1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include <linux/security.h>
30 #include <linux/fs_parser.h>
32 #include "delayed-inode.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
42 #include "compression.h"
43 #include "rcu-string.h"
44 #include "dev-replace.h"
45 #include "free-space-cache.h"
47 #include "space-info.h"
50 #include "tests/btrfs-tests.h"
51 #include "block-group.h"
56 #include "accessors.h"
63 #include "extent-tree.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
70 static void btrfs_put_super(struct super_block *sb)
72 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
74 btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
78 /* Store the mount options related information. */
79 struct btrfs_fs_context {
86 unsigned long mount_opt;
87 unsigned long compress_type:4;
88 unsigned int compress_level;
98 Opt_compress_force_type,
112 Opt_rescan_uuid_tree,
115 Opt_space_cache_version,
123 Opt_user_subvol_rm_allowed,
133 /* Debugging options */
135 #ifdef CONFIG_BTRFS_DEBUG
136 Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
138 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
145 Opt_fatal_errors_panic,
146 Opt_fatal_errors_bug,
149 static const struct constant_table btrfs_parameter_fatal_errors[] = {
150 { "panic", Opt_fatal_errors_panic },
151 { "bug", Opt_fatal_errors_bug },
160 static const struct constant_table btrfs_parameter_discard[] = {
161 { "sync", Opt_discard_sync },
162 { "async", Opt_discard_async },
171 static const struct constant_table btrfs_parameter_space_cache[] = {
172 { "v1", Opt_space_cache_v1 },
173 { "v2", Opt_space_cache_v2 },
178 Opt_rescue_usebackuproot,
179 Opt_rescue_nologreplay,
180 Opt_rescue_ignorebadroots,
181 Opt_rescue_ignoredatacsums,
182 Opt_rescue_parameter_all,
185 static const struct constant_table btrfs_parameter_rescue[] = {
186 { "usebackuproot", Opt_rescue_usebackuproot },
187 { "nologreplay", Opt_rescue_nologreplay },
188 { "ignorebadroots", Opt_rescue_ignorebadroots },
189 { "ibadroots", Opt_rescue_ignorebadroots },
190 { "ignoredatacsums", Opt_rescue_ignoredatacsums },
191 { "idatacsums", Opt_rescue_ignoredatacsums },
192 { "all", Opt_rescue_parameter_all },
196 #ifdef CONFIG_BTRFS_DEBUG
198 Opt_fragment_parameter_data,
199 Opt_fragment_parameter_metadata,
200 Opt_fragment_parameter_all,
203 static const struct constant_table btrfs_parameter_fragment[] = {
204 { "data", Opt_fragment_parameter_data },
205 { "metadata", Opt_fragment_parameter_metadata },
206 { "all", Opt_fragment_parameter_all },
211 static const struct fs_parameter_spec btrfs_fs_parameters[] = {
212 fsparam_flag_no("acl", Opt_acl),
213 fsparam_flag_no("autodefrag", Opt_defrag),
214 fsparam_flag_no("barrier", Opt_barrier),
215 fsparam_flag("clear_cache", Opt_clear_cache),
216 fsparam_u32("commit", Opt_commit_interval),
217 fsparam_flag("compress", Opt_compress),
218 fsparam_string("compress", Opt_compress_type),
219 fsparam_flag("compress-force", Opt_compress_force),
220 fsparam_string("compress-force", Opt_compress_force_type),
221 fsparam_flag_no("datacow", Opt_datacow),
222 fsparam_flag_no("datasum", Opt_datasum),
223 fsparam_flag("degraded", Opt_degraded),
224 fsparam_string("device", Opt_device),
225 fsparam_flag_no("discard", Opt_discard),
226 fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
227 fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
228 fsparam_flag_no("flushoncommit", Opt_flushoncommit),
229 fsparam_string("max_inline", Opt_max_inline),
230 fsparam_u32("metadata_ratio", Opt_ratio),
231 fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
232 fsparam_flag("skip_balance", Opt_skip_balance),
233 fsparam_flag_no("space_cache", Opt_space_cache),
234 fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
235 fsparam_flag_no("ssd", Opt_ssd),
236 fsparam_flag_no("ssd_spread", Opt_ssd_spread),
237 fsparam_string("subvol", Opt_subvol),
238 fsparam_flag("subvol=", Opt_subvol_empty),
239 fsparam_u64("subvolid", Opt_subvolid),
240 fsparam_u32("thread_pool", Opt_thread_pool),
241 fsparam_flag_no("treelog", Opt_treelog),
242 fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
244 /* Rescue options. */
245 fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
246 /* Deprecated, with alias rescue=nologreplay */
247 __fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
248 /* Deprecated, with alias rescue=usebackuproot */
249 __fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
251 /* Debugging options. */
252 fsparam_flag_no("enospc_debug", Opt_enospc_debug),
253 #ifdef CONFIG_BTRFS_DEBUG
254 fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
256 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
257 fsparam_flag("ref_verify", Opt_ref_verify),
262 /* No support for restricting writes to btrfs devices yet... */
263 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
265 return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
268 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
270 struct btrfs_fs_context *ctx = fc->fs_private;
271 struct fs_parse_result result;
274 opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
280 btrfs_set_opt(ctx->mount_opt, DEGRADED);
282 case Opt_subvol_empty:
284 * This exists because we used to allow it on accident, so we're
285 * keeping it to maintain ABI. See 37becec95ac3 ("Btrfs: allow
286 * empty subvol= again").
290 kfree(ctx->subvol_name);
291 ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
292 if (!ctx->subvol_name)
296 ctx->subvol_objectid = result.uint_64;
298 /* subvolid=0 means give me the original fs_tree. */
299 if (!ctx->subvol_objectid)
300 ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
303 struct btrfs_device *device;
304 blk_mode_t mode = btrfs_open_mode(fc);
306 mutex_lock(&uuid_mutex);
307 device = btrfs_scan_one_device(param->string, mode, false);
308 mutex_unlock(&uuid_mutex);
310 return PTR_ERR(device);
314 if (result.negated) {
315 btrfs_set_opt(ctx->mount_opt, NODATASUM);
317 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
318 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
322 if (result.negated) {
323 btrfs_clear_opt(ctx->mount_opt, COMPRESS);
324 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
325 btrfs_set_opt(ctx->mount_opt, NODATACOW);
326 btrfs_set_opt(ctx->mount_opt, NODATASUM);
328 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
331 case Opt_compress_force:
332 case Opt_compress_force_type:
333 btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
336 case Opt_compress_type:
337 if (opt == Opt_compress || opt == Opt_compress_force) {
338 ctx->compress_type = BTRFS_COMPRESS_ZLIB;
339 ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
340 btrfs_set_opt(ctx->mount_opt, COMPRESS);
341 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
342 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
343 } else if (strncmp(param->string, "zlib", 4) == 0) {
344 ctx->compress_type = BTRFS_COMPRESS_ZLIB;
345 ctx->compress_level =
346 btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
348 btrfs_set_opt(ctx->mount_opt, COMPRESS);
349 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
350 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
351 } else if (strncmp(param->string, "lzo", 3) == 0) {
352 ctx->compress_type = BTRFS_COMPRESS_LZO;
353 ctx->compress_level = 0;
354 btrfs_set_opt(ctx->mount_opt, COMPRESS);
355 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
356 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
357 } else if (strncmp(param->string, "zstd", 4) == 0) {
358 ctx->compress_type = BTRFS_COMPRESS_ZSTD;
359 ctx->compress_level =
360 btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
362 btrfs_set_opt(ctx->mount_opt, COMPRESS);
363 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
364 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
365 } else if (strncmp(param->string, "no", 2) == 0) {
366 ctx->compress_level = 0;
367 ctx->compress_type = 0;
368 btrfs_clear_opt(ctx->mount_opt, COMPRESS);
369 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
371 btrfs_err(NULL, "unrecognized compression value %s",
377 if (result.negated) {
378 btrfs_set_opt(ctx->mount_opt, NOSSD);
379 btrfs_clear_opt(ctx->mount_opt, SSD);
380 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
382 btrfs_set_opt(ctx->mount_opt, SSD);
383 btrfs_clear_opt(ctx->mount_opt, NOSSD);
387 if (result.negated) {
388 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
390 btrfs_set_opt(ctx->mount_opt, SSD);
391 btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
392 btrfs_clear_opt(ctx->mount_opt, NOSSD);
397 btrfs_set_opt(ctx->mount_opt, NOBARRIER);
399 btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
401 case Opt_thread_pool:
402 if (result.uint_32 == 0) {
403 btrfs_err(NULL, "invalid value 0 for thread_pool");
406 ctx->thread_pool_size = result.uint_32;
409 ctx->max_inline = memparse(param->string, NULL);
412 if (result.negated) {
413 fc->sb_flags &= ~SB_POSIXACL;
415 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
416 fc->sb_flags |= SB_POSIXACL;
418 btrfs_err(NULL, "support for ACL not compiled in");
423 * VFS limits the ability to toggle ACL on and off via remount,
424 * despite every file system allowing this. This seems to be
425 * an oversight since we all do, but it'll fail if we're
426 * remounting. So don't set the mask here, we'll check it in
427 * btrfs_reconfigure and do the toggling ourselves.
429 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
430 fc->sb_flags_mask |= SB_POSIXACL;
434 btrfs_set_opt(ctx->mount_opt, NOTREELOG);
436 btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
438 case Opt_nologreplay:
440 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
441 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
443 case Opt_flushoncommit:
445 btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
447 btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
450 ctx->metadata_ratio = result.uint_32;
453 if (result.negated) {
454 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
455 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
456 btrfs_set_opt(ctx->mount_opt, NODISCARD);
458 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
459 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
462 case Opt_discard_mode:
463 switch (result.uint_32) {
464 case Opt_discard_sync:
465 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
466 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
468 case Opt_discard_async:
469 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
470 btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
473 btrfs_err(NULL, "unrecognized discard mode value %s",
477 btrfs_clear_opt(ctx->mount_opt, NODISCARD);
479 case Opt_space_cache:
480 if (result.negated) {
481 btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
482 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
483 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
485 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
486 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
489 case Opt_space_cache_version:
490 switch (result.uint_32) {
491 case Opt_space_cache_v1:
492 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
493 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
495 case Opt_space_cache_v2:
496 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
497 btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
500 btrfs_err(NULL, "unrecognized space_cache value %s",
505 case Opt_rescan_uuid_tree:
506 btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
508 case Opt_clear_cache:
509 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
511 case Opt_user_subvol_rm_allowed:
512 btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
514 case Opt_enospc_debug:
516 btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
518 btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
522 btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
524 btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
526 case Opt_usebackuproot:
528 "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
529 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
531 /* If we're loading the backup roots we can't trust the space cache. */
532 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
534 case Opt_skip_balance:
535 btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
537 case Opt_fatal_errors:
538 switch (result.uint_32) {
539 case Opt_fatal_errors_panic:
540 btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
542 case Opt_fatal_errors_bug:
543 btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
546 btrfs_err(NULL, "unrecognized fatal_errors value %s",
551 case Opt_commit_interval:
552 ctx->commit_interval = result.uint_32;
553 if (ctx->commit_interval == 0)
554 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
557 switch (result.uint_32) {
558 case Opt_rescue_usebackuproot:
559 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
561 case Opt_rescue_nologreplay:
562 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
564 case Opt_rescue_ignorebadroots:
565 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
567 case Opt_rescue_ignoredatacsums:
568 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
570 case Opt_rescue_parameter_all:
571 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
572 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
573 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
576 btrfs_info(NULL, "unrecognized rescue option '%s'",
581 #ifdef CONFIG_BTRFS_DEBUG
583 switch (result.uint_32) {
584 case Opt_fragment_parameter_all:
585 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
586 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
588 case Opt_fragment_parameter_metadata:
589 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
591 case Opt_fragment_parameter_data:
592 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
595 btrfs_info(NULL, "unrecognized fragment option '%s'",
601 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
603 btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
607 btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
615 * Some options only have meaning at mount time and shouldn't persist across
616 * remounts, or be displayed. Clear these at the end of mount and remount code
619 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
621 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
622 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
623 btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
626 static bool check_ro_option(struct btrfs_fs_info *fs_info,
627 unsigned long mount_opt, unsigned long opt,
628 const char *opt_name)
630 if (mount_opt & opt) {
631 btrfs_err(fs_info, "%s must be used with ro mount option",
638 bool btrfs_check_options(struct btrfs_fs_info *info, unsigned long *mount_opt,
643 if (!(flags & SB_RDONLY) &&
644 (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
645 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
646 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")))
649 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
650 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
651 !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
652 btrfs_err(info, "cannot disable free-space-tree");
655 if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
656 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
657 btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
661 if (btrfs_check_mountopts_zoned(info, mount_opt))
664 if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
665 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE))
666 btrfs_info(info, "disk space caching is enabled");
667 if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
668 btrfs_info(info, "using free-space-tree");
675 * This is subtle, we only call this during open_ctree(). We need to pre-load
676 * the mount options with the on-disk settings. Before the new mount API took
677 * effect we would do this on mount and remount. With the new mount API we'll
678 * only do this on the initial mount.
680 * This isn't a change in behavior, because we're using the current state of the
681 * file system to set the current mount options. If you mounted with special
682 * options to disable these features and then remounted we wouldn't revert the
683 * settings, because mounting without these features cleared the on-disk
684 * settings, so this being called on re-mount is not needed.
686 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
688 if (fs_info->sectorsize < PAGE_SIZE) {
689 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
690 if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
692 "forcing free space tree for sector size %u with page size %lu",
693 fs_info->sectorsize, PAGE_SIZE);
694 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
699 * At this point our mount options are populated, so we only mess with
700 * these settings if we don't have any settings already.
702 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
705 if (btrfs_is_zoned(fs_info) &&
706 btrfs_free_space_cache_v1_active(fs_info)) {
707 btrfs_info(fs_info, "zoned: clearing existing space cache");
708 btrfs_set_super_cache_generation(fs_info->super_copy, 0);
712 if (btrfs_test_opt(fs_info, SPACE_CACHE))
715 if (btrfs_test_opt(fs_info, NOSPACECACHE))
719 * At this point we don't have explicit options set by the user, set
720 * them ourselves based on the state of the file system.
722 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
723 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
724 else if (btrfs_free_space_cache_v1_active(fs_info))
725 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
728 static void set_device_specific_options(struct btrfs_fs_info *fs_info)
730 if (!btrfs_test_opt(fs_info, NOSSD) &&
731 !fs_info->fs_devices->rotating)
732 btrfs_set_opt(fs_info->mount_opt, SSD);
735 * For devices supporting discard turn on discard=async automatically,
736 * unless it's already set or disabled. This could be turned off by
737 * nodiscard for the same mount.
739 * The zoned mode piggy backs on the discard functionality for
740 * resetting a zone. There is no reason to delay the zone reset as it is
741 * fast enough. So, do not enable async discard for zoned mode.
743 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
744 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
745 btrfs_test_opt(fs_info, NODISCARD)) &&
746 fs_info->fs_devices->discardable &&
747 !btrfs_is_zoned(fs_info))
748 btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
751 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
754 struct btrfs_root *root = fs_info->tree_root;
755 struct btrfs_root *fs_root = NULL;
756 struct btrfs_root_ref *root_ref;
757 struct btrfs_inode_ref *inode_ref;
758 struct btrfs_key key;
759 struct btrfs_path *path = NULL;
760 char *name = NULL, *ptr;
765 path = btrfs_alloc_path();
771 name = kmalloc(PATH_MAX, GFP_KERNEL);
776 ptr = name + PATH_MAX - 1;
780 * Walk up the subvolume trees in the tree of tree roots by root
781 * backrefs until we hit the top-level subvolume.
783 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
784 key.objectid = subvol_objectid;
785 key.type = BTRFS_ROOT_BACKREF_KEY;
786 key.offset = (u64)-1;
788 ret = btrfs_search_backwards(root, &key, path);
791 } else if (ret > 0) {
796 subvol_objectid = key.offset;
798 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
799 struct btrfs_root_ref);
800 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
806 read_extent_buffer(path->nodes[0], ptr + 1,
807 (unsigned long)(root_ref + 1), len);
809 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
810 btrfs_release_path(path);
812 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
813 if (IS_ERR(fs_root)) {
814 ret = PTR_ERR(fs_root);
820 * Walk up the filesystem tree by inode refs until we hit the
823 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
824 key.objectid = dirid;
825 key.type = BTRFS_INODE_REF_KEY;
826 key.offset = (u64)-1;
828 ret = btrfs_search_backwards(fs_root, &key, path);
831 } else if (ret > 0) {
838 inode_ref = btrfs_item_ptr(path->nodes[0],
840 struct btrfs_inode_ref);
841 len = btrfs_inode_ref_name_len(path->nodes[0],
848 read_extent_buffer(path->nodes[0], ptr + 1,
849 (unsigned long)(inode_ref + 1), len);
851 btrfs_release_path(path);
853 btrfs_put_root(fs_root);
857 btrfs_free_path(path);
858 if (ptr == name + PATH_MAX - 1) {
862 memmove(name, ptr, name + PATH_MAX - ptr);
867 btrfs_put_root(fs_root);
868 btrfs_free_path(path);
873 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
875 struct btrfs_root *root = fs_info->tree_root;
876 struct btrfs_dir_item *di;
877 struct btrfs_path *path;
878 struct btrfs_key location;
879 struct fscrypt_str name = FSTR_INIT("default", 7);
882 path = btrfs_alloc_path();
887 * Find the "default" dir item which points to the root item that we
888 * will mount by default if we haven't been given a specific subvolume
891 dir_id = btrfs_super_root_dir(fs_info->super_copy);
892 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
894 btrfs_free_path(path);
899 * Ok the default dir item isn't there. This is weird since
900 * it's always been there, but don't freak out, just try and
901 * mount the top-level subvolume.
903 btrfs_free_path(path);
904 *objectid = BTRFS_FS_TREE_OBJECTID;
908 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
909 btrfs_free_path(path);
910 *objectid = location.objectid;
914 static int btrfs_fill_super(struct super_block *sb,
915 struct btrfs_fs_devices *fs_devices,
919 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
922 sb->s_maxbytes = MAX_LFS_FILESIZE;
923 sb->s_magic = BTRFS_SUPER_MAGIC;
924 sb->s_op = &btrfs_super_ops;
925 sb->s_d_op = &btrfs_dentry_operations;
926 sb->s_export_op = &btrfs_export_ops;
927 #ifdef CONFIG_FS_VERITY
928 sb->s_vop = &btrfs_verityops;
930 sb->s_xattr = btrfs_xattr_handlers;
932 sb->s_iflags |= SB_I_CGROUPWB;
934 err = super_setup_bdi(sb);
936 btrfs_err(fs_info, "super_setup_bdi failed");
940 err = open_ctree(sb, fs_devices, (char *)data);
942 btrfs_err(fs_info, "open_ctree failed");
946 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
948 err = PTR_ERR(inode);
949 btrfs_handle_fs_error(fs_info, err, NULL);
953 sb->s_root = d_make_root(inode);
959 sb->s_flags |= SB_ACTIVE;
963 close_ctree(fs_info);
967 int btrfs_sync_fs(struct super_block *sb, int wait)
969 struct btrfs_trans_handle *trans;
970 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
971 struct btrfs_root *root = fs_info->tree_root;
973 trace_btrfs_sync_fs(fs_info, wait);
976 filemap_flush(fs_info->btree_inode->i_mapping);
980 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
982 trans = btrfs_attach_transaction_barrier(root);
984 /* no transaction, don't bother */
985 if (PTR_ERR(trans) == -ENOENT) {
987 * Exit unless we have some pending changes
988 * that need to go through commit
990 if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
994 * A non-blocking test if the fs is frozen. We must not
995 * start a new transaction here otherwise a deadlock
996 * happens. The pending operations are delayed to the
997 * next commit after thawing.
999 if (sb_start_write_trylock(sb))
1003 trans = btrfs_start_transaction(root, 0);
1006 return PTR_ERR(trans);
1008 return btrfs_commit_transaction(trans);
1011 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1013 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1017 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1019 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1020 const char *compress_type;
1021 const char *subvol_name;
1022 bool printed = false;
1024 if (btrfs_test_opt(info, DEGRADED))
1025 seq_puts(seq, ",degraded");
1026 if (btrfs_test_opt(info, NODATASUM))
1027 seq_puts(seq, ",nodatasum");
1028 if (btrfs_test_opt(info, NODATACOW))
1029 seq_puts(seq, ",nodatacow");
1030 if (btrfs_test_opt(info, NOBARRIER))
1031 seq_puts(seq, ",nobarrier");
1032 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1033 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1034 if (info->thread_pool_size != min_t(unsigned long,
1035 num_online_cpus() + 2, 8))
1036 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1037 if (btrfs_test_opt(info, COMPRESS)) {
1038 compress_type = btrfs_compress_type2str(info->compress_type);
1039 if (btrfs_test_opt(info, FORCE_COMPRESS))
1040 seq_printf(seq, ",compress-force=%s", compress_type);
1042 seq_printf(seq, ",compress=%s", compress_type);
1043 if (info->compress_level)
1044 seq_printf(seq, ":%d", info->compress_level);
1046 if (btrfs_test_opt(info, NOSSD))
1047 seq_puts(seq, ",nossd");
1048 if (btrfs_test_opt(info, SSD_SPREAD))
1049 seq_puts(seq, ",ssd_spread");
1050 else if (btrfs_test_opt(info, SSD))
1051 seq_puts(seq, ",ssd");
1052 if (btrfs_test_opt(info, NOTREELOG))
1053 seq_puts(seq, ",notreelog");
1054 if (btrfs_test_opt(info, NOLOGREPLAY))
1055 print_rescue_option(seq, "nologreplay", &printed);
1056 if (btrfs_test_opt(info, USEBACKUPROOT))
1057 print_rescue_option(seq, "usebackuproot", &printed);
1058 if (btrfs_test_opt(info, IGNOREBADROOTS))
1059 print_rescue_option(seq, "ignorebadroots", &printed);
1060 if (btrfs_test_opt(info, IGNOREDATACSUMS))
1061 print_rescue_option(seq, "ignoredatacsums", &printed);
1062 if (btrfs_test_opt(info, FLUSHONCOMMIT))
1063 seq_puts(seq, ",flushoncommit");
1064 if (btrfs_test_opt(info, DISCARD_SYNC))
1065 seq_puts(seq, ",discard");
1066 if (btrfs_test_opt(info, DISCARD_ASYNC))
1067 seq_puts(seq, ",discard=async");
1068 if (!(info->sb->s_flags & SB_POSIXACL))
1069 seq_puts(seq, ",noacl");
1070 if (btrfs_free_space_cache_v1_active(info))
1071 seq_puts(seq, ",space_cache");
1072 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1073 seq_puts(seq, ",space_cache=v2");
1075 seq_puts(seq, ",nospace_cache");
1076 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1077 seq_puts(seq, ",rescan_uuid_tree");
1078 if (btrfs_test_opt(info, CLEAR_CACHE))
1079 seq_puts(seq, ",clear_cache");
1080 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1081 seq_puts(seq, ",user_subvol_rm_allowed");
1082 if (btrfs_test_opt(info, ENOSPC_DEBUG))
1083 seq_puts(seq, ",enospc_debug");
1084 if (btrfs_test_opt(info, AUTO_DEFRAG))
1085 seq_puts(seq, ",autodefrag");
1086 if (btrfs_test_opt(info, SKIP_BALANCE))
1087 seq_puts(seq, ",skip_balance");
1088 if (info->metadata_ratio)
1089 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1090 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1091 seq_puts(seq, ",fatal_errors=panic");
1092 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1093 seq_printf(seq, ",commit=%u", info->commit_interval);
1094 #ifdef CONFIG_BTRFS_DEBUG
1095 if (btrfs_test_opt(info, FRAGMENT_DATA))
1096 seq_puts(seq, ",fragment=data");
1097 if (btrfs_test_opt(info, FRAGMENT_METADATA))
1098 seq_puts(seq, ",fragment=metadata");
1100 if (btrfs_test_opt(info, REF_VERIFY))
1101 seq_puts(seq, ",ref_verify");
1102 seq_printf(seq, ",subvolid=%llu",
1103 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1104 subvol_name = btrfs_get_subvol_name_from_objectid(info,
1105 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1106 if (!IS_ERR(subvol_name)) {
1107 seq_puts(seq, ",subvol=");
1108 seq_escape(seq, subvol_name, " \t\n\\");
1115 * subvolumes are identified by ino 256
1117 static inline int is_subvolume_inode(struct inode *inode)
1119 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1124 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1125 struct vfsmount *mnt)
1127 struct dentry *root;
1131 if (!subvol_objectid) {
1132 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1135 root = ERR_PTR(ret);
1139 subvol_name = btrfs_get_subvol_name_from_objectid(
1140 btrfs_sb(mnt->mnt_sb), subvol_objectid);
1141 if (IS_ERR(subvol_name)) {
1142 root = ERR_CAST(subvol_name);
1149 root = mount_subtree(mnt, subvol_name);
1150 /* mount_subtree() drops our reference on the vfsmount. */
1153 if (!IS_ERR(root)) {
1154 struct super_block *s = root->d_sb;
1155 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1156 struct inode *root_inode = d_inode(root);
1157 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1160 if (!is_subvolume_inode(root_inode)) {
1161 btrfs_err(fs_info, "'%s' is not a valid subvolume",
1165 if (subvol_objectid && root_objectid != subvol_objectid) {
1167 * This will also catch a race condition where a
1168 * subvolume which was passed by ID is renamed and
1169 * another subvolume is renamed over the old location.
1172 "subvol '%s' does not match subvolid %llu",
1173 subvol_name, subvol_objectid);
1178 root = ERR_PTR(ret);
1179 deactivate_locked_super(s);
1189 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1190 u32 new_pool_size, u32 old_pool_size)
1192 if (new_pool_size == old_pool_size)
1195 fs_info->thread_pool_size = new_pool_size;
1197 btrfs_info(fs_info, "resize thread pool %d -> %d",
1198 old_pool_size, new_pool_size);
1200 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1201 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1202 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1203 workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1204 workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1205 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1206 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1207 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1210 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1211 unsigned long old_opts, int flags)
1213 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1214 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1215 (flags & SB_RDONLY))) {
1216 /* wait for any defraggers to finish */
1217 wait_event(fs_info->transaction_wait,
1218 (atomic_read(&fs_info->defrag_running) == 0));
1219 if (flags & SB_RDONLY)
1220 sync_filesystem(fs_info->sb);
1224 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1225 unsigned long old_opts)
1227 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1230 * We need to cleanup all defragable inodes if the autodefragment is
1231 * close or the filesystem is read only.
1233 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1234 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1235 btrfs_cleanup_defrag_inodes(fs_info);
1238 /* If we toggled discard async */
1239 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1240 btrfs_test_opt(fs_info, DISCARD_ASYNC))
1241 btrfs_discard_resume(fs_info);
1242 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1243 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1244 btrfs_discard_cleanup(fs_info);
1246 /* If we toggled space cache */
1247 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1248 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1251 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1255 if (BTRFS_FS_ERROR(fs_info)) {
1257 "remounting read-write after error is not allowed");
1261 if (fs_info->fs_devices->rw_devices == 0)
1264 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1266 "too many missing devices, writable remount is not allowed");
1270 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1272 "mount required to replay tree-log, cannot remount read-write");
1277 * NOTE: when remounting with a change that does writes, don't put it
1278 * anywhere above this point, as we are not sure to be safe to write
1279 * until we pass the above checks.
1281 ret = btrfs_start_pre_rw_mount(fs_info);
1285 btrfs_clear_sb_rdonly(fs_info->sb);
1287 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1290 * If we've gone from readonly -> read-write, we need to get our
1291 * sync/async discard lists in the right state.
1293 btrfs_discard_resume(fs_info);
1298 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1301 * This also happens on 'umount -rf' or on shutdown, when the
1302 * filesystem is busy.
1304 cancel_work_sync(&fs_info->async_reclaim_work);
1305 cancel_work_sync(&fs_info->async_data_reclaim_work);
1307 btrfs_discard_cleanup(fs_info);
1309 /* Wait for the uuid_scan task to finish */
1310 down(&fs_info->uuid_tree_rescan_sem);
1311 /* Avoid complains from lockdep et al. */
1312 up(&fs_info->uuid_tree_rescan_sem);
1314 btrfs_set_sb_rdonly(fs_info->sb);
1317 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1318 * loop if it's already active. If it's already asleep, we'll leave
1319 * unused block groups on disk until we're mounted read-write again
1320 * unless we clean them up here.
1322 btrfs_delete_unused_bgs(fs_info);
1325 * The cleaner task could be already running before we set the flag
1326 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). We must make
1327 * sure that after we finish the remount, i.e. after we call
1328 * btrfs_commit_super(), the cleaner can no longer start a transaction
1329 * - either because it was dropping a dead root, running delayed iputs
1330 * or deleting an unused block group (the cleaner picked a block
1331 * group from the list of unused block groups before we were able to
1332 * in the previous call to btrfs_delete_unused_bgs()).
1334 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1337 * We've set the superblock to RO mode, so we might have made the
1338 * cleaner task sleep without running all pending delayed iputs. Go
1339 * through all the delayed iputs here, so that if an unmount happens
1340 * without remounting RW we don't end up at finishing close_ctree()
1341 * with a non-empty list of delayed iputs.
1343 btrfs_run_delayed_iputs(fs_info);
1345 btrfs_dev_replace_suspend_for_unmount(fs_info);
1346 btrfs_scrub_cancel(fs_info);
1347 btrfs_pause_balance(fs_info);
1350 * Pause the qgroup rescan worker if it is running. We don't want it to
1351 * be still running after we are in RO mode, as after that, by the time
1352 * we unmount, it might have left a transaction open, so we would leak
1353 * the transaction and/or crash.
1355 btrfs_qgroup_wait_for_completion(fs_info, false);
1357 return btrfs_commit_super(fs_info);
1360 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1362 fs_info->max_inline = ctx->max_inline;
1363 fs_info->commit_interval = ctx->commit_interval;
1364 fs_info->metadata_ratio = ctx->metadata_ratio;
1365 fs_info->thread_pool_size = ctx->thread_pool_size;
1366 fs_info->mount_opt = ctx->mount_opt;
1367 fs_info->compress_type = ctx->compress_type;
1368 fs_info->compress_level = ctx->compress_level;
1371 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1373 ctx->max_inline = fs_info->max_inline;
1374 ctx->commit_interval = fs_info->commit_interval;
1375 ctx->metadata_ratio = fs_info->metadata_ratio;
1376 ctx->thread_pool_size = fs_info->thread_pool_size;
1377 ctx->mount_opt = fs_info->mount_opt;
1378 ctx->compress_type = fs_info->compress_type;
1379 ctx->compress_level = fs_info->compress_level;
1382 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...) \
1384 if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \
1385 btrfs_raw_test_opt(fs_info->mount_opt, opt)) \
1386 btrfs_info(fs_info, fmt, ##args); \
1389 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...) \
1391 if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \
1392 !btrfs_raw_test_opt(fs_info->mount_opt, opt)) \
1393 btrfs_info(fs_info, fmt, ##args); \
1396 static void btrfs_emit_options(struct btrfs_fs_info *info,
1397 struct btrfs_fs_context *old)
1399 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1400 btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1401 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1402 btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1403 btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1404 btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1405 btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1406 btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1407 btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1408 btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1409 btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1410 btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1411 btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1412 btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1413 btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1414 btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1415 btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1416 btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1417 btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1418 btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1419 btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1421 btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1422 btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1423 btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1424 btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1425 btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1426 btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1427 btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1428 btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1429 btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1431 /* Did the compression settings change? */
1432 if (btrfs_test_opt(info, COMPRESS) &&
1434 old->compress_type != info->compress_type ||
1435 old->compress_level != info->compress_level ||
1436 (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1437 btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1438 const char *compress_type = btrfs_compress_type2str(info->compress_type);
1440 btrfs_info(info, "%s %s compression, level %d",
1441 btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1442 compress_type, info->compress_level);
1445 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1446 btrfs_info(info, "max_inline set to %llu", info->max_inline);
1449 static int btrfs_reconfigure(struct fs_context *fc)
1451 struct super_block *sb = fc->root->d_sb;
1452 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1453 struct btrfs_fs_context *ctx = fc->fs_private;
1454 struct btrfs_fs_context old_ctx;
1456 bool mount_reconfigure = (fc->s_fs_info != NULL);
1458 btrfs_info_to_ctx(fs_info, &old_ctx);
1461 * This is our "bind mount" trick, we don't want to allow the user to do
1462 * anything other than mount a different ro/rw and a different subvol,
1463 * all of the mount options should be maintained.
1465 if (mount_reconfigure)
1466 ctx->mount_opt = old_ctx.mount_opt;
1468 sync_filesystem(sb);
1469 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1471 if (!mount_reconfigure &&
1472 !btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1475 ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1479 btrfs_ctx_to_info(fs_info, ctx);
1480 btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1481 btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1482 old_ctx.thread_pool_size);
1484 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1485 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1486 (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1488 "remount supports changing free space tree only from RO to RW");
1489 /* Make sure free space cache options match the state on disk. */
1490 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1491 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1492 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1494 if (btrfs_free_space_cache_v1_active(fs_info)) {
1495 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1496 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1501 if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1502 ret = btrfs_remount_ro(fs_info);
1503 else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1504 ret = btrfs_remount_rw(fs_info);
1509 * If we set the mask during the parameter parsing VFS would reject the
1510 * remount. Here we can set the mask and the value will be updated
1513 if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1514 fc->sb_flags_mask |= SB_POSIXACL;
1516 btrfs_emit_options(fs_info, &old_ctx);
1517 wake_up_process(fs_info->transaction_kthread);
1518 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1519 btrfs_clear_oneshot_options(fs_info);
1520 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1524 btrfs_ctx_to_info(fs_info, &old_ctx);
1525 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1526 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1530 /* Used to sort the devices by max_avail(descending sort) */
1531 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1533 const struct btrfs_device_info *dev_info1 = a;
1534 const struct btrfs_device_info *dev_info2 = b;
1536 if (dev_info1->max_avail > dev_info2->max_avail)
1538 else if (dev_info1->max_avail < dev_info2->max_avail)
1544 * sort the devices by max_avail, in which max free extent size of each device
1545 * is stored.(Descending Sort)
1547 static inline void btrfs_descending_sort_devices(
1548 struct btrfs_device_info *devices,
1551 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1552 btrfs_cmp_device_free_bytes, NULL);
1556 * The helper to calc the free space on the devices that can be used to store
1559 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1562 struct btrfs_device_info *devices_info;
1563 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1564 struct btrfs_device *device;
1567 u64 min_stripe_size;
1568 int num_stripes = 1;
1569 int i = 0, nr_devices;
1570 const struct btrfs_raid_attr *rattr;
1573 * We aren't under the device list lock, so this is racy-ish, but good
1574 * enough for our purposes.
1576 nr_devices = fs_info->fs_devices->open_devices;
1579 nr_devices = fs_info->fs_devices->open_devices;
1587 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1592 /* calc min stripe number for data space allocation */
1593 type = btrfs_data_alloc_profile(fs_info);
1594 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1596 if (type & BTRFS_BLOCK_GROUP_RAID0)
1597 num_stripes = nr_devices;
1598 else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1599 num_stripes = rattr->ncopies;
1600 else if (type & BTRFS_BLOCK_GROUP_RAID10)
1603 /* Adjust for more than 1 stripe per device */
1604 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1607 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1608 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1609 &device->dev_state) ||
1611 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1614 if (i >= nr_devices)
1617 avail_space = device->total_bytes - device->bytes_used;
1619 /* align with stripe_len */
1620 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1623 * Ensure we have at least min_stripe_size on top of the
1624 * reserved space on the device.
1626 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1629 avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1631 devices_info[i].dev = device;
1632 devices_info[i].max_avail = avail_space;
1640 btrfs_descending_sort_devices(devices_info, nr_devices);
1644 while (nr_devices >= rattr->devs_min) {
1645 num_stripes = min(num_stripes, nr_devices);
1647 if (devices_info[i].max_avail >= min_stripe_size) {
1651 avail_space += devices_info[i].max_avail * num_stripes;
1652 alloc_size = devices_info[i].max_avail;
1653 for (j = i + 1 - num_stripes; j <= i; j++)
1654 devices_info[j].max_avail -= alloc_size;
1660 kfree(devices_info);
1661 *free_bytes = avail_space;
1666 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1668 * If there's a redundant raid level at DATA block groups, use the respective
1669 * multiplier to scale the sizes.
1671 * Unused device space usage is based on simulating the chunk allocator
1672 * algorithm that respects the device sizes and order of allocations. This is
1673 * a close approximation of the actual use but there are other factors that may
1674 * change the result (like a new metadata chunk).
1676 * If metadata is exhausted, f_bavail will be 0.
1678 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1680 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1681 struct btrfs_super_block *disk_super = fs_info->super_copy;
1682 struct btrfs_space_info *found;
1684 u64 total_free_data = 0;
1685 u64 total_free_meta = 0;
1686 u32 bits = fs_info->sectorsize_bits;
1687 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1688 unsigned factor = 1;
1689 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1694 list_for_each_entry(found, &fs_info->space_info, list) {
1695 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1698 total_free_data += found->disk_total - found->disk_used;
1700 btrfs_account_ro_block_groups_free_space(found);
1702 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1703 if (!list_empty(&found->block_groups[i]))
1704 factor = btrfs_bg_type_to_factor(
1705 btrfs_raid_array[i].bg_flag);
1710 * Metadata in mixed block group profiles are accounted in data
1712 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1713 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1716 total_free_meta += found->disk_total -
1720 total_used += found->disk_used;
1723 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1724 buf->f_blocks >>= bits;
1725 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1727 /* Account global block reserve as used, it's in logical size already */
1728 spin_lock(&block_rsv->lock);
1729 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
1730 if (buf->f_bfree >= block_rsv->size >> bits)
1731 buf->f_bfree -= block_rsv->size >> bits;
1734 spin_unlock(&block_rsv->lock);
1736 buf->f_bavail = div_u64(total_free_data, factor);
1737 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1740 buf->f_bavail += div_u64(total_free_data, factor);
1741 buf->f_bavail = buf->f_bavail >> bits;
1744 * We calculate the remaining metadata space minus global reserve. If
1745 * this is (supposedly) smaller than zero, there's no space. But this
1746 * does not hold in practice, the exhausted state happens where's still
1747 * some positive delta. So we apply some guesswork and compare the
1748 * delta to a 4M threshold. (Practically observed delta was ~2M.)
1750 * We probably cannot calculate the exact threshold value because this
1751 * depends on the internal reservations requested by various
1752 * operations, so some operations that consume a few metadata will
1753 * succeed even if the Avail is zero. But this is better than the other
1759 * We only want to claim there's no available space if we can no longer
1760 * allocate chunks for our metadata profile and our global reserve will
1761 * not fit in the free metadata space. If we aren't ->full then we
1762 * still can allocate chunks and thus are fine using the currently
1763 * calculated f_bavail.
1765 if (!mixed && block_rsv->space_info->full &&
1766 (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1769 buf->f_type = BTRFS_SUPER_MAGIC;
1770 buf->f_bsize = dentry->d_sb->s_blocksize;
1771 buf->f_namelen = BTRFS_NAME_LEN;
1773 /* We treat it as constant endianness (it doesn't matter _which_)
1774 because we want the fsid to come out the same whether mounted
1775 on a big-endian or little-endian host */
1776 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1777 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1778 /* Mask in the root object ID too, to disambiguate subvols */
1779 buf->f_fsid.val[0] ^=
1780 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
1781 buf->f_fsid.val[1] ^=
1782 BTRFS_I(d_inode(dentry))->root->root_key.objectid;
1787 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1789 struct btrfs_fs_info *p = fc->s_fs_info;
1790 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1792 return fs_info->fs_devices == p->fs_devices;
1795 static int btrfs_get_tree_super(struct fs_context *fc)
1797 struct btrfs_fs_info *fs_info = fc->s_fs_info;
1798 struct btrfs_fs_context *ctx = fc->fs_private;
1799 struct btrfs_fs_devices *fs_devices = NULL;
1800 struct block_device *bdev;
1801 struct btrfs_device *device;
1802 struct super_block *sb;
1803 blk_mode_t mode = btrfs_open_mode(fc);
1806 btrfs_ctx_to_info(fs_info, ctx);
1807 mutex_lock(&uuid_mutex);
1810 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1811 * either a valid device or an error.
1813 device = btrfs_scan_one_device(fc->source, mode, true);
1814 ASSERT(device != NULL);
1815 if (IS_ERR(device)) {
1816 mutex_unlock(&uuid_mutex);
1817 return PTR_ERR(device);
1820 fs_devices = device->fs_devices;
1821 fs_info->fs_devices = fs_devices;
1823 ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1824 mutex_unlock(&uuid_mutex);
1828 if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1833 bdev = fs_devices->latest_dev->bdev;
1836 * From now on the error handling is not straightforward.
1838 * If successful, this will transfer the fs_info into the super block,
1839 * and fc->s_fs_info will be NULL. However if there's an existing
1840 * super, we'll still have fc->s_fs_info populated. If we error
1841 * completely out it'll be cleaned up when we drop the fs_context,
1842 * otherwise it's tied to the lifetime of the super_block.
1844 sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1850 set_device_specific_options(fs_info);
1853 btrfs_close_devices(fs_devices);
1854 if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY)
1857 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1858 shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1859 btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1860 ret = btrfs_fill_super(sb, fs_devices, NULL);
1864 deactivate_locked_super(sb);
1868 btrfs_clear_oneshot_options(fs_info);
1870 fc->root = dget(sb->s_root);
1874 btrfs_close_devices(fs_devices);
1879 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1880 * with different ro/rw options") the following works:
1882 * (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1883 * (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1885 * which looks nice and innocent but is actually pretty intricate and deserves
1888 * On another filesystem a subvolume mount is close to something like:
1890 * (iii) # create rw superblock + initial mount
1891 * mount -t xfs /dev/sdb /opt/
1893 * # create ro bind mount
1894 * mount --bind -o ro /opt/foo /mnt/foo
1896 * # unmount initial mount
1899 * Of course, there's some special subvolume sauce and there's the fact that the
1900 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1901 * it's very close and will help us understand the issue.
1903 * The old mount API didn't cleanly distinguish between a mount being made ro
1904 * and a superblock being made ro. The only way to change the ro state of
1905 * either object was by passing ms_rdonly. If a new mount was created via
1908 * mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1910 * the MS_RDONLY flag being specified had two effects:
1912 * (1) MNT_READONLY was raised -> the resulting mount got
1913 * @mnt->mnt_flags |= MNT_READONLY raised.
1915 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1916 * made the superblock ro. Note, how SB_RDONLY has the same value as
1917 * ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1919 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1920 * subtree mounted ro.
1922 * But consider the effect on the old mount API on btrfs subvolume mounting
1923 * which combines the distinct step in (iii) into a single step.
1925 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1926 * is issued the superblock is ro and thus even if the mount created for (ii) is
1927 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1928 * to rw for (ii) which it did using an internal remount call.
1930 * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1931 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1932 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1933 * passed by mount(8) to mount(2).
1935 * Enter the new mount API. The new mount API disambiguates making a mount ro
1936 * and making a superblock ro.
1938 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1939 * fsmount() or mount_setattr() this is a pure VFS level change for a
1940 * specific mount or mount tree that is never seen by the filesystem itself.
1942 * (4) To turn a superblock ro the "ro" flag must be used with
1943 * fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1946 * This disambiguation has rather positive consequences. Mounting a subvolume
1947 * ro will not also turn the superblock ro. Only the mount for the subvolume
1950 * So, if the superblock creation request comes from the new mount API the
1951 * caller must have explicitly done:
1953 * fsconfig(FSCONFIG_SET_FLAG, "ro")
1954 * fsmount/mount_setattr(MOUNT_ATTR_RDONLY)
1956 * IOW, at some point the caller must have explicitly turned the whole
1957 * superblock ro and we shouldn't just undo it like we did for the old mount
1958 * API. In any case, it lets us avoid the hack in the new mount API.
1960 * Consequently, the remounting hack must only be used for requests originating
1961 * from the old mount API and should be marked for full deprecation so it can be
1962 * turned off in a couple of years.
1964 * The new mount API has no reason to support this hack.
1966 static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc)
1968 struct vfsmount *mnt;
1970 const bool ro2rw = !(fc->sb_flags & SB_RDONLY);
1973 * We got an EBUSY because our SB_RDONLY flag didn't match the existing
1974 * super block, so invert our setting here and retry the mount so we
1975 * can get our vfsmount.
1978 fc->sb_flags |= SB_RDONLY;
1980 fc->sb_flags &= ~SB_RDONLY;
1986 if (!fc->oldapi || !ro2rw)
1989 /* We need to convert to rw, call reconfigure. */
1990 fc->sb_flags &= ~SB_RDONLY;
1991 down_write(&mnt->mnt_sb->s_umount);
1992 ret = btrfs_reconfigure(fc);
1993 up_write(&mnt->mnt_sb->s_umount);
1996 return ERR_PTR(ret);
2001 static int btrfs_get_tree_subvol(struct fs_context *fc)
2003 struct btrfs_fs_info *fs_info = NULL;
2004 struct btrfs_fs_context *ctx = fc->fs_private;
2005 struct fs_context *dup_fc;
2006 struct dentry *dentry;
2007 struct vfsmount *mnt;
2010 * Setup a dummy root and fs_info for test/set super. This is because
2011 * we don't actually fill this stuff out until open_ctree, but we need
2012 * then open_ctree will properly initialize the file system specific
2013 * settings later. btrfs_init_fs_info initializes the static elements
2014 * of the fs_info (locks and such) to make cleanup easier if we find a
2015 * superblock with our given fs_devices later on at sget() time.
2017 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2021 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2022 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2023 if (!fs_info->super_copy || !fs_info->super_for_commit) {
2024 btrfs_free_fs_info(fs_info);
2027 btrfs_init_fs_info(fs_info);
2029 dup_fc = vfs_dup_fs_context(fc);
2030 if (IS_ERR(dup_fc)) {
2031 btrfs_free_fs_info(fs_info);
2032 return PTR_ERR(dup_fc);
2036 * When we do the sget_fc this gets transferred to the sb, so we only
2037 * need to set it on the dup_fc as this is what creates the super block.
2039 dup_fc->s_fs_info = fs_info;
2042 * We'll do the security settings in our btrfs_get_tree_super() mount
2043 * loop, they were duplicated into dup_fc, we can drop the originals
2046 security_free_mnt_opts(&fc->security);
2047 fc->security = NULL;
2049 mnt = fc_mount(dup_fc);
2050 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY)
2051 mnt = btrfs_reconfigure_for_mount(dup_fc);
2052 put_fs_context(dup_fc);
2054 return PTR_ERR(mnt);
2057 * This free's ->subvol_name, because if it isn't set we have to
2058 * allocate a buffer to hold the subvol_name, so we just drop our
2059 * reference to it here.
2061 dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2062 ctx->subvol_name = NULL;
2064 return PTR_ERR(dentry);
2070 static int btrfs_get_tree(struct fs_context *fc)
2073 * Since we use mount_subtree to mount the default/specified subvol, we
2074 * have to do mounts in two steps.
2076 * First pass through we call btrfs_get_tree_subvol(), this is just a
2077 * wrapper around fc_mount() to call back into here again, and this time
2078 * we'll call btrfs_get_tree_super(). This will do the open_ctree() and
2079 * everything to open the devices and file system. Then we return back
2080 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2081 * from there we can do our mount_subvol() call, which will lookup
2082 * whichever subvol we're mounting and setup this fc with the
2083 * appropriate dentry for the subvol.
2086 return btrfs_get_tree_super(fc);
2087 return btrfs_get_tree_subvol(fc);
2090 static void btrfs_kill_super(struct super_block *sb)
2092 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2093 kill_anon_super(sb);
2094 btrfs_free_fs_info(fs_info);
2097 static void btrfs_free_fs_context(struct fs_context *fc)
2099 struct btrfs_fs_context *ctx = fc->fs_private;
2100 struct btrfs_fs_info *fs_info = fc->s_fs_info;
2103 btrfs_free_fs_info(fs_info);
2105 if (ctx && refcount_dec_and_test(&ctx->refs)) {
2106 kfree(ctx->subvol_name);
2111 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2113 struct btrfs_fs_context *ctx = src_fc->fs_private;
2116 * Give a ref to our ctx to this dup, as we want to keep it around for
2117 * our original fc so we can have the subvolume name or objectid.
2119 * We unset ->source in the original fc because the dup needs it for
2120 * mounting, and then once we free the dup it'll free ->source, so we
2121 * need to make sure we're only pointing to it in one fc.
2123 refcount_inc(&ctx->refs);
2124 fc->fs_private = ctx;
2125 fc->source = src_fc->source;
2126 src_fc->source = NULL;
2130 static const struct fs_context_operations btrfs_fs_context_ops = {
2131 .parse_param = btrfs_parse_param,
2132 .reconfigure = btrfs_reconfigure,
2133 .get_tree = btrfs_get_tree,
2134 .dup = btrfs_dup_fs_context,
2135 .free = btrfs_free_fs_context,
2138 static int btrfs_init_fs_context(struct fs_context *fc)
2140 struct btrfs_fs_context *ctx;
2142 ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2146 refcount_set(&ctx->refs, 1);
2147 fc->fs_private = ctx;
2148 fc->ops = &btrfs_fs_context_ops;
2150 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2151 btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2153 ctx->thread_pool_size =
2154 min_t(unsigned long, num_online_cpus() + 2, 8);
2155 ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2156 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2159 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2160 fc->sb_flags |= SB_POSIXACL;
2162 fc->sb_flags |= SB_I_VERSION;
2167 static struct file_system_type btrfs_fs_type = {
2168 .owner = THIS_MODULE,
2170 .init_fs_context = btrfs_init_fs_context,
2171 .parameters = btrfs_fs_parameters,
2172 .kill_sb = btrfs_kill_super,
2173 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2176 MODULE_ALIAS_FS("btrfs");
2178 static int btrfs_control_open(struct inode *inode, struct file *file)
2181 * The control file's private_data is used to hold the
2182 * transaction when it is started and is used to keep
2183 * track of whether a transaction is already in progress.
2185 file->private_data = NULL;
2190 * Used by /dev/btrfs-control for devices ioctls.
2192 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2195 struct btrfs_ioctl_vol_args *vol;
2196 struct btrfs_device *device = NULL;
2200 if (!capable(CAP_SYS_ADMIN))
2203 vol = memdup_user((void __user *)arg, sizeof(*vol));
2205 return PTR_ERR(vol);
2206 vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2209 case BTRFS_IOC_SCAN_DEV:
2210 mutex_lock(&uuid_mutex);
2212 * Scanning outside of mount can return NULL which would turn
2213 * into 0 error code.
2215 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2216 ret = PTR_ERR_OR_ZERO(device);
2217 mutex_unlock(&uuid_mutex);
2219 case BTRFS_IOC_FORGET_DEV:
2220 if (vol->name[0] != 0) {
2221 ret = lookup_bdev(vol->name, &devt);
2225 ret = btrfs_forget_devices(devt);
2227 case BTRFS_IOC_DEVICES_READY:
2228 mutex_lock(&uuid_mutex);
2230 * Scanning outside of mount can return NULL which would turn
2231 * into 0 error code.
2233 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2234 if (IS_ERR_OR_NULL(device)) {
2235 mutex_unlock(&uuid_mutex);
2236 ret = PTR_ERR(device);
2239 ret = !(device->fs_devices->num_devices ==
2240 device->fs_devices->total_devices);
2241 mutex_unlock(&uuid_mutex);
2243 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2244 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2252 static int btrfs_freeze(struct super_block *sb)
2254 struct btrfs_trans_handle *trans;
2255 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2256 struct btrfs_root *root = fs_info->tree_root;
2258 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2260 * We don't need a barrier here, we'll wait for any transaction that
2261 * could be in progress on other threads (and do delayed iputs that
2262 * we want to avoid on a frozen filesystem), or do the commit
2265 trans = btrfs_attach_transaction_barrier(root);
2266 if (IS_ERR(trans)) {
2267 /* no transaction, don't bother */
2268 if (PTR_ERR(trans) == -ENOENT)
2270 return PTR_ERR(trans);
2272 return btrfs_commit_transaction(trans);
2275 static int check_dev_super(struct btrfs_device *dev)
2277 struct btrfs_fs_info *fs_info = dev->fs_info;
2278 struct btrfs_super_block *sb;
2283 /* This should be called with fs still frozen. */
2284 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2286 /* Missing dev, no need to check. */
2290 /* Only need to check the primary super block. */
2291 sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2295 /* Verify the checksum. */
2296 csum_type = btrfs_super_csum_type(sb);
2297 if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2298 btrfs_err(fs_info, "csum type changed, has %u expect %u",
2299 csum_type, btrfs_super_csum_type(fs_info->super_copy));
2304 if (btrfs_check_super_csum(fs_info, sb)) {
2305 btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2310 /* Btrfs_validate_super() includes fsid check against super->fsid. */
2311 ret = btrfs_validate_super(fs_info, sb, 0);
2315 last_trans = btrfs_get_last_trans_committed(fs_info);
2316 if (btrfs_super_generation(sb) != last_trans) {
2317 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2318 btrfs_super_generation(sb), last_trans);
2323 btrfs_release_disk_super(sb);
2327 static int btrfs_unfreeze(struct super_block *sb)
2329 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2330 struct btrfs_device *device;
2334 * Make sure the fs is not changed by accident (like hibernation then
2335 * modified by other OS).
2336 * If we found anything wrong, we mark the fs error immediately.
2338 * And since the fs is frozen, no one can modify the fs yet, thus
2339 * we don't need to hold device_list_mutex.
2341 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2342 ret = check_dev_super(device);
2344 btrfs_handle_fs_error(fs_info, ret,
2345 "super block on devid %llu got modified unexpectedly",
2350 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2353 * We still return 0, to allow VFS layer to unfreeze the fs even the
2354 * above checks failed. Since the fs is either fine or read-only, we're
2355 * safe to continue, without causing further damage.
2360 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2362 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2365 * There should be always a valid pointer in latest_dev, it may be stale
2366 * for a short moment in case it's being deleted but still valid until
2367 * the end of RCU grace period.
2370 seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2376 static const struct super_operations btrfs_super_ops = {
2377 .drop_inode = btrfs_drop_inode,
2378 .evict_inode = btrfs_evict_inode,
2379 .put_super = btrfs_put_super,
2380 .sync_fs = btrfs_sync_fs,
2381 .show_options = btrfs_show_options,
2382 .show_devname = btrfs_show_devname,
2383 .alloc_inode = btrfs_alloc_inode,
2384 .destroy_inode = btrfs_destroy_inode,
2385 .free_inode = btrfs_free_inode,
2386 .statfs = btrfs_statfs,
2387 .freeze_fs = btrfs_freeze,
2388 .unfreeze_fs = btrfs_unfreeze,
2391 static const struct file_operations btrfs_ctl_fops = {
2392 .open = btrfs_control_open,
2393 .unlocked_ioctl = btrfs_control_ioctl,
2394 .compat_ioctl = compat_ptr_ioctl,
2395 .owner = THIS_MODULE,
2396 .llseek = noop_llseek,
2399 static struct miscdevice btrfs_misc = {
2400 .minor = BTRFS_MINOR,
2401 .name = "btrfs-control",
2402 .fops = &btrfs_ctl_fops
2405 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2406 MODULE_ALIAS("devname:btrfs-control");
2408 static int __init btrfs_interface_init(void)
2410 return misc_register(&btrfs_misc);
2413 static __cold void btrfs_interface_exit(void)
2415 misc_deregister(&btrfs_misc);
2418 static int __init btrfs_print_mod_info(void)
2420 static const char options[] = ""
2421 #ifdef CONFIG_BTRFS_DEBUG
2424 #ifdef CONFIG_BTRFS_ASSERT
2427 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2430 #ifdef CONFIG_BLK_DEV_ZONED
2435 #ifdef CONFIG_FS_VERITY
2441 pr_info("Btrfs loaded%s\n", options);
2445 static int register_btrfs(void)
2447 return register_filesystem(&btrfs_fs_type);
2450 static void unregister_btrfs(void)
2452 unregister_filesystem(&btrfs_fs_type);
2455 /* Helper structure for long init/exit functions. */
2456 struct init_sequence {
2457 int (*init_func)(void);
2458 /* Can be NULL if the init_func doesn't need cleanup. */
2459 void (*exit_func)(void);
2462 static const struct init_sequence mod_init_seq[] = {
2464 .init_func = btrfs_props_init,
2467 .init_func = btrfs_init_sysfs,
2468 .exit_func = btrfs_exit_sysfs,
2470 .init_func = btrfs_init_compress,
2471 .exit_func = btrfs_exit_compress,
2473 .init_func = btrfs_init_cachep,
2474 .exit_func = btrfs_destroy_cachep,
2476 .init_func = btrfs_transaction_init,
2477 .exit_func = btrfs_transaction_exit,
2479 .init_func = btrfs_ctree_init,
2480 .exit_func = btrfs_ctree_exit,
2482 .init_func = btrfs_free_space_init,
2483 .exit_func = btrfs_free_space_exit,
2485 .init_func = extent_state_init_cachep,
2486 .exit_func = extent_state_free_cachep,
2488 .init_func = extent_buffer_init_cachep,
2489 .exit_func = extent_buffer_free_cachep,
2491 .init_func = btrfs_bioset_init,
2492 .exit_func = btrfs_bioset_exit,
2494 .init_func = extent_map_init,
2495 .exit_func = extent_map_exit,
2497 .init_func = ordered_data_init,
2498 .exit_func = ordered_data_exit,
2500 .init_func = btrfs_delayed_inode_init,
2501 .exit_func = btrfs_delayed_inode_exit,
2503 .init_func = btrfs_auto_defrag_init,
2504 .exit_func = btrfs_auto_defrag_exit,
2506 .init_func = btrfs_delayed_ref_init,
2507 .exit_func = btrfs_delayed_ref_exit,
2509 .init_func = btrfs_prelim_ref_init,
2510 .exit_func = btrfs_prelim_ref_exit,
2512 .init_func = btrfs_interface_init,
2513 .exit_func = btrfs_interface_exit,
2515 .init_func = btrfs_print_mod_info,
2518 .init_func = btrfs_run_sanity_tests,
2521 .init_func = register_btrfs,
2522 .exit_func = unregister_btrfs,
2526 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2528 static __always_inline void btrfs_exit_btrfs_fs(void)
2532 for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2533 if (!mod_init_result[i])
2535 if (mod_init_seq[i].exit_func)
2536 mod_init_seq[i].exit_func();
2537 mod_init_result[i] = false;
2541 static void __exit exit_btrfs_fs(void)
2543 btrfs_exit_btrfs_fs();
2544 btrfs_cleanup_fs_uuids();
2547 static int __init init_btrfs_fs(void)
2552 for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2553 ASSERT(!mod_init_result[i]);
2554 ret = mod_init_seq[i].init_func();
2556 btrfs_exit_btrfs_fs();
2559 mod_init_result[i] = true;
2564 late_initcall(init_btrfs_fs);
2565 module_exit(exit_btrfs_fs)
2567 MODULE_LICENSE("GPL");
2568 MODULE_SOFTDEP("pre: crc32c");
2569 MODULE_SOFTDEP("pre: xxhash64");
2570 MODULE_SOFTDEP("pre: sha256");
2571 MODULE_SOFTDEP("pre: blake2b-256");