2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/percpu-rwsem.h>
36 #include <trace/events/power.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/cpuhp.h>
43 * cpuhp_cpu_state - Per cpu hotplug state storage
44 * @state: The current cpu state
45 * @target: The target state
46 * @thread: Pointer to the hotplug thread
47 * @should_run: Thread should execute
48 * @rollback: Perform a rollback
49 * @single: Single callback invocation
50 * @bringup: Single callback bringup or teardown selector
51 * @cb_state: The state for a single callback (install/uninstall)
52 * @result: Result of the operation
53 * @done_up: Signal completion to the issuer of the task for cpu-up
54 * @done_down: Signal completion to the issuer of the task for cpu-down
56 struct cpuhp_cpu_state {
57 enum cpuhp_state state;
58 enum cpuhp_state target;
59 enum cpuhp_state fail;
61 struct task_struct *thread;
66 struct hlist_node *node;
67 struct hlist_node *last;
68 enum cpuhp_state cb_state;
70 struct completion done_up;
71 struct completion done_down;
75 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
76 .fail = CPUHP_INVALID,
80 cpumask_t cpus_booted_once_mask;
83 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
84 static struct lockdep_map cpuhp_state_up_map =
85 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
86 static struct lockdep_map cpuhp_state_down_map =
87 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
90 static inline void cpuhp_lock_acquire(bool bringup)
92 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
95 static inline void cpuhp_lock_release(bool bringup)
97 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
101 static inline void cpuhp_lock_acquire(bool bringup) { }
102 static inline void cpuhp_lock_release(bool bringup) { }
107 * cpuhp_step - Hotplug state machine step
108 * @name: Name of the step
109 * @startup: Startup function of the step
110 * @teardown: Teardown function of the step
111 * @cant_stop: Bringup/teardown can't be stopped at this step
116 int (*single)(unsigned int cpu);
117 int (*multi)(unsigned int cpu,
118 struct hlist_node *node);
121 int (*single)(unsigned int cpu);
122 int (*multi)(unsigned int cpu,
123 struct hlist_node *node);
125 struct hlist_head list;
130 static DEFINE_MUTEX(cpuhp_state_mutex);
131 static struct cpuhp_step cpuhp_hp_states[];
133 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
135 return cpuhp_hp_states + state;
138 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
140 return bringup ? !step->startup.single : !step->teardown.single;
144 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
145 * @cpu: The cpu for which the callback should be invoked
146 * @state: The state to do callbacks for
147 * @bringup: True if the bringup callback should be invoked
148 * @node: For multi-instance, do a single entry callback for install/remove
149 * @lastp: For multi-instance rollback, remember how far we got
151 * Called from cpu hotplug and from the state register machinery.
153 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
154 bool bringup, struct hlist_node *node,
155 struct hlist_node **lastp)
157 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
158 struct cpuhp_step *step = cpuhp_get_step(state);
159 int (*cbm)(unsigned int cpu, struct hlist_node *node);
160 int (*cb)(unsigned int cpu);
163 if (st->fail == state) {
164 st->fail = CPUHP_INVALID;
168 if (cpuhp_step_empty(bringup, step)) {
173 if (!step->multi_instance) {
174 WARN_ON_ONCE(lastp && *lastp);
175 cb = bringup ? step->startup.single : step->teardown.single;
177 trace_cpuhp_enter(cpu, st->target, state, cb);
179 trace_cpuhp_exit(cpu, st->state, state, ret);
182 cbm = bringup ? step->startup.multi : step->teardown.multi;
184 /* Single invocation for instance add/remove */
186 WARN_ON_ONCE(lastp && *lastp);
187 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
188 ret = cbm(cpu, node);
189 trace_cpuhp_exit(cpu, st->state, state, ret);
193 /* State transition. Invoke on all instances */
195 hlist_for_each(node, &step->list) {
196 if (lastp && node == *lastp)
199 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
200 ret = cbm(cpu, node);
201 trace_cpuhp_exit(cpu, st->state, state, ret);
215 /* Rollback the instances if one failed */
216 cbm = !bringup ? step->startup.multi : step->teardown.multi;
220 hlist_for_each(node, &step->list) {
224 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
225 ret = cbm(cpu, node);
226 trace_cpuhp_exit(cpu, st->state, state, ret);
228 * Rollback must not fail,
236 static bool cpuhp_is_ap_state(enum cpuhp_state state)
239 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
240 * purposes as that state is handled explicitly in cpu_down.
242 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
245 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
247 struct completion *done = bringup ? &st->done_up : &st->done_down;
248 wait_for_completion(done);
251 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
253 struct completion *done = bringup ? &st->done_up : &st->done_down;
258 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
260 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
262 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
265 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
266 static DEFINE_MUTEX(cpu_add_remove_lock);
267 bool cpuhp_tasks_frozen;
268 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
271 * The following two APIs (cpu_maps_update_begin/done) must be used when
272 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
274 void cpu_maps_update_begin(void)
276 mutex_lock(&cpu_add_remove_lock);
279 void cpu_maps_update_done(void)
281 mutex_unlock(&cpu_add_remove_lock);
285 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
286 * Should always be manipulated under cpu_add_remove_lock
288 static int cpu_hotplug_disabled;
290 #ifdef CONFIG_HOTPLUG_CPU
292 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
294 void cpus_read_lock(void)
296 percpu_down_read(&cpu_hotplug_lock);
298 EXPORT_SYMBOL_GPL(cpus_read_lock);
300 int cpus_read_trylock(void)
302 return percpu_down_read_trylock(&cpu_hotplug_lock);
304 EXPORT_SYMBOL_GPL(cpus_read_trylock);
306 void cpus_read_unlock(void)
308 percpu_up_read(&cpu_hotplug_lock);
310 EXPORT_SYMBOL_GPL(cpus_read_unlock);
312 void cpus_write_lock(void)
314 percpu_down_write(&cpu_hotplug_lock);
317 void cpus_write_unlock(void)
319 percpu_up_write(&cpu_hotplug_lock);
322 void lockdep_assert_cpus_held(void)
325 * We can't have hotplug operations before userspace starts running,
326 * and some init codepaths will knowingly not take the hotplug lock.
327 * This is all valid, so mute lockdep until it makes sense to report
330 if (system_state < SYSTEM_RUNNING)
333 percpu_rwsem_assert_held(&cpu_hotplug_lock);
336 #ifdef CONFIG_LOCKDEP
337 int lockdep_is_cpus_held(void)
339 return percpu_rwsem_is_held(&cpu_hotplug_lock);
343 static void lockdep_acquire_cpus_lock(void)
345 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
348 static void lockdep_release_cpus_lock(void)
350 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
354 * Wait for currently running CPU hotplug operations to complete (if any) and
355 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
356 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
357 * hotplug path before performing hotplug operations. So acquiring that lock
358 * guarantees mutual exclusion from any currently running hotplug operations.
360 void cpu_hotplug_disable(void)
362 cpu_maps_update_begin();
363 cpu_hotplug_disabled++;
364 cpu_maps_update_done();
366 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
368 static void __cpu_hotplug_enable(void)
370 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
372 cpu_hotplug_disabled--;
375 void cpu_hotplug_enable(void)
377 cpu_maps_update_begin();
378 __cpu_hotplug_enable();
379 cpu_maps_update_done();
381 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
385 static void lockdep_acquire_cpus_lock(void)
389 static void lockdep_release_cpus_lock(void)
393 #endif /* CONFIG_HOTPLUG_CPU */
396 * Architectures that need SMT-specific errata handling during SMT hotplug
397 * should override this.
399 void __weak arch_smt_update(void) { }
401 #ifdef CONFIG_HOTPLUG_SMT
402 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
404 void __init cpu_smt_disable(bool force)
406 if (!cpu_smt_possible())
410 pr_info("SMT: Force disabled\n");
411 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
413 pr_info("SMT: disabled\n");
414 cpu_smt_control = CPU_SMT_DISABLED;
419 * The decision whether SMT is supported can only be done after the full
420 * CPU identification. Called from architecture code.
422 void __init cpu_smt_check_topology(void)
424 if (!topology_smt_supported())
425 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
428 static int __init smt_cmdline_disable(char *str)
430 cpu_smt_disable(str && !strcmp(str, "force"));
433 early_param("nosmt", smt_cmdline_disable);
435 static inline bool cpu_smt_allowed(unsigned int cpu)
437 if (cpu_smt_control == CPU_SMT_ENABLED)
440 if (topology_is_primary_thread(cpu))
444 * On x86 it's required to boot all logical CPUs at least once so
445 * that the init code can get a chance to set CR4.MCE on each
446 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
447 * core will shutdown the machine.
449 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
452 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
453 bool cpu_smt_possible(void)
455 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
456 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
458 EXPORT_SYMBOL_GPL(cpu_smt_possible);
460 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
463 static inline enum cpuhp_state
464 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
466 enum cpuhp_state prev_state = st->state;
468 st->rollback = false;
473 st->bringup = st->state < target;
479 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
481 st->target = prev_state;
484 * Already rolling back. No need invert the bringup value or to change
493 * If we have st->last we need to undo partial multi_instance of this
494 * state first. Otherwise start undo at the previous state.
503 st->bringup = !st->bringup;
506 /* Regular hotplug invocation of the AP hotplug thread */
507 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
509 if (!st->single && st->state == st->target)
514 * Make sure the above stores are visible before should_run becomes
515 * true. Paired with the mb() above in cpuhp_thread_fun()
518 st->should_run = true;
519 wake_up_process(st->thread);
520 wait_for_ap_thread(st, st->bringup);
523 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
525 enum cpuhp_state prev_state;
528 prev_state = cpuhp_set_state(st, target);
530 if ((ret = st->result)) {
531 cpuhp_reset_state(st, prev_state);
538 static int bringup_wait_for_ap(unsigned int cpu)
540 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
542 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
543 wait_for_ap_thread(st, true);
544 if (WARN_ON_ONCE((!cpu_online(cpu))))
547 /* Unpark the hotplug thread of the target cpu */
548 kthread_unpark(st->thread);
551 * SMT soft disabling on X86 requires to bring the CPU out of the
552 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
553 * CPU marked itself as booted_once in notify_cpu_starting() so the
554 * cpu_smt_allowed() check will now return false if this is not the
557 if (!cpu_smt_allowed(cpu))
560 if (st->target <= CPUHP_AP_ONLINE_IDLE)
563 return cpuhp_kick_ap(st, st->target);
566 static int bringup_cpu(unsigned int cpu)
568 struct task_struct *idle = idle_thread_get(cpu);
572 * Some architectures have to walk the irq descriptors to
573 * setup the vector space for the cpu which comes online.
574 * Prevent irq alloc/free across the bringup.
578 /* Arch-specific enabling code. */
579 ret = __cpu_up(cpu, idle);
583 return bringup_wait_for_ap(cpu);
586 static int finish_cpu(unsigned int cpu)
588 struct task_struct *idle = idle_thread_get(cpu);
589 struct mm_struct *mm = idle->active_mm;
592 * idle_task_exit() will have switched to &init_mm, now
593 * clean up any remaining active_mm state.
596 idle->active_mm = &init_mm;
602 * Hotplug state machine related functions
606 * Get the next state to run. Empty ones will be skipped. Returns true if a
609 * st->state will be modified ahead of time, to match state_to_run, as if it
612 static bool cpuhp_next_state(bool bringup,
613 enum cpuhp_state *state_to_run,
614 struct cpuhp_cpu_state *st,
615 enum cpuhp_state target)
619 if (st->state >= target)
622 *state_to_run = ++st->state;
624 if (st->state <= target)
627 *state_to_run = st->state--;
630 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
637 static int cpuhp_invoke_callback_range(bool bringup,
639 struct cpuhp_cpu_state *st,
640 enum cpuhp_state target)
642 enum cpuhp_state state;
645 while (cpuhp_next_state(bringup, &state, st, target)) {
646 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
654 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
656 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
659 * When CPU hotplug is disabled, then taking the CPU down is not
660 * possible because takedown_cpu() and the architecture and
661 * subsystem specific mechanisms are not available. So the CPU
662 * which would be completely unplugged again needs to stay around
663 * in the current state.
665 return st->state <= CPUHP_BRINGUP_CPU;
668 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
669 enum cpuhp_state target)
671 enum cpuhp_state prev_state = st->state;
674 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
676 cpuhp_reset_state(st, prev_state);
677 if (can_rollback_cpu(st))
678 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
685 * The cpu hotplug threads manage the bringup and teardown of the cpus
687 static void cpuhp_create(unsigned int cpu)
689 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
691 init_completion(&st->done_up);
692 init_completion(&st->done_down);
695 static int cpuhp_should_run(unsigned int cpu)
697 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
699 return st->should_run;
703 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
704 * callbacks when a state gets [un]installed at runtime.
706 * Each invocation of this function by the smpboot thread does a single AP
709 * It has 3 modes of operation:
710 * - single: runs st->cb_state
711 * - up: runs ++st->state, while st->state < st->target
712 * - down: runs st->state--, while st->state > st->target
714 * When complete or on error, should_run is cleared and the completion is fired.
716 static void cpuhp_thread_fun(unsigned int cpu)
718 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
719 bool bringup = st->bringup;
720 enum cpuhp_state state;
722 if (WARN_ON_ONCE(!st->should_run))
726 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
727 * that if we see ->should_run we also see the rest of the state.
732 * The BP holds the hotplug lock, but we're now running on the AP,
733 * ensure that anybody asserting the lock is held, will actually find
736 lockdep_acquire_cpus_lock();
737 cpuhp_lock_acquire(bringup);
740 state = st->cb_state;
741 st->should_run = false;
743 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
748 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
750 if (cpuhp_is_atomic_state(state)) {
752 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
756 * STARTING/DYING must not fail!
758 WARN_ON_ONCE(st->result);
760 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
765 * If we fail on a rollback, we're up a creek without no
766 * paddle, no way forward, no way back. We loose, thanks for
769 WARN_ON_ONCE(st->rollback);
770 st->should_run = false;
774 cpuhp_lock_release(bringup);
775 lockdep_release_cpus_lock();
778 complete_ap_thread(st, bringup);
781 /* Invoke a single callback on a remote cpu */
783 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
784 struct hlist_node *node)
786 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
789 if (!cpu_online(cpu))
792 cpuhp_lock_acquire(false);
793 cpuhp_lock_release(false);
795 cpuhp_lock_acquire(true);
796 cpuhp_lock_release(true);
799 * If we are up and running, use the hotplug thread. For early calls
800 * we invoke the thread function directly.
803 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
805 st->rollback = false;
809 st->bringup = bringup;
810 st->cb_state = state;
816 * If we failed and did a partial, do a rollback.
818 if ((ret = st->result) && st->last) {
820 st->bringup = !bringup;
826 * Clean up the leftovers so the next hotplug operation wont use stale
829 st->node = st->last = NULL;
833 static int cpuhp_kick_ap_work(unsigned int cpu)
835 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
836 enum cpuhp_state prev_state = st->state;
839 cpuhp_lock_acquire(false);
840 cpuhp_lock_release(false);
842 cpuhp_lock_acquire(true);
843 cpuhp_lock_release(true);
845 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
846 ret = cpuhp_kick_ap(st, st->target);
847 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
852 static struct smp_hotplug_thread cpuhp_threads = {
853 .store = &cpuhp_state.thread,
854 .create = &cpuhp_create,
855 .thread_should_run = cpuhp_should_run,
856 .thread_fn = cpuhp_thread_fun,
857 .thread_comm = "cpuhp/%u",
861 void __init cpuhp_threads_init(void)
863 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
864 kthread_unpark(this_cpu_read(cpuhp_state.thread));
867 #ifdef CONFIG_HOTPLUG_CPU
868 #ifndef arch_clear_mm_cpumask_cpu
869 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
873 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
876 * This function walks all processes, finds a valid mm struct for each one and
877 * then clears a corresponding bit in mm's cpumask. While this all sounds
878 * trivial, there are various non-obvious corner cases, which this function
879 * tries to solve in a safe manner.
881 * Also note that the function uses a somewhat relaxed locking scheme, so it may
882 * be called only for an already offlined CPU.
884 void clear_tasks_mm_cpumask(int cpu)
886 struct task_struct *p;
889 * This function is called after the cpu is taken down and marked
890 * offline, so its not like new tasks will ever get this cpu set in
891 * their mm mask. -- Peter Zijlstra
892 * Thus, we may use rcu_read_lock() here, instead of grabbing
893 * full-fledged tasklist_lock.
895 WARN_ON(cpu_online(cpu));
897 for_each_process(p) {
898 struct task_struct *t;
901 * Main thread might exit, but other threads may still have
902 * a valid mm. Find one.
904 t = find_lock_task_mm(p);
907 arch_clear_mm_cpumask_cpu(cpu, t->mm);
913 /* Take this CPU down. */
914 static int take_cpu_down(void *_param)
916 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
917 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
918 int err, cpu = smp_processor_id();
921 /* Ensure this CPU doesn't handle any more interrupts. */
922 err = __cpu_disable();
927 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
928 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
930 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
932 /* Invoke the former CPU_DYING callbacks */
933 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
936 * DYING must not fail!
940 /* Give up timekeeping duties */
941 tick_handover_do_timer();
942 /* Remove CPU from timer broadcasting */
943 tick_offline_cpu(cpu);
944 /* Park the stopper thread */
945 stop_machine_park(cpu);
949 static int takedown_cpu(unsigned int cpu)
951 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
954 /* Park the smpboot threads */
955 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
958 * Prevent irq alloc/free while the dying cpu reorganizes the
959 * interrupt affinities.
964 * So now all preempt/rcu users must observe !cpu_active().
966 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
968 /* CPU refused to die */
970 /* Unpark the hotplug thread so we can rollback there */
971 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
974 BUG_ON(cpu_online(cpu));
977 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
978 * all runnable tasks from the CPU, there's only the idle task left now
979 * that the migration thread is done doing the stop_machine thing.
981 * Wait for the stop thread to go away.
983 wait_for_ap_thread(st, false);
984 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
986 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
989 hotplug_cpu__broadcast_tick_pull(cpu);
990 /* This actually kills the CPU. */
993 tick_cleanup_dead_cpu(cpu);
994 rcutree_migrate_callbacks(cpu);
998 static void cpuhp_complete_idle_dead(void *arg)
1000 struct cpuhp_cpu_state *st = arg;
1002 complete_ap_thread(st, false);
1005 void cpuhp_report_idle_dead(void)
1007 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1009 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1010 rcu_report_dead(smp_processor_id());
1011 st->state = CPUHP_AP_IDLE_DEAD;
1013 * We cannot call complete after rcu_report_dead() so we delegate it
1016 smp_call_function_single(cpumask_first(cpu_online_mask),
1017 cpuhp_complete_idle_dead, st, 0);
1020 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1021 enum cpuhp_state target)
1023 enum cpuhp_state prev_state = st->state;
1026 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1029 cpuhp_reset_state(st, prev_state);
1031 if (st->state < prev_state)
1032 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1039 /* Requires cpu_add_remove_lock to be held */
1040 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1041 enum cpuhp_state target)
1043 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1044 int prev_state, ret = 0;
1046 if (num_online_cpus() == 1)
1049 if (!cpu_present(cpu))
1054 cpuhp_tasks_frozen = tasks_frozen;
1056 prev_state = cpuhp_set_state(st, target);
1058 * If the current CPU state is in the range of the AP hotplug thread,
1059 * then we need to kick the thread.
1061 if (st->state > CPUHP_TEARDOWN_CPU) {
1062 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1063 ret = cpuhp_kick_ap_work(cpu);
1065 * The AP side has done the error rollback already. Just
1066 * return the error code..
1072 * We might have stopped still in the range of the AP hotplug
1073 * thread. Nothing to do anymore.
1075 if (st->state > CPUHP_TEARDOWN_CPU)
1078 st->target = target;
1081 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1082 * to do the further cleanups.
1084 ret = cpuhp_down_callbacks(cpu, st, target);
1085 if (ret && st->state < prev_state) {
1086 if (st->state == CPUHP_TEARDOWN_CPU) {
1087 cpuhp_reset_state(st, prev_state);
1088 __cpuhp_kick_ap(st);
1090 WARN(1, "DEAD callback error for CPU%d", cpu);
1095 cpus_write_unlock();
1097 * Do post unplug cleanup. This is still protected against
1098 * concurrent CPU hotplug via cpu_add_remove_lock.
1100 lockup_detector_cleanup();
1105 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1107 if (cpu_hotplug_disabled)
1109 return _cpu_down(cpu, 0, target);
1112 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1116 cpu_maps_update_begin();
1117 err = cpu_down_maps_locked(cpu, target);
1118 cpu_maps_update_done();
1123 * cpu_device_down - Bring down a cpu device
1124 * @dev: Pointer to the cpu device to offline
1126 * This function is meant to be used by device core cpu subsystem only.
1128 * Other subsystems should use remove_cpu() instead.
1130 int cpu_device_down(struct device *dev)
1132 return cpu_down(dev->id, CPUHP_OFFLINE);
1135 int remove_cpu(unsigned int cpu)
1139 lock_device_hotplug();
1140 ret = device_offline(get_cpu_device(cpu));
1141 unlock_device_hotplug();
1145 EXPORT_SYMBOL_GPL(remove_cpu);
1147 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1152 cpu_maps_update_begin();
1155 * Make certain the cpu I'm about to reboot on is online.
1157 * This is inline to what migrate_to_reboot_cpu() already do.
1159 if (!cpu_online(primary_cpu))
1160 primary_cpu = cpumask_first(cpu_online_mask);
1162 for_each_online_cpu(cpu) {
1163 if (cpu == primary_cpu)
1166 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1168 pr_err("Failed to offline CPU%d - error=%d",
1175 * Ensure all but the reboot CPU are offline.
1177 BUG_ON(num_online_cpus() > 1);
1180 * Make sure the CPUs won't be enabled by someone else after this
1181 * point. Kexec will reboot to a new kernel shortly resetting
1182 * everything along the way.
1184 cpu_hotplug_disabled++;
1186 cpu_maps_update_done();
1190 #define takedown_cpu NULL
1191 #endif /*CONFIG_HOTPLUG_CPU*/
1194 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1195 * @cpu: cpu that just started
1197 * It must be called by the arch code on the new cpu, before the new cpu
1198 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1200 void notify_cpu_starting(unsigned int cpu)
1202 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1203 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1206 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1207 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1208 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1211 * STARTING must not fail!
1217 * Called from the idle task. Wake up the controlling task which brings the
1218 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1219 * online bringup to the hotplug thread.
1221 void cpuhp_online_idle(enum cpuhp_state state)
1223 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1225 /* Happens for the boot cpu */
1226 if (state != CPUHP_AP_ONLINE_IDLE)
1230 * Unpart the stopper thread before we start the idle loop (and start
1231 * scheduling); this ensures the stopper task is always available.
1233 stop_machine_unpark(smp_processor_id());
1235 st->state = CPUHP_AP_ONLINE_IDLE;
1236 complete_ap_thread(st, true);
1239 /* Requires cpu_add_remove_lock to be held */
1240 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1242 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1243 struct task_struct *idle;
1248 if (!cpu_present(cpu)) {
1254 * The caller of cpu_up() might have raced with another
1255 * caller. Nothing to do.
1257 if (st->state >= target)
1260 if (st->state == CPUHP_OFFLINE) {
1261 /* Let it fail before we try to bring the cpu up */
1262 idle = idle_thread_get(cpu);
1264 ret = PTR_ERR(idle);
1269 cpuhp_tasks_frozen = tasks_frozen;
1271 cpuhp_set_state(st, target);
1273 * If the current CPU state is in the range of the AP hotplug thread,
1274 * then we need to kick the thread once more.
1276 if (st->state > CPUHP_BRINGUP_CPU) {
1277 ret = cpuhp_kick_ap_work(cpu);
1279 * The AP side has done the error rollback already. Just
1280 * return the error code..
1287 * Try to reach the target state. We max out on the BP at
1288 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1289 * responsible for bringing it up to the target state.
1291 target = min((int)target, CPUHP_BRINGUP_CPU);
1292 ret = cpuhp_up_callbacks(cpu, st, target);
1294 cpus_write_unlock();
1299 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1303 if (!cpu_possible(cpu)) {
1304 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1306 #if defined(CONFIG_IA64)
1307 pr_err("please check additional_cpus= boot parameter\n");
1312 err = try_online_node(cpu_to_node(cpu));
1316 cpu_maps_update_begin();
1318 if (cpu_hotplug_disabled) {
1322 if (!cpu_smt_allowed(cpu)) {
1327 err = _cpu_up(cpu, 0, target);
1329 cpu_maps_update_done();
1334 * cpu_device_up - Bring up a cpu device
1335 * @dev: Pointer to the cpu device to online
1337 * This function is meant to be used by device core cpu subsystem only.
1339 * Other subsystems should use add_cpu() instead.
1341 int cpu_device_up(struct device *dev)
1343 return cpu_up(dev->id, CPUHP_ONLINE);
1346 int add_cpu(unsigned int cpu)
1350 lock_device_hotplug();
1351 ret = device_online(get_cpu_device(cpu));
1352 unlock_device_hotplug();
1356 EXPORT_SYMBOL_GPL(add_cpu);
1359 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1360 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1362 * On some architectures like arm64, we can hibernate on any CPU, but on
1363 * wake up the CPU we hibernated on might be offline as a side effect of
1364 * using maxcpus= for example.
1366 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1370 if (!cpu_online(sleep_cpu)) {
1371 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1372 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1374 pr_err("Failed to bring hibernate-CPU up!\n");
1381 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1385 for_each_present_cpu(cpu) {
1386 if (num_online_cpus() >= setup_max_cpus)
1388 if (!cpu_online(cpu))
1389 cpu_up(cpu, CPUHP_ONLINE);
1393 #ifdef CONFIG_PM_SLEEP_SMP
1394 static cpumask_var_t frozen_cpus;
1396 int freeze_secondary_cpus(int primary)
1400 cpu_maps_update_begin();
1401 if (primary == -1) {
1402 primary = cpumask_first(cpu_online_mask);
1403 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1404 primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1406 if (!cpu_online(primary))
1407 primary = cpumask_first(cpu_online_mask);
1411 * We take down all of the non-boot CPUs in one shot to avoid races
1412 * with the userspace trying to use the CPU hotplug at the same time
1414 cpumask_clear(frozen_cpus);
1416 pr_info("Disabling non-boot CPUs ...\n");
1417 for_each_online_cpu(cpu) {
1421 if (pm_wakeup_pending()) {
1422 pr_info("Wakeup pending. Abort CPU freeze\n");
1427 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1428 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1429 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1431 cpumask_set_cpu(cpu, frozen_cpus);
1433 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1439 BUG_ON(num_online_cpus() > 1);
1441 pr_err("Non-boot CPUs are not disabled\n");
1444 * Make sure the CPUs won't be enabled by someone else. We need to do
1445 * this even in case of failure as all freeze_secondary_cpus() users are
1446 * supposed to do thaw_secondary_cpus() on the failure path.
1448 cpu_hotplug_disabled++;
1450 cpu_maps_update_done();
1454 void __weak arch_thaw_secondary_cpus_begin(void)
1458 void __weak arch_thaw_secondary_cpus_end(void)
1462 void thaw_secondary_cpus(void)
1466 /* Allow everyone to use the CPU hotplug again */
1467 cpu_maps_update_begin();
1468 __cpu_hotplug_enable();
1469 if (cpumask_empty(frozen_cpus))
1472 pr_info("Enabling non-boot CPUs ...\n");
1474 arch_thaw_secondary_cpus_begin();
1476 for_each_cpu(cpu, frozen_cpus) {
1477 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1478 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1479 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1481 pr_info("CPU%d is up\n", cpu);
1484 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1487 arch_thaw_secondary_cpus_end();
1489 cpumask_clear(frozen_cpus);
1491 cpu_maps_update_done();
1494 static int __init alloc_frozen_cpus(void)
1496 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1500 core_initcall(alloc_frozen_cpus);
1503 * When callbacks for CPU hotplug notifications are being executed, we must
1504 * ensure that the state of the system with respect to the tasks being frozen
1505 * or not, as reported by the notification, remains unchanged *throughout the
1506 * duration* of the execution of the callbacks.
1507 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1509 * This synchronization is implemented by mutually excluding regular CPU
1510 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1511 * Hibernate notifications.
1514 cpu_hotplug_pm_callback(struct notifier_block *nb,
1515 unsigned long action, void *ptr)
1519 case PM_SUSPEND_PREPARE:
1520 case PM_HIBERNATION_PREPARE:
1521 cpu_hotplug_disable();
1524 case PM_POST_SUSPEND:
1525 case PM_POST_HIBERNATION:
1526 cpu_hotplug_enable();
1537 static int __init cpu_hotplug_pm_sync_init(void)
1540 * cpu_hotplug_pm_callback has higher priority than x86
1541 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1542 * to disable cpu hotplug to avoid cpu hotplug race.
1544 pm_notifier(cpu_hotplug_pm_callback, 0);
1547 core_initcall(cpu_hotplug_pm_sync_init);
1549 #endif /* CONFIG_PM_SLEEP_SMP */
1553 #endif /* CONFIG_SMP */
1555 /* Boot processor state steps */
1556 static struct cpuhp_step cpuhp_hp_states[] = {
1559 .startup.single = NULL,
1560 .teardown.single = NULL,
1563 [CPUHP_CREATE_THREADS]= {
1564 .name = "threads:prepare",
1565 .startup.single = smpboot_create_threads,
1566 .teardown.single = NULL,
1569 [CPUHP_PERF_PREPARE] = {
1570 .name = "perf:prepare",
1571 .startup.single = perf_event_init_cpu,
1572 .teardown.single = perf_event_exit_cpu,
1574 [CPUHP_WORKQUEUE_PREP] = {
1575 .name = "workqueue:prepare",
1576 .startup.single = workqueue_prepare_cpu,
1577 .teardown.single = NULL,
1579 [CPUHP_HRTIMERS_PREPARE] = {
1580 .name = "hrtimers:prepare",
1581 .startup.single = hrtimers_prepare_cpu,
1582 .teardown.single = hrtimers_dead_cpu,
1584 [CPUHP_SMPCFD_PREPARE] = {
1585 .name = "smpcfd:prepare",
1586 .startup.single = smpcfd_prepare_cpu,
1587 .teardown.single = smpcfd_dead_cpu,
1589 [CPUHP_RELAY_PREPARE] = {
1590 .name = "relay:prepare",
1591 .startup.single = relay_prepare_cpu,
1592 .teardown.single = NULL,
1594 [CPUHP_SLAB_PREPARE] = {
1595 .name = "slab:prepare",
1596 .startup.single = slab_prepare_cpu,
1597 .teardown.single = slab_dead_cpu,
1599 [CPUHP_RCUTREE_PREP] = {
1600 .name = "RCU/tree:prepare",
1601 .startup.single = rcutree_prepare_cpu,
1602 .teardown.single = rcutree_dead_cpu,
1605 * On the tear-down path, timers_dead_cpu() must be invoked
1606 * before blk_mq_queue_reinit_notify() from notify_dead(),
1607 * otherwise a RCU stall occurs.
1609 [CPUHP_TIMERS_PREPARE] = {
1610 .name = "timers:prepare",
1611 .startup.single = timers_prepare_cpu,
1612 .teardown.single = timers_dead_cpu,
1614 /* Kicks the plugged cpu into life */
1615 [CPUHP_BRINGUP_CPU] = {
1616 .name = "cpu:bringup",
1617 .startup.single = bringup_cpu,
1618 .teardown.single = finish_cpu,
1621 /* Final state before CPU kills itself */
1622 [CPUHP_AP_IDLE_DEAD] = {
1623 .name = "idle:dead",
1626 * Last state before CPU enters the idle loop to die. Transient state
1627 * for synchronization.
1629 [CPUHP_AP_OFFLINE] = {
1630 .name = "ap:offline",
1633 /* First state is scheduler control. Interrupts are disabled */
1634 [CPUHP_AP_SCHED_STARTING] = {
1635 .name = "sched:starting",
1636 .startup.single = sched_cpu_starting,
1637 .teardown.single = sched_cpu_dying,
1639 [CPUHP_AP_RCUTREE_DYING] = {
1640 .name = "RCU/tree:dying",
1641 .startup.single = NULL,
1642 .teardown.single = rcutree_dying_cpu,
1644 [CPUHP_AP_SMPCFD_DYING] = {
1645 .name = "smpcfd:dying",
1646 .startup.single = NULL,
1647 .teardown.single = smpcfd_dying_cpu,
1649 /* Entry state on starting. Interrupts enabled from here on. Transient
1650 * state for synchronsization */
1651 [CPUHP_AP_ONLINE] = {
1652 .name = "ap:online",
1655 * Handled on control processor until the plugged processor manages
1658 [CPUHP_TEARDOWN_CPU] = {
1659 .name = "cpu:teardown",
1660 .startup.single = NULL,
1661 .teardown.single = takedown_cpu,
1665 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
1666 .name = "sched:waitempty",
1667 .startup.single = NULL,
1668 .teardown.single = sched_cpu_wait_empty,
1671 /* Handle smpboot threads park/unpark */
1672 [CPUHP_AP_SMPBOOT_THREADS] = {
1673 .name = "smpboot/threads:online",
1674 .startup.single = smpboot_unpark_threads,
1675 .teardown.single = smpboot_park_threads,
1677 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1678 .name = "irq/affinity:online",
1679 .startup.single = irq_affinity_online_cpu,
1680 .teardown.single = NULL,
1682 [CPUHP_AP_PERF_ONLINE] = {
1683 .name = "perf:online",
1684 .startup.single = perf_event_init_cpu,
1685 .teardown.single = perf_event_exit_cpu,
1687 [CPUHP_AP_WATCHDOG_ONLINE] = {
1688 .name = "lockup_detector:online",
1689 .startup.single = lockup_detector_online_cpu,
1690 .teardown.single = lockup_detector_offline_cpu,
1692 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1693 .name = "workqueue:online",
1694 .startup.single = workqueue_online_cpu,
1695 .teardown.single = workqueue_offline_cpu,
1697 [CPUHP_AP_RCUTREE_ONLINE] = {
1698 .name = "RCU/tree:online",
1699 .startup.single = rcutree_online_cpu,
1700 .teardown.single = rcutree_offline_cpu,
1704 * The dynamically registered state space is here
1708 /* Last state is scheduler control setting the cpu active */
1709 [CPUHP_AP_ACTIVE] = {
1710 .name = "sched:active",
1711 .startup.single = sched_cpu_activate,
1712 .teardown.single = sched_cpu_deactivate,
1716 /* CPU is fully up and running. */
1719 .startup.single = NULL,
1720 .teardown.single = NULL,
1724 /* Sanity check for callbacks */
1725 static int cpuhp_cb_check(enum cpuhp_state state)
1727 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1733 * Returns a free for dynamic slot assignment of the Online state. The states
1734 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1735 * by having no name assigned.
1737 static int cpuhp_reserve_state(enum cpuhp_state state)
1739 enum cpuhp_state i, end;
1740 struct cpuhp_step *step;
1743 case CPUHP_AP_ONLINE_DYN:
1744 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1745 end = CPUHP_AP_ONLINE_DYN_END;
1747 case CPUHP_BP_PREPARE_DYN:
1748 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1749 end = CPUHP_BP_PREPARE_DYN_END;
1755 for (i = state; i <= end; i++, step++) {
1759 WARN(1, "No more dynamic states available for CPU hotplug\n");
1763 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1764 int (*startup)(unsigned int cpu),
1765 int (*teardown)(unsigned int cpu),
1766 bool multi_instance)
1768 /* (Un)Install the callbacks for further cpu hotplug operations */
1769 struct cpuhp_step *sp;
1773 * If name is NULL, then the state gets removed.
1775 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1776 * the first allocation from these dynamic ranges, so the removal
1777 * would trigger a new allocation and clear the wrong (already
1778 * empty) state, leaving the callbacks of the to be cleared state
1779 * dangling, which causes wreckage on the next hotplug operation.
1781 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1782 state == CPUHP_BP_PREPARE_DYN)) {
1783 ret = cpuhp_reserve_state(state);
1788 sp = cpuhp_get_step(state);
1789 if (name && sp->name)
1792 sp->startup.single = startup;
1793 sp->teardown.single = teardown;
1795 sp->multi_instance = multi_instance;
1796 INIT_HLIST_HEAD(&sp->list);
1800 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1802 return cpuhp_get_step(state)->teardown.single;
1806 * Call the startup/teardown function for a step either on the AP or
1807 * on the current CPU.
1809 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1810 struct hlist_node *node)
1812 struct cpuhp_step *sp = cpuhp_get_step(state);
1816 * If there's nothing to do, we done.
1817 * Relies on the union for multi_instance.
1819 if (cpuhp_step_empty(bringup, sp))
1822 * The non AP bound callbacks can fail on bringup. On teardown
1823 * e.g. module removal we crash for now.
1826 if (cpuhp_is_ap_state(state))
1827 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1829 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1831 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1833 BUG_ON(ret && !bringup);
1838 * Called from __cpuhp_setup_state on a recoverable failure.
1840 * Note: The teardown callbacks for rollback are not allowed to fail!
1842 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1843 struct hlist_node *node)
1847 /* Roll back the already executed steps on the other cpus */
1848 for_each_present_cpu(cpu) {
1849 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1850 int cpustate = st->state;
1852 if (cpu >= failedcpu)
1855 /* Did we invoke the startup call on that cpu ? */
1856 if (cpustate >= state)
1857 cpuhp_issue_call(cpu, state, false, node);
1861 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1862 struct hlist_node *node,
1865 struct cpuhp_step *sp;
1869 lockdep_assert_cpus_held();
1871 sp = cpuhp_get_step(state);
1872 if (sp->multi_instance == false)
1875 mutex_lock(&cpuhp_state_mutex);
1877 if (!invoke || !sp->startup.multi)
1881 * Try to call the startup callback for each present cpu
1882 * depending on the hotplug state of the cpu.
1884 for_each_present_cpu(cpu) {
1885 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1886 int cpustate = st->state;
1888 if (cpustate < state)
1891 ret = cpuhp_issue_call(cpu, state, true, node);
1893 if (sp->teardown.multi)
1894 cpuhp_rollback_install(cpu, state, node);
1900 hlist_add_head(node, &sp->list);
1902 mutex_unlock(&cpuhp_state_mutex);
1906 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1912 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1916 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1919 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1920 * @state: The state to setup
1921 * @invoke: If true, the startup function is invoked for cpus where
1922 * cpu state >= @state
1923 * @startup: startup callback function
1924 * @teardown: teardown callback function
1925 * @multi_instance: State is set up for multiple instances which get
1928 * The caller needs to hold cpus read locked while calling this function.
1931 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1932 * 0 for all other states
1933 * On failure: proper (negative) error code
1935 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1936 const char *name, bool invoke,
1937 int (*startup)(unsigned int cpu),
1938 int (*teardown)(unsigned int cpu),
1939 bool multi_instance)
1944 lockdep_assert_cpus_held();
1946 if (cpuhp_cb_check(state) || !name)
1949 mutex_lock(&cpuhp_state_mutex);
1951 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1954 dynstate = state == CPUHP_AP_ONLINE_DYN;
1955 if (ret > 0 && dynstate) {
1960 if (ret || !invoke || !startup)
1964 * Try to call the startup callback for each present cpu
1965 * depending on the hotplug state of the cpu.
1967 for_each_present_cpu(cpu) {
1968 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1969 int cpustate = st->state;
1971 if (cpustate < state)
1974 ret = cpuhp_issue_call(cpu, state, true, NULL);
1977 cpuhp_rollback_install(cpu, state, NULL);
1978 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1983 mutex_unlock(&cpuhp_state_mutex);
1985 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1986 * dynamically allocated state in case of success.
1988 if (!ret && dynstate)
1992 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1994 int __cpuhp_setup_state(enum cpuhp_state state,
1995 const char *name, bool invoke,
1996 int (*startup)(unsigned int cpu),
1997 int (*teardown)(unsigned int cpu),
1998 bool multi_instance)
2003 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2004 teardown, multi_instance);
2008 EXPORT_SYMBOL(__cpuhp_setup_state);
2010 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2011 struct hlist_node *node, bool invoke)
2013 struct cpuhp_step *sp = cpuhp_get_step(state);
2016 BUG_ON(cpuhp_cb_check(state));
2018 if (!sp->multi_instance)
2022 mutex_lock(&cpuhp_state_mutex);
2024 if (!invoke || !cpuhp_get_teardown_cb(state))
2027 * Call the teardown callback for each present cpu depending
2028 * on the hotplug state of the cpu. This function is not
2029 * allowed to fail currently!
2031 for_each_present_cpu(cpu) {
2032 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2033 int cpustate = st->state;
2035 if (cpustate >= state)
2036 cpuhp_issue_call(cpu, state, false, node);
2041 mutex_unlock(&cpuhp_state_mutex);
2046 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2049 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2050 * @state: The state to remove
2051 * @invoke: If true, the teardown function is invoked for cpus where
2052 * cpu state >= @state
2054 * The caller needs to hold cpus read locked while calling this function.
2055 * The teardown callback is currently not allowed to fail. Think
2056 * about module removal!
2058 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2060 struct cpuhp_step *sp = cpuhp_get_step(state);
2063 BUG_ON(cpuhp_cb_check(state));
2065 lockdep_assert_cpus_held();
2067 mutex_lock(&cpuhp_state_mutex);
2068 if (sp->multi_instance) {
2069 WARN(!hlist_empty(&sp->list),
2070 "Error: Removing state %d which has instances left.\n",
2075 if (!invoke || !cpuhp_get_teardown_cb(state))
2079 * Call the teardown callback for each present cpu depending
2080 * on the hotplug state of the cpu. This function is not
2081 * allowed to fail currently!
2083 for_each_present_cpu(cpu) {
2084 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2085 int cpustate = st->state;
2087 if (cpustate >= state)
2088 cpuhp_issue_call(cpu, state, false, NULL);
2091 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2092 mutex_unlock(&cpuhp_state_mutex);
2094 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2096 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2099 __cpuhp_remove_state_cpuslocked(state, invoke);
2102 EXPORT_SYMBOL(__cpuhp_remove_state);
2104 #ifdef CONFIG_HOTPLUG_SMT
2105 static void cpuhp_offline_cpu_device(unsigned int cpu)
2107 struct device *dev = get_cpu_device(cpu);
2109 dev->offline = true;
2110 /* Tell user space about the state change */
2111 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2114 static void cpuhp_online_cpu_device(unsigned int cpu)
2116 struct device *dev = get_cpu_device(cpu);
2118 dev->offline = false;
2119 /* Tell user space about the state change */
2120 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2123 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2127 cpu_maps_update_begin();
2128 for_each_online_cpu(cpu) {
2129 if (topology_is_primary_thread(cpu))
2131 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2135 * As this needs to hold the cpu maps lock it's impossible
2136 * to call device_offline() because that ends up calling
2137 * cpu_down() which takes cpu maps lock. cpu maps lock
2138 * needs to be held as this might race against in kernel
2139 * abusers of the hotplug machinery (thermal management).
2141 * So nothing would update device:offline state. That would
2142 * leave the sysfs entry stale and prevent onlining after
2143 * smt control has been changed to 'off' again. This is
2144 * called under the sysfs hotplug lock, so it is properly
2145 * serialized against the regular offline usage.
2147 cpuhp_offline_cpu_device(cpu);
2150 cpu_smt_control = ctrlval;
2151 cpu_maps_update_done();
2155 int cpuhp_smt_enable(void)
2159 cpu_maps_update_begin();
2160 cpu_smt_control = CPU_SMT_ENABLED;
2161 for_each_present_cpu(cpu) {
2162 /* Skip online CPUs and CPUs on offline nodes */
2163 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2165 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2168 /* See comment in cpuhp_smt_disable() */
2169 cpuhp_online_cpu_device(cpu);
2171 cpu_maps_update_done();
2176 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2177 static ssize_t show_cpuhp_state(struct device *dev,
2178 struct device_attribute *attr, char *buf)
2180 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2182 return sprintf(buf, "%d\n", st->state);
2184 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2186 static ssize_t write_cpuhp_target(struct device *dev,
2187 struct device_attribute *attr,
2188 const char *buf, size_t count)
2190 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2191 struct cpuhp_step *sp;
2194 ret = kstrtoint(buf, 10, &target);
2198 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2199 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2202 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2206 ret = lock_device_hotplug_sysfs();
2210 mutex_lock(&cpuhp_state_mutex);
2211 sp = cpuhp_get_step(target);
2212 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2213 mutex_unlock(&cpuhp_state_mutex);
2217 if (st->state < target)
2218 ret = cpu_up(dev->id, target);
2220 ret = cpu_down(dev->id, target);
2222 unlock_device_hotplug();
2223 return ret ? ret : count;
2226 static ssize_t show_cpuhp_target(struct device *dev,
2227 struct device_attribute *attr, char *buf)
2229 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2231 return sprintf(buf, "%d\n", st->target);
2233 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2236 static ssize_t write_cpuhp_fail(struct device *dev,
2237 struct device_attribute *attr,
2238 const char *buf, size_t count)
2240 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2241 struct cpuhp_step *sp;
2244 ret = kstrtoint(buf, 10, &fail);
2248 if (fail == CPUHP_INVALID) {
2253 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2257 * Cannot fail STARTING/DYING callbacks.
2259 if (cpuhp_is_atomic_state(fail))
2263 * DEAD callbacks cannot fail...
2264 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2265 * triggering STARTING callbacks, a failure in this state would
2268 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2272 * Cannot fail anything that doesn't have callbacks.
2274 mutex_lock(&cpuhp_state_mutex);
2275 sp = cpuhp_get_step(fail);
2276 if (!sp->startup.single && !sp->teardown.single)
2278 mutex_unlock(&cpuhp_state_mutex);
2287 static ssize_t show_cpuhp_fail(struct device *dev,
2288 struct device_attribute *attr, char *buf)
2290 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2292 return sprintf(buf, "%d\n", st->fail);
2295 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2297 static struct attribute *cpuhp_cpu_attrs[] = {
2298 &dev_attr_state.attr,
2299 &dev_attr_target.attr,
2300 &dev_attr_fail.attr,
2304 static const struct attribute_group cpuhp_cpu_attr_group = {
2305 .attrs = cpuhp_cpu_attrs,
2310 static ssize_t show_cpuhp_states(struct device *dev,
2311 struct device_attribute *attr, char *buf)
2313 ssize_t cur, res = 0;
2316 mutex_lock(&cpuhp_state_mutex);
2317 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2318 struct cpuhp_step *sp = cpuhp_get_step(i);
2321 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2326 mutex_unlock(&cpuhp_state_mutex);
2329 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2331 static struct attribute *cpuhp_cpu_root_attrs[] = {
2332 &dev_attr_states.attr,
2336 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2337 .attrs = cpuhp_cpu_root_attrs,
2342 #ifdef CONFIG_HOTPLUG_SMT
2345 __store_smt_control(struct device *dev, struct device_attribute *attr,
2346 const char *buf, size_t count)
2350 if (sysfs_streq(buf, "on"))
2351 ctrlval = CPU_SMT_ENABLED;
2352 else if (sysfs_streq(buf, "off"))
2353 ctrlval = CPU_SMT_DISABLED;
2354 else if (sysfs_streq(buf, "forceoff"))
2355 ctrlval = CPU_SMT_FORCE_DISABLED;
2359 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2362 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2365 ret = lock_device_hotplug_sysfs();
2369 if (ctrlval != cpu_smt_control) {
2371 case CPU_SMT_ENABLED:
2372 ret = cpuhp_smt_enable();
2374 case CPU_SMT_DISABLED:
2375 case CPU_SMT_FORCE_DISABLED:
2376 ret = cpuhp_smt_disable(ctrlval);
2381 unlock_device_hotplug();
2382 return ret ? ret : count;
2385 #else /* !CONFIG_HOTPLUG_SMT */
2387 __store_smt_control(struct device *dev, struct device_attribute *attr,
2388 const char *buf, size_t count)
2392 #endif /* CONFIG_HOTPLUG_SMT */
2394 static const char *smt_states[] = {
2395 [CPU_SMT_ENABLED] = "on",
2396 [CPU_SMT_DISABLED] = "off",
2397 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2398 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2399 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2403 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2405 const char *state = smt_states[cpu_smt_control];
2407 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2411 store_smt_control(struct device *dev, struct device_attribute *attr,
2412 const char *buf, size_t count)
2414 return __store_smt_control(dev, attr, buf, count);
2416 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2419 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2421 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2423 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2425 static struct attribute *cpuhp_smt_attrs[] = {
2426 &dev_attr_control.attr,
2427 &dev_attr_active.attr,
2431 static const struct attribute_group cpuhp_smt_attr_group = {
2432 .attrs = cpuhp_smt_attrs,
2437 static int __init cpu_smt_sysfs_init(void)
2439 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2440 &cpuhp_smt_attr_group);
2443 static int __init cpuhp_sysfs_init(void)
2447 ret = cpu_smt_sysfs_init();
2451 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2452 &cpuhp_cpu_root_attr_group);
2456 for_each_possible_cpu(cpu) {
2457 struct device *dev = get_cpu_device(cpu);
2461 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2467 device_initcall(cpuhp_sysfs_init);
2468 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2471 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2472 * represents all NR_CPUS bits binary values of 1<<nr.
2474 * It is used by cpumask_of() to get a constant address to a CPU
2475 * mask value that has a single bit set only.
2478 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2479 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2480 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2481 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2482 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2484 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2486 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2487 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2488 #if BITS_PER_LONG > 32
2489 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2490 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2493 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2495 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2496 EXPORT_SYMBOL(cpu_all_bits);
2498 #ifdef CONFIG_INIT_ALL_POSSIBLE
2499 struct cpumask __cpu_possible_mask __read_mostly
2502 struct cpumask __cpu_possible_mask __read_mostly;
2504 EXPORT_SYMBOL(__cpu_possible_mask);
2506 struct cpumask __cpu_online_mask __read_mostly;
2507 EXPORT_SYMBOL(__cpu_online_mask);
2509 struct cpumask __cpu_present_mask __read_mostly;
2510 EXPORT_SYMBOL(__cpu_present_mask);
2512 struct cpumask __cpu_active_mask __read_mostly;
2513 EXPORT_SYMBOL(__cpu_active_mask);
2515 atomic_t __num_online_cpus __read_mostly;
2516 EXPORT_SYMBOL(__num_online_cpus);
2518 void init_cpu_present(const struct cpumask *src)
2520 cpumask_copy(&__cpu_present_mask, src);
2523 void init_cpu_possible(const struct cpumask *src)
2525 cpumask_copy(&__cpu_possible_mask, src);
2528 void init_cpu_online(const struct cpumask *src)
2530 cpumask_copy(&__cpu_online_mask, src);
2533 void set_cpu_online(unsigned int cpu, bool online)
2536 * atomic_inc/dec() is required to handle the horrid abuse of this
2537 * function by the reboot and kexec code which invoke it from
2538 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2539 * regular CPU hotplug is properly serialized.
2541 * Note, that the fact that __num_online_cpus is of type atomic_t
2542 * does not protect readers which are not serialized against
2543 * concurrent hotplug operations.
2546 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2547 atomic_inc(&__num_online_cpus);
2549 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2550 atomic_dec(&__num_online_cpus);
2555 * Activate the first processor.
2557 void __init boot_cpu_init(void)
2559 int cpu = smp_processor_id();
2561 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2562 set_cpu_online(cpu, true);
2563 set_cpu_active(cpu, true);
2564 set_cpu_present(cpu, true);
2565 set_cpu_possible(cpu, true);
2568 __boot_cpu_id = cpu;
2573 * Must be called _AFTER_ setting up the per_cpu areas
2575 void __init boot_cpu_hotplug_init(void)
2578 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2580 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2584 * These are used for a global "mitigations=" cmdline option for toggling
2585 * optional CPU mitigations.
2587 enum cpu_mitigations {
2588 CPU_MITIGATIONS_OFF,
2589 CPU_MITIGATIONS_AUTO,
2590 CPU_MITIGATIONS_AUTO_NOSMT,
2593 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2594 CPU_MITIGATIONS_AUTO;
2596 static int __init mitigations_parse_cmdline(char *arg)
2598 if (!strcmp(arg, "off"))
2599 cpu_mitigations = CPU_MITIGATIONS_OFF;
2600 else if (!strcmp(arg, "auto"))
2601 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2602 else if (!strcmp(arg, "auto,nosmt"))
2603 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2605 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2610 early_param("mitigations", mitigations_parse_cmdline);
2612 /* mitigations=off */
2613 bool cpu_mitigations_off(void)
2615 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2617 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2619 /* mitigations=auto,nosmt */
2620 bool cpu_mitigations_auto_nosmt(void)
2622 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2624 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);