1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/file.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * ext4 fs regular file handling primitives
18 * 64-bit file support on 64-bit platforms by Jakub Jelinek
22 #include <linux/time.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
34 #include "ext4_jbd2.h"
39 static bool ext4_dio_supported(struct inode *inode)
41 if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode))
43 if (fsverity_active(inode))
45 if (ext4_should_journal_data(inode))
47 if (ext4_has_inline_data(inode))
52 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
55 struct inode *inode = file_inode(iocb->ki_filp);
57 if (iocb->ki_flags & IOCB_NOWAIT) {
58 if (!inode_trylock_shared(inode))
61 inode_lock_shared(inode);
64 if (!ext4_dio_supported(inode)) {
65 inode_unlock_shared(inode);
67 * Fallback to buffered I/O if the operation being performed on
68 * the inode is not supported by direct I/O. The IOCB_DIRECT
69 * flag needs to be cleared here in order to ensure that the
70 * direct I/O path within generic_file_read_iter() is not
73 iocb->ki_flags &= ~IOCB_DIRECT;
74 return generic_file_read_iter(iocb, to);
77 ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0);
78 inode_unlock_shared(inode);
80 file_accessed(iocb->ki_filp);
85 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
87 struct inode *inode = file_inode(iocb->ki_filp);
90 if (iocb->ki_flags & IOCB_NOWAIT) {
91 if (!inode_trylock_shared(inode))
94 inode_lock_shared(inode);
97 * Recheck under inode lock - at this point we are sure it cannot
100 if (!IS_DAX(inode)) {
101 inode_unlock_shared(inode);
102 /* Fallback to buffered IO in case we cannot support DAX */
103 return generic_file_read_iter(iocb, to);
105 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
106 inode_unlock_shared(inode);
108 file_accessed(iocb->ki_filp);
113 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
115 struct inode *inode = file_inode(iocb->ki_filp);
117 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
120 if (!iov_iter_count(to))
121 return 0; /* skip atime */
125 return ext4_dax_read_iter(iocb, to);
127 if (iocb->ki_flags & IOCB_DIRECT)
128 return ext4_dio_read_iter(iocb, to);
130 return generic_file_read_iter(iocb, to);
134 * Called when an inode is released. Note that this is different
135 * from ext4_file_open: open gets called at every open, but release
136 * gets called only when /all/ the files are closed.
138 static int ext4_release_file(struct inode *inode, struct file *filp)
140 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
141 ext4_alloc_da_blocks(inode);
142 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
144 /* if we are the last writer on the inode, drop the block reservation */
145 if ((filp->f_mode & FMODE_WRITE) &&
146 (atomic_read(&inode->i_writecount) == 1) &&
147 !EXT4_I(inode)->i_reserved_data_blocks) {
148 down_write(&EXT4_I(inode)->i_data_sem);
149 ext4_discard_preallocations(inode, 0);
150 up_write(&EXT4_I(inode)->i_data_sem);
152 if (is_dx(inode) && filp->private_data)
153 ext4_htree_free_dir_info(filp->private_data);
159 * This tests whether the IO in question is block-aligned or not.
160 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
161 * are converted to written only after the IO is complete. Until they are
162 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
163 * it needs to zero out portions of the start and/or end block. If 2 AIO
164 * threads are at work on the same unwritten block, they must be synchronized
165 * or one thread will zero the other's data, causing corruption.
168 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
170 struct super_block *sb = inode->i_sb;
171 unsigned long blockmask = sb->s_blocksize - 1;
173 if ((pos | iov_iter_alignment(from)) & blockmask)
180 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
182 if (offset + len > i_size_read(inode) ||
183 offset + len > EXT4_I(inode)->i_disksize)
188 /* Is IO overwriting allocated and initialized blocks? */
189 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
191 struct ext4_map_blocks map;
192 unsigned int blkbits = inode->i_blkbits;
195 if (pos + len > i_size_read(inode))
198 map.m_lblk = pos >> blkbits;
199 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
202 err = ext4_map_blocks(NULL, inode, &map, 0);
204 * 'err==len' means that all of the blocks have been preallocated,
205 * regardless of whether they have been initialized or not. To exclude
206 * unwritten extents, we need to check m_flags.
208 return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
211 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
212 struct iov_iter *from)
214 struct inode *inode = file_inode(iocb->ki_filp);
217 if (unlikely(IS_IMMUTABLE(inode)))
220 ret = generic_write_checks(iocb, from);
225 * If we have encountered a bitmap-format file, the size limit
226 * is smaller than s_maxbytes, which is for extent-mapped files.
228 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
229 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
231 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
233 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
236 return iov_iter_count(from);
239 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
243 count = ext4_generic_write_checks(iocb, from);
247 ret = file_modified(iocb->ki_filp);
253 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
254 struct iov_iter *from)
257 struct inode *inode = file_inode(iocb->ki_filp);
259 if (iocb->ki_flags & IOCB_NOWAIT)
262 ext4_fc_start_update(inode);
264 ret = ext4_write_checks(iocb, from);
268 current->backing_dev_info = inode_to_bdi(inode);
269 ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos);
270 current->backing_dev_info = NULL;
274 ext4_fc_stop_update(inode);
275 if (likely(ret > 0)) {
277 ret = generic_write_sync(iocb, ret);
283 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
284 ssize_t written, size_t count)
287 bool truncate = false;
288 u8 blkbits = inode->i_blkbits;
289 ext4_lblk_t written_blk, end_blk;
293 * Note that EXT4_I(inode)->i_disksize can get extended up to
294 * inode->i_size while the I/O was running due to writeback of delalloc
295 * blocks. But, the code in ext4_iomap_alloc() is careful to use
296 * zeroed/unwritten extents if this is possible; thus we won't leave
297 * uninitialized blocks in a file even if we didn't succeed in writing
298 * as much as we intended.
300 WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
301 if (offset + count <= EXT4_I(inode)->i_disksize) {
303 * We need to ensure that the inode is removed from the orphan
304 * list if it has been added prematurely, due to writeback of
307 if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
308 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
310 if (IS_ERR(handle)) {
311 ext4_orphan_del(NULL, inode);
312 return PTR_ERR(handle);
315 ext4_orphan_del(handle, inode);
316 ext4_journal_stop(handle);
325 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
326 if (IS_ERR(handle)) {
327 written = PTR_ERR(handle);
331 if (ext4_update_inode_size(inode, offset + written)) {
332 ret = ext4_mark_inode_dirty(handle, inode);
335 ext4_journal_stop(handle);
341 * We may need to truncate allocated but not written blocks beyond EOF.
343 written_blk = ALIGN(offset + written, 1 << blkbits);
344 end_blk = ALIGN(offset + count, 1 << blkbits);
345 if (written_blk < end_blk && ext4_can_truncate(inode))
349 * Remove the inode from the orphan list if it has been extended and
350 * everything went OK.
352 if (!truncate && inode->i_nlink)
353 ext4_orphan_del(handle, inode);
354 ext4_journal_stop(handle);
358 ext4_truncate_failed_write(inode);
360 * If the truncate operation failed early, then the inode may
361 * still be on the orphan list. In that case, we need to try
362 * remove the inode from the in-memory linked list.
365 ext4_orphan_del(NULL, inode);
371 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
372 int error, unsigned int flags)
374 loff_t offset = iocb->ki_pos;
375 struct inode *inode = file_inode(iocb->ki_filp);
380 if (size && flags & IOMAP_DIO_UNWRITTEN)
381 return ext4_convert_unwritten_extents(NULL, inode,
387 static const struct iomap_dio_ops ext4_dio_write_ops = {
388 .end_io = ext4_dio_write_end_io,
392 * The intention here is to start with shared lock acquired then see if any
393 * condition requires an exclusive inode lock. If yes, then we restart the
394 * whole operation by releasing the shared lock and acquiring exclusive lock.
396 * - For unaligned_io we never take shared lock as it may cause data corruption
397 * when two unaligned IO tries to modify the same block e.g. while zeroing.
399 * - For extending writes case we don't take the shared lock, since it requires
400 * updating inode i_disksize and/or orphan handling with exclusive lock.
402 * - shared locking will only be true mostly with overwrites. Otherwise we will
403 * switch to exclusive i_rwsem lock.
405 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
406 bool *ilock_shared, bool *extend)
408 struct file *file = iocb->ki_filp;
409 struct inode *inode = file_inode(file);
415 ret = ext4_generic_write_checks(iocb, from);
419 offset = iocb->ki_pos;
421 if (ext4_extending_io(inode, offset, count))
424 * Determine whether the IO operation will overwrite allocated
425 * and initialized blocks.
426 * We need exclusive i_rwsem for changing security info
427 * in file_modified().
429 if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
430 !ext4_overwrite_io(inode, offset, count))) {
431 if (iocb->ki_flags & IOCB_NOWAIT) {
435 inode_unlock_shared(inode);
436 *ilock_shared = false;
441 ret = file_modified(file);
448 inode_unlock_shared(inode);
454 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
458 struct inode *inode = file_inode(iocb->ki_filp);
459 loff_t offset = iocb->ki_pos;
460 size_t count = iov_iter_count(from);
461 const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
462 bool extend = false, unaligned_io = false;
463 bool ilock_shared = true;
466 * We initially start with shared inode lock unless it is
467 * unaligned IO which needs exclusive lock anyways.
469 if (ext4_unaligned_io(inode, from, offset)) {
471 ilock_shared = false;
474 * Quick check here without any i_rwsem lock to see if it is extending
475 * IO. A more reliable check is done in ext4_dio_write_checks() with
476 * proper locking in place.
478 if (offset + count > i_size_read(inode))
479 ilock_shared = false;
481 if (iocb->ki_flags & IOCB_NOWAIT) {
483 if (!inode_trylock_shared(inode))
486 if (!inode_trylock(inode))
491 inode_lock_shared(inode);
496 /* Fallback to buffered I/O if the inode does not support direct I/O. */
497 if (!ext4_dio_supported(inode)) {
499 inode_unlock_shared(inode);
502 return ext4_buffered_write_iter(iocb, from);
505 ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
509 /* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
510 if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
515 offset = iocb->ki_pos;
519 * Unaligned direct IO must be serialized among each other as zeroing
520 * of partial blocks of two competing unaligned IOs can result in data
523 * So we make sure we don't allow any unaligned IO in flight.
524 * For IOs where we need not wait (like unaligned non-AIO DIO),
525 * below inode_dio_wait() may anyway become a no-op, since we start
526 * with exclusive lock.
529 inode_dio_wait(inode);
532 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
533 if (IS_ERR(handle)) {
534 ret = PTR_ERR(handle);
538 ext4_fc_start_update(inode);
539 ret = ext4_orphan_add(handle, inode);
540 ext4_fc_stop_update(inode);
542 ext4_journal_stop(handle);
546 ext4_journal_stop(handle);
550 iomap_ops = &ext4_iomap_overwrite_ops;
551 ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
552 (unaligned_io || extend) ? IOMAP_DIO_FORCE_WAIT : 0);
557 ret = ext4_handle_inode_extension(inode, offset, ret, count);
561 inode_unlock_shared(inode);
565 if (ret >= 0 && iov_iter_count(from)) {
569 offset = iocb->ki_pos;
570 err = ext4_buffered_write_iter(iocb, from);
575 * We need to ensure that the pages within the page cache for
576 * the range covered by this I/O are written to disk and
577 * invalidated. This is in attempt to preserve the expected
578 * direct I/O semantics in the case we fallback to buffered I/O
579 * to complete off the I/O request.
582 endbyte = offset + err - 1;
583 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
586 invalidate_mapping_pages(iocb->ki_filp->f_mapping,
587 offset >> PAGE_SHIFT,
588 endbyte >> PAGE_SHIFT);
596 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
603 struct inode *inode = file_inode(iocb->ki_filp);
605 if (iocb->ki_flags & IOCB_NOWAIT) {
606 if (!inode_trylock(inode))
612 ret = ext4_write_checks(iocb, from);
616 offset = iocb->ki_pos;
617 count = iov_iter_count(from);
619 if (offset + count > EXT4_I(inode)->i_disksize) {
620 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
621 if (IS_ERR(handle)) {
622 ret = PTR_ERR(handle);
626 ret = ext4_orphan_add(handle, inode);
628 ext4_journal_stop(handle);
633 ext4_journal_stop(handle);
636 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
639 ret = ext4_handle_inode_extension(inode, offset, ret, count);
643 ret = generic_write_sync(iocb, ret);
649 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
651 struct inode *inode = file_inode(iocb->ki_filp);
653 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
658 return ext4_dax_write_iter(iocb, from);
660 if (iocb->ki_flags & IOCB_DIRECT)
661 return ext4_dio_write_iter(iocb, from);
663 return ext4_buffered_write_iter(iocb, from);
667 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
668 enum page_entry_size pe_size)
673 handle_t *handle = NULL;
674 struct inode *inode = file_inode(vmf->vma->vm_file);
675 struct super_block *sb = inode->i_sb;
678 * We have to distinguish real writes from writes which will result in a
679 * COW page; COW writes should *not* poke the journal (the file will not
680 * be changed). Doing so would cause unintended failures when mounted
683 * We check for VM_SHARED rather than vmf->cow_page since the latter is
684 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
685 * other sizes, dax_iomap_fault will handle splitting / fallback so that
686 * we eventually come back with a COW page.
688 bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
689 (vmf->vma->vm_flags & VM_SHARED);
693 sb_start_pagefault(sb);
694 file_update_time(vmf->vma->vm_file);
695 down_read(&EXT4_I(inode)->i_mmap_sem);
697 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
698 EXT4_DATA_TRANS_BLOCKS(sb));
699 if (IS_ERR(handle)) {
700 up_read(&EXT4_I(inode)->i_mmap_sem);
701 sb_end_pagefault(sb);
702 return VM_FAULT_SIGBUS;
705 down_read(&EXT4_I(inode)->i_mmap_sem);
707 result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
709 ext4_journal_stop(handle);
711 if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
712 ext4_should_retry_alloc(sb, &retries))
714 /* Handling synchronous page fault? */
715 if (result & VM_FAULT_NEEDDSYNC)
716 result = dax_finish_sync_fault(vmf, pe_size, pfn);
717 up_read(&EXT4_I(inode)->i_mmap_sem);
718 sb_end_pagefault(sb);
720 up_read(&EXT4_I(inode)->i_mmap_sem);
726 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
728 return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
731 static const struct vm_operations_struct ext4_dax_vm_ops = {
732 .fault = ext4_dax_fault,
733 .huge_fault = ext4_dax_huge_fault,
734 .page_mkwrite = ext4_dax_fault,
735 .pfn_mkwrite = ext4_dax_fault,
738 #define ext4_dax_vm_ops ext4_file_vm_ops
741 static const struct vm_operations_struct ext4_file_vm_ops = {
742 .fault = ext4_filemap_fault,
743 .map_pages = filemap_map_pages,
744 .page_mkwrite = ext4_page_mkwrite,
747 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
749 struct inode *inode = file->f_mapping->host;
750 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
751 struct dax_device *dax_dev = sbi->s_daxdev;
753 if (unlikely(ext4_forced_shutdown(sbi)))
757 * We don't support synchronous mappings for non-DAX files and
758 * for DAX files if underneath dax_device is not synchronous.
760 if (!daxdev_mapping_supported(vma, dax_dev))
764 if (IS_DAX(file_inode(file))) {
765 vma->vm_ops = &ext4_dax_vm_ops;
766 vma->vm_flags |= VM_HUGEPAGE;
768 vma->vm_ops = &ext4_file_vm_ops;
773 static int ext4_sample_last_mounted(struct super_block *sb,
774 struct vfsmount *mnt)
776 struct ext4_sb_info *sbi = EXT4_SB(sb);
782 if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
785 if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
788 ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
790 * Sample where the filesystem has been mounted and
791 * store it in the superblock for sysadmin convenience
792 * when trying to sort through large numbers of block
793 * devices or filesystem images.
795 memset(buf, 0, sizeof(buf));
797 path.dentry = mnt->mnt_root;
798 cp = d_path(&path, buf, sizeof(buf));
803 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
804 err = PTR_ERR(handle);
807 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
808 err = ext4_journal_get_write_access(handle, sbi->s_sbh);
811 lock_buffer(sbi->s_sbh);
812 strncpy(sbi->s_es->s_last_mounted, cp,
813 sizeof(sbi->s_es->s_last_mounted));
814 ext4_superblock_csum_set(sb);
815 unlock_buffer(sbi->s_sbh);
816 ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
818 ext4_journal_stop(handle);
824 static int ext4_file_open(struct inode *inode, struct file *filp)
828 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
831 ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
835 ret = fscrypt_file_open(inode, filp);
839 ret = fsverity_file_open(inode, filp);
844 * Set up the jbd2_inode if we are opening the inode for
845 * writing and the journal is present
847 if (filp->f_mode & FMODE_WRITE) {
848 ret = ext4_inode_attach_jinode(inode);
853 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
854 return dquot_file_open(inode, filp);
858 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
859 * by calling generic_file_llseek_size() with the appropriate maxbytes
862 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
864 struct inode *inode = file->f_mapping->host;
867 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
868 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
870 maxbytes = inode->i_sb->s_maxbytes;
874 return generic_file_llseek_size(file, offset, whence,
875 maxbytes, i_size_read(inode));
877 inode_lock_shared(inode);
878 offset = iomap_seek_hole(inode, offset,
879 &ext4_iomap_report_ops);
880 inode_unlock_shared(inode);
883 inode_lock_shared(inode);
884 offset = iomap_seek_data(inode, offset,
885 &ext4_iomap_report_ops);
886 inode_unlock_shared(inode);
892 return vfs_setpos(file, offset, maxbytes);
895 const struct file_operations ext4_file_operations = {
896 .llseek = ext4_llseek,
897 .read_iter = ext4_file_read_iter,
898 .write_iter = ext4_file_write_iter,
899 .iopoll = iomap_dio_iopoll,
900 .unlocked_ioctl = ext4_ioctl,
902 .compat_ioctl = ext4_compat_ioctl,
904 .mmap = ext4_file_mmap,
905 .mmap_supported_flags = MAP_SYNC,
906 .open = ext4_file_open,
907 .release = ext4_release_file,
908 .fsync = ext4_sync_file,
909 .get_unmapped_area = thp_get_unmapped_area,
910 .splice_read = generic_file_splice_read,
911 .splice_write = iter_file_splice_write,
912 .fallocate = ext4_fallocate,
915 const struct inode_operations ext4_file_inode_operations = {
916 .setattr = ext4_setattr,
917 .getattr = ext4_file_getattr,
918 .listxattr = ext4_listxattr,
919 .get_acl = ext4_get_acl,
920 .set_acl = ext4_set_acl,
921 .fiemap = ext4_fiemap,