1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 #include <linux/sysctl.h>
30 #include <linux/uaccess.h>
31 #include <asm/ioctls.h>
36 * New pipe buffers will be restricted to this size while the user is exceeding
37 * their pipe buffer quota. The general pipe use case needs at least two
38 * buffers: one for data yet to be read, and one for new data. If this is less
39 * than two, then a write to a non-empty pipe may block even if the pipe is not
40 * full. This can occur with GNU make jobserver or similar uses of pipes as
41 * semaphores: multiple processes may be waiting to write tokens back to the
42 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
44 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45 * own risk, namely: pipe writes to non-full pipes may block until the pipe is
48 #define PIPE_MIN_DEF_BUFFERS 2
51 * The max size that a non-root user is allowed to grow the pipe. Can
52 * be set by root in /proc/sys/fs/pipe-max-size
54 static unsigned int pipe_max_size = 1048576;
56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
57 * matches default values.
59 static unsigned long pipe_user_pages_hard;
60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
63 * We use head and tail indices that aren't masked off, except at the point of
64 * dereference, but rather they're allowed to wrap naturally. This means there
65 * isn't a dead spot in the buffer, but the ring has to be a power of two and
67 * -- David Howells 2019-09-23.
69 * Reads with count = 0 should always return 0.
70 * -- Julian Bradfield 1999-06-07.
72 * FIFOs and Pipes now generate SIGIO for both readers and writers.
75 * pipe_read & write cleanup
79 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
82 mutex_lock_nested(&pipe->mutex, subclass);
85 void pipe_lock(struct pipe_inode_info *pipe)
88 * pipe_lock() nests non-pipe inode locks (for writing to a file)
90 pipe_lock_nested(pipe, I_MUTEX_PARENT);
92 EXPORT_SYMBOL(pipe_lock);
94 void pipe_unlock(struct pipe_inode_info *pipe)
97 mutex_unlock(&pipe->mutex);
99 EXPORT_SYMBOL(pipe_unlock);
101 static inline void __pipe_lock(struct pipe_inode_info *pipe)
103 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
106 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
108 mutex_unlock(&pipe->mutex);
111 void pipe_double_lock(struct pipe_inode_info *pipe1,
112 struct pipe_inode_info *pipe2)
114 BUG_ON(pipe1 == pipe2);
117 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
118 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
120 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
121 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
125 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
126 struct pipe_buffer *buf)
128 struct page *page = buf->page;
131 * If nobody else uses this page, and we don't already have a
132 * temporary page, let's keep track of it as a one-deep
133 * allocation cache. (Otherwise just release our reference to it)
135 if (page_count(page) == 1 && !pipe->tmp_page)
136 pipe->tmp_page = page;
141 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
142 struct pipe_buffer *buf)
144 struct page *page = buf->page;
146 if (page_count(page) != 1)
148 memcg_kmem_uncharge_page(page, 0);
149 __SetPageLocked(page);
154 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
155 * @pipe: the pipe that the buffer belongs to
156 * @buf: the buffer to attempt to steal
159 * This function attempts to steal the &struct page attached to
160 * @buf. If successful, this function returns 0 and returns with
161 * the page locked. The caller may then reuse the page for whatever
162 * he wishes; the typical use is insertion into a different file
165 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166 struct pipe_buffer *buf)
168 struct page *page = buf->page;
171 * A reference of one is golden, that means that the owner of this
172 * page is the only one holding a reference to it. lock the page
175 if (page_count(page) == 1) {
181 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
184 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
185 * @pipe: the pipe that the buffer belongs to
186 * @buf: the buffer to get a reference to
189 * This function grabs an extra reference to @buf. It's used in
190 * the tee() system call, when we duplicate the buffers in one
193 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
195 return try_get_page(buf->page);
197 EXPORT_SYMBOL(generic_pipe_buf_get);
200 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
201 * @pipe: the pipe that the buffer belongs to
202 * @buf: the buffer to put a reference to
205 * This function releases a reference to @buf.
207 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
208 struct pipe_buffer *buf)
212 EXPORT_SYMBOL(generic_pipe_buf_release);
214 static const struct pipe_buf_operations anon_pipe_buf_ops = {
215 .release = anon_pipe_buf_release,
216 .try_steal = anon_pipe_buf_try_steal,
217 .get = generic_pipe_buf_get,
220 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
221 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
223 unsigned int head = READ_ONCE(pipe->head);
224 unsigned int tail = READ_ONCE(pipe->tail);
225 unsigned int writers = READ_ONCE(pipe->writers);
227 return !pipe_empty(head, tail) || !writers;
230 static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe,
231 struct pipe_buffer *buf,
234 pipe_buf_release(pipe, buf);
237 * If the pipe has a watch_queue, we need additional protection
238 * by the spinlock because notifications get posted with only
239 * this spinlock, no mutex
241 if (pipe_has_watch_queue(pipe)) {
242 spin_lock_irq(&pipe->rd_wait.lock);
243 #ifdef CONFIG_WATCH_QUEUE
244 if (buf->flags & PIPE_BUF_FLAG_LOSS)
245 pipe->note_loss = true;
248 spin_unlock_irq(&pipe->rd_wait.lock);
253 * Without a watch_queue, we can simply increment the tail
254 * without the spinlock - the mutex is enough.
261 pipe_read(struct kiocb *iocb, struct iov_iter *to)
263 size_t total_len = iov_iter_count(to);
264 struct file *filp = iocb->ki_filp;
265 struct pipe_inode_info *pipe = filp->private_data;
266 bool was_full, wake_next_reader = false;
269 /* Null read succeeds. */
270 if (unlikely(total_len == 0))
277 * We only wake up writers if the pipe was full when we started
278 * reading in order to avoid unnecessary wakeups.
280 * But when we do wake up writers, we do so using a sync wakeup
281 * (WF_SYNC), because we want them to get going and generate more
284 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
286 /* Read ->head with a barrier vs post_one_notification() */
287 unsigned int head = smp_load_acquire(&pipe->head);
288 unsigned int tail = pipe->tail;
289 unsigned int mask = pipe->ring_size - 1;
291 #ifdef CONFIG_WATCH_QUEUE
292 if (pipe->note_loss) {
293 struct watch_notification n;
301 n.type = WATCH_TYPE_META;
302 n.subtype = WATCH_META_LOSS_NOTIFICATION;
303 n.info = watch_sizeof(n);
304 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
310 total_len -= sizeof(n);
311 pipe->note_loss = false;
315 if (!pipe_empty(head, tail)) {
316 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
317 size_t chars = buf->len;
321 if (chars > total_len) {
322 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
330 error = pipe_buf_confirm(pipe, buf);
337 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
338 if (unlikely(written < chars)) {
344 buf->offset += chars;
347 /* Was it a packet buffer? Clean up and exit */
348 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
354 tail = pipe_update_tail(pipe, buf, tail);
357 break; /* common path: read succeeded */
358 if (!pipe_empty(head, tail)) /* More to do? */
366 if ((filp->f_flags & O_NONBLOCK) ||
367 (iocb->ki_flags & IOCB_NOWAIT)) {
374 * We only get here if we didn't actually read anything.
376 * However, we could have seen (and removed) a zero-sized
377 * pipe buffer, and might have made space in the buffers
380 * You can't make zero-sized pipe buffers by doing an empty
381 * write (not even in packet mode), but they can happen if
382 * the writer gets an EFAULT when trying to fill a buffer
383 * that already got allocated and inserted in the buffer
386 * So we still need to wake up any pending writers in the
387 * _very_ unlikely case that the pipe was full, but we got
390 if (unlikely(was_full))
391 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
392 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
395 * But because we didn't read anything, at this point we can
396 * just return directly with -ERESTARTSYS if we're interrupted,
397 * since we've done any required wakeups and there's no need
398 * to mark anything accessed. And we've dropped the lock.
400 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
404 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
405 wake_next_reader = true;
407 if (pipe_empty(pipe->head, pipe->tail))
408 wake_next_reader = false;
412 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
413 if (wake_next_reader)
414 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
415 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
421 static inline int is_packetized(struct file *file)
423 return (file->f_flags & O_DIRECT) != 0;
426 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
427 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
429 unsigned int head = READ_ONCE(pipe->head);
430 unsigned int tail = READ_ONCE(pipe->tail);
431 unsigned int max_usage = READ_ONCE(pipe->max_usage);
433 return !pipe_full(head, tail, max_usage) ||
434 !READ_ONCE(pipe->readers);
438 pipe_write(struct kiocb *iocb, struct iov_iter *from)
440 struct file *filp = iocb->ki_filp;
441 struct pipe_inode_info *pipe = filp->private_data;
444 size_t total_len = iov_iter_count(from);
446 bool was_empty = false;
447 bool wake_next_writer = false;
450 * Reject writing to watch queue pipes before the point where we lock
452 * Otherwise, lockdep would be unhappy if the caller already has another
454 * If we had to support locking a normal pipe and a notification pipe at
455 * the same time, we could set up lockdep annotations for that, but
456 * since we don't actually need that, it's simpler to just bail here.
458 if (pipe_has_watch_queue(pipe))
461 /* Null write succeeds. */
462 if (unlikely(total_len == 0))
467 if (!pipe->readers) {
468 send_sig(SIGPIPE, current, 0);
474 * If it wasn't empty we try to merge new data into
477 * That naturally merges small writes, but it also
478 * page-aligns the rest of the writes for large writes
479 * spanning multiple pages.
482 was_empty = pipe_empty(head, pipe->tail);
483 chars = total_len & (PAGE_SIZE-1);
484 if (chars && !was_empty) {
485 unsigned int mask = pipe->ring_size - 1;
486 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
487 int offset = buf->offset + buf->len;
489 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
490 offset + chars <= PAGE_SIZE) {
491 ret = pipe_buf_confirm(pipe, buf);
495 ret = copy_page_from_iter(buf->page, offset, chars, from);
496 if (unlikely(ret < chars)) {
502 if (!iov_iter_count(from))
508 if (!pipe->readers) {
509 send_sig(SIGPIPE, current, 0);
516 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
517 unsigned int mask = pipe->ring_size - 1;
518 struct pipe_buffer *buf;
519 struct page *page = pipe->tmp_page;
523 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
524 if (unlikely(!page)) {
525 ret = ret ? : -ENOMEM;
528 pipe->tmp_page = page;
531 /* Allocate a slot in the ring in advance and attach an
532 * empty buffer. If we fault or otherwise fail to use
533 * it, either the reader will consume it or it'll still
534 * be there for the next write.
536 pipe->head = head + 1;
538 /* Insert it into the buffer array */
539 buf = &pipe->bufs[head & mask];
541 buf->ops = &anon_pipe_buf_ops;
544 if (is_packetized(filp))
545 buf->flags = PIPE_BUF_FLAG_PACKET;
547 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
548 pipe->tmp_page = NULL;
550 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
551 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
559 if (!iov_iter_count(from))
563 if (!pipe_full(head, pipe->tail, pipe->max_usage))
566 /* Wait for buffer space to become available. */
567 if ((filp->f_flags & O_NONBLOCK) ||
568 (iocb->ki_flags & IOCB_NOWAIT)) {
573 if (signal_pending(current)) {
580 * We're going to release the pipe lock and wait for more
581 * space. We wake up any readers if necessary, and then
582 * after waiting we need to re-check whether the pipe
583 * become empty while we dropped the lock.
587 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
588 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
589 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
591 was_empty = pipe_empty(pipe->head, pipe->tail);
592 wake_next_writer = true;
595 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
596 wake_next_writer = false;
600 * If we do do a wakeup event, we do a 'sync' wakeup, because we
601 * want the reader to start processing things asap, rather than
602 * leave the data pending.
604 * This is particularly important for small writes, because of
605 * how (for example) the GNU make jobserver uses small writes to
606 * wake up pending jobs
608 * Epoll nonsensically wants a wakeup whether the pipe
609 * was already empty or not.
611 if (was_empty || pipe->poll_usage)
612 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
613 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
614 if (wake_next_writer)
615 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
616 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
617 int err = file_update_time(filp);
620 sb_end_write(file_inode(filp)->i_sb);
625 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
627 struct pipe_inode_info *pipe = filp->private_data;
628 unsigned int count, head, tail, mask;
636 mask = pipe->ring_size - 1;
638 while (tail != head) {
639 count += pipe->bufs[tail & mask].len;
644 return put_user(count, (int __user *)arg);
646 #ifdef CONFIG_WATCH_QUEUE
647 case IOC_WATCH_QUEUE_SET_SIZE: {
650 ret = watch_queue_set_size(pipe, arg);
655 case IOC_WATCH_QUEUE_SET_FILTER:
656 return watch_queue_set_filter(
657 pipe, (struct watch_notification_filter __user *)arg);
665 /* No kernel lock held - fine */
667 pipe_poll(struct file *filp, poll_table *wait)
670 struct pipe_inode_info *pipe = filp->private_data;
671 unsigned int head, tail;
673 /* Epoll has some historical nasty semantics, this enables them */
674 WRITE_ONCE(pipe->poll_usage, true);
677 * Reading pipe state only -- no need for acquiring the semaphore.
679 * But because this is racy, the code has to add the
680 * entry to the poll table _first_ ..
682 if (filp->f_mode & FMODE_READ)
683 poll_wait(filp, &pipe->rd_wait, wait);
684 if (filp->f_mode & FMODE_WRITE)
685 poll_wait(filp, &pipe->wr_wait, wait);
688 * .. and only then can you do the racy tests. That way,
689 * if something changes and you got it wrong, the poll
690 * table entry will wake you up and fix it.
692 head = READ_ONCE(pipe->head);
693 tail = READ_ONCE(pipe->tail);
696 if (filp->f_mode & FMODE_READ) {
697 if (!pipe_empty(head, tail))
698 mask |= EPOLLIN | EPOLLRDNORM;
699 if (!pipe->writers && filp->f_version != pipe->w_counter)
703 if (filp->f_mode & FMODE_WRITE) {
704 if (!pipe_full(head, tail, pipe->max_usage))
705 mask |= EPOLLOUT | EPOLLWRNORM;
707 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
708 * behave exactly like pipes for poll().
717 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
721 spin_lock(&inode->i_lock);
722 if (!--pipe->files) {
723 inode->i_pipe = NULL;
726 spin_unlock(&inode->i_lock);
729 free_pipe_info(pipe);
733 pipe_release(struct inode *inode, struct file *file)
735 struct pipe_inode_info *pipe = file->private_data;
738 if (file->f_mode & FMODE_READ)
740 if (file->f_mode & FMODE_WRITE)
743 /* Was that the last reader or writer, but not the other side? */
744 if (!pipe->readers != !pipe->writers) {
745 wake_up_interruptible_all(&pipe->rd_wait);
746 wake_up_interruptible_all(&pipe->wr_wait);
747 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
748 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
752 put_pipe_info(inode, pipe);
757 pipe_fasync(int fd, struct file *filp, int on)
759 struct pipe_inode_info *pipe = filp->private_data;
763 if (filp->f_mode & FMODE_READ)
764 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
765 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
766 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
767 if (retval < 0 && (filp->f_mode & FMODE_READ))
768 /* this can happen only if on == T */
769 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
775 unsigned long account_pipe_buffers(struct user_struct *user,
776 unsigned long old, unsigned long new)
778 return atomic_long_add_return(new - old, &user->pipe_bufs);
781 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
783 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
785 return soft_limit && user_bufs > soft_limit;
788 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
790 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
792 return hard_limit && user_bufs > hard_limit;
795 bool pipe_is_unprivileged_user(void)
797 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
800 struct pipe_inode_info *alloc_pipe_info(void)
802 struct pipe_inode_info *pipe;
803 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
804 struct user_struct *user = get_current_user();
805 unsigned long user_bufs;
806 unsigned int max_size = READ_ONCE(pipe_max_size);
808 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
812 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
813 pipe_bufs = max_size >> PAGE_SHIFT;
815 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
817 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
818 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
819 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
822 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
823 goto out_revert_acct;
825 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
829 init_waitqueue_head(&pipe->rd_wait);
830 init_waitqueue_head(&pipe->wr_wait);
831 pipe->r_counter = pipe->w_counter = 1;
832 pipe->max_usage = pipe_bufs;
833 pipe->ring_size = pipe_bufs;
834 pipe->nr_accounted = pipe_bufs;
836 mutex_init(&pipe->mutex);
841 (void) account_pipe_buffers(user, pipe_bufs, 0);
848 void free_pipe_info(struct pipe_inode_info *pipe)
852 #ifdef CONFIG_WATCH_QUEUE
853 if (pipe->watch_queue)
854 watch_queue_clear(pipe->watch_queue);
857 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
858 free_uid(pipe->user);
859 for (i = 0; i < pipe->ring_size; i++) {
860 struct pipe_buffer *buf = pipe->bufs + i;
862 pipe_buf_release(pipe, buf);
864 #ifdef CONFIG_WATCH_QUEUE
865 if (pipe->watch_queue)
866 put_watch_queue(pipe->watch_queue);
869 __free_page(pipe->tmp_page);
874 static struct vfsmount *pipe_mnt __ro_after_init;
877 * pipefs_dname() is called from d_path().
879 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
881 return dynamic_dname(buffer, buflen, "pipe:[%lu]",
882 d_inode(dentry)->i_ino);
885 static const struct dentry_operations pipefs_dentry_operations = {
886 .d_dname = pipefs_dname,
889 static struct inode * get_pipe_inode(void)
891 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
892 struct pipe_inode_info *pipe;
897 inode->i_ino = get_next_ino();
899 pipe = alloc_pipe_info();
903 inode->i_pipe = pipe;
905 pipe->readers = pipe->writers = 1;
906 inode->i_fop = &pipefifo_fops;
909 * Mark the inode dirty from the very beginning,
910 * that way it will never be moved to the dirty
911 * list because "mark_inode_dirty()" will think
912 * that it already _is_ on the dirty list.
914 inode->i_state = I_DIRTY;
915 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
916 inode->i_uid = current_fsuid();
917 inode->i_gid = current_fsgid();
918 simple_inode_init_ts(inode);
929 int create_pipe_files(struct file **res, int flags)
931 struct inode *inode = get_pipe_inode();
938 if (flags & O_NOTIFICATION_PIPE) {
939 error = watch_queue_init(inode->i_pipe);
941 free_pipe_info(inode->i_pipe);
947 f = alloc_file_pseudo(inode, pipe_mnt, "",
948 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
951 free_pipe_info(inode->i_pipe);
956 f->private_data = inode->i_pipe;
958 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
960 if (IS_ERR(res[0])) {
961 put_pipe_info(inode, inode->i_pipe);
963 return PTR_ERR(res[0]);
965 res[0]->private_data = inode->i_pipe;
967 stream_open(inode, res[0]);
968 stream_open(inode, res[1]);
972 static int __do_pipe_flags(int *fd, struct file **files, int flags)
977 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
980 error = create_pipe_files(files, flags);
984 error = get_unused_fd_flags(flags);
989 error = get_unused_fd_flags(flags);
994 audit_fd_pair(fdr, fdw);
997 /* pipe groks IOCB_NOWAIT */
998 files[0]->f_mode |= FMODE_NOWAIT;
999 files[1]->f_mode |= FMODE_NOWAIT;
1010 int do_pipe_flags(int *fd, int flags)
1012 struct file *files[2];
1013 int error = __do_pipe_flags(fd, files, flags);
1015 fd_install(fd[0], files[0]);
1016 fd_install(fd[1], files[1]);
1022 * sys_pipe() is the normal C calling standard for creating
1023 * a pipe. It's not the way Unix traditionally does this, though.
1025 static int do_pipe2(int __user *fildes, int flags)
1027 struct file *files[2];
1031 error = __do_pipe_flags(fd, files, flags);
1033 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1036 put_unused_fd(fd[0]);
1037 put_unused_fd(fd[1]);
1040 fd_install(fd[0], files[0]);
1041 fd_install(fd[1], files[1]);
1047 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1049 return do_pipe2(fildes, flags);
1052 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1054 return do_pipe2(fildes, 0);
1058 * This is the stupid "wait for pipe to be readable or writable"
1061 * See pipe_read/write() for the proper kind of exclusive wait,
1062 * but that requires that we wake up any other readers/writers
1063 * if we then do not end up reading everything (ie the whole
1064 * "wake_next_reader/writer" logic in pipe_read/write()).
1066 void pipe_wait_readable(struct pipe_inode_info *pipe)
1069 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1073 void pipe_wait_writable(struct pipe_inode_info *pipe)
1076 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1081 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1082 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1083 * race with the count check and waitqueue prep.
1085 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1086 * then check the condition you're waiting for, and only then sleep. But
1087 * because of the pipe lock, we can check the condition before being on
1090 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1092 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1094 DEFINE_WAIT(rdwait);
1097 while (cur == *cnt) {
1098 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1101 finish_wait(&pipe->rd_wait, &rdwait);
1103 if (signal_pending(current))
1106 return cur == *cnt ? -ERESTARTSYS : 0;
1109 static void wake_up_partner(struct pipe_inode_info *pipe)
1111 wake_up_interruptible_all(&pipe->rd_wait);
1114 static int fifo_open(struct inode *inode, struct file *filp)
1116 struct pipe_inode_info *pipe;
1117 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1120 filp->f_version = 0;
1122 spin_lock(&inode->i_lock);
1123 if (inode->i_pipe) {
1124 pipe = inode->i_pipe;
1126 spin_unlock(&inode->i_lock);
1128 spin_unlock(&inode->i_lock);
1129 pipe = alloc_pipe_info();
1133 spin_lock(&inode->i_lock);
1134 if (unlikely(inode->i_pipe)) {
1135 inode->i_pipe->files++;
1136 spin_unlock(&inode->i_lock);
1137 free_pipe_info(pipe);
1138 pipe = inode->i_pipe;
1140 inode->i_pipe = pipe;
1141 spin_unlock(&inode->i_lock);
1144 filp->private_data = pipe;
1145 /* OK, we have a pipe and it's pinned down */
1149 /* We can only do regular read/write on fifos */
1150 stream_open(inode, filp);
1152 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1156 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1157 * opened, even when there is no process writing the FIFO.
1160 if (pipe->readers++ == 0)
1161 wake_up_partner(pipe);
1163 if (!is_pipe && !pipe->writers) {
1164 if ((filp->f_flags & O_NONBLOCK)) {
1165 /* suppress EPOLLHUP until we have
1167 filp->f_version = pipe->w_counter;
1169 if (wait_for_partner(pipe, &pipe->w_counter))
1178 * POSIX.1 says that O_NONBLOCK means return -1 with
1179 * errno=ENXIO when there is no process reading the FIFO.
1182 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1186 if (!pipe->writers++)
1187 wake_up_partner(pipe);
1189 if (!is_pipe && !pipe->readers) {
1190 if (wait_for_partner(pipe, &pipe->r_counter))
1195 case FMODE_READ | FMODE_WRITE:
1198 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1199 * This implementation will NEVER block on a O_RDWR open, since
1200 * the process can at least talk to itself.
1207 if (pipe->readers == 1 || pipe->writers == 1)
1208 wake_up_partner(pipe);
1217 __pipe_unlock(pipe);
1221 if (!--pipe->readers)
1222 wake_up_interruptible(&pipe->wr_wait);
1227 if (!--pipe->writers)
1228 wake_up_interruptible_all(&pipe->rd_wait);
1233 __pipe_unlock(pipe);
1235 put_pipe_info(inode, pipe);
1239 const struct file_operations pipefifo_fops = {
1241 .llseek = no_llseek,
1242 .read_iter = pipe_read,
1243 .write_iter = pipe_write,
1245 .unlocked_ioctl = pipe_ioctl,
1246 .release = pipe_release,
1247 .fasync = pipe_fasync,
1248 .splice_write = iter_file_splice_write,
1252 * Currently we rely on the pipe array holding a power-of-2 number
1253 * of pages. Returns 0 on error.
1255 unsigned int round_pipe_size(unsigned int size)
1257 if (size > (1U << 31))
1260 /* Minimum pipe size, as required by POSIX */
1261 if (size < PAGE_SIZE)
1264 return roundup_pow_of_two(size);
1268 * Resize the pipe ring to a number of slots.
1270 * Note the pipe can be reduced in capacity, but only if the current
1271 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1274 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1276 struct pipe_buffer *bufs;
1277 unsigned int head, tail, mask, n;
1279 bufs = kcalloc(nr_slots, sizeof(*bufs),
1280 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1281 if (unlikely(!bufs))
1284 spin_lock_irq(&pipe->rd_wait.lock);
1285 mask = pipe->ring_size - 1;
1289 n = pipe_occupancy(head, tail);
1291 spin_unlock_irq(&pipe->rd_wait.lock);
1297 * The pipe array wraps around, so just start the new one at zero
1298 * and adjust the indices.
1301 unsigned int h = head & mask;
1302 unsigned int t = tail & mask;
1304 memcpy(bufs, pipe->bufs + t,
1305 n * sizeof(struct pipe_buffer));
1307 unsigned int tsize = pipe->ring_size - t;
1309 memcpy(bufs + tsize, pipe->bufs,
1310 h * sizeof(struct pipe_buffer));
1311 memcpy(bufs, pipe->bufs + t,
1312 tsize * sizeof(struct pipe_buffer));
1321 pipe->ring_size = nr_slots;
1322 if (pipe->max_usage > nr_slots)
1323 pipe->max_usage = nr_slots;
1327 if (!pipe_has_watch_queue(pipe)) {
1328 pipe->max_usage = nr_slots;
1329 pipe->nr_accounted = nr_slots;
1332 spin_unlock_irq(&pipe->rd_wait.lock);
1334 /* This might have made more room for writers */
1335 wake_up_interruptible(&pipe->wr_wait);
1340 * Allocate a new array of pipe buffers and copy the info over. Returns the
1341 * pipe size if successful, or return -ERROR on error.
1343 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg)
1345 unsigned long user_bufs;
1346 unsigned int nr_slots, size;
1349 if (pipe_has_watch_queue(pipe))
1352 size = round_pipe_size(arg);
1353 nr_slots = size >> PAGE_SHIFT;
1359 * If trying to increase the pipe capacity, check that an
1360 * unprivileged user is not trying to exceed various limits
1361 * (soft limit check here, hard limit check just below).
1362 * Decreasing the pipe capacity is always permitted, even
1363 * if the user is currently over a limit.
1365 if (nr_slots > pipe->max_usage &&
1366 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1369 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1371 if (nr_slots > pipe->max_usage &&
1372 (too_many_pipe_buffers_hard(user_bufs) ||
1373 too_many_pipe_buffers_soft(user_bufs)) &&
1374 pipe_is_unprivileged_user()) {
1376 goto out_revert_acct;
1379 ret = pipe_resize_ring(pipe, nr_slots);
1381 goto out_revert_acct;
1383 return pipe->max_usage * PAGE_SIZE;
1386 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1391 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1392 * not enough to verify that this is a pipe.
1394 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1396 struct pipe_inode_info *pipe = file->private_data;
1398 if (file->f_op != &pipefifo_fops || !pipe)
1400 if (for_splice && pipe_has_watch_queue(pipe))
1405 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
1407 struct pipe_inode_info *pipe;
1410 pipe = get_pipe_info(file, false);
1418 ret = pipe_set_size(pipe, arg);
1421 ret = pipe->max_usage * PAGE_SIZE;
1428 __pipe_unlock(pipe);
1432 static const struct super_operations pipefs_ops = {
1433 .destroy_inode = free_inode_nonrcu,
1434 .statfs = simple_statfs,
1438 * pipefs should _never_ be mounted by userland - too much of security hassle,
1439 * no real gain from having the whole whorehouse mounted. So we don't need
1440 * any operations on the root directory. However, we need a non-trivial
1441 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1444 static int pipefs_init_fs_context(struct fs_context *fc)
1446 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1449 ctx->ops = &pipefs_ops;
1450 ctx->dops = &pipefs_dentry_operations;
1454 static struct file_system_type pipe_fs_type = {
1456 .init_fs_context = pipefs_init_fs_context,
1457 .kill_sb = kill_anon_super,
1460 #ifdef CONFIG_SYSCTL
1461 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1463 int write, void *data)
1468 val = round_pipe_size(*lvalp);
1474 unsigned int val = *valp;
1475 *lvalp = (unsigned long) val;
1481 static int proc_dopipe_max_size(struct ctl_table *table, int write,
1482 void *buffer, size_t *lenp, loff_t *ppos)
1484 return do_proc_douintvec(table, write, buffer, lenp, ppos,
1485 do_proc_dopipe_max_size_conv, NULL);
1488 static struct ctl_table fs_pipe_sysctls[] = {
1490 .procname = "pipe-max-size",
1491 .data = &pipe_max_size,
1492 .maxlen = sizeof(pipe_max_size),
1494 .proc_handler = proc_dopipe_max_size,
1497 .procname = "pipe-user-pages-hard",
1498 .data = &pipe_user_pages_hard,
1499 .maxlen = sizeof(pipe_user_pages_hard),
1501 .proc_handler = proc_doulongvec_minmax,
1504 .procname = "pipe-user-pages-soft",
1505 .data = &pipe_user_pages_soft,
1506 .maxlen = sizeof(pipe_user_pages_soft),
1508 .proc_handler = proc_doulongvec_minmax,
1513 static int __init init_pipe_fs(void)
1515 int err = register_filesystem(&pipe_fs_type);
1518 pipe_mnt = kern_mount(&pipe_fs_type);
1519 if (IS_ERR(pipe_mnt)) {
1520 err = PTR_ERR(pipe_mnt);
1521 unregister_filesystem(&pipe_fs_type);
1524 #ifdef CONFIG_SYSCTL
1525 register_sysctl_init("fs", fs_pipe_sysctls);
1530 fs_initcall(init_pipe_fs);