1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Linux Socket Filter - Kernel level socket filtering
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/bpf.h>
26 #include <linux/btf.h>
27 #include <linux/objtool.h>
28 #include <linux/overflow.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 #include <linux/nodemask.h>
37 #include <linux/nospec.h>
38 #include <linux/bpf_mem_alloc.h>
39 #include <linux/memcontrol.h>
40 #include <linux/execmem.h>
42 #include <asm/barrier.h>
43 #include <asm/unaligned.h>
46 #define BPF_R0 regs[BPF_REG_0]
47 #define BPF_R1 regs[BPF_REG_1]
48 #define BPF_R2 regs[BPF_REG_2]
49 #define BPF_R3 regs[BPF_REG_3]
50 #define BPF_R4 regs[BPF_REG_4]
51 #define BPF_R5 regs[BPF_REG_5]
52 #define BPF_R6 regs[BPF_REG_6]
53 #define BPF_R7 regs[BPF_REG_7]
54 #define BPF_R8 regs[BPF_REG_8]
55 #define BPF_R9 regs[BPF_REG_9]
56 #define BPF_R10 regs[BPF_REG_10]
59 #define DST regs[insn->dst_reg]
60 #define SRC regs[insn->src_reg]
61 #define FP regs[BPF_REG_FP]
62 #define AX regs[BPF_REG_AX]
63 #define ARG1 regs[BPF_REG_ARG1]
64 #define CTX regs[BPF_REG_CTX]
68 struct bpf_mem_alloc bpf_global_ma;
69 bool bpf_global_ma_set;
71 /* No hurry in this branch
73 * Exported for the bpf jit load helper.
75 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
79 if (k >= SKF_NET_OFF) {
80 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
81 } else if (k >= SKF_LL_OFF) {
82 if (unlikely(!skb_mac_header_was_set(skb)))
84 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
86 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
92 /* tell bpf programs that include vmlinux.h kernel's PAGE_SIZE */
94 __PAGE_SIZE = PAGE_SIZE
97 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
99 gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
100 struct bpf_prog_aux *aux;
103 size = round_up(size, __PAGE_SIZE);
104 fp = __vmalloc(size, gfp_flags);
108 aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
113 fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
120 fp->pages = size / PAGE_SIZE;
123 fp->jit_requested = ebpf_jit_enabled();
124 fp->blinding_requested = bpf_jit_blinding_enabled(fp);
125 #ifdef CONFIG_CGROUP_BPF
126 aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
129 INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
130 #ifdef CONFIG_FINEIBT
131 INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
133 mutex_init(&fp->aux->used_maps_mutex);
134 mutex_init(&fp->aux->dst_mutex);
139 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
141 gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
142 struct bpf_prog *prog;
145 prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
149 prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
151 free_percpu(prog->active);
157 for_each_possible_cpu(cpu) {
158 struct bpf_prog_stats *pstats;
160 pstats = per_cpu_ptr(prog->stats, cpu);
161 u64_stats_init(&pstats->syncp);
165 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
167 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
169 if (!prog->aux->nr_linfo || !prog->jit_requested)
172 prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
173 sizeof(*prog->aux->jited_linfo),
174 bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
175 if (!prog->aux->jited_linfo)
181 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
183 if (prog->aux->jited_linfo &&
184 (!prog->jited || !prog->aux->jited_linfo[0])) {
185 kvfree(prog->aux->jited_linfo);
186 prog->aux->jited_linfo = NULL;
189 kfree(prog->aux->kfunc_tab);
190 prog->aux->kfunc_tab = NULL;
193 /* The jit engine is responsible to provide an array
194 * for insn_off to the jited_off mapping (insn_to_jit_off).
196 * The idx to this array is the insn_off. Hence, the insn_off
197 * here is relative to the prog itself instead of the main prog.
198 * This array has one entry for each xlated bpf insn.
200 * jited_off is the byte off to the end of the jited insn.
204 * The first bpf insn off of the prog. The insn off
205 * here is relative to the main prog.
206 * e.g. if prog is a subprog, insn_start > 0
208 * The prog's idx to prog->aux->linfo and jited_linfo
210 * jited_linfo[linfo_idx] = prog->bpf_func
214 * jited_linfo[i] = prog->bpf_func +
215 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
217 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
218 const u32 *insn_to_jit_off)
220 u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
221 const struct bpf_line_info *linfo;
224 if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
225 /* Userspace did not provide linfo */
228 linfo_idx = prog->aux->linfo_idx;
229 linfo = &prog->aux->linfo[linfo_idx];
230 insn_start = linfo[0].insn_off;
231 insn_end = insn_start + prog->len;
233 jited_linfo = &prog->aux->jited_linfo[linfo_idx];
234 jited_linfo[0] = prog->bpf_func;
236 nr_linfo = prog->aux->nr_linfo - linfo_idx;
238 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
239 /* The verifier ensures that linfo[i].insn_off is
240 * strictly increasing
242 jited_linfo[i] = prog->bpf_func +
243 insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
246 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
247 gfp_t gfp_extra_flags)
249 gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
253 size = round_up(size, PAGE_SIZE);
254 pages = size / PAGE_SIZE;
255 if (pages <= fp_old->pages)
258 fp = __vmalloc(size, gfp_flags);
260 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
264 /* We keep fp->aux from fp_old around in the new
265 * reallocated structure.
268 fp_old->stats = NULL;
269 fp_old->active = NULL;
270 __bpf_prog_free(fp_old);
276 void __bpf_prog_free(struct bpf_prog *fp)
279 mutex_destroy(&fp->aux->used_maps_mutex);
280 mutex_destroy(&fp->aux->dst_mutex);
281 kfree(fp->aux->poke_tab);
284 free_percpu(fp->stats);
285 free_percpu(fp->active);
289 int bpf_prog_calc_tag(struct bpf_prog *fp)
291 const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
292 u32 raw_size = bpf_prog_tag_scratch_size(fp);
293 u32 digest[SHA1_DIGEST_WORDS];
294 u32 ws[SHA1_WORKSPACE_WORDS];
295 u32 i, bsize, psize, blocks;
296 struct bpf_insn *dst;
302 raw = vmalloc(raw_size);
307 memset(ws, 0, sizeof(ws));
309 /* We need to take out the map fd for the digest calculation
310 * since they are unstable from user space side.
313 for (i = 0, was_ld_map = false; i < fp->len; i++) {
314 dst[i] = fp->insnsi[i];
316 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
317 (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
318 dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
321 } else if (was_ld_map &&
323 dst[i].dst_reg == 0 &&
324 dst[i].src_reg == 0 &&
333 psize = bpf_prog_insn_size(fp);
334 memset(&raw[psize], 0, raw_size - psize);
337 bsize = round_up(psize, SHA1_BLOCK_SIZE);
338 blocks = bsize / SHA1_BLOCK_SIZE;
340 if (bsize - psize >= sizeof(__be64)) {
341 bits = (__be64 *)(todo + bsize - sizeof(__be64));
343 bits = (__be64 *)(todo + bsize + bits_offset);
346 *bits = cpu_to_be64((psize - 1) << 3);
349 sha1_transform(digest, todo, ws);
350 todo += SHA1_BLOCK_SIZE;
353 result = (__force __be32 *)digest;
354 for (i = 0; i < SHA1_DIGEST_WORDS; i++)
355 result[i] = cpu_to_be32(digest[i]);
356 memcpy(fp->tag, result, sizeof(fp->tag));
362 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
363 s32 end_new, s32 curr, const bool probe_pass)
365 const s64 imm_min = S32_MIN, imm_max = S32_MAX;
366 s32 delta = end_new - end_old;
369 if (curr < pos && curr + imm + 1 >= end_old)
371 else if (curr >= end_new && curr + imm + 1 < end_new)
373 if (imm < imm_min || imm > imm_max)
380 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
381 s32 end_new, s32 curr, const bool probe_pass)
383 s64 off_min, off_max, off;
384 s32 delta = end_new - end_old;
386 if (insn->code == (BPF_JMP32 | BPF_JA)) {
396 if (curr < pos && curr + off + 1 >= end_old)
398 else if (curr >= end_new && curr + off + 1 < end_new)
400 if (off < off_min || off > off_max)
403 if (insn->code == (BPF_JMP32 | BPF_JA))
411 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
412 s32 end_new, const bool probe_pass)
414 u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
415 struct bpf_insn *insn = prog->insnsi;
418 for (i = 0; i < insn_cnt; i++, insn++) {
421 /* In the probing pass we still operate on the original,
422 * unpatched image in order to check overflows before we
423 * do any other adjustments. Therefore skip the patchlet.
425 if (probe_pass && i == pos) {
427 insn = prog->insnsi + end_old;
429 if (bpf_pseudo_func(insn)) {
430 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
431 end_new, i, probe_pass);
437 if ((BPF_CLASS(code) != BPF_JMP &&
438 BPF_CLASS(code) != BPF_JMP32) ||
439 BPF_OP(code) == BPF_EXIT)
441 /* Adjust offset of jmps if we cross patch boundaries. */
442 if (BPF_OP(code) == BPF_CALL) {
443 if (insn->src_reg != BPF_PSEUDO_CALL)
445 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
446 end_new, i, probe_pass);
448 ret = bpf_adj_delta_to_off(insn, pos, end_old,
449 end_new, i, probe_pass);
458 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
460 struct bpf_line_info *linfo;
463 nr_linfo = prog->aux->nr_linfo;
464 if (!nr_linfo || !delta)
467 linfo = prog->aux->linfo;
469 for (i = 0; i < nr_linfo; i++)
470 if (off < linfo[i].insn_off)
473 /* Push all off < linfo[i].insn_off by delta */
474 for (; i < nr_linfo; i++)
475 linfo[i].insn_off += delta;
478 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
479 const struct bpf_insn *patch, u32 len)
481 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
482 const u32 cnt_max = S16_MAX;
483 struct bpf_prog *prog_adj;
486 /* Since our patchlet doesn't expand the image, we're done. */
487 if (insn_delta == 0) {
488 memcpy(prog->insnsi + off, patch, sizeof(*patch));
492 insn_adj_cnt = prog->len + insn_delta;
494 /* Reject anything that would potentially let the insn->off
495 * target overflow when we have excessive program expansions.
496 * We need to probe here before we do any reallocation where
497 * we afterwards may not fail anymore.
499 if (insn_adj_cnt > cnt_max &&
500 (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
503 /* Several new instructions need to be inserted. Make room
504 * for them. Likely, there's no need for a new allocation as
505 * last page could have large enough tailroom.
507 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
510 return ERR_PTR(-ENOMEM);
512 prog_adj->len = insn_adj_cnt;
514 /* Patching happens in 3 steps:
516 * 1) Move over tail of insnsi from next instruction onwards,
517 * so we can patch the single target insn with one or more
518 * new ones (patching is always from 1 to n insns, n > 0).
519 * 2) Inject new instructions at the target location.
520 * 3) Adjust branch offsets if necessary.
522 insn_rest = insn_adj_cnt - off - len;
524 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
525 sizeof(*patch) * insn_rest);
526 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
528 /* We are guaranteed to not fail at this point, otherwise
529 * the ship has sailed to reverse to the original state. An
530 * overflow cannot happen at this point.
532 BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
534 bpf_adj_linfo(prog_adj, off, insn_delta);
539 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
541 /* Branch offsets can't overflow when program is shrinking, no need
542 * to call bpf_adj_branches(..., true) here
544 memmove(prog->insnsi + off, prog->insnsi + off + cnt,
545 sizeof(struct bpf_insn) * (prog->len - off - cnt));
548 return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
551 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
555 for (i = 0; i < fp->aux->real_func_cnt; i++)
556 bpf_prog_kallsyms_del(fp->aux->func[i]);
559 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
561 bpf_prog_kallsyms_del_subprogs(fp);
562 bpf_prog_kallsyms_del(fp);
565 #ifdef CONFIG_BPF_JIT
566 /* All BPF JIT sysctl knobs here. */
567 int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
568 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
569 int bpf_jit_harden __read_mostly;
570 long bpf_jit_limit __read_mostly;
571 long bpf_jit_limit_max __read_mostly;
574 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
576 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
578 prog->aux->ksym.start = (unsigned long) prog->bpf_func;
579 prog->aux->ksym.end = prog->aux->ksym.start + prog->jited_len;
583 bpf_prog_ksym_set_name(struct bpf_prog *prog)
585 char *sym = prog->aux->ksym.name;
586 const char *end = sym + KSYM_NAME_LEN;
587 const struct btf_type *type;
588 const char *func_name;
590 BUILD_BUG_ON(sizeof("bpf_prog_") +
591 sizeof(prog->tag) * 2 +
592 /* name has been null terminated.
593 * We should need +1 for the '_' preceding
594 * the name. However, the null character
595 * is double counted between the name and the
596 * sizeof("bpf_prog_") above, so we omit
599 sizeof(prog->aux->name) > KSYM_NAME_LEN);
601 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
602 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
604 /* prog->aux->name will be ignored if full btf name is available */
605 if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
606 type = btf_type_by_id(prog->aux->btf,
607 prog->aux->func_info[prog->aux->func_idx].type_id);
608 func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
609 snprintf(sym, (size_t)(end - sym), "_%s", func_name);
613 if (prog->aux->name[0])
614 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
619 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
621 return container_of(n, struct bpf_ksym, tnode)->start;
624 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
625 struct latch_tree_node *b)
627 return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
630 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
632 unsigned long val = (unsigned long)key;
633 const struct bpf_ksym *ksym;
635 ksym = container_of(n, struct bpf_ksym, tnode);
637 if (val < ksym->start)
639 /* Ensure that we detect return addresses as part of the program, when
640 * the final instruction is a call for a program part of the stack
641 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
649 static const struct latch_tree_ops bpf_tree_ops = {
650 .less = bpf_tree_less,
651 .comp = bpf_tree_comp,
654 static DEFINE_SPINLOCK(bpf_lock);
655 static LIST_HEAD(bpf_kallsyms);
656 static struct latch_tree_root bpf_tree __cacheline_aligned;
658 void bpf_ksym_add(struct bpf_ksym *ksym)
660 spin_lock_bh(&bpf_lock);
661 WARN_ON_ONCE(!list_empty(&ksym->lnode));
662 list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
663 latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
664 spin_unlock_bh(&bpf_lock);
667 static void __bpf_ksym_del(struct bpf_ksym *ksym)
669 if (list_empty(&ksym->lnode))
672 latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
673 list_del_rcu(&ksym->lnode);
676 void bpf_ksym_del(struct bpf_ksym *ksym)
678 spin_lock_bh(&bpf_lock);
679 __bpf_ksym_del(ksym);
680 spin_unlock_bh(&bpf_lock);
683 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
685 return fp->jited && !bpf_prog_was_classic(fp);
688 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
690 if (!bpf_prog_kallsyms_candidate(fp) ||
691 !bpf_token_capable(fp->aux->token, CAP_BPF))
694 bpf_prog_ksym_set_addr(fp);
695 bpf_prog_ksym_set_name(fp);
696 fp->aux->ksym.prog = true;
698 bpf_ksym_add(&fp->aux->ksym);
700 #ifdef CONFIG_FINEIBT
702 * When FineIBT, code in the __cfi_foo() symbols can get executed
703 * and hence unwinder needs help.
705 if (cfi_mode != CFI_FINEIBT)
708 snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
709 "__cfi_%s", fp->aux->ksym.name);
711 fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
712 fp->aux->ksym_prefix.end = (unsigned long) fp->bpf_func;
714 bpf_ksym_add(&fp->aux->ksym_prefix);
718 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
720 if (!bpf_prog_kallsyms_candidate(fp))
723 bpf_ksym_del(&fp->aux->ksym);
724 #ifdef CONFIG_FINEIBT
725 if (cfi_mode != CFI_FINEIBT)
727 bpf_ksym_del(&fp->aux->ksym_prefix);
731 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
733 struct latch_tree_node *n;
735 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
736 return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
739 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
740 unsigned long *off, char *sym)
742 struct bpf_ksym *ksym;
746 ksym = bpf_ksym_find(addr);
748 unsigned long symbol_start = ksym->start;
749 unsigned long symbol_end = ksym->end;
751 strscpy(sym, ksym->name, KSYM_NAME_LEN);
755 *size = symbol_end - symbol_start;
757 *off = addr - symbol_start;
764 bool is_bpf_text_address(unsigned long addr)
769 ret = bpf_ksym_find(addr) != NULL;
775 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
777 struct bpf_ksym *ksym = bpf_ksym_find(addr);
779 return ksym && ksym->prog ?
780 container_of(ksym, struct bpf_prog_aux, ksym)->prog :
784 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
786 const struct exception_table_entry *e = NULL;
787 struct bpf_prog *prog;
790 prog = bpf_prog_ksym_find(addr);
793 if (!prog->aux->num_exentries)
796 e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
802 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
805 struct bpf_ksym *ksym;
809 if (!bpf_jit_kallsyms_enabled())
813 list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
817 strscpy(sym, ksym->name, KSYM_NAME_LEN);
819 *value = ksym->start;
820 *type = BPF_SYM_ELF_TYPE;
830 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
831 struct bpf_jit_poke_descriptor *poke)
833 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
834 static const u32 poke_tab_max = 1024;
835 u32 slot = prog->aux->size_poke_tab;
838 if (size > poke_tab_max)
840 if (poke->tailcall_target || poke->tailcall_target_stable ||
841 poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
844 switch (poke->reason) {
845 case BPF_POKE_REASON_TAIL_CALL:
846 if (!poke->tail_call.map)
853 tab = krealloc_array(tab, size, sizeof(*poke), GFP_KERNEL);
857 memcpy(&tab[slot], poke, sizeof(*poke));
858 prog->aux->size_poke_tab = size;
859 prog->aux->poke_tab = tab;
865 * BPF program pack allocator.
867 * Most BPF programs are pretty small. Allocating a hole page for each
868 * program is sometime a waste. Many small bpf program also adds pressure
869 * to instruction TLB. To solve this issue, we introduce a BPF program pack
870 * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
871 * to host BPF programs.
873 #define BPF_PROG_CHUNK_SHIFT 6
874 #define BPF_PROG_CHUNK_SIZE (1 << BPF_PROG_CHUNK_SHIFT)
875 #define BPF_PROG_CHUNK_MASK (~(BPF_PROG_CHUNK_SIZE - 1))
877 struct bpf_prog_pack {
878 struct list_head list;
880 unsigned long bitmap[];
883 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
885 memset(area, 0, size);
888 #define BPF_PROG_SIZE_TO_NBITS(size) (round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
890 static DEFINE_MUTEX(pack_mutex);
891 static LIST_HEAD(pack_list);
893 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
894 * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
897 /* PMD_SIZE is really big for some archs. It doesn't make sense to
898 * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to
899 * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be
900 * greater than or equal to 2MB.
902 #define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes())
904 #define BPF_PROG_PACK_SIZE PAGE_SIZE
907 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
909 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
911 struct bpf_prog_pack *pack;
914 pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
918 pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
921 bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
922 bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
924 set_vm_flush_reset_perms(pack->ptr);
925 err = set_memory_rox((unsigned long)pack->ptr,
926 BPF_PROG_PACK_SIZE / PAGE_SIZE);
929 list_add_tail(&pack->list, &pack_list);
933 bpf_jit_free_exec(pack->ptr);
938 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
940 unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
941 struct bpf_prog_pack *pack;
945 mutex_lock(&pack_mutex);
946 if (size > BPF_PROG_PACK_SIZE) {
947 size = round_up(size, PAGE_SIZE);
948 ptr = bpf_jit_alloc_exec(size);
952 bpf_fill_ill_insns(ptr, size);
953 set_vm_flush_reset_perms(ptr);
954 err = set_memory_rox((unsigned long)ptr,
957 bpf_jit_free_exec(ptr);
963 list_for_each_entry(pack, &pack_list, list) {
964 pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
966 if (pos < BPF_PROG_CHUNK_COUNT)
967 goto found_free_area;
970 pack = alloc_new_pack(bpf_fill_ill_insns);
977 bitmap_set(pack->bitmap, pos, nbits);
978 ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
981 mutex_unlock(&pack_mutex);
985 void bpf_prog_pack_free(void *ptr, u32 size)
987 struct bpf_prog_pack *pack = NULL, *tmp;
991 mutex_lock(&pack_mutex);
992 if (size > BPF_PROG_PACK_SIZE) {
993 bpf_jit_free_exec(ptr);
997 list_for_each_entry(tmp, &pack_list, list) {
998 if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
1004 if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
1007 nbits = BPF_PROG_SIZE_TO_NBITS(size);
1008 pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
1010 WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
1011 "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
1013 bitmap_clear(pack->bitmap, pos, nbits);
1014 if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
1015 BPF_PROG_CHUNK_COUNT, 0) == 0) {
1016 list_del(&pack->list);
1017 bpf_jit_free_exec(pack->ptr);
1021 mutex_unlock(&pack_mutex);
1024 static atomic_long_t bpf_jit_current;
1026 /* Can be overridden by an arch's JIT compiler if it has a custom,
1027 * dedicated BPF backend memory area, or if neither of the two
1030 u64 __weak bpf_jit_alloc_exec_limit(void)
1032 #if defined(MODULES_VADDR)
1033 return MODULES_END - MODULES_VADDR;
1035 return VMALLOC_END - VMALLOC_START;
1039 static int __init bpf_jit_charge_init(void)
1041 /* Only used as heuristic here to derive limit. */
1042 bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1043 bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1044 PAGE_SIZE), LONG_MAX);
1047 pure_initcall(bpf_jit_charge_init);
1049 int bpf_jit_charge_modmem(u32 size)
1051 if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1052 if (!bpf_capable()) {
1053 atomic_long_sub(size, &bpf_jit_current);
1061 void bpf_jit_uncharge_modmem(u32 size)
1063 atomic_long_sub(size, &bpf_jit_current);
1066 void *__weak bpf_jit_alloc_exec(unsigned long size)
1068 return execmem_alloc(EXECMEM_BPF, size);
1071 void __weak bpf_jit_free_exec(void *addr)
1076 struct bpf_binary_header *
1077 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1078 unsigned int alignment,
1079 bpf_jit_fill_hole_t bpf_fill_ill_insns)
1081 struct bpf_binary_header *hdr;
1082 u32 size, hole, start;
1084 WARN_ON_ONCE(!is_power_of_2(alignment) ||
1085 alignment > BPF_IMAGE_ALIGNMENT);
1087 /* Most of BPF filters are really small, but if some of them
1088 * fill a page, allow at least 128 extra bytes to insert a
1089 * random section of illegal instructions.
1091 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1093 if (bpf_jit_charge_modmem(size))
1095 hdr = bpf_jit_alloc_exec(size);
1097 bpf_jit_uncharge_modmem(size);
1101 /* Fill space with illegal/arch-dep instructions. */
1102 bpf_fill_ill_insns(hdr, size);
1105 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1106 PAGE_SIZE - sizeof(*hdr));
1107 start = get_random_u32_below(hole) & ~(alignment - 1);
1109 /* Leave a random number of instructions before BPF code. */
1110 *image_ptr = &hdr->image[start];
1115 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1117 u32 size = hdr->size;
1119 bpf_jit_free_exec(hdr);
1120 bpf_jit_uncharge_modmem(size);
1123 /* Allocate jit binary from bpf_prog_pack allocator.
1124 * Since the allocated memory is RO+X, the JIT engine cannot write directly
1125 * to the memory. To solve this problem, a RW buffer is also allocated at
1126 * as the same time. The JIT engine should calculate offsets based on the
1127 * RO memory address, but write JITed program to the RW buffer. Once the
1128 * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1129 * the JITed program to the RO memory.
1131 struct bpf_binary_header *
1132 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1133 unsigned int alignment,
1134 struct bpf_binary_header **rw_header,
1136 bpf_jit_fill_hole_t bpf_fill_ill_insns)
1138 struct bpf_binary_header *ro_header;
1139 u32 size, hole, start;
1141 WARN_ON_ONCE(!is_power_of_2(alignment) ||
1142 alignment > BPF_IMAGE_ALIGNMENT);
1144 /* add 16 bytes for a random section of illegal instructions */
1145 size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1147 if (bpf_jit_charge_modmem(size))
1149 ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1151 bpf_jit_uncharge_modmem(size);
1155 *rw_header = kvmalloc(size, GFP_KERNEL);
1157 bpf_prog_pack_free(ro_header, size);
1158 bpf_jit_uncharge_modmem(size);
1162 /* Fill space with illegal/arch-dep instructions. */
1163 bpf_fill_ill_insns(*rw_header, size);
1164 (*rw_header)->size = size;
1166 hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1167 BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1168 start = get_random_u32_below(hole) & ~(alignment - 1);
1170 *image_ptr = &ro_header->image[start];
1171 *rw_image = &(*rw_header)->image[start];
1176 /* Copy JITed text from rw_header to its final location, the ro_header. */
1177 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1178 struct bpf_binary_header *ro_header,
1179 struct bpf_binary_header *rw_header)
1183 ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1188 bpf_prog_pack_free(ro_header, ro_header->size);
1189 return PTR_ERR(ptr);
1194 /* bpf_jit_binary_pack_free is called in two different scenarios:
1195 * 1) when the program is freed after;
1196 * 2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1197 * For case 2), we need to free both the RO memory and the RW buffer.
1199 * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1200 * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1201 * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1202 * bpf_arch_text_copy (when jit fails).
1204 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1205 struct bpf_binary_header *rw_header)
1207 u32 size = ro_header->size;
1209 bpf_prog_pack_free(ro_header, size);
1211 bpf_jit_uncharge_modmem(size);
1214 struct bpf_binary_header *
1215 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1217 unsigned long real_start = (unsigned long)fp->bpf_func;
1220 addr = real_start & BPF_PROG_CHUNK_MASK;
1221 return (void *)addr;
1224 static inline struct bpf_binary_header *
1225 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1227 unsigned long real_start = (unsigned long)fp->bpf_func;
1230 addr = real_start & PAGE_MASK;
1231 return (void *)addr;
1234 /* This symbol is only overridden by archs that have different
1235 * requirements than the usual eBPF JITs, f.e. when they only
1236 * implement cBPF JIT, do not set images read-only, etc.
1238 void __weak bpf_jit_free(struct bpf_prog *fp)
1241 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1243 bpf_jit_binary_free(hdr);
1244 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1247 bpf_prog_unlock_free(fp);
1250 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1251 const struct bpf_insn *insn, bool extra_pass,
1252 u64 *func_addr, bool *func_addr_fixed)
1254 s16 off = insn->off;
1255 s32 imm = insn->imm;
1259 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1260 if (!*func_addr_fixed) {
1261 /* Place-holder address till the last pass has collected
1262 * all addresses for JITed subprograms in which case we
1263 * can pick them up from prog->aux.
1267 else if (prog->aux->func &&
1268 off >= 0 && off < prog->aux->real_func_cnt)
1269 addr = (u8 *)prog->aux->func[off]->bpf_func;
1272 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1273 bpf_jit_supports_far_kfunc_call()) {
1274 err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1278 /* Address of a BPF helper call. Since part of the core
1279 * kernel, it's always at a fixed location. __bpf_call_base
1280 * and the helper with imm relative to it are both in core
1283 addr = (u8 *)__bpf_call_base + imm;
1286 *func_addr = (unsigned long)addr;
1290 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1291 const struct bpf_insn *aux,
1292 struct bpf_insn *to_buff,
1295 struct bpf_insn *to = to_buff;
1296 u32 imm_rnd = get_random_u32();
1299 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
1300 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1302 /* Constraints on AX register:
1304 * AX register is inaccessible from user space. It is mapped in
1305 * all JITs, and used here for constant blinding rewrites. It is
1306 * typically "stateless" meaning its contents are only valid within
1307 * the executed instruction, but not across several instructions.
1308 * There are a few exceptions however which are further detailed
1311 * Constant blinding is only used by JITs, not in the interpreter.
1312 * The interpreter uses AX in some occasions as a local temporary
1313 * register e.g. in DIV or MOD instructions.
1315 * In restricted circumstances, the verifier can also use the AX
1316 * register for rewrites as long as they do not interfere with
1319 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1322 if (from->imm == 0 &&
1323 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
1324 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1325 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1329 switch (from->code) {
1330 case BPF_ALU | BPF_ADD | BPF_K:
1331 case BPF_ALU | BPF_SUB | BPF_K:
1332 case BPF_ALU | BPF_AND | BPF_K:
1333 case BPF_ALU | BPF_OR | BPF_K:
1334 case BPF_ALU | BPF_XOR | BPF_K:
1335 case BPF_ALU | BPF_MUL | BPF_K:
1336 case BPF_ALU | BPF_MOV | BPF_K:
1337 case BPF_ALU | BPF_DIV | BPF_K:
1338 case BPF_ALU | BPF_MOD | BPF_K:
1339 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1340 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1341 *to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1344 case BPF_ALU64 | BPF_ADD | BPF_K:
1345 case BPF_ALU64 | BPF_SUB | BPF_K:
1346 case BPF_ALU64 | BPF_AND | BPF_K:
1347 case BPF_ALU64 | BPF_OR | BPF_K:
1348 case BPF_ALU64 | BPF_XOR | BPF_K:
1349 case BPF_ALU64 | BPF_MUL | BPF_K:
1350 case BPF_ALU64 | BPF_MOV | BPF_K:
1351 case BPF_ALU64 | BPF_DIV | BPF_K:
1352 case BPF_ALU64 | BPF_MOD | BPF_K:
1353 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1354 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1355 *to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1358 case BPF_JMP | BPF_JEQ | BPF_K:
1359 case BPF_JMP | BPF_JNE | BPF_K:
1360 case BPF_JMP | BPF_JGT | BPF_K:
1361 case BPF_JMP | BPF_JLT | BPF_K:
1362 case BPF_JMP | BPF_JGE | BPF_K:
1363 case BPF_JMP | BPF_JLE | BPF_K:
1364 case BPF_JMP | BPF_JSGT | BPF_K:
1365 case BPF_JMP | BPF_JSLT | BPF_K:
1366 case BPF_JMP | BPF_JSGE | BPF_K:
1367 case BPF_JMP | BPF_JSLE | BPF_K:
1368 case BPF_JMP | BPF_JSET | BPF_K:
1369 /* Accommodate for extra offset in case of a backjump. */
1373 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1374 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1375 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1378 case BPF_JMP32 | BPF_JEQ | BPF_K:
1379 case BPF_JMP32 | BPF_JNE | BPF_K:
1380 case BPF_JMP32 | BPF_JGT | BPF_K:
1381 case BPF_JMP32 | BPF_JLT | BPF_K:
1382 case BPF_JMP32 | BPF_JGE | BPF_K:
1383 case BPF_JMP32 | BPF_JLE | BPF_K:
1384 case BPF_JMP32 | BPF_JSGT | BPF_K:
1385 case BPF_JMP32 | BPF_JSLT | BPF_K:
1386 case BPF_JMP32 | BPF_JSGE | BPF_K:
1387 case BPF_JMP32 | BPF_JSLE | BPF_K:
1388 case BPF_JMP32 | BPF_JSET | BPF_K:
1389 /* Accommodate for extra offset in case of a backjump. */
1393 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1394 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1395 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1399 case BPF_LD | BPF_IMM | BPF_DW:
1400 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1401 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1402 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1403 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1405 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1406 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1407 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1409 *to++ = BPF_ZEXT_REG(BPF_REG_AX);
1410 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
1413 case BPF_ST | BPF_MEM | BPF_DW:
1414 case BPF_ST | BPF_MEM | BPF_W:
1415 case BPF_ST | BPF_MEM | BPF_H:
1416 case BPF_ST | BPF_MEM | BPF_B:
1417 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1418 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1419 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1423 return to - to_buff;
1426 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1427 gfp_t gfp_extra_flags)
1429 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1430 struct bpf_prog *fp;
1432 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1434 /* aux->prog still points to the fp_other one, so
1435 * when promoting the clone to the real program,
1436 * this still needs to be adapted.
1438 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1444 static void bpf_prog_clone_free(struct bpf_prog *fp)
1446 /* aux was stolen by the other clone, so we cannot free
1447 * it from this path! It will be freed eventually by the
1448 * other program on release.
1450 * At this point, we don't need a deferred release since
1451 * clone is guaranteed to not be locked.
1456 __bpf_prog_free(fp);
1459 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1461 /* We have to repoint aux->prog to self, as we don't
1462 * know whether fp here is the clone or the original.
1465 bpf_prog_clone_free(fp_other);
1468 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1470 struct bpf_insn insn_buff[16], aux[2];
1471 struct bpf_prog *clone, *tmp;
1472 int insn_delta, insn_cnt;
1473 struct bpf_insn *insn;
1476 if (!prog->blinding_requested || prog->blinded)
1479 clone = bpf_prog_clone_create(prog, GFP_USER);
1481 return ERR_PTR(-ENOMEM);
1483 insn_cnt = clone->len;
1484 insn = clone->insnsi;
1486 for (i = 0; i < insn_cnt; i++, insn++) {
1487 if (bpf_pseudo_func(insn)) {
1488 /* ld_imm64 with an address of bpf subprog is not
1489 * a user controlled constant. Don't randomize it,
1490 * since it will conflict with jit_subprogs() logic.
1497 /* We temporarily need to hold the original ld64 insn
1498 * so that we can still access the first part in the
1499 * second blinding run.
1501 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1503 memcpy(aux, insn, sizeof(aux));
1505 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1506 clone->aux->verifier_zext);
1510 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1512 /* Patching may have repointed aux->prog during
1513 * realloc from the original one, so we need to
1514 * fix it up here on error.
1516 bpf_jit_prog_release_other(prog, clone);
1521 insn_delta = rewritten - 1;
1523 /* Walk new program and skip insns we just inserted. */
1524 insn = clone->insnsi + i + insn_delta;
1525 insn_cnt += insn_delta;
1532 #endif /* CONFIG_BPF_JIT */
1534 /* Base function for offset calculation. Needs to go into .text section,
1535 * therefore keeping it non-static as well; will also be used by JITs
1536 * anyway later on, so do not let the compiler omit it. This also needs
1537 * to go into kallsyms for correlation from e.g. bpftool, so naming
1540 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1544 EXPORT_SYMBOL_GPL(__bpf_call_base);
1546 /* All UAPI available opcodes. */
1547 #define BPF_INSN_MAP(INSN_2, INSN_3) \
1548 /* 32 bit ALU operations. */ \
1549 /* Register based. */ \
1550 INSN_3(ALU, ADD, X), \
1551 INSN_3(ALU, SUB, X), \
1552 INSN_3(ALU, AND, X), \
1553 INSN_3(ALU, OR, X), \
1554 INSN_3(ALU, LSH, X), \
1555 INSN_3(ALU, RSH, X), \
1556 INSN_3(ALU, XOR, X), \
1557 INSN_3(ALU, MUL, X), \
1558 INSN_3(ALU, MOV, X), \
1559 INSN_3(ALU, ARSH, X), \
1560 INSN_3(ALU, DIV, X), \
1561 INSN_3(ALU, MOD, X), \
1563 INSN_3(ALU, END, TO_BE), \
1564 INSN_3(ALU, END, TO_LE), \
1565 /* Immediate based. */ \
1566 INSN_3(ALU, ADD, K), \
1567 INSN_3(ALU, SUB, K), \
1568 INSN_3(ALU, AND, K), \
1569 INSN_3(ALU, OR, K), \
1570 INSN_3(ALU, LSH, K), \
1571 INSN_3(ALU, RSH, K), \
1572 INSN_3(ALU, XOR, K), \
1573 INSN_3(ALU, MUL, K), \
1574 INSN_3(ALU, MOV, K), \
1575 INSN_3(ALU, ARSH, K), \
1576 INSN_3(ALU, DIV, K), \
1577 INSN_3(ALU, MOD, K), \
1578 /* 64 bit ALU operations. */ \
1579 /* Register based. */ \
1580 INSN_3(ALU64, ADD, X), \
1581 INSN_3(ALU64, SUB, X), \
1582 INSN_3(ALU64, AND, X), \
1583 INSN_3(ALU64, OR, X), \
1584 INSN_3(ALU64, LSH, X), \
1585 INSN_3(ALU64, RSH, X), \
1586 INSN_3(ALU64, XOR, X), \
1587 INSN_3(ALU64, MUL, X), \
1588 INSN_3(ALU64, MOV, X), \
1589 INSN_3(ALU64, ARSH, X), \
1590 INSN_3(ALU64, DIV, X), \
1591 INSN_3(ALU64, MOD, X), \
1592 INSN_2(ALU64, NEG), \
1593 INSN_3(ALU64, END, TO_LE), \
1594 /* Immediate based. */ \
1595 INSN_3(ALU64, ADD, K), \
1596 INSN_3(ALU64, SUB, K), \
1597 INSN_3(ALU64, AND, K), \
1598 INSN_3(ALU64, OR, K), \
1599 INSN_3(ALU64, LSH, K), \
1600 INSN_3(ALU64, RSH, K), \
1601 INSN_3(ALU64, XOR, K), \
1602 INSN_3(ALU64, MUL, K), \
1603 INSN_3(ALU64, MOV, K), \
1604 INSN_3(ALU64, ARSH, K), \
1605 INSN_3(ALU64, DIV, K), \
1606 INSN_3(ALU64, MOD, K), \
1607 /* Call instruction. */ \
1608 INSN_2(JMP, CALL), \
1609 /* Exit instruction. */ \
1610 INSN_2(JMP, EXIT), \
1611 /* 32-bit Jump instructions. */ \
1612 /* Register based. */ \
1613 INSN_3(JMP32, JEQ, X), \
1614 INSN_3(JMP32, JNE, X), \
1615 INSN_3(JMP32, JGT, X), \
1616 INSN_3(JMP32, JLT, X), \
1617 INSN_3(JMP32, JGE, X), \
1618 INSN_3(JMP32, JLE, X), \
1619 INSN_3(JMP32, JSGT, X), \
1620 INSN_3(JMP32, JSLT, X), \
1621 INSN_3(JMP32, JSGE, X), \
1622 INSN_3(JMP32, JSLE, X), \
1623 INSN_3(JMP32, JSET, X), \
1624 /* Immediate based. */ \
1625 INSN_3(JMP32, JEQ, K), \
1626 INSN_3(JMP32, JNE, K), \
1627 INSN_3(JMP32, JGT, K), \
1628 INSN_3(JMP32, JLT, K), \
1629 INSN_3(JMP32, JGE, K), \
1630 INSN_3(JMP32, JLE, K), \
1631 INSN_3(JMP32, JSGT, K), \
1632 INSN_3(JMP32, JSLT, K), \
1633 INSN_3(JMP32, JSGE, K), \
1634 INSN_3(JMP32, JSLE, K), \
1635 INSN_3(JMP32, JSET, K), \
1636 /* Jump instructions. */ \
1637 /* Register based. */ \
1638 INSN_3(JMP, JEQ, X), \
1639 INSN_3(JMP, JNE, X), \
1640 INSN_3(JMP, JGT, X), \
1641 INSN_3(JMP, JLT, X), \
1642 INSN_3(JMP, JGE, X), \
1643 INSN_3(JMP, JLE, X), \
1644 INSN_3(JMP, JSGT, X), \
1645 INSN_3(JMP, JSLT, X), \
1646 INSN_3(JMP, JSGE, X), \
1647 INSN_3(JMP, JSLE, X), \
1648 INSN_3(JMP, JSET, X), \
1649 /* Immediate based. */ \
1650 INSN_3(JMP, JEQ, K), \
1651 INSN_3(JMP, JNE, K), \
1652 INSN_3(JMP, JGT, K), \
1653 INSN_3(JMP, JLT, K), \
1654 INSN_3(JMP, JGE, K), \
1655 INSN_3(JMP, JLE, K), \
1656 INSN_3(JMP, JSGT, K), \
1657 INSN_3(JMP, JSLT, K), \
1658 INSN_3(JMP, JSGE, K), \
1659 INSN_3(JMP, JSLE, K), \
1660 INSN_3(JMP, JSET, K), \
1662 INSN_2(JMP32, JA), \
1663 /* Store instructions. */ \
1664 /* Register based. */ \
1665 INSN_3(STX, MEM, B), \
1666 INSN_3(STX, MEM, H), \
1667 INSN_3(STX, MEM, W), \
1668 INSN_3(STX, MEM, DW), \
1669 INSN_3(STX, ATOMIC, W), \
1670 INSN_3(STX, ATOMIC, DW), \
1671 /* Immediate based. */ \
1672 INSN_3(ST, MEM, B), \
1673 INSN_3(ST, MEM, H), \
1674 INSN_3(ST, MEM, W), \
1675 INSN_3(ST, MEM, DW), \
1676 /* Load instructions. */ \
1677 /* Register based. */ \
1678 INSN_3(LDX, MEM, B), \
1679 INSN_3(LDX, MEM, H), \
1680 INSN_3(LDX, MEM, W), \
1681 INSN_3(LDX, MEM, DW), \
1682 INSN_3(LDX, MEMSX, B), \
1683 INSN_3(LDX, MEMSX, H), \
1684 INSN_3(LDX, MEMSX, W), \
1685 /* Immediate based. */ \
1688 bool bpf_opcode_in_insntable(u8 code)
1690 #define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
1691 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1692 static const bool public_insntable[256] = {
1693 [0 ... 255] = false,
1694 /* Now overwrite non-defaults ... */
1695 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1696 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1697 [BPF_LD | BPF_ABS | BPF_B] = true,
1698 [BPF_LD | BPF_ABS | BPF_H] = true,
1699 [BPF_LD | BPF_ABS | BPF_W] = true,
1700 [BPF_LD | BPF_IND | BPF_B] = true,
1701 [BPF_LD | BPF_IND | BPF_H] = true,
1702 [BPF_LD | BPF_IND | BPF_W] = true,
1703 [BPF_JMP | BPF_JCOND] = true,
1705 #undef BPF_INSN_3_TBL
1706 #undef BPF_INSN_2_TBL
1707 return public_insntable[code];
1710 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1712 * ___bpf_prog_run - run eBPF program on a given context
1713 * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1714 * @insn: is the array of eBPF instructions
1716 * Decode and execute eBPF instructions.
1718 * Return: whatever value is in %BPF_R0 at program exit
1720 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1722 #define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
1723 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1724 static const void * const jumptable[256] __annotate_jump_table = {
1725 [0 ... 255] = &&default_label,
1726 /* Now overwrite non-defaults ... */
1727 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1728 /* Non-UAPI available opcodes. */
1729 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1730 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1731 [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC,
1732 [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1733 [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1734 [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1735 [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1736 [BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1737 [BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1738 [BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1740 #undef BPF_INSN_3_LBL
1741 #undef BPF_INSN_2_LBL
1742 u32 tail_call_cnt = 0;
1744 #define CONT ({ insn++; goto select_insn; })
1745 #define CONT_JMP ({ insn++; goto select_insn; })
1748 goto *jumptable[insn->code];
1750 /* Explicitly mask the register-based shift amounts with 63 or 31
1751 * to avoid undefined behavior. Normally this won't affect the
1752 * generated code, for example, in case of native 64 bit archs such
1753 * as x86-64 or arm64, the compiler is optimizing the AND away for
1754 * the interpreter. In case of JITs, each of the JIT backends compiles
1755 * the BPF shift operations to machine instructions which produce
1756 * implementation-defined results in such a case; the resulting
1757 * contents of the register may be arbitrary, but program behaviour
1758 * as a whole remains defined. In other words, in case of JIT backends,
1759 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1762 #define SHT(OPCODE, OP) \
1763 ALU64_##OPCODE##_X: \
1764 DST = DST OP (SRC & 63); \
1767 DST = (u32) DST OP ((u32) SRC & 31); \
1769 ALU64_##OPCODE##_K: \
1773 DST = (u32) DST OP (u32) IMM; \
1776 #define ALU(OPCODE, OP) \
1777 ALU64_##OPCODE##_X: \
1781 DST = (u32) DST OP (u32) SRC; \
1783 ALU64_##OPCODE##_K: \
1787 DST = (u32) DST OP (u32) IMM; \
1811 DST = (u32)(s8) SRC;
1814 DST = (u32)(s16) SRC;
1841 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1845 DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1848 DST = (u64) (u32) (((s32) DST) >> IMM);
1851 (*(s64 *) &DST) >>= (SRC & 63);
1854 (*(s64 *) &DST) >>= IMM;
1859 div64_u64_rem(DST, SRC, &AX);
1863 AX = div64_s64(DST, SRC);
1864 DST = DST - AX * SRC;
1872 DST = do_div(AX, (u32) SRC);
1876 AX = do_div(AX, abs((s32)SRC));
1887 div64_u64_rem(DST, IMM, &AX);
1891 AX = div64_s64(DST, IMM);
1892 DST = DST - AX * IMM;
1900 DST = do_div(AX, (u32) IMM);
1904 AX = do_div(AX, abs((s32)IMM));
1915 DST = div64_u64(DST, SRC);
1918 DST = div64_s64(DST, SRC);
1926 do_div(AX, (u32) SRC);
1931 do_div(AX, abs((s32)SRC));
1932 if (((s32)DST < 0) == ((s32)SRC < 0))
1942 DST = div64_u64(DST, IMM);
1945 DST = div64_s64(DST, IMM);
1953 do_div(AX, (u32) IMM);
1958 do_div(AX, abs((s32)IMM));
1959 if (((s32)DST < 0) == ((s32)IMM < 0))
1969 DST = (__force u16) cpu_to_be16(DST);
1972 DST = (__force u32) cpu_to_be32(DST);
1975 DST = (__force u64) cpu_to_be64(DST);
1982 DST = (__force u16) cpu_to_le16(DST);
1985 DST = (__force u32) cpu_to_le32(DST);
1988 DST = (__force u64) cpu_to_le64(DST);
1995 DST = (__force u16) __swab16(DST);
1998 DST = (__force u32) __swab32(DST);
2001 DST = (__force u64) __swab64(DST);
2008 /* Function call scratches BPF_R1-BPF_R5 registers,
2009 * preserves BPF_R6-BPF_R9, and stores return value
2012 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
2017 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
2020 insn + insn->off + 1);
2024 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
2025 struct bpf_array *array = container_of(map, struct bpf_array, map);
2026 struct bpf_prog *prog;
2029 if (unlikely(index >= array->map.max_entries))
2032 if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2037 prog = READ_ONCE(array->ptrs[index]);
2041 /* ARG1 at this point is guaranteed to point to CTX from
2042 * the verifier side due to the fact that the tail call is
2043 * handled like a helper, that is, bpf_tail_call_proto,
2044 * where arg1_type is ARG_PTR_TO_CTX.
2046 insn = prog->insnsi;
2060 #define COND_JMP(SIGN, OPCODE, CMP_OP) \
2062 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \
2063 insn += insn->off; \
2067 JMP32_##OPCODE##_X: \
2068 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \
2069 insn += insn->off; \
2074 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \
2075 insn += insn->off; \
2079 JMP32_##OPCODE##_K: \
2080 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \
2081 insn += insn->off; \
2085 COND_JMP(u, JEQ, ==)
2086 COND_JMP(u, JNE, !=)
2089 COND_JMP(u, JGE, >=)
2090 COND_JMP(u, JLE, <=)
2091 COND_JMP(u, JSET, &)
2092 COND_JMP(s, JSGT, >)
2093 COND_JMP(s, JSLT, <)
2094 COND_JMP(s, JSGE, >=)
2095 COND_JMP(s, JSLE, <=)
2097 /* ST, STX and LDX*/
2099 /* Speculation barrier for mitigating Speculative Store Bypass.
2100 * In case of arm64, we rely on the firmware mitigation as
2101 * controlled via the ssbd kernel parameter. Whenever the
2102 * mitigation is enabled, it works for all of the kernel code
2103 * with no need to provide any additional instructions here.
2104 * In case of x86, we use 'lfence' insn for mitigation. We
2105 * reuse preexisting logic from Spectre v1 mitigation that
2106 * happens to produce the required code on x86 for v4 as well.
2110 #define LDST(SIZEOP, SIZE) \
2112 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
2115 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
2118 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
2120 LDX_PROBE_MEM_##SIZEOP: \
2121 bpf_probe_read_kernel_common(&DST, sizeof(SIZE), \
2122 (const void *)(long) (SRC + insn->off)); \
2123 DST = *((SIZE *)&DST); \
2132 #define LDSX(SIZEOP, SIZE) \
2133 LDX_MEMSX_##SIZEOP: \
2134 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
2136 LDX_PROBE_MEMSX_##SIZEOP: \
2137 bpf_probe_read_kernel_common(&DST, sizeof(SIZE), \
2138 (const void *)(long) (SRC + insn->off)); \
2139 DST = *((SIZE *)&DST); \
2147 #define ATOMIC_ALU_OP(BOP, KOP) \
2149 if (BPF_SIZE(insn->code) == BPF_W) \
2150 atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2151 (DST + insn->off)); \
2153 atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2154 (DST + insn->off)); \
2156 case BOP | BPF_FETCH: \
2157 if (BPF_SIZE(insn->code) == BPF_W) \
2158 SRC = (u32) atomic_fetch_##KOP( \
2160 (atomic_t *)(unsigned long) (DST + insn->off)); \
2162 SRC = (u64) atomic64_fetch_##KOP( \
2164 (atomic64_t *)(unsigned long) (DST + insn->off)); \
2170 ATOMIC_ALU_OP(BPF_ADD, add)
2171 ATOMIC_ALU_OP(BPF_AND, and)
2172 ATOMIC_ALU_OP(BPF_OR, or)
2173 ATOMIC_ALU_OP(BPF_XOR, xor)
2174 #undef ATOMIC_ALU_OP
2177 if (BPF_SIZE(insn->code) == BPF_W)
2178 SRC = (u32) atomic_xchg(
2179 (atomic_t *)(unsigned long) (DST + insn->off),
2182 SRC = (u64) atomic64_xchg(
2183 (atomic64_t *)(unsigned long) (DST + insn->off),
2187 if (BPF_SIZE(insn->code) == BPF_W)
2188 BPF_R0 = (u32) atomic_cmpxchg(
2189 (atomic_t *)(unsigned long) (DST + insn->off),
2190 (u32) BPF_R0, (u32) SRC);
2192 BPF_R0 = (u64) atomic64_cmpxchg(
2193 (atomic64_t *)(unsigned long) (DST + insn->off),
2194 (u64) BPF_R0, (u64) SRC);
2203 /* If we ever reach this, we have a bug somewhere. Die hard here
2204 * instead of just returning 0; we could be somewhere in a subprog,
2205 * so execution could continue otherwise which we do /not/ want.
2207 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2209 pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2210 insn->code, insn->imm);
2215 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2216 #define DEFINE_BPF_PROG_RUN(stack_size) \
2217 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2219 u64 stack[stack_size / sizeof(u64)]; \
2220 u64 regs[MAX_BPF_EXT_REG] = {}; \
2222 kmsan_unpoison_memory(stack, sizeof(stack)); \
2223 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2224 ARG1 = (u64) (unsigned long) ctx; \
2225 return ___bpf_prog_run(regs, insn); \
2228 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2229 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2230 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2231 const struct bpf_insn *insn) \
2233 u64 stack[stack_size / sizeof(u64)]; \
2234 u64 regs[MAX_BPF_EXT_REG]; \
2236 kmsan_unpoison_memory(stack, sizeof(stack)); \
2237 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2243 return ___bpf_prog_run(regs, insn); \
2246 #define EVAL1(FN, X) FN(X)
2247 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2248 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2249 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2250 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2251 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2253 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2254 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2255 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2257 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2258 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2259 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2261 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2263 static unsigned int (*interpreters[])(const void *ctx,
2264 const struct bpf_insn *insn) = {
2265 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2266 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2267 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2269 #undef PROG_NAME_LIST
2270 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2271 static __maybe_unused
2272 u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2273 const struct bpf_insn *insn) = {
2274 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2275 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2276 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2278 #undef PROG_NAME_LIST
2280 #ifdef CONFIG_BPF_SYSCALL
2281 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2283 stack_depth = max_t(u32, stack_depth, 1);
2284 insn->off = (s16) insn->imm;
2285 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2286 __bpf_call_base_args;
2287 insn->code = BPF_JMP | BPF_CALL_ARGS;
2291 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2292 const struct bpf_insn *insn)
2294 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2295 * is not working properly, so warn about it!
2302 bool bpf_prog_map_compatible(struct bpf_map *map,
2303 const struct bpf_prog *fp)
2305 enum bpf_prog_type prog_type = resolve_prog_type(fp);
2308 if (fp->kprobe_override)
2311 /* XDP programs inserted into maps are not guaranteed to run on
2312 * a particular netdev (and can run outside driver context entirely
2313 * in the case of devmap and cpumap). Until device checks
2314 * are implemented, prohibit adding dev-bound programs to program maps.
2316 if (bpf_prog_is_dev_bound(fp->aux))
2319 spin_lock(&map->owner.lock);
2320 if (!map->owner.type) {
2321 /* There's no owner yet where we could check for
2324 map->owner.type = prog_type;
2325 map->owner.jited = fp->jited;
2326 map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2329 ret = map->owner.type == prog_type &&
2330 map->owner.jited == fp->jited &&
2331 map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2333 spin_unlock(&map->owner.lock);
2338 static int bpf_check_tail_call(const struct bpf_prog *fp)
2340 struct bpf_prog_aux *aux = fp->aux;
2343 mutex_lock(&aux->used_maps_mutex);
2344 for (i = 0; i < aux->used_map_cnt; i++) {
2345 struct bpf_map *map = aux->used_maps[i];
2347 if (!map_type_contains_progs(map))
2350 if (!bpf_prog_map_compatible(map, fp)) {
2357 mutex_unlock(&aux->used_maps_mutex);
2361 static void bpf_prog_select_func(struct bpf_prog *fp)
2363 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2364 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2366 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2368 fp->bpf_func = __bpf_prog_ret0_warn;
2373 * bpf_prog_select_runtime - select exec runtime for BPF program
2374 * @fp: bpf_prog populated with BPF program
2375 * @err: pointer to error variable
2377 * Try to JIT eBPF program, if JIT is not available, use interpreter.
2378 * The BPF program will be executed via bpf_prog_run() function.
2380 * Return: the &fp argument along with &err set to 0 for success or
2381 * a negative errno code on failure
2383 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2385 /* In case of BPF to BPF calls, verifier did all the prep
2386 * work with regards to JITing, etc.
2388 bool jit_needed = false;
2393 if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2394 bpf_prog_has_kfunc_call(fp))
2397 bpf_prog_select_func(fp);
2399 /* eBPF JITs can rewrite the program in case constant
2400 * blinding is active. However, in case of error during
2401 * blinding, bpf_int_jit_compile() must always return a
2402 * valid program, which in this case would simply not
2403 * be JITed, but falls back to the interpreter.
2405 if (!bpf_prog_is_offloaded(fp->aux)) {
2406 *err = bpf_prog_alloc_jited_linfo(fp);
2410 fp = bpf_int_jit_compile(fp);
2411 bpf_prog_jit_attempt_done(fp);
2412 if (!fp->jited && jit_needed) {
2417 *err = bpf_prog_offload_compile(fp);
2423 *err = bpf_prog_lock_ro(fp);
2427 /* The tail call compatibility check can only be done at
2428 * this late stage as we need to determine, if we deal
2429 * with JITed or non JITed program concatenations and not
2430 * all eBPF JITs might immediately support all features.
2432 *err = bpf_check_tail_call(fp);
2436 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2438 static unsigned int __bpf_prog_ret1(const void *ctx,
2439 const struct bpf_insn *insn)
2444 static struct bpf_prog_dummy {
2445 struct bpf_prog prog;
2446 } dummy_bpf_prog = {
2448 .bpf_func = __bpf_prog_ret1,
2452 struct bpf_empty_prog_array bpf_empty_prog_array = {
2455 EXPORT_SYMBOL(bpf_empty_prog_array);
2457 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2459 struct bpf_prog_array *p;
2462 p = kzalloc(struct_size(p, items, prog_cnt + 1), flags);
2464 p = &bpf_empty_prog_array.hdr;
2469 void bpf_prog_array_free(struct bpf_prog_array *progs)
2471 if (!progs || progs == &bpf_empty_prog_array.hdr)
2473 kfree_rcu(progs, rcu);
2476 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2478 struct bpf_prog_array *progs;
2480 /* If RCU Tasks Trace grace period implies RCU grace period, there is
2481 * no need to call kfree_rcu(), just call kfree() directly.
2483 progs = container_of(rcu, struct bpf_prog_array, rcu);
2484 if (rcu_trace_implies_rcu_gp())
2487 kfree_rcu(progs, rcu);
2490 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2492 if (!progs || progs == &bpf_empty_prog_array.hdr)
2494 call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2497 int bpf_prog_array_length(struct bpf_prog_array *array)
2499 struct bpf_prog_array_item *item;
2502 for (item = array->items; item->prog; item++)
2503 if (item->prog != &dummy_bpf_prog.prog)
2508 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2510 struct bpf_prog_array_item *item;
2512 for (item = array->items; item->prog; item++)
2513 if (item->prog != &dummy_bpf_prog.prog)
2518 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2522 struct bpf_prog_array_item *item;
2525 for (item = array->items; item->prog; item++) {
2526 if (item->prog == &dummy_bpf_prog.prog)
2528 prog_ids[i] = item->prog->aux->id;
2529 if (++i == request_cnt) {
2535 return !!(item->prog);
2538 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2539 __u32 __user *prog_ids, u32 cnt)
2541 unsigned long err = 0;
2545 /* users of this function are doing:
2546 * cnt = bpf_prog_array_length();
2548 * bpf_prog_array_copy_to_user(..., cnt);
2549 * so below kcalloc doesn't need extra cnt > 0 check.
2551 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2554 nospc = bpf_prog_array_copy_core(array, ids, cnt);
2555 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2564 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2565 struct bpf_prog *old_prog)
2567 struct bpf_prog_array_item *item;
2569 for (item = array->items; item->prog; item++)
2570 if (item->prog == old_prog) {
2571 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2577 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2578 * index into the program array with
2579 * a dummy no-op program.
2580 * @array: a bpf_prog_array
2581 * @index: the index of the program to replace
2583 * Skips over dummy programs, by not counting them, when calculating
2584 * the position of the program to replace.
2588 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2589 * * -ENOENT - Index out of range
2591 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2593 return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2597 * bpf_prog_array_update_at() - Updates the program at the given index
2598 * into the program array.
2599 * @array: a bpf_prog_array
2600 * @index: the index of the program to update
2601 * @prog: the program to insert into the array
2603 * Skips over dummy programs, by not counting them, when calculating
2604 * the position of the program to update.
2608 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2609 * * -ENOENT - Index out of range
2611 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2612 struct bpf_prog *prog)
2614 struct bpf_prog_array_item *item;
2616 if (unlikely(index < 0))
2619 for (item = array->items; item->prog; item++) {
2620 if (item->prog == &dummy_bpf_prog.prog)
2623 WRITE_ONCE(item->prog, prog);
2631 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2632 struct bpf_prog *exclude_prog,
2633 struct bpf_prog *include_prog,
2635 struct bpf_prog_array **new_array)
2637 int new_prog_cnt, carry_prog_cnt = 0;
2638 struct bpf_prog_array_item *existing, *new;
2639 struct bpf_prog_array *array;
2640 bool found_exclude = false;
2642 /* Figure out how many existing progs we need to carry over to
2646 existing = old_array->items;
2647 for (; existing->prog; existing++) {
2648 if (existing->prog == exclude_prog) {
2649 found_exclude = true;
2652 if (existing->prog != &dummy_bpf_prog.prog)
2654 if (existing->prog == include_prog)
2659 if (exclude_prog && !found_exclude)
2662 /* How many progs (not NULL) will be in the new array? */
2663 new_prog_cnt = carry_prog_cnt;
2667 /* Do we have any prog (not NULL) in the new array? */
2668 if (!new_prog_cnt) {
2673 /* +1 as the end of prog_array is marked with NULL */
2674 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2679 /* Fill in the new prog array */
2680 if (carry_prog_cnt) {
2681 existing = old_array->items;
2682 for (; existing->prog; existing++) {
2683 if (existing->prog == exclude_prog ||
2684 existing->prog == &dummy_bpf_prog.prog)
2687 new->prog = existing->prog;
2688 new->bpf_cookie = existing->bpf_cookie;
2693 new->prog = include_prog;
2694 new->bpf_cookie = bpf_cookie;
2702 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2703 u32 *prog_ids, u32 request_cnt,
2709 cnt = bpf_prog_array_length(array);
2713 /* return early if user requested only program count or nothing to copy */
2714 if (!request_cnt || !cnt)
2717 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2718 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2722 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2723 struct bpf_map **used_maps, u32 len)
2725 struct bpf_map *map;
2729 sleepable = aux->prog->sleepable;
2730 for (i = 0; i < len; i++) {
2732 if (map->ops->map_poke_untrack)
2733 map->ops->map_poke_untrack(map, aux);
2735 atomic64_dec(&map->sleepable_refcnt);
2740 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2742 __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2743 kfree(aux->used_maps);
2746 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2747 struct btf_mod_pair *used_btfs, u32 len)
2749 #ifdef CONFIG_BPF_SYSCALL
2750 struct btf_mod_pair *btf_mod;
2753 for (i = 0; i < len; i++) {
2754 btf_mod = &used_btfs[i];
2755 if (btf_mod->module)
2756 module_put(btf_mod->module);
2757 btf_put(btf_mod->btf);
2762 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2764 __bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2765 kfree(aux->used_btfs);
2768 static void bpf_prog_free_deferred(struct work_struct *work)
2770 struct bpf_prog_aux *aux;
2773 aux = container_of(work, struct bpf_prog_aux, work);
2774 #ifdef CONFIG_BPF_SYSCALL
2775 bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2777 #ifdef CONFIG_CGROUP_BPF
2778 if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2779 bpf_cgroup_atype_put(aux->cgroup_atype);
2781 bpf_free_used_maps(aux);
2782 bpf_free_used_btfs(aux);
2783 if (bpf_prog_is_dev_bound(aux))
2784 bpf_prog_dev_bound_destroy(aux->prog);
2785 #ifdef CONFIG_PERF_EVENTS
2786 if (aux->prog->has_callchain_buf)
2787 put_callchain_buffers();
2789 if (aux->dst_trampoline)
2790 bpf_trampoline_put(aux->dst_trampoline);
2791 for (i = 0; i < aux->real_func_cnt; i++) {
2792 /* We can just unlink the subprog poke descriptor table as
2793 * it was originally linked to the main program and is also
2794 * released along with it.
2796 aux->func[i]->aux->poke_tab = NULL;
2797 bpf_jit_free(aux->func[i]);
2799 if (aux->real_func_cnt) {
2801 bpf_prog_unlock_free(aux->prog);
2803 bpf_jit_free(aux->prog);
2807 void bpf_prog_free(struct bpf_prog *fp)
2809 struct bpf_prog_aux *aux = fp->aux;
2812 bpf_prog_put(aux->dst_prog);
2813 bpf_token_put(aux->token);
2814 INIT_WORK(&aux->work, bpf_prog_free_deferred);
2815 schedule_work(&aux->work);
2817 EXPORT_SYMBOL_GPL(bpf_prog_free);
2819 /* RNG for unprivileged user space with separated state from prandom_u32(). */
2820 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2822 void bpf_user_rnd_init_once(void)
2824 prandom_init_once(&bpf_user_rnd_state);
2827 BPF_CALL_0(bpf_user_rnd_u32)
2829 /* Should someone ever have the rather unwise idea to use some
2830 * of the registers passed into this function, then note that
2831 * this function is called from native eBPF and classic-to-eBPF
2832 * transformations. Register assignments from both sides are
2833 * different, f.e. classic always sets fn(ctx, A, X) here.
2835 struct rnd_state *state;
2838 state = &get_cpu_var(bpf_user_rnd_state);
2839 res = prandom_u32_state(state);
2840 put_cpu_var(bpf_user_rnd_state);
2845 BPF_CALL_0(bpf_get_raw_cpu_id)
2847 return raw_smp_processor_id();
2850 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2851 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2852 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2853 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2854 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2855 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2856 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2857 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2858 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2859 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2860 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2862 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2863 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2864 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2865 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2866 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2867 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2868 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2870 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2871 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2872 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2873 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2874 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2875 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2876 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2877 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2878 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2879 const struct bpf_func_proto bpf_set_retval_proto __weak;
2880 const struct bpf_func_proto bpf_get_retval_proto __weak;
2882 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2887 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2893 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2894 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2898 EXPORT_SYMBOL_GPL(bpf_event_output);
2900 /* Always built-in helper functions. */
2901 const struct bpf_func_proto bpf_tail_call_proto = {
2904 .ret_type = RET_VOID,
2905 .arg1_type = ARG_PTR_TO_CTX,
2906 .arg2_type = ARG_CONST_MAP_PTR,
2907 .arg3_type = ARG_ANYTHING,
2910 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2911 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2912 * eBPF and implicitly also cBPF can get JITed!
2914 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2919 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2920 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2922 void __weak bpf_jit_compile(struct bpf_prog *prog)
2926 bool __weak bpf_helper_changes_pkt_data(void *func)
2931 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2932 * analysis code and wants explicit zero extension inserted by verifier.
2933 * Otherwise, return FALSE.
2935 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2936 * you don't override this. JITs that don't want these extra insns can detect
2937 * them using insn_is_zext.
2939 bool __weak bpf_jit_needs_zext(void)
2944 /* Return true if the JIT inlines the call to the helper corresponding to
2947 * The verifier will not patch the insn->imm for the call to the helper if
2948 * this returns true.
2950 bool __weak bpf_jit_inlines_helper_call(s32 imm)
2955 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
2956 bool __weak bpf_jit_supports_subprog_tailcalls(void)
2961 bool __weak bpf_jit_supports_percpu_insn(void)
2966 bool __weak bpf_jit_supports_kfunc_call(void)
2971 bool __weak bpf_jit_supports_far_kfunc_call(void)
2976 bool __weak bpf_jit_supports_arena(void)
2981 bool __weak bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
2986 u64 __weak bpf_arch_uaddress_limit(void)
2988 #if defined(CONFIG_64BIT) && defined(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE)
2995 /* Return TRUE if the JIT backend satisfies the following two conditions:
2996 * 1) JIT backend supports atomic_xchg() on pointer-sized words.
2997 * 2) Under the specific arch, the implementation of xchg() is the same
2998 * as atomic_xchg() on pointer-sized words.
3000 bool __weak bpf_jit_supports_ptr_xchg(void)
3005 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
3006 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
3008 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
3014 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3015 void *addr1, void *addr2)
3020 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
3022 return ERR_PTR(-ENOTSUPP);
3025 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
3030 bool __weak bpf_jit_supports_exceptions(void)
3035 void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3039 /* for configs without MMU or 32-bit */
3040 __weak const struct bpf_map_ops arena_map_ops;
3041 __weak u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena)
3045 __weak u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena)
3050 #ifdef CONFIG_BPF_SYSCALL
3051 static int __init bpf_global_ma_init(void)
3055 ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
3056 bpf_global_ma_set = !ret;
3059 late_initcall(bpf_global_ma_init);
3062 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
3063 EXPORT_SYMBOL(bpf_stats_enabled_key);
3065 /* All definitions of tracepoints related to BPF. */
3066 #define CREATE_TRACE_POINTS
3067 #include <linux/bpf_trace.h>
3069 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
3070 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);