1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
7 #define pr_fmt(fmt) "GICv3: " fmt
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/percpu.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
22 #include <linux/irqchip.h>
23 #include <linux/irqchip/arm-gic-common.h>
24 #include <linux/irqchip/arm-gic-v3.h>
25 #include <linux/irqchip/irq-partition-percpu.h>
27 #include <asm/cputype.h>
28 #include <asm/exception.h>
29 #include <asm/smp_plat.h>
32 #include "irq-gic-common.h"
34 #define GICD_INT_NMI_PRI (GICD_INT_DEF_PRI & ~0x80)
36 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996 (1ULL << 0)
37 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539 (1ULL << 1)
39 #define GIC_IRQ_TYPE_PARTITION (GIC_IRQ_TYPE_LPI + 1)
41 struct redist_region {
42 void __iomem *redist_base;
43 phys_addr_t phys_base;
47 struct gic_chip_data {
48 struct fwnode_handle *fwnode;
49 void __iomem *dist_base;
50 struct redist_region *redist_regions;
52 struct irq_domain *domain;
54 u32 nr_redist_regions;
58 struct partition_desc **ppi_descs;
61 static struct gic_chip_data gic_data __read_mostly;
62 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
64 #define GIC_ID_NR (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
65 #define GIC_LINE_NR min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
66 #define GIC_ESPI_NR GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
69 * The behaviours of RPR and PMR registers differ depending on the value of
70 * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
71 * distributor and redistributors depends on whether security is enabled in the
74 * When security is enabled, non-secure priority values from the (re)distributor
75 * are presented to the GIC CPUIF as follow:
76 * (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
78 * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
79 * EL1 are subject to a similar operation thus matching the priorities presented
80 * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
81 * these values are unchanged by the GIC.
83 * see GICv3/GICv4 Architecture Specification (IHI0069D):
84 * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
86 * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
89 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
92 * Global static key controlling whether an update to PMR allowing more
93 * interrupts requires to be propagated to the redistributor (DSB SY).
94 * And this needs to be exported for modules to be able to enable
97 DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
98 EXPORT_SYMBOL(gic_pmr_sync);
100 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
101 EXPORT_SYMBOL(gic_nonsecure_priorities);
104 * When the Non-secure world has access to group 0 interrupts (as a
105 * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
106 * return the Distributor's view of the interrupt priority.
108 * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
109 * written by software is moved to the Non-secure range by the Distributor.
111 * If both are true (which is when gic_nonsecure_priorities gets enabled),
112 * we need to shift down the priority programmed by software to match it
113 * against the value returned by ICC_RPR_EL1.
115 #define GICD_INT_RPR_PRI(priority) \
117 u32 __priority = (priority); \
118 if (static_branch_unlikely(&gic_nonsecure_priorities)) \
119 __priority = 0x80 | (__priority >> 1); \
124 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
125 static refcount_t *ppi_nmi_refs;
127 static struct gic_kvm_info gic_v3_kvm_info __initdata;
128 static DEFINE_PER_CPU(bool, has_rss);
130 #define MPIDR_RS(mpidr) (((mpidr) & 0xF0UL) >> 4)
131 #define gic_data_rdist() (this_cpu_ptr(gic_data.rdists.rdist))
132 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
133 #define gic_data_rdist_sgi_base() (gic_data_rdist_rd_base() + SZ_64K)
135 /* Our default, arbitrary priority value. Linux only uses one anyway. */
136 #define DEFAULT_PMR_VALUE 0xf0
138 enum gic_intid_range {
148 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
157 case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
159 case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
161 case 8192 ... GENMASK(23, 0):
164 return __INVALID_RANGE__;
168 static enum gic_intid_range get_intid_range(struct irq_data *d)
170 return __get_intid_range(d->hwirq);
173 static inline unsigned int gic_irq(struct irq_data *d)
178 static inline bool gic_irq_in_rdist(struct irq_data *d)
180 switch (get_intid_range(d)) {
190 static inline void __iomem *gic_dist_base(struct irq_data *d)
192 switch (get_intid_range(d)) {
196 /* SGI+PPI -> SGI_base for this CPU */
197 return gic_data_rdist_sgi_base();
201 /* SPI -> dist_base */
202 return gic_data.dist_base;
209 static void gic_do_wait_for_rwp(void __iomem *base)
211 u32 count = 1000000; /* 1s! */
213 while (readl_relaxed(base + GICD_CTLR) & GICD_CTLR_RWP) {
216 pr_err_ratelimited("RWP timeout, gone fishing\n");
224 /* Wait for completion of a distributor change */
225 static void gic_dist_wait_for_rwp(void)
227 gic_do_wait_for_rwp(gic_data.dist_base);
230 /* Wait for completion of a redistributor change */
231 static void gic_redist_wait_for_rwp(void)
233 gic_do_wait_for_rwp(gic_data_rdist_rd_base());
238 static u64 __maybe_unused gic_read_iar(void)
240 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
241 return gic_read_iar_cavium_thunderx();
243 return gic_read_iar_common();
247 static void gic_enable_redist(bool enable)
250 u32 count = 1000000; /* 1s! */
253 if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
256 rbase = gic_data_rdist_rd_base();
258 val = readl_relaxed(rbase + GICR_WAKER);
260 /* Wake up this CPU redistributor */
261 val &= ~GICR_WAKER_ProcessorSleep;
263 val |= GICR_WAKER_ProcessorSleep;
264 writel_relaxed(val, rbase + GICR_WAKER);
266 if (!enable) { /* Check that GICR_WAKER is writeable */
267 val = readl_relaxed(rbase + GICR_WAKER);
268 if (!(val & GICR_WAKER_ProcessorSleep))
269 return; /* No PM support in this redistributor */
273 val = readl_relaxed(rbase + GICR_WAKER);
274 if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
280 pr_err_ratelimited("redistributor failed to %s...\n",
281 enable ? "wakeup" : "sleep");
285 * Routines to disable, enable, EOI and route interrupts
287 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
289 switch (get_intid_range(d)) {
297 * Contrary to the ESPI range, the EPPI range is contiguous
298 * to the PPI range in the registers, so let's adjust the
299 * displacement accordingly. Consistency is overrated.
301 *index = d->hwirq - EPPI_BASE_INTID + 32;
304 *index = d->hwirq - ESPI_BASE_INTID;
307 return GICD_ISENABLERnE;
309 return GICD_ICENABLERnE;
311 return GICD_ISPENDRnE;
313 return GICD_ICPENDRnE;
315 return GICD_ISACTIVERnE;
317 return GICD_ICACTIVERnE;
318 case GICD_IPRIORITYR:
319 return GICD_IPRIORITYRnE;
323 return GICD_IROUTERnE;
337 static int gic_peek_irq(struct irq_data *d, u32 offset)
342 offset = convert_offset_index(d, offset, &index);
343 mask = 1 << (index % 32);
345 if (gic_irq_in_rdist(d))
346 base = gic_data_rdist_sgi_base();
348 base = gic_data.dist_base;
350 return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
353 static void gic_poke_irq(struct irq_data *d, u32 offset)
355 void (*rwp_wait)(void);
359 offset = convert_offset_index(d, offset, &index);
360 mask = 1 << (index % 32);
362 if (gic_irq_in_rdist(d)) {
363 base = gic_data_rdist_sgi_base();
364 rwp_wait = gic_redist_wait_for_rwp;
366 base = gic_data.dist_base;
367 rwp_wait = gic_dist_wait_for_rwp;
370 writel_relaxed(mask, base + offset + (index / 32) * 4);
374 static void gic_mask_irq(struct irq_data *d)
376 gic_poke_irq(d, GICD_ICENABLER);
379 static void gic_eoimode1_mask_irq(struct irq_data *d)
383 * When masking a forwarded interrupt, make sure it is
384 * deactivated as well.
386 * This ensures that an interrupt that is getting
387 * disabled/masked will not get "stuck", because there is
388 * noone to deactivate it (guest is being terminated).
390 if (irqd_is_forwarded_to_vcpu(d))
391 gic_poke_irq(d, GICD_ICACTIVER);
394 static void gic_unmask_irq(struct irq_data *d)
396 gic_poke_irq(d, GICD_ISENABLER);
399 static inline bool gic_supports_nmi(void)
401 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
402 static_branch_likely(&supports_pseudo_nmis);
405 static int gic_irq_set_irqchip_state(struct irq_data *d,
406 enum irqchip_irq_state which, bool val)
410 if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
414 case IRQCHIP_STATE_PENDING:
415 reg = val ? GICD_ISPENDR : GICD_ICPENDR;
418 case IRQCHIP_STATE_ACTIVE:
419 reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
422 case IRQCHIP_STATE_MASKED:
423 reg = val ? GICD_ICENABLER : GICD_ISENABLER;
430 gic_poke_irq(d, reg);
434 static int gic_irq_get_irqchip_state(struct irq_data *d,
435 enum irqchip_irq_state which, bool *val)
437 if (d->hwirq >= 8192) /* PPI/SPI only */
441 case IRQCHIP_STATE_PENDING:
442 *val = gic_peek_irq(d, GICD_ISPENDR);
445 case IRQCHIP_STATE_ACTIVE:
446 *val = gic_peek_irq(d, GICD_ISACTIVER);
449 case IRQCHIP_STATE_MASKED:
450 *val = !gic_peek_irq(d, GICD_ISENABLER);
460 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
462 void __iomem *base = gic_dist_base(d);
465 offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
467 writeb_relaxed(prio, base + offset + index);
470 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
472 switch (__get_intid_range(hwirq)) {
476 return hwirq - EPPI_BASE_INTID + 16;
482 static u32 gic_get_ppi_index(struct irq_data *d)
484 return __gic_get_ppi_index(d->hwirq);
487 static int gic_irq_nmi_setup(struct irq_data *d)
489 struct irq_desc *desc = irq_to_desc(d->irq);
491 if (!gic_supports_nmi())
494 if (gic_peek_irq(d, GICD_ISENABLER)) {
495 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
500 * A secondary irq_chip should be in charge of LPI request,
501 * it should not be possible to get there
503 if (WARN_ON(gic_irq(d) >= 8192))
506 /* desc lock should already be held */
507 if (gic_irq_in_rdist(d)) {
508 u32 idx = gic_get_ppi_index(d);
510 /* Setting up PPI as NMI, only switch handler for first NMI */
511 if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
512 refcount_set(&ppi_nmi_refs[idx], 1);
513 desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
516 desc->handle_irq = handle_fasteoi_nmi;
519 gic_irq_set_prio(d, GICD_INT_NMI_PRI);
524 static void gic_irq_nmi_teardown(struct irq_data *d)
526 struct irq_desc *desc = irq_to_desc(d->irq);
528 if (WARN_ON(!gic_supports_nmi()))
531 if (gic_peek_irq(d, GICD_ISENABLER)) {
532 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
537 * A secondary irq_chip should be in charge of LPI request,
538 * it should not be possible to get there
540 if (WARN_ON(gic_irq(d) >= 8192))
543 /* desc lock should already be held */
544 if (gic_irq_in_rdist(d)) {
545 u32 idx = gic_get_ppi_index(d);
547 /* Tearing down NMI, only switch handler for last NMI */
548 if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
549 desc->handle_irq = handle_percpu_devid_irq;
551 desc->handle_irq = handle_fasteoi_irq;
554 gic_irq_set_prio(d, GICD_INT_DEF_PRI);
557 static void gic_eoi_irq(struct irq_data *d)
559 gic_write_eoir(gic_irq(d));
562 static void gic_eoimode1_eoi_irq(struct irq_data *d)
565 * No need to deactivate an LPI, or an interrupt that
566 * is is getting forwarded to a vcpu.
568 if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
570 gic_write_dir(gic_irq(d));
573 static int gic_set_type(struct irq_data *d, unsigned int type)
575 enum gic_intid_range range;
576 unsigned int irq = gic_irq(d);
577 void (*rwp_wait)(void);
582 range = get_intid_range(d);
584 /* Interrupt configuration for SGIs can't be changed */
585 if (range == SGI_RANGE)
586 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
588 /* SPIs have restrictions on the supported types */
589 if ((range == SPI_RANGE || range == ESPI_RANGE) &&
590 type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
593 if (gic_irq_in_rdist(d)) {
594 base = gic_data_rdist_sgi_base();
595 rwp_wait = gic_redist_wait_for_rwp;
597 base = gic_data.dist_base;
598 rwp_wait = gic_dist_wait_for_rwp;
601 offset = convert_offset_index(d, GICD_ICFGR, &index);
603 ret = gic_configure_irq(index, type, base + offset, rwp_wait);
604 if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
605 /* Misconfigured PPIs are usually not fatal */
606 pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
613 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
615 if (get_intid_range(d) == SGI_RANGE)
619 irqd_set_forwarded_to_vcpu(d);
621 irqd_clr_forwarded_to_vcpu(d);
625 static u64 gic_mpidr_to_affinity(unsigned long mpidr)
629 aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
630 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
631 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
632 MPIDR_AFFINITY_LEVEL(mpidr, 0));
637 static void gic_deactivate_unhandled(u32 irqnr)
639 if (static_branch_likely(&supports_deactivate_key)) {
641 gic_write_dir(irqnr);
643 gic_write_eoir(irqnr);
647 static inline void gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
649 bool irqs_enabled = interrupts_enabled(regs);
655 if (static_branch_likely(&supports_deactivate_key))
656 gic_write_eoir(irqnr);
658 * Leave the PSR.I bit set to prevent other NMIs to be
659 * received while handling this one.
660 * PSR.I will be restored when we ERET to the
661 * interrupted context.
663 err = generic_handle_domain_nmi(gic_data.domain, irqnr);
665 gic_deactivate_unhandled(irqnr);
671 static u32 do_read_iar(struct pt_regs *regs)
675 if (gic_supports_nmi() && unlikely(!interrupts_enabled(regs))) {
679 * We were in a context with IRQs disabled. However, the
680 * entry code has set PMR to a value that allows any
681 * interrupt to be acknowledged, and not just NMIs. This can
682 * lead to surprising effects if the NMI has been retired in
683 * the meantime, and that there is an IRQ pending. The IRQ
684 * would then be taken in NMI context, something that nobody
685 * wants to debug twice.
687 * Until we sort this, drop PMR again to a level that will
688 * actually only allow NMIs before reading IAR, and then
689 * restore it to what it was.
691 pmr = gic_read_pmr();
695 iar = gic_read_iar();
699 iar = gic_read_iar();
705 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
709 irqnr = do_read_iar(regs);
711 /* Check for special IDs first */
712 if ((irqnr >= 1020 && irqnr <= 1023))
715 if (gic_supports_nmi() &&
716 unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI))) {
717 gic_handle_nmi(irqnr, regs);
721 if (gic_prio_masking_enabled()) {
723 gic_arch_enable_irqs();
726 if (static_branch_likely(&supports_deactivate_key))
727 gic_write_eoir(irqnr);
731 if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
732 WARN_ONCE(true, "Unexpected interrupt received!\n");
733 gic_deactivate_unhandled(irqnr);
737 static u32 gic_get_pribits(void)
741 pribits = gic_read_ctlr();
742 pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
743 pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
749 static bool gic_has_group0(void)
754 old_pmr = gic_read_pmr();
757 * Let's find out if Group0 is under control of EL3 or not by
758 * setting the highest possible, non-zero priority in PMR.
760 * If SCR_EL3.FIQ is set, the priority gets shifted down in
761 * order for the CPU interface to set bit 7, and keep the
762 * actual priority in the non-secure range. In the process, it
763 * looses the least significant bit and the actual priority
764 * becomes 0x80. Reading it back returns 0, indicating that
765 * we're don't have access to Group0.
767 gic_write_pmr(BIT(8 - gic_get_pribits()));
768 val = gic_read_pmr();
770 gic_write_pmr(old_pmr);
775 static void __init gic_dist_init(void)
779 void __iomem *base = gic_data.dist_base;
782 /* Disable the distributor */
783 writel_relaxed(0, base + GICD_CTLR);
784 gic_dist_wait_for_rwp();
787 * Configure SPIs as non-secure Group-1. This will only matter
788 * if the GIC only has a single security state. This will not
789 * do the right thing if the kernel is running in secure mode,
790 * but that's not the intended use case anyway.
792 for (i = 32; i < GIC_LINE_NR; i += 32)
793 writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
795 /* Extended SPI range, not handled by the GICv2/GICv3 common code */
796 for (i = 0; i < GIC_ESPI_NR; i += 32) {
797 writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
798 writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
801 for (i = 0; i < GIC_ESPI_NR; i += 32)
802 writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
804 for (i = 0; i < GIC_ESPI_NR; i += 16)
805 writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
807 for (i = 0; i < GIC_ESPI_NR; i += 4)
808 writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
810 /* Now do the common stuff, and wait for the distributor to drain */
811 gic_dist_config(base, GIC_LINE_NR, gic_dist_wait_for_rwp);
813 val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
814 if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
815 pr_info("Enabling SGIs without active state\n");
816 val |= GICD_CTLR_nASSGIreq;
819 /* Enable distributor with ARE, Group1 */
820 writel_relaxed(val, base + GICD_CTLR);
823 * Set all global interrupts to the boot CPU only. ARE must be
826 affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
827 for (i = 32; i < GIC_LINE_NR; i++)
828 gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
830 for (i = 0; i < GIC_ESPI_NR; i++)
831 gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
834 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
839 for (i = 0; i < gic_data.nr_redist_regions; i++) {
840 void __iomem *ptr = gic_data.redist_regions[i].redist_base;
844 reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
845 if (reg != GIC_PIDR2_ARCH_GICv3 &&
846 reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
847 pr_warn("No redistributor present @%p\n", ptr);
852 typer = gic_read_typer(ptr + GICR_TYPER);
853 ret = fn(gic_data.redist_regions + i, ptr);
857 if (gic_data.redist_regions[i].single_redist)
860 if (gic_data.redist_stride) {
861 ptr += gic_data.redist_stride;
863 ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
864 if (typer & GICR_TYPER_VLPIS)
865 ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
867 } while (!(typer & GICR_TYPER_LAST));
870 return ret ? -ENODEV : 0;
873 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
875 unsigned long mpidr = cpu_logical_map(smp_processor_id());
880 * Convert affinity to a 32bit value that can be matched to
881 * GICR_TYPER bits [63:32].
883 aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
884 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
885 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
886 MPIDR_AFFINITY_LEVEL(mpidr, 0));
888 typer = gic_read_typer(ptr + GICR_TYPER);
889 if ((typer >> 32) == aff) {
890 u64 offset = ptr - region->redist_base;
891 raw_spin_lock_init(&gic_data_rdist()->rd_lock);
892 gic_data_rdist_rd_base() = ptr;
893 gic_data_rdist()->phys_base = region->phys_base + offset;
895 pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
896 smp_processor_id(), mpidr,
897 (int)(region - gic_data.redist_regions),
898 &gic_data_rdist()->phys_base);
906 static int gic_populate_rdist(void)
908 if (gic_iterate_rdists(__gic_populate_rdist) == 0)
911 /* We couldn't even deal with ourselves... */
912 WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
914 (unsigned long)cpu_logical_map(smp_processor_id()));
918 static int __gic_update_rdist_properties(struct redist_region *region,
921 u64 typer = gic_read_typer(ptr + GICR_TYPER);
923 gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
925 /* RVPEID implies some form of DirectLPI, no matter what the doc says... :-/ */
926 gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
927 gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
928 gic_data.rdists.has_rvpeid);
929 gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
931 /* Detect non-sensical configurations */
932 if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
933 gic_data.rdists.has_direct_lpi = false;
934 gic_data.rdists.has_vlpis = false;
935 gic_data.rdists.has_rvpeid = false;
938 gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
943 static void gic_update_rdist_properties(void)
945 gic_data.ppi_nr = UINT_MAX;
946 gic_iterate_rdists(__gic_update_rdist_properties);
947 if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
949 pr_info("%d PPIs implemented\n", gic_data.ppi_nr);
950 if (gic_data.rdists.has_vlpis)
951 pr_info("GICv4 features: %s%s%s\n",
952 gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
953 gic_data.rdists.has_rvpeid ? "RVPEID " : "",
954 gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
957 /* Check whether it's single security state view */
958 static inline bool gic_dist_security_disabled(void)
960 return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
963 static void gic_cpu_sys_reg_init(void)
965 int i, cpu = smp_processor_id();
966 u64 mpidr = cpu_logical_map(cpu);
967 u64 need_rss = MPIDR_RS(mpidr);
972 * Need to check that the SRE bit has actually been set. If
973 * not, it means that SRE is disabled at EL2. We're going to
974 * die painfully, and there is nothing we can do about it.
976 * Kindly inform the luser.
978 if (!gic_enable_sre())
979 pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
981 pribits = gic_get_pribits();
983 group0 = gic_has_group0();
985 /* Set priority mask register */
986 if (!gic_prio_masking_enabled()) {
987 write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
988 } else if (gic_supports_nmi()) {
990 * Mismatch configuration with boot CPU, the system is likely
991 * to die as interrupt masking will not work properly on all
994 * The boot CPU calls this function before enabling NMI support,
995 * and as a result we'll never see this warning in the boot path
998 if (static_branch_unlikely(&gic_nonsecure_priorities))
999 WARN_ON(!group0 || gic_dist_security_disabled());
1001 WARN_ON(group0 && !gic_dist_security_disabled());
1005 * Some firmwares hand over to the kernel with the BPR changed from
1006 * its reset value (and with a value large enough to prevent
1007 * any pre-emptive interrupts from working at all). Writing a zero
1008 * to BPR restores is reset value.
1012 if (static_branch_likely(&supports_deactivate_key)) {
1013 /* EOI drops priority only (mode 1) */
1014 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1016 /* EOI deactivates interrupt too (mode 0) */
1017 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1020 /* Always whack Group0 before Group1 */
1025 write_gicreg(0, ICC_AP0R3_EL1);
1026 write_gicreg(0, ICC_AP0R2_EL1);
1029 write_gicreg(0, ICC_AP0R1_EL1);
1033 write_gicreg(0, ICC_AP0R0_EL1);
1042 write_gicreg(0, ICC_AP1R3_EL1);
1043 write_gicreg(0, ICC_AP1R2_EL1);
1046 write_gicreg(0, ICC_AP1R1_EL1);
1050 write_gicreg(0, ICC_AP1R0_EL1);
1055 /* ... and let's hit the road... */
1056 gic_write_grpen1(1);
1058 /* Keep the RSS capability status in per_cpu variable */
1059 per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1061 /* Check all the CPUs have capable of sending SGIs to other CPUs */
1062 for_each_online_cpu(i) {
1063 bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1065 need_rss |= MPIDR_RS(cpu_logical_map(i));
1066 if (need_rss && (!have_rss))
1067 pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1068 cpu, (unsigned long)mpidr,
1069 i, (unsigned long)cpu_logical_map(i));
1073 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1074 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1075 * UNPREDICTABLE choice of :
1076 * - The write is ignored.
1077 * - The RS field is treated as 0.
1079 if (need_rss && (!gic_data.has_rss))
1080 pr_crit_once("RSS is required but GICD doesn't support it\n");
1083 static bool gicv3_nolpi;
1085 static int __init gicv3_nolpi_cfg(char *buf)
1087 return strtobool(buf, &gicv3_nolpi);
1089 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1091 static int gic_dist_supports_lpis(void)
1093 return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1094 !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1098 static void gic_cpu_init(void)
1100 void __iomem *rbase;
1103 /* Register ourselves with the rest of the world */
1104 if (gic_populate_rdist())
1107 gic_enable_redist(true);
1109 WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1110 !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1111 "Distributor has extended ranges, but CPU%d doesn't\n",
1112 smp_processor_id());
1114 rbase = gic_data_rdist_sgi_base();
1116 /* Configure SGIs/PPIs as non-secure Group-1 */
1117 for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1118 writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1120 gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1122 /* initialise system registers */
1123 gic_cpu_sys_reg_init();
1128 #define MPIDR_TO_SGI_RS(mpidr) (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1129 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr) ((mpidr) & ~0xFUL)
1131 static int gic_starting_cpu(unsigned int cpu)
1135 if (gic_dist_supports_lpis())
1141 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1142 unsigned long cluster_id)
1144 int next_cpu, cpu = *base_cpu;
1145 unsigned long mpidr = cpu_logical_map(cpu);
1148 while (cpu < nr_cpu_ids) {
1149 tlist |= 1 << (mpidr & 0xf);
1151 next_cpu = cpumask_next(cpu, mask);
1152 if (next_cpu >= nr_cpu_ids)
1156 mpidr = cpu_logical_map(cpu);
1158 if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1168 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1169 (MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1170 << ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1172 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1176 val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) |
1177 MPIDR_TO_SGI_AFFINITY(cluster_id, 2) |
1178 irq << ICC_SGI1R_SGI_ID_SHIFT |
1179 MPIDR_TO_SGI_AFFINITY(cluster_id, 1) |
1180 MPIDR_TO_SGI_RS(cluster_id) |
1181 tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1183 pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1184 gic_write_sgi1r(val);
1187 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1191 if (WARN_ON(d->hwirq >= 16))
1195 * Ensure that stores to Normal memory are visible to the
1196 * other CPUs before issuing the IPI.
1200 for_each_cpu(cpu, mask) {
1201 u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1204 tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1205 gic_send_sgi(cluster_id, tlist, d->hwirq);
1208 /* Force the above writes to ICC_SGI1R_EL1 to be executed */
1212 static void __init gic_smp_init(void)
1214 struct irq_fwspec sgi_fwspec = {
1215 .fwnode = gic_data.fwnode,
1220 cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1221 "irqchip/arm/gicv3:starting",
1222 gic_starting_cpu, NULL);
1224 /* Register all 8 non-secure SGIs */
1225 base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
1226 NUMA_NO_NODE, &sgi_fwspec,
1228 if (WARN_ON(base_sgi <= 0))
1231 set_smp_ipi_range(base_sgi, 8);
1234 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1244 cpu = cpumask_first(mask_val);
1246 cpu = cpumask_any_and(mask_val, cpu_online_mask);
1248 if (cpu >= nr_cpu_ids)
1251 if (gic_irq_in_rdist(d))
1254 /* If interrupt was enabled, disable it first */
1255 enabled = gic_peek_irq(d, GICD_ISENABLER);
1259 offset = convert_offset_index(d, GICD_IROUTER, &index);
1260 reg = gic_dist_base(d) + offset + (index * 8);
1261 val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1263 gic_write_irouter(val, reg);
1266 * If the interrupt was enabled, enabled it again. Otherwise,
1267 * just wait for the distributor to have digested our changes.
1272 gic_dist_wait_for_rwp();
1274 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1276 return IRQ_SET_MASK_OK_DONE;
1279 #define gic_set_affinity NULL
1280 #define gic_ipi_send_mask NULL
1281 #define gic_smp_init() do { } while(0)
1284 static int gic_retrigger(struct irq_data *data)
1286 return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1289 #ifdef CONFIG_CPU_PM
1290 static int gic_cpu_pm_notifier(struct notifier_block *self,
1291 unsigned long cmd, void *v)
1293 if (cmd == CPU_PM_EXIT) {
1294 if (gic_dist_security_disabled())
1295 gic_enable_redist(true);
1296 gic_cpu_sys_reg_init();
1297 } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1298 gic_write_grpen1(0);
1299 gic_enable_redist(false);
1304 static struct notifier_block gic_cpu_pm_notifier_block = {
1305 .notifier_call = gic_cpu_pm_notifier,
1308 static void gic_cpu_pm_init(void)
1310 cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1314 static inline void gic_cpu_pm_init(void) { }
1315 #endif /* CONFIG_CPU_PM */
1317 static struct irq_chip gic_chip = {
1319 .irq_mask = gic_mask_irq,
1320 .irq_unmask = gic_unmask_irq,
1321 .irq_eoi = gic_eoi_irq,
1322 .irq_set_type = gic_set_type,
1323 .irq_set_affinity = gic_set_affinity,
1324 .irq_retrigger = gic_retrigger,
1325 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
1326 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
1327 .irq_nmi_setup = gic_irq_nmi_setup,
1328 .irq_nmi_teardown = gic_irq_nmi_teardown,
1329 .ipi_send_mask = gic_ipi_send_mask,
1330 .flags = IRQCHIP_SET_TYPE_MASKED |
1331 IRQCHIP_SKIP_SET_WAKE |
1332 IRQCHIP_MASK_ON_SUSPEND,
1335 static struct irq_chip gic_eoimode1_chip = {
1337 .irq_mask = gic_eoimode1_mask_irq,
1338 .irq_unmask = gic_unmask_irq,
1339 .irq_eoi = gic_eoimode1_eoi_irq,
1340 .irq_set_type = gic_set_type,
1341 .irq_set_affinity = gic_set_affinity,
1342 .irq_retrigger = gic_retrigger,
1343 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
1344 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
1345 .irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity,
1346 .irq_nmi_setup = gic_irq_nmi_setup,
1347 .irq_nmi_teardown = gic_irq_nmi_teardown,
1348 .ipi_send_mask = gic_ipi_send_mask,
1349 .flags = IRQCHIP_SET_TYPE_MASKED |
1350 IRQCHIP_SKIP_SET_WAKE |
1351 IRQCHIP_MASK_ON_SUSPEND,
1354 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1357 struct irq_chip *chip = &gic_chip;
1358 struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1360 if (static_branch_likely(&supports_deactivate_key))
1361 chip = &gic_eoimode1_chip;
1363 switch (__get_intid_range(hw)) {
1367 irq_set_percpu_devid(irq);
1368 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1369 handle_percpu_devid_irq, NULL, NULL);
1374 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1375 handle_fasteoi_irq, NULL, NULL);
1377 irqd_set_single_target(irqd);
1381 if (!gic_dist_supports_lpis())
1383 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1384 handle_fasteoi_irq, NULL, NULL);
1391 /* Prevents SW retriggers which mess up the ACK/EOI ordering */
1392 irqd_set_handle_enforce_irqctx(irqd);
1396 static int gic_irq_domain_translate(struct irq_domain *d,
1397 struct irq_fwspec *fwspec,
1398 unsigned long *hwirq,
1401 if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1402 *hwirq = fwspec->param[0];
1403 *type = IRQ_TYPE_EDGE_RISING;
1407 if (is_of_node(fwspec->fwnode)) {
1408 if (fwspec->param_count < 3)
1411 switch (fwspec->param[0]) {
1413 *hwirq = fwspec->param[1] + 32;
1416 *hwirq = fwspec->param[1] + 16;
1419 *hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1422 *hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1424 case GIC_IRQ_TYPE_LPI: /* LPI */
1425 *hwirq = fwspec->param[1];
1427 case GIC_IRQ_TYPE_PARTITION:
1428 *hwirq = fwspec->param[1];
1429 if (fwspec->param[1] >= 16)
1430 *hwirq += EPPI_BASE_INTID - 16;
1438 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1441 * Make it clear that broken DTs are... broken.
1442 * Partitioned PPIs are an unfortunate exception.
1444 WARN_ON(*type == IRQ_TYPE_NONE &&
1445 fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1449 if (is_fwnode_irqchip(fwspec->fwnode)) {
1450 if(fwspec->param_count != 2)
1453 *hwirq = fwspec->param[0];
1454 *type = fwspec->param[1];
1456 WARN_ON(*type == IRQ_TYPE_NONE);
1463 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1464 unsigned int nr_irqs, void *arg)
1467 irq_hw_number_t hwirq;
1468 unsigned int type = IRQ_TYPE_NONE;
1469 struct irq_fwspec *fwspec = arg;
1471 ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1475 for (i = 0; i < nr_irqs; i++) {
1476 ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1484 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1485 unsigned int nr_irqs)
1489 for (i = 0; i < nr_irqs; i++) {
1490 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1491 irq_set_handler(virq + i, NULL);
1492 irq_domain_reset_irq_data(d);
1496 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1497 irq_hw_number_t hwirq)
1499 enum gic_intid_range range;
1501 if (!gic_data.ppi_descs)
1504 if (!is_of_node(fwspec->fwnode))
1507 if (fwspec->param_count < 4 || !fwspec->param[3])
1510 range = __get_intid_range(hwirq);
1511 if (range != PPI_RANGE && range != EPPI_RANGE)
1517 static int gic_irq_domain_select(struct irq_domain *d,
1518 struct irq_fwspec *fwspec,
1519 enum irq_domain_bus_token bus_token)
1521 unsigned int type, ret, ppi_idx;
1522 irq_hw_number_t hwirq;
1525 if (fwspec->fwnode != d->fwnode)
1528 /* If this is not DT, then we have a single domain */
1529 if (!is_of_node(fwspec->fwnode))
1532 ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1533 if (WARN_ON_ONCE(ret))
1536 if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1537 return d == gic_data.domain;
1540 * If this is a PPI and we have a 4th (non-null) parameter,
1541 * then we need to match the partition domain.
1543 ppi_idx = __gic_get_ppi_index(hwirq);
1544 return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1547 static const struct irq_domain_ops gic_irq_domain_ops = {
1548 .translate = gic_irq_domain_translate,
1549 .alloc = gic_irq_domain_alloc,
1550 .free = gic_irq_domain_free,
1551 .select = gic_irq_domain_select,
1554 static int partition_domain_translate(struct irq_domain *d,
1555 struct irq_fwspec *fwspec,
1556 unsigned long *hwirq,
1559 unsigned long ppi_intid;
1560 struct device_node *np;
1561 unsigned int ppi_idx;
1564 if (!gic_data.ppi_descs)
1567 np = of_find_node_by_phandle(fwspec->param[3]);
1571 ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1572 if (WARN_ON_ONCE(ret))
1575 ppi_idx = __gic_get_ppi_index(ppi_intid);
1576 ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1577 of_node_to_fwnode(np));
1582 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1587 static const struct irq_domain_ops partition_domain_ops = {
1588 .translate = partition_domain_translate,
1589 .select = gic_irq_domain_select,
1592 static bool gic_enable_quirk_msm8996(void *data)
1594 struct gic_chip_data *d = data;
1596 d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1601 static bool gic_enable_quirk_cavium_38539(void *data)
1603 struct gic_chip_data *d = data;
1605 d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1610 static bool gic_enable_quirk_hip06_07(void *data)
1612 struct gic_chip_data *d = data;
1615 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1616 * not being an actual ARM implementation). The saving grace is
1617 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1618 * HIP07 doesn't even have a proper IIDR, and still pretends to
1619 * have ESPI. In both cases, put them right.
1621 if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1622 /* Zero both ESPI and the RES0 field next to it... */
1623 d->rdists.gicd_typer &= ~GENMASK(9, 8);
1630 static const struct gic_quirk gic_quirks[] = {
1632 .desc = "GICv3: Qualcomm MSM8996 broken firmware",
1633 .compatible = "qcom,msm8996-gic-v3",
1634 .init = gic_enable_quirk_msm8996,
1637 .desc = "GICv3: HIP06 erratum 161010803",
1640 .init = gic_enable_quirk_hip06_07,
1643 .desc = "GICv3: HIP07 erratum 161010803",
1646 .init = gic_enable_quirk_hip06_07,
1650 * Reserved register accesses generate a Synchronous
1651 * External Abort. This erratum applies to:
1652 * - ThunderX: CN88xx
1653 * - OCTEON TX: CN83xx, CN81xx
1654 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1656 .desc = "GICv3: Cavium erratum 38539",
1659 .init = gic_enable_quirk_cavium_38539,
1665 static void gic_enable_nmi_support(void)
1669 if (!gic_prio_masking_enabled())
1672 ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1676 for (i = 0; i < gic_data.ppi_nr; i++)
1677 refcount_set(&ppi_nmi_refs[i], 0);
1680 * Linux itself doesn't use 1:N distribution, so has no need to
1681 * set PMHE. The only reason to have it set is if EL3 requires it
1682 * (and we can't change it).
1684 if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
1685 static_branch_enable(&gic_pmr_sync);
1687 pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1688 static_branch_unlikely(&gic_pmr_sync) ? "forced" : "relaxed");
1691 * How priority values are used by the GIC depends on two things:
1692 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1693 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1694 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1695 * the ICC_PMR_EL1 register and the priority that software assigns to
1698 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1699 * -----------------------------------------------------------
1700 * 1 | - | unchanged | unchanged
1701 * -----------------------------------------------------------
1702 * 0 | 1 | non-secure | non-secure
1703 * -----------------------------------------------------------
1704 * 0 | 0 | unchanged | non-secure
1706 * where non-secure means that the value is right-shifted by one and the
1707 * MSB bit set, to make it fit in the non-secure priority range.
1709 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1710 * are both either modified or unchanged, we can use the same set of
1713 * In the last case, where only the interrupt priorities are modified to
1714 * be in the non-secure range, we use a different PMR value to mask IRQs
1715 * and the rest of the values that we use remain unchanged.
1717 if (gic_has_group0() && !gic_dist_security_disabled())
1718 static_branch_enable(&gic_nonsecure_priorities);
1720 static_branch_enable(&supports_pseudo_nmis);
1722 if (static_branch_likely(&supports_deactivate_key))
1723 gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1725 gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1728 static int __init gic_init_bases(void __iomem *dist_base,
1729 struct redist_region *rdist_regs,
1730 u32 nr_redist_regions,
1732 struct fwnode_handle *handle)
1737 if (!is_hyp_mode_available())
1738 static_branch_disable(&supports_deactivate_key);
1740 if (static_branch_likely(&supports_deactivate_key))
1741 pr_info("GIC: Using split EOI/Deactivate mode\n");
1743 gic_data.fwnode = handle;
1744 gic_data.dist_base = dist_base;
1745 gic_data.redist_regions = rdist_regs;
1746 gic_data.nr_redist_regions = nr_redist_regions;
1747 gic_data.redist_stride = redist_stride;
1750 * Find out how many interrupts are supported.
1752 typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1753 gic_data.rdists.gicd_typer = typer;
1755 gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1756 gic_quirks, &gic_data);
1758 pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1759 pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1762 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1763 * architecture spec (which says that reserved registers are RES0).
1765 if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1766 gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1768 gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1770 gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1771 gic_data.rdists.has_rvpeid = true;
1772 gic_data.rdists.has_vlpis = true;
1773 gic_data.rdists.has_direct_lpi = true;
1774 gic_data.rdists.has_vpend_valid_dirty = true;
1776 if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1781 irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1783 gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1784 pr_info("Distributor has %sRange Selector support\n",
1785 gic_data.has_rss ? "" : "no ");
1787 if (typer & GICD_TYPER_MBIS) {
1788 err = mbi_init(handle, gic_data.domain);
1790 pr_err("Failed to initialize MBIs\n");
1793 set_handle_irq(gic_handle_irq);
1795 gic_update_rdist_properties();
1802 if (gic_dist_supports_lpis()) {
1803 its_init(handle, &gic_data.rdists, gic_data.domain);
1806 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1807 gicv2m_init(handle, gic_data.domain);
1810 gic_enable_nmi_support();
1815 if (gic_data.domain)
1816 irq_domain_remove(gic_data.domain);
1817 free_percpu(gic_data.rdists.rdist);
1821 static int __init gic_validate_dist_version(void __iomem *dist_base)
1823 u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1825 if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1831 /* Create all possible partitions at boot time */
1832 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1834 struct device_node *parts_node, *child_part;
1835 int part_idx = 0, i;
1837 struct partition_affinity *parts;
1839 parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1843 gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
1844 if (!gic_data.ppi_descs)
1847 nr_parts = of_get_child_count(parts_node);
1852 parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1853 if (WARN_ON(!parts))
1856 for_each_child_of_node(parts_node, child_part) {
1857 struct partition_affinity *part;
1860 part = &parts[part_idx];
1862 part->partition_id = of_node_to_fwnode(child_part);
1864 pr_info("GIC: PPI partition %pOFn[%d] { ",
1865 child_part, part_idx);
1867 n = of_property_count_elems_of_size(child_part, "affinity",
1871 for (i = 0; i < n; i++) {
1874 struct device_node *cpu_node;
1876 err = of_property_read_u32_index(child_part, "affinity",
1881 cpu_node = of_find_node_by_phandle(cpu_phandle);
1882 if (WARN_ON(!cpu_node))
1885 cpu = of_cpu_node_to_id(cpu_node);
1886 if (WARN_ON(cpu < 0))
1889 pr_cont("%pOF[%d] ", cpu_node, cpu);
1891 cpumask_set_cpu(cpu, &part->mask);
1898 for (i = 0; i < gic_data.ppi_nr; i++) {
1900 struct partition_desc *desc;
1901 struct irq_fwspec ppi_fwspec = {
1902 .fwnode = gic_data.fwnode,
1905 [0] = GIC_IRQ_TYPE_PARTITION,
1907 [2] = IRQ_TYPE_NONE,
1911 irq = irq_create_fwspec_mapping(&ppi_fwspec);
1914 desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
1915 irq, &partition_domain_ops);
1919 gic_data.ppi_descs[i] = desc;
1923 of_node_put(parts_node);
1926 static void __init gic_of_setup_kvm_info(struct device_node *node)
1932 gic_v3_kvm_info.type = GIC_V3;
1934 gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1935 if (!gic_v3_kvm_info.maint_irq)
1938 if (of_property_read_u32(node, "#redistributor-regions",
1942 gicv_idx += 3; /* Also skip GICD, GICC, GICH */
1943 ret = of_address_to_resource(node, gicv_idx, &r);
1945 gic_v3_kvm_info.vcpu = r;
1947 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
1948 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
1949 vgic_set_kvm_info(&gic_v3_kvm_info);
1952 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
1954 void __iomem *dist_base;
1955 struct redist_region *rdist_regs;
1957 u32 nr_redist_regions;
1960 dist_base = of_iomap(node, 0);
1962 pr_err("%pOF: unable to map gic dist registers\n", node);
1966 err = gic_validate_dist_version(dist_base);
1968 pr_err("%pOF: no distributor detected, giving up\n", node);
1969 goto out_unmap_dist;
1972 if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
1973 nr_redist_regions = 1;
1975 rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
1979 goto out_unmap_dist;
1982 for (i = 0; i < nr_redist_regions; i++) {
1983 struct resource res;
1986 ret = of_address_to_resource(node, 1 + i, &res);
1987 rdist_regs[i].redist_base = of_iomap(node, 1 + i);
1988 if (ret || !rdist_regs[i].redist_base) {
1989 pr_err("%pOF: couldn't map region %d\n", node, i);
1991 goto out_unmap_rdist;
1993 rdist_regs[i].phys_base = res.start;
1996 if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
1999 gic_enable_of_quirks(node, gic_quirks, &gic_data);
2001 err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
2002 redist_stride, &node->fwnode);
2004 goto out_unmap_rdist;
2006 gic_populate_ppi_partitions(node);
2008 if (static_branch_likely(&supports_deactivate_key))
2009 gic_of_setup_kvm_info(node);
2013 for (i = 0; i < nr_redist_regions; i++)
2014 if (rdist_regs[i].redist_base)
2015 iounmap(rdist_regs[i].redist_base);
2022 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2027 void __iomem *dist_base;
2028 struct redist_region *redist_regs;
2029 u32 nr_redist_regions;
2034 phys_addr_t vcpu_base;
2035 } acpi_data __initdata;
2038 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2040 static int count = 0;
2042 acpi_data.redist_regs[count].phys_base = phys_base;
2043 acpi_data.redist_regs[count].redist_base = redist_base;
2044 acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2049 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2050 const unsigned long end)
2052 struct acpi_madt_generic_redistributor *redist =
2053 (struct acpi_madt_generic_redistributor *)header;
2054 void __iomem *redist_base;
2056 redist_base = ioremap(redist->base_address, redist->length);
2058 pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2062 gic_acpi_register_redist(redist->base_address, redist_base);
2067 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2068 const unsigned long end)
2070 struct acpi_madt_generic_interrupt *gicc =
2071 (struct acpi_madt_generic_interrupt *)header;
2072 u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2073 u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2074 void __iomem *redist_base;
2076 /* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2077 if (!(gicc->flags & ACPI_MADT_ENABLED))
2080 redist_base = ioremap(gicc->gicr_base_address, size);
2084 gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2088 static int __init gic_acpi_collect_gicr_base(void)
2090 acpi_tbl_entry_handler redist_parser;
2091 enum acpi_madt_type type;
2093 if (acpi_data.single_redist) {
2094 type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2095 redist_parser = gic_acpi_parse_madt_gicc;
2097 type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2098 redist_parser = gic_acpi_parse_madt_redist;
2101 /* Collect redistributor base addresses in GICR entries */
2102 if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2105 pr_info("No valid GICR entries exist\n");
2109 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2110 const unsigned long end)
2112 /* Subtable presence means that redist exists, that's it */
2116 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2117 const unsigned long end)
2119 struct acpi_madt_generic_interrupt *gicc =
2120 (struct acpi_madt_generic_interrupt *)header;
2123 * If GICC is enabled and has valid gicr base address, then it means
2124 * GICR base is presented via GICC
2126 if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2127 acpi_data.enabled_rdists++;
2132 * It's perfectly valid firmware can pass disabled GICC entry, driver
2133 * should not treat as errors, skip the entry instead of probe fail.
2135 if (!(gicc->flags & ACPI_MADT_ENABLED))
2141 static int __init gic_acpi_count_gicr_regions(void)
2146 * Count how many redistributor regions we have. It is not allowed
2147 * to mix redistributor description, GICR and GICC subtables have to be
2148 * mutually exclusive.
2150 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2151 gic_acpi_match_gicr, 0);
2153 acpi_data.single_redist = false;
2157 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2158 gic_acpi_match_gicc, 0);
2160 acpi_data.single_redist = true;
2161 count = acpi_data.enabled_rdists;
2167 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2168 struct acpi_probe_entry *ape)
2170 struct acpi_madt_generic_distributor *dist;
2173 dist = (struct acpi_madt_generic_distributor *)header;
2174 if (dist->version != ape->driver_data)
2177 /* We need to do that exercise anyway, the sooner the better */
2178 count = gic_acpi_count_gicr_regions();
2182 acpi_data.nr_redist_regions = count;
2186 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2187 const unsigned long end)
2189 struct acpi_madt_generic_interrupt *gicc =
2190 (struct acpi_madt_generic_interrupt *)header;
2192 static int first_madt = true;
2194 /* Skip unusable CPUs */
2195 if (!(gicc->flags & ACPI_MADT_ENABLED))
2198 maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2199 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2204 acpi_data.maint_irq = gicc->vgic_interrupt;
2205 acpi_data.maint_irq_mode = maint_irq_mode;
2206 acpi_data.vcpu_base = gicc->gicv_base_address;
2212 * The maintenance interrupt and GICV should be the same for every CPU
2214 if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2215 (acpi_data.maint_irq_mode != maint_irq_mode) ||
2216 (acpi_data.vcpu_base != gicc->gicv_base_address))
2222 static bool __init gic_acpi_collect_virt_info(void)
2226 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2227 gic_acpi_parse_virt_madt_gicc, 0);
2232 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2233 #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K)
2234 #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K)
2236 static void __init gic_acpi_setup_kvm_info(void)
2240 if (!gic_acpi_collect_virt_info()) {
2241 pr_warn("Unable to get hardware information used for virtualization\n");
2245 gic_v3_kvm_info.type = GIC_V3;
2247 irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2248 acpi_data.maint_irq_mode,
2253 gic_v3_kvm_info.maint_irq = irq;
2255 if (acpi_data.vcpu_base) {
2256 struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2258 vcpu->flags = IORESOURCE_MEM;
2259 vcpu->start = acpi_data.vcpu_base;
2260 vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2263 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2264 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2265 vgic_set_kvm_info(&gic_v3_kvm_info);
2269 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2271 struct acpi_madt_generic_distributor *dist;
2272 struct fwnode_handle *domain_handle;
2276 /* Get distributor base address */
2277 dist = (struct acpi_madt_generic_distributor *)header;
2278 acpi_data.dist_base = ioremap(dist->base_address,
2279 ACPI_GICV3_DIST_MEM_SIZE);
2280 if (!acpi_data.dist_base) {
2281 pr_err("Unable to map GICD registers\n");
2285 err = gic_validate_dist_version(acpi_data.dist_base);
2287 pr_err("No distributor detected at @%p, giving up\n",
2288 acpi_data.dist_base);
2289 goto out_dist_unmap;
2292 size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2293 acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2294 if (!acpi_data.redist_regs) {
2296 goto out_dist_unmap;
2299 err = gic_acpi_collect_gicr_base();
2301 goto out_redist_unmap;
2303 domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2304 if (!domain_handle) {
2306 goto out_redist_unmap;
2309 err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
2310 acpi_data.nr_redist_regions, 0, domain_handle);
2312 goto out_fwhandle_free;
2314 acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
2316 if (static_branch_likely(&supports_deactivate_key))
2317 gic_acpi_setup_kvm_info();
2322 irq_domain_free_fwnode(domain_handle);
2324 for (i = 0; i < acpi_data.nr_redist_regions; i++)
2325 if (acpi_data.redist_regs[i].redist_base)
2326 iounmap(acpi_data.redist_regs[i].redist_base);
2327 kfree(acpi_data.redist_regs);
2329 iounmap(acpi_data.dist_base);
2332 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2333 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2335 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2336 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2338 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2339 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,