2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
34 #include <linux/module.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
46 #include <net/tls_toe.h>
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
61 #define CHECK_CIPHER_DESC(cipher,ci) \
62 static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE); \
63 static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE); \
64 static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE); \
65 static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE); \
66 static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE); \
67 static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE); \
68 static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE); \
69 static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
71 #define __CIPHER_DESC(ci) \
72 .iv_offset = offsetof(struct ci, iv), \
73 .key_offset = offsetof(struct ci, key), \
74 .salt_offset = offsetof(struct ci, salt), \
75 .rec_seq_offset = offsetof(struct ci, rec_seq), \
76 .crypto_info = sizeof(struct ci)
78 #define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
79 .nonce = cipher ## _IV_SIZE, \
80 .iv = cipher ## _IV_SIZE, \
81 .key = cipher ## _KEY_SIZE, \
82 .salt = cipher ## _SALT_SIZE, \
83 .tag = cipher ## _TAG_SIZE, \
84 .rec_seq = cipher ## _REC_SEQ_SIZE, \
85 .cipher_name = algname, \
86 .offloadable = _offloadable, \
90 #define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
92 .iv = cipher ## _IV_SIZE, \
93 .key = cipher ## _KEY_SIZE, \
94 .salt = cipher ## _SALT_SIZE, \
95 .tag = cipher ## _TAG_SIZE, \
96 .rec_seq = cipher ## _REC_SEQ_SIZE, \
97 .cipher_name = algname, \
98 .offloadable = _offloadable, \
102 const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
103 CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
104 CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
105 CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
106 CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
107 CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
108 CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
109 CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
110 CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
113 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
114 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
115 CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
116 CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
117 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
118 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
119 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
120 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
122 static const struct proto *saved_tcpv6_prot;
123 static DEFINE_MUTEX(tcpv6_prot_mutex);
124 static const struct proto *saved_tcpv4_prot;
125 static DEFINE_MUTEX(tcpv4_prot_mutex);
126 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
127 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
128 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
129 const struct proto *base);
131 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
133 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
135 WRITE_ONCE(sk->sk_prot,
136 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
137 WRITE_ONCE(sk->sk_socket->ops,
138 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
141 int wait_on_pending_writer(struct sock *sk, long *timeo)
143 DEFINE_WAIT_FUNC(wait, woken_wake_function);
146 add_wait_queue(sk_sleep(sk), &wait);
153 if (signal_pending(current)) {
154 rc = sock_intr_errno(*timeo);
158 ret = sk_wait_event(sk, timeo,
159 !READ_ONCE(sk->sk_write_pending), &wait);
166 remove_wait_queue(sk_sleep(sk), &wait);
170 int tls_push_sg(struct sock *sk,
171 struct tls_context *ctx,
172 struct scatterlist *sg,
177 struct msghdr msg = {
178 .msg_flags = MSG_SPLICE_PAGES | flags,
183 int offset = first_offset;
185 size = sg->length - offset;
186 offset += sg->offset;
188 ctx->splicing_pages = true;
190 /* is sending application-limited? */
191 tcp_rate_check_app_limited(sk);
194 bvec_set_page(&bvec, p, size, offset);
195 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
197 ret = tcp_sendmsg_locked(sk, &msg, size);
206 offset -= sg->offset;
207 ctx->partially_sent_offset = offset;
208 ctx->partially_sent_record = (void *)sg;
209 ctx->splicing_pages = false;
214 sk_mem_uncharge(sk, sg->length);
223 ctx->splicing_pages = false;
228 static int tls_handle_open_record(struct sock *sk, int flags)
230 struct tls_context *ctx = tls_get_ctx(sk);
232 if (tls_is_pending_open_record(ctx))
233 return ctx->push_pending_record(sk, flags);
238 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
239 unsigned char *record_type)
241 struct cmsghdr *cmsg;
244 for_each_cmsghdr(cmsg, msg) {
245 if (!CMSG_OK(msg, cmsg))
247 if (cmsg->cmsg_level != SOL_TLS)
250 switch (cmsg->cmsg_type) {
251 case TLS_SET_RECORD_TYPE:
252 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
255 if (msg->msg_flags & MSG_MORE)
258 rc = tls_handle_open_record(sk, msg->msg_flags);
262 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
273 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
276 struct scatterlist *sg;
279 sg = ctx->partially_sent_record;
280 offset = ctx->partially_sent_offset;
282 ctx->partially_sent_record = NULL;
283 return tls_push_sg(sk, ctx, sg, offset, flags);
286 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
288 struct scatterlist *sg;
290 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
291 put_page(sg_page(sg));
292 sk_mem_uncharge(sk, sg->length);
294 ctx->partially_sent_record = NULL;
297 static void tls_write_space(struct sock *sk)
299 struct tls_context *ctx = tls_get_ctx(sk);
301 /* If splicing_pages call lower protocol write space handler
302 * to ensure we wake up any waiting operations there. For example
303 * if splicing pages where to call sk_wait_event.
305 if (ctx->splicing_pages) {
306 ctx->sk_write_space(sk);
310 #ifdef CONFIG_TLS_DEVICE
311 if (ctx->tx_conf == TLS_HW)
312 tls_device_write_space(sk, ctx);
315 tls_sw_write_space(sk, ctx);
317 ctx->sk_write_space(sk);
321 * tls_ctx_free() - free TLS ULP context
322 * @sk: socket to with @ctx is attached
323 * @ctx: TLS context structure
325 * Free TLS context. If @sk is %NULL caller guarantees that the socket
326 * to which @ctx was attached has no outstanding references.
328 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
333 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
334 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
335 mutex_destroy(&ctx->tx_lock);
343 static void tls_sk_proto_cleanup(struct sock *sk,
344 struct tls_context *ctx, long timeo)
346 if (unlikely(sk->sk_write_pending) &&
347 !wait_on_pending_writer(sk, &timeo))
348 tls_handle_open_record(sk, 0);
350 /* We need these for tls_sw_fallback handling of other packets */
351 if (ctx->tx_conf == TLS_SW) {
352 tls_sw_release_resources_tx(sk);
353 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
354 } else if (ctx->tx_conf == TLS_HW) {
355 tls_device_free_resources_tx(sk);
356 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
359 if (ctx->rx_conf == TLS_SW) {
360 tls_sw_release_resources_rx(sk);
361 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
362 } else if (ctx->rx_conf == TLS_HW) {
363 tls_device_offload_cleanup_rx(sk);
364 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
368 static void tls_sk_proto_close(struct sock *sk, long timeout)
370 struct inet_connection_sock *icsk = inet_csk(sk);
371 struct tls_context *ctx = tls_get_ctx(sk);
372 long timeo = sock_sndtimeo(sk, 0);
375 if (ctx->tx_conf == TLS_SW)
376 tls_sw_cancel_work_tx(ctx);
379 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
381 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
382 tls_sk_proto_cleanup(sk, ctx, timeo);
384 write_lock_bh(&sk->sk_callback_lock);
386 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
387 WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
388 if (sk->sk_write_space == tls_write_space)
389 sk->sk_write_space = ctx->sk_write_space;
390 write_unlock_bh(&sk->sk_callback_lock);
392 if (ctx->tx_conf == TLS_SW)
393 tls_sw_free_ctx_tx(ctx);
394 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
395 tls_sw_strparser_done(ctx);
396 if (ctx->rx_conf == TLS_SW)
397 tls_sw_free_ctx_rx(ctx);
398 ctx->sk_proto->close(sk, timeout);
401 tls_ctx_free(sk, ctx);
404 static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
405 struct poll_table_struct *wait)
407 struct tls_sw_context_rx *ctx;
408 struct tls_context *tls_ctx;
409 struct sock *sk = sock->sk;
410 struct sk_psock *psock;
415 mask = tcp_poll(file, sock, wait);
417 state = inet_sk_state_load(sk);
418 shutdown = READ_ONCE(sk->sk_shutdown);
419 if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
422 tls_ctx = tls_get_ctx(sk);
423 ctx = tls_sw_ctx_rx(tls_ctx);
424 psock = sk_psock_get(sk);
426 if (skb_queue_empty_lockless(&ctx->rx_list) &&
427 !tls_strp_msg_ready(ctx) &&
428 sk_psock_queue_empty(psock))
429 mask &= ~(EPOLLIN | EPOLLRDNORM);
432 sk_psock_put(sk, psock);
437 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
438 int __user *optlen, int tx)
441 const struct tls_cipher_desc *cipher_desc;
442 struct tls_context *ctx = tls_get_ctx(sk);
443 struct tls_crypto_info *crypto_info;
444 struct cipher_context *cctx;
447 if (get_user(len, optlen))
450 if (!optval || (len < sizeof(*crypto_info))) {
460 /* get user crypto info */
462 crypto_info = &ctx->crypto_send.info;
465 crypto_info = &ctx->crypto_recv.info;
469 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
474 if (len == sizeof(*crypto_info)) {
475 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
480 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
481 if (!cipher_desc || len != cipher_desc->crypto_info) {
486 memcpy(crypto_info_iv(crypto_info, cipher_desc),
487 cctx->iv + cipher_desc->salt, cipher_desc->iv);
488 memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
489 cctx->rec_seq, cipher_desc->rec_seq);
491 if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
498 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
501 struct tls_context *ctx = tls_get_ctx(sk);
505 if (get_user(len, optlen))
508 if (len != sizeof(value))
511 value = ctx->zerocopy_sendfile;
512 if (copy_to_user(optval, &value, sizeof(value)))
518 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
521 struct tls_context *ctx = tls_get_ctx(sk);
524 if (ctx->prot_info.version != TLS_1_3_VERSION)
527 if (get_user(len, optlen))
529 if (len < sizeof(value))
533 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
534 value = ctx->rx_no_pad;
538 if (put_user(sizeof(value), optlen))
540 if (copy_to_user(optval, &value, sizeof(value)))
546 static int do_tls_getsockopt(struct sock *sk, int optname,
547 char __user *optval, int __user *optlen)
556 rc = do_tls_getsockopt_conf(sk, optval, optlen,
559 case TLS_TX_ZEROCOPY_RO:
560 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
562 case TLS_RX_EXPECT_NO_PAD:
563 rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
575 static int tls_getsockopt(struct sock *sk, int level, int optname,
576 char __user *optval, int __user *optlen)
578 struct tls_context *ctx = tls_get_ctx(sk);
580 if (level != SOL_TLS)
581 return ctx->sk_proto->getsockopt(sk, level,
582 optname, optval, optlen);
584 return do_tls_getsockopt(sk, optname, optval, optlen);
587 static int validate_crypto_info(const struct tls_crypto_info *crypto_info,
588 const struct tls_crypto_info *alt_crypto_info)
590 if (crypto_info->version != TLS_1_2_VERSION &&
591 crypto_info->version != TLS_1_3_VERSION)
594 switch (crypto_info->cipher_type) {
595 case TLS_CIPHER_ARIA_GCM_128:
596 case TLS_CIPHER_ARIA_GCM_256:
597 if (crypto_info->version != TLS_1_2_VERSION)
602 /* Ensure that TLS version and ciphers are same in both directions */
603 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
604 if (alt_crypto_info->version != crypto_info->version ||
605 alt_crypto_info->cipher_type != crypto_info->cipher_type)
612 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
613 unsigned int optlen, int tx)
615 struct tls_crypto_info *crypto_info;
616 struct tls_crypto_info *alt_crypto_info;
617 struct tls_context *ctx = tls_get_ctx(sk);
618 const struct tls_cipher_desc *cipher_desc;
622 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
626 crypto_info = &ctx->crypto_send.info;
627 alt_crypto_info = &ctx->crypto_recv.info;
629 crypto_info = &ctx->crypto_recv.info;
630 alt_crypto_info = &ctx->crypto_send.info;
633 /* Currently we don't support set crypto info more than one time */
634 if (TLS_CRYPTO_INFO_READY(crypto_info))
637 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
640 goto err_crypto_info;
643 rc = validate_crypto_info(crypto_info, alt_crypto_info);
645 goto err_crypto_info;
647 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
650 goto err_crypto_info;
653 if (optlen != cipher_desc->crypto_info) {
655 goto err_crypto_info;
658 rc = copy_from_sockptr_offset(crypto_info + 1, optval,
659 sizeof(*crypto_info),
660 optlen - sizeof(*crypto_info));
663 goto err_crypto_info;
667 rc = tls_set_device_offload(sk);
670 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
671 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
673 rc = tls_set_sw_offload(sk, 1);
675 goto err_crypto_info;
676 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
677 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
681 rc = tls_set_device_offload_rx(sk, ctx);
684 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
685 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
687 rc = tls_set_sw_offload(sk, 0);
689 goto err_crypto_info;
690 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
691 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
694 tls_sw_strparser_arm(sk, ctx);
701 update_sk_prot(sk, ctx);
703 ctx->sk_write_space = sk->sk_write_space;
704 sk->sk_write_space = tls_write_space;
706 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
708 tls_strp_check_rcv(&rx_ctx->strp);
713 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
717 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
720 struct tls_context *ctx = tls_get_ctx(sk);
723 if (sockptr_is_null(optval) || optlen != sizeof(value))
726 if (copy_from_sockptr(&value, optval, sizeof(value)))
732 ctx->zerocopy_sendfile = value;
737 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
740 struct tls_context *ctx = tls_get_ctx(sk);
744 if (ctx->prot_info.version != TLS_1_3_VERSION ||
745 sockptr_is_null(optval) || optlen < sizeof(val))
748 rc = copy_from_sockptr(&val, optval, sizeof(val));
753 rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
755 return rc == 0 ? -EINVAL : rc;
759 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
760 ctx->rx_no_pad = val;
761 tls_update_rx_zc_capable(ctx);
769 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
778 rc = do_tls_setsockopt_conf(sk, optval, optlen,
782 case TLS_TX_ZEROCOPY_RO:
784 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
787 case TLS_RX_EXPECT_NO_PAD:
788 rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
797 static int tls_setsockopt(struct sock *sk, int level, int optname,
798 sockptr_t optval, unsigned int optlen)
800 struct tls_context *ctx = tls_get_ctx(sk);
802 if (level != SOL_TLS)
803 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
806 return do_tls_setsockopt(sk, optname, optval, optlen);
809 struct tls_context *tls_ctx_create(struct sock *sk)
811 struct inet_connection_sock *icsk = inet_csk(sk);
812 struct tls_context *ctx;
814 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
818 mutex_init(&ctx->tx_lock);
819 ctx->sk_proto = READ_ONCE(sk->sk_prot);
821 /* Release semantic of rcu_assign_pointer() ensures that
822 * ctx->sk_proto is visible before changing sk->sk_prot in
823 * update_sk_prot(), and prevents reading uninitialized value in
824 * tls_{getsockopt, setsockopt}. Note that we do not need a
825 * read barrier in tls_{getsockopt,setsockopt} as there is an
826 * address dependency between sk->sk_proto->{getsockopt,setsockopt}
829 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
833 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
834 const struct proto_ops *base)
836 ops[TLS_BASE][TLS_BASE] = *base;
838 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
839 ops[TLS_SW ][TLS_BASE].splice_eof = tls_sw_splice_eof;
841 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE];
842 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read;
843 ops[TLS_BASE][TLS_SW ].poll = tls_sk_poll;
844 ops[TLS_BASE][TLS_SW ].read_sock = tls_sw_read_sock;
846 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE];
847 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read;
848 ops[TLS_SW ][TLS_SW ].poll = tls_sk_poll;
849 ops[TLS_SW ][TLS_SW ].read_sock = tls_sw_read_sock;
851 #ifdef CONFIG_TLS_DEVICE
852 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
854 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ];
856 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ];
858 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ];
860 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ];
862 #ifdef CONFIG_TLS_TOE
863 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
867 static void tls_build_proto(struct sock *sk)
869 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
870 struct proto *prot = READ_ONCE(sk->sk_prot);
872 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
873 if (ip_ver == TLSV6 &&
874 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
875 mutex_lock(&tcpv6_prot_mutex);
876 if (likely(prot != saved_tcpv6_prot)) {
877 build_protos(tls_prots[TLSV6], prot);
878 build_proto_ops(tls_proto_ops[TLSV6],
880 smp_store_release(&saved_tcpv6_prot, prot);
882 mutex_unlock(&tcpv6_prot_mutex);
885 if (ip_ver == TLSV4 &&
886 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
887 mutex_lock(&tcpv4_prot_mutex);
888 if (likely(prot != saved_tcpv4_prot)) {
889 build_protos(tls_prots[TLSV4], prot);
890 build_proto_ops(tls_proto_ops[TLSV4],
892 smp_store_release(&saved_tcpv4_prot, prot);
894 mutex_unlock(&tcpv4_prot_mutex);
898 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
899 const struct proto *base)
901 prot[TLS_BASE][TLS_BASE] = *base;
902 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
903 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
904 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
906 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
907 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
908 prot[TLS_SW][TLS_BASE].splice_eof = tls_sw_splice_eof;
910 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
911 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
912 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
913 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
915 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
916 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
917 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
918 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
920 #ifdef CONFIG_TLS_DEVICE
921 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
922 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
923 prot[TLS_HW][TLS_BASE].splice_eof = tls_device_splice_eof;
925 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
926 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
927 prot[TLS_HW][TLS_SW].splice_eof = tls_device_splice_eof;
929 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
931 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
933 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
935 #ifdef CONFIG_TLS_TOE
936 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
937 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
938 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
942 static int tls_init(struct sock *sk)
944 struct tls_context *ctx;
949 #ifdef CONFIG_TLS_TOE
950 if (tls_toe_bypass(sk))
954 /* The TLS ulp is currently supported only for TCP sockets
955 * in ESTABLISHED state.
956 * Supporting sockets in LISTEN state will require us
957 * to modify the accept implementation to clone rather then
958 * share the ulp context.
960 if (sk->sk_state != TCP_ESTABLISHED)
963 /* allocate tls context */
964 write_lock_bh(&sk->sk_callback_lock);
965 ctx = tls_ctx_create(sk);
971 ctx->tx_conf = TLS_BASE;
972 ctx->rx_conf = TLS_BASE;
973 update_sk_prot(sk, ctx);
975 write_unlock_bh(&sk->sk_callback_lock);
979 static void tls_update(struct sock *sk, struct proto *p,
980 void (*write_space)(struct sock *sk))
982 struct tls_context *ctx;
984 WARN_ON_ONCE(sk->sk_prot == p);
986 ctx = tls_get_ctx(sk);
988 ctx->sk_write_space = write_space;
991 /* Pairs with lockless read in sk_clone_lock(). */
992 WRITE_ONCE(sk->sk_prot, p);
993 sk->sk_write_space = write_space;
997 static u16 tls_user_config(struct tls_context *ctx, bool tx)
999 u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1003 return TLS_CONF_BASE;
1009 return TLS_CONF_HW_RECORD;
1014 static int tls_get_info(struct sock *sk, struct sk_buff *skb)
1016 u16 version, cipher_type;
1017 struct tls_context *ctx;
1018 struct nlattr *start;
1021 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1026 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1031 version = ctx->prot_info.version;
1033 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1037 cipher_type = ctx->prot_info.cipher_type;
1039 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1043 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1047 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1051 if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1052 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1056 if (ctx->rx_no_pad) {
1057 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1063 nla_nest_end(skb, start);
1068 nla_nest_cancel(skb, start);
1072 static size_t tls_get_info_size(const struct sock *sk)
1076 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
1077 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
1078 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
1079 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
1080 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
1081 nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */
1082 nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */
1088 static int __net_init tls_init_net(struct net *net)
1092 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1093 if (!net->mib.tls_statistics)
1096 err = tls_proc_init(net);
1098 goto err_free_stats;
1102 free_percpu(net->mib.tls_statistics);
1106 static void __net_exit tls_exit_net(struct net *net)
1109 free_percpu(net->mib.tls_statistics);
1112 static struct pernet_operations tls_proc_ops = {
1113 .init = tls_init_net,
1114 .exit = tls_exit_net,
1117 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1119 .owner = THIS_MODULE,
1121 .update = tls_update,
1122 .get_info = tls_get_info,
1123 .get_info_size = tls_get_info_size,
1126 static int __init tls_register(void)
1130 err = register_pernet_subsys(&tls_proc_ops);
1134 err = tls_strp_dev_init();
1138 err = tls_device_init();
1142 tcp_register_ulp(&tcp_tls_ulp_ops);
1146 tls_strp_dev_exit();
1148 unregister_pernet_subsys(&tls_proc_ops);
1152 static void __exit tls_unregister(void)
1154 tcp_unregister_ulp(&tcp_tls_ulp_ops);
1155 tls_strp_dev_exit();
1156 tls_device_cleanup();
1157 unregister_pernet_subsys(&tls_proc_ops);
1160 module_init(tls_register);
1161 module_exit(tls_unregister);