942 vma->vm_flags |= VM_CAN_NONLINEAR;
949 * mmap()d file has taken write protection fault and is being made
950 * writable. We can set the page state up correctly for a writable
951 * page, which means we can do correct delalloc accounting (ENOSPC
952 * checking!) and unwritten extent mapping.
956 struct vm_area_struct *vma,
957 struct vm_fault *vmf)
959 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
968 struct inode *inode = file->f_mapping->host;
969 struct xfs_inode *ip = XFS_I(inode);
970 struct xfs_mount *mp = ip->i_mount;
971 struct xfs_bmbt_irec map[2];
973 loff_t uninitialized_var(offset);
980 lock = xfs_ilock_map_shared(ip);
982 isize = i_size_read(inode);
983 if (start >= isize) {
988 fsbno = XFS_B_TO_FSBT(mp, start);
991 * Try to read extents from the first block indicated
992 * by fsbno to the end block of the file.
994 end = XFS_B_TO_FSB(mp, isize);
996 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1002 * Treat unwritten extent as data extent since it might
1003 * contains dirty data in page cache.
1005 if (map[0].br_startblock != HOLESTARTBLOCK) {
1006 offset = max_t(loff_t, start,
1007 XFS_FSB_TO_B(mp, map[0].br_startoff));
1014 offset = max_t(loff_t, start,
1015 XFS_FSB_TO_B(mp, map[1].br_startoff));
1018 if (offset != file->f_pos)
1019 file->f_pos = offset;
1022 xfs_iunlock_map_shared(ip, lock);
1035 struct inode *inode = file->f_mapping->host;
1036 struct xfs_inode *ip = XFS_I(inode);
1037 struct xfs_mount *mp = ip->i_mount;
1038 loff_t uninitialized_var(offset);
1041 xfs_fileoff_t fsbno;
1045 if (XFS_FORCED_SHUTDOWN(mp))
1046 return -XFS_ERROR(EIO);
1048 lock = xfs_ilock_map_shared(ip);
1050 isize = i_size_read(inode);
1051 if (start >= isize) {
1056 fsbno = XFS_B_TO_FSBT(mp, start);
1057 error = xfs_bmap_first_unused(NULL, ip, 1, &fsbno, XFS_DATA_FORK);
1061 holeoff = XFS_FSB_TO_B(mp, fsbno);
1062 if (holeoff <= start)
1066 * xfs_bmap_first_unused() could return a value bigger than
1067 * isize if there are no more holes past the supplied offset.
1069 offset = min_t(loff_t, holeoff, isize);
1072 if (offset != file->f_pos)
1073 file->f_pos = offset;
1076 xfs_iunlock_map_shared(ip, lock);
1093 return generic_file_llseek(file, offset, origin);
1095 return xfs_seek_data(file, offset, origin);
1097 return xfs_seek_hole(file, offset, origin);
1103 const struct file_operations xfs_file_operations = {
1104 .llseek = xfs_file_llseek,
1105 .read = do_sync_read,
1106 .write = do_sync_write,
1107 .aio_read = xfs_file_aio_read,
1108 .aio_write = xfs_file_aio_write,
1109 .splice_read = xfs_file_splice_read,
1110 .splice_write = xfs_file_splice_write,
1111 .unlocked_ioctl = xfs_file_ioctl,
1112 #ifdef CONFIG_COMPAT
1113 .compat_ioctl = xfs_file_compat_ioctl,
1115 .mmap = xfs_file_mmap,
1116 .open = xfs_file_open,
1117 .release = xfs_file_release,
1118 .fsync = xfs_file_fsync,
1119 .fallocate = xfs_file_fallocate,
1122 const struct file_operations xfs_dir_file_operations = {
1123 .open = xfs_dir_open,
1124 .read = generic_read_dir,
1125 .readdir = xfs_file_readdir,
1126 .llseek = generic_file_llseek,
1127 .unlocked_ioctl = xfs_file_ioctl,
1128 #ifdef CONFIG_COMPAT
1129 .compat_ioctl = xfs_file_compat_ioctl,
1131 .fsync = xfs_dir_fsync,
1134 static const struct vm_operations_struct xfs_file_vm_ops = {
1135 .fault = filemap_fault,
1136 .page_mkwrite = xfs_vm_page_mkwrite,