1 // SPDX-License-Identifier: GPL-2.0+
3 * NILFS module and super block management.
5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
7 * Written by Ryusuke Konishi.
10 * linux/fs/ext2/super.c
12 * Copyright (C) 1992, 1993, 1994, 1995
14 * Laboratoire MASI - Institut Blaise Pascal
15 * Universite Pierre et Marie Curie (Paris VI)
19 * linux/fs/minix/inode.c
21 * Copyright (C) 1991, 1992 Linus Torvalds
23 * Big-endian to little-endian byte-swapping/bitmaps by
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/blkdev.h>
32 #include <linux/crc32.h>
33 #include <linux/vfs.h>
34 #include <linux/writeback.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/fs_context.h>
38 #include <linux/fs_parser.h>
47 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
53 MODULE_AUTHOR("NTT Corp.");
54 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
56 MODULE_LICENSE("GPL");
58 static struct kmem_cache *nilfs_inode_cachep;
59 struct kmem_cache *nilfs_transaction_cachep;
60 struct kmem_cache *nilfs_segbuf_cachep;
61 struct kmem_cache *nilfs_btree_path_cache;
63 static int nilfs_setup_super(struct super_block *sb, int is_mount);
65 void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
73 level = printk_get_level(fmt);
74 vaf.fmt = printk_skip_level(fmt);
78 printk("%c%cNILFS (%s): %pV\n",
79 KERN_SOH_ASCII, level, sb->s_id, &vaf);
81 printk("%c%cNILFS: %pV\n",
82 KERN_SOH_ASCII, level, &vaf);
87 static void nilfs_set_error(struct super_block *sb)
89 struct the_nilfs *nilfs = sb->s_fs_info;
90 struct nilfs_super_block **sbp;
92 down_write(&nilfs->ns_sem);
93 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
94 nilfs->ns_mount_state |= NILFS_ERROR_FS;
95 sbp = nilfs_prepare_super(sb, 0);
97 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
99 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
100 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
103 up_write(&nilfs->ns_sem);
107 * __nilfs_error() - report failure condition on a filesystem
109 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
110 * reporting an error message. This function should be called when
111 * NILFS detects incoherences or defects of meta data on disk.
113 * This implements the body of nilfs_error() macro. Normally,
114 * nilfs_error() should be used. As for sustainable errors such as a
115 * single-shot I/O error, nilfs_err() should be used instead.
117 * Callers should not add a trailing newline since this will do it.
119 void __nilfs_error(struct super_block *sb, const char *function,
120 const char *fmt, ...)
122 struct the_nilfs *nilfs = sb->s_fs_info;
123 struct va_format vaf;
131 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
132 sb->s_id, function, &vaf);
136 if (!sb_rdonly(sb)) {
139 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
140 printk(KERN_CRIT "Remounting filesystem read-only\n");
141 sb->s_flags |= SB_RDONLY;
145 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
146 panic("NILFS (device %s): panic forced after error\n",
150 struct inode *nilfs_alloc_inode(struct super_block *sb)
152 struct nilfs_inode_info *ii;
154 ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS);
160 ii->i_assoc_inode = NULL;
161 ii->i_bmap = &ii->i_bmap_data;
162 return &ii->vfs_inode;
165 static void nilfs_free_inode(struct inode *inode)
167 if (nilfs_is_metadata_file_inode(inode))
168 nilfs_mdt_destroy(inode);
170 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
173 static int nilfs_sync_super(struct super_block *sb, int flag)
175 struct the_nilfs *nilfs = sb->s_fs_info;
179 set_buffer_dirty(nilfs->ns_sbh[0]);
180 if (nilfs_test_opt(nilfs, BARRIER)) {
181 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
182 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
184 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
188 nilfs_err(sb, "unable to write superblock: err=%d", err);
189 if (err == -EIO && nilfs->ns_sbh[1]) {
191 * sbp[0] points to newer log than sbp[1],
192 * so copy sbp[0] to sbp[1] to take over sbp[0].
194 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
196 nilfs_fall_back_super_block(nilfs);
200 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
202 nilfs->ns_sbwcount++;
205 * The latest segment becomes trailable from the position
206 * written in superblock.
208 clear_nilfs_discontinued(nilfs);
210 /* update GC protection for recent segments */
211 if (nilfs->ns_sbh[1]) {
212 if (flag == NILFS_SB_COMMIT_ALL) {
213 set_buffer_dirty(nilfs->ns_sbh[1]);
214 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
217 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
218 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
219 sbp = nilfs->ns_sbp[1];
222 spin_lock(&nilfs->ns_last_segment_lock);
223 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
224 spin_unlock(&nilfs->ns_last_segment_lock);
230 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
231 struct the_nilfs *nilfs)
233 sector_t nfreeblocks;
235 /* nilfs->ns_sem must be locked by the caller. */
236 nilfs_count_free_blocks(nilfs, &nfreeblocks);
237 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
239 spin_lock(&nilfs->ns_last_segment_lock);
240 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
241 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
242 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
243 spin_unlock(&nilfs->ns_last_segment_lock);
246 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
249 struct the_nilfs *nilfs = sb->s_fs_info;
250 struct nilfs_super_block **sbp = nilfs->ns_sbp;
252 /* nilfs->ns_sem must be locked by the caller. */
253 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
255 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
256 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
258 nilfs_crit(sb, "superblock broke");
262 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
263 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
267 nilfs_swap_super_block(nilfs);
272 int nilfs_commit_super(struct super_block *sb, int flag)
274 struct the_nilfs *nilfs = sb->s_fs_info;
275 struct nilfs_super_block **sbp = nilfs->ns_sbp;
278 /* nilfs->ns_sem must be locked by the caller. */
279 t = ktime_get_real_seconds();
280 nilfs->ns_sbwtime = t;
281 sbp[0]->s_wtime = cpu_to_le64(t);
283 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
284 (unsigned char *)sbp[0],
286 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
287 sbp[1]->s_wtime = sbp[0]->s_wtime;
289 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
290 (unsigned char *)sbp[1],
293 clear_nilfs_sb_dirty(nilfs);
294 nilfs->ns_flushed_device = 1;
295 /* make sure store to ns_flushed_device cannot be reordered */
297 return nilfs_sync_super(sb, flag);
301 * nilfs_cleanup_super() - write filesystem state for cleanup
302 * @sb: super block instance to be unmounted or degraded to read-only
304 * This function restores state flags in the on-disk super block.
305 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
306 * filesystem was not clean previously.
308 int nilfs_cleanup_super(struct super_block *sb)
310 struct the_nilfs *nilfs = sb->s_fs_info;
311 struct nilfs_super_block **sbp;
312 int flag = NILFS_SB_COMMIT;
315 sbp = nilfs_prepare_super(sb, 0);
317 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
318 nilfs_set_log_cursor(sbp[0], nilfs);
319 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
321 * make the "clean" flag also to the opposite
322 * super block if both super blocks point to
323 * the same checkpoint.
325 sbp[1]->s_state = sbp[0]->s_state;
326 flag = NILFS_SB_COMMIT_ALL;
328 ret = nilfs_commit_super(sb, flag);
334 * nilfs_move_2nd_super - relocate secondary super block
335 * @sb: super block instance
336 * @sb2off: new offset of the secondary super block (in bytes)
338 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
340 struct the_nilfs *nilfs = sb->s_fs_info;
341 struct buffer_head *nsbh;
342 struct nilfs_super_block *nsbp;
343 sector_t blocknr, newblocknr;
344 unsigned long offset;
345 int sb2i; /* array index of the secondary superblock */
348 /* nilfs->ns_sem must be locked by the caller. */
349 if (nilfs->ns_sbh[1] &&
350 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
352 blocknr = nilfs->ns_sbh[1]->b_blocknr;
353 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
355 blocknr = nilfs->ns_sbh[0]->b_blocknr;
360 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
361 goto out; /* super block location is unchanged */
363 /* Get new super block buffer */
364 newblocknr = sb2off >> nilfs->ns_blocksize_bits;
365 offset = sb2off & (nilfs->ns_blocksize - 1);
366 nsbh = sb_getblk(sb, newblocknr);
369 "unable to move secondary superblock to block %llu",
370 (unsigned long long)newblocknr);
374 nsbp = (void *)nsbh->b_data + offset;
379 * The position of the second superblock only changes by 4KiB,
380 * which is larger than the maximum superblock data size
381 * (= 1KiB), so there is no need to use memmove() to allow
382 * overlap between source and destination.
384 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
387 * Zero fill after copy to avoid overwriting in case of move
388 * within the same block.
390 memset(nsbh->b_data, 0, offset);
391 memset((void *)nsbp + nilfs->ns_sbsize, 0,
392 nsbh->b_size - offset - nilfs->ns_sbsize);
394 memset(nsbh->b_data, 0, nsbh->b_size);
396 set_buffer_uptodate(nsbh);
400 brelse(nilfs->ns_sbh[sb2i]);
401 nilfs->ns_sbh[sb2i] = nsbh;
402 nilfs->ns_sbp[sb2i] = nsbp;
403 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
404 /* secondary super block will be restored to index 1 */
405 nilfs->ns_sbh[1] = nsbh;
406 nilfs->ns_sbp[1] = nsbp;
415 * nilfs_resize_fs - resize the filesystem
416 * @sb: super block instance
417 * @newsize: new size of the filesystem (in bytes)
419 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
421 struct the_nilfs *nilfs = sb->s_fs_info;
422 struct nilfs_super_block **sbp;
423 __u64 devsize, newnsegs;
428 devsize = bdev_nr_bytes(sb->s_bdev);
429 if (newsize > devsize)
433 * Prevent underflow in second superblock position calculation.
434 * The exact minimum size check is done in nilfs_sufile_resize().
436 if (newsize < 4096) {
442 * Write lock is required to protect some functions depending
443 * on the number of segments, the number of reserved segments,
446 down_write(&nilfs->ns_segctor_sem);
448 sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
449 newnsegs = sb2off >> nilfs->ns_blocksize_bits;
450 newnsegs = div64_ul(newnsegs, nilfs->ns_blocks_per_segment);
452 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
453 up_write(&nilfs->ns_segctor_sem);
457 ret = nilfs_construct_segment(sb);
461 down_write(&nilfs->ns_sem);
462 nilfs_move_2nd_super(sb, sb2off);
464 sbp = nilfs_prepare_super(sb, 0);
466 nilfs_set_log_cursor(sbp[0], nilfs);
468 * Drop NILFS_RESIZE_FS flag for compatibility with
469 * mount-time resize which may be implemented in a
472 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
474 sbp[0]->s_dev_size = cpu_to_le64(newsize);
475 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
477 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
478 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
480 up_write(&nilfs->ns_sem);
483 * Reset the range of allocatable segments last. This order
484 * is important in the case of expansion because the secondary
485 * superblock must be protected from log write until migration
489 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
494 static void nilfs_put_super(struct super_block *sb)
496 struct the_nilfs *nilfs = sb->s_fs_info;
498 nilfs_detach_log_writer(sb);
500 if (!sb_rdonly(sb)) {
501 down_write(&nilfs->ns_sem);
502 nilfs_cleanup_super(sb);
503 up_write(&nilfs->ns_sem);
506 nilfs_sysfs_delete_device_group(nilfs);
507 iput(nilfs->ns_sufile);
508 iput(nilfs->ns_cpfile);
511 destroy_nilfs(nilfs);
512 sb->s_fs_info = NULL;
515 static int nilfs_sync_fs(struct super_block *sb, int wait)
517 struct the_nilfs *nilfs = sb->s_fs_info;
518 struct nilfs_super_block **sbp;
521 /* This function is called when super block should be written back */
523 err = nilfs_construct_segment(sb);
525 down_write(&nilfs->ns_sem);
526 if (nilfs_sb_dirty(nilfs)) {
527 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
529 nilfs_set_log_cursor(sbp[0], nilfs);
530 nilfs_commit_super(sb, NILFS_SB_COMMIT);
533 up_write(&nilfs->ns_sem);
536 err = nilfs_flush_device(nilfs);
541 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
542 struct nilfs_root **rootp)
544 struct the_nilfs *nilfs = sb->s_fs_info;
545 struct nilfs_root *root;
548 root = nilfs_find_or_create_root(
549 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
554 goto reuse; /* already attached checkpoint */
556 down_read(&nilfs->ns_segctor_sem);
557 err = nilfs_ifile_read(sb, root, cno, nilfs->ns_inode_size);
558 up_read(&nilfs->ns_segctor_sem);
568 nilfs_err(sb, "Invalid checkpoint (checkpoint number=%llu)",
569 (unsigned long long)cno);
570 nilfs_put_root(root);
575 static int nilfs_freeze(struct super_block *sb)
577 struct the_nilfs *nilfs = sb->s_fs_info;
583 /* Mark super block clean */
584 down_write(&nilfs->ns_sem);
585 err = nilfs_cleanup_super(sb);
586 up_write(&nilfs->ns_sem);
590 static int nilfs_unfreeze(struct super_block *sb)
592 struct the_nilfs *nilfs = sb->s_fs_info;
597 down_write(&nilfs->ns_sem);
598 nilfs_setup_super(sb, false);
599 up_write(&nilfs->ns_sem);
603 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
605 struct super_block *sb = dentry->d_sb;
606 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
607 struct the_nilfs *nilfs = root->nilfs;
608 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
609 unsigned long long blocks;
610 unsigned long overhead;
611 unsigned long nrsvblocks;
612 sector_t nfreeblocks;
613 u64 nmaxinodes, nfreeinodes;
617 * Compute all of the segment blocks
619 * The blocks before first segment and after last segment
622 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
623 - nilfs->ns_first_data_block;
624 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
627 * Compute the overhead
629 * When distributing meta data blocks outside segment structure,
630 * We must count them as the overhead.
634 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
638 err = nilfs_ifile_count_free_inodes(root->ifile,
639 &nmaxinodes, &nfreeinodes);
641 nilfs_warn(sb, "failed to count free inodes: err=%d", err);
642 if (err == -ERANGE) {
644 * If nilfs_palloc_count_max_entries() returns
645 * -ERANGE error code then we simply treat
646 * curent inodes count as maximum possible and
647 * zero as free inodes value.
649 nmaxinodes = atomic64_read(&root->inodes_count);
656 buf->f_type = NILFS_SUPER_MAGIC;
657 buf->f_bsize = sb->s_blocksize;
658 buf->f_blocks = blocks - overhead;
659 buf->f_bfree = nfreeblocks;
660 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
661 (buf->f_bfree - nrsvblocks) : 0;
662 buf->f_files = nmaxinodes;
663 buf->f_ffree = nfreeinodes;
664 buf->f_namelen = NILFS_NAME_LEN;
665 buf->f_fsid = u64_to_fsid(id);
670 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
672 struct super_block *sb = dentry->d_sb;
673 struct the_nilfs *nilfs = sb->s_fs_info;
674 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
676 if (!nilfs_test_opt(nilfs, BARRIER))
677 seq_puts(seq, ",nobarrier");
678 if (root->cno != NILFS_CPTREE_CURRENT_CNO)
679 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
680 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
681 seq_puts(seq, ",errors=panic");
682 if (nilfs_test_opt(nilfs, ERRORS_CONT))
683 seq_puts(seq, ",errors=continue");
684 if (nilfs_test_opt(nilfs, STRICT_ORDER))
685 seq_puts(seq, ",order=strict");
686 if (nilfs_test_opt(nilfs, NORECOVERY))
687 seq_puts(seq, ",norecovery");
688 if (nilfs_test_opt(nilfs, DISCARD))
689 seq_puts(seq, ",discard");
694 static const struct super_operations nilfs_sops = {
695 .alloc_inode = nilfs_alloc_inode,
696 .free_inode = nilfs_free_inode,
697 .dirty_inode = nilfs_dirty_inode,
698 .evict_inode = nilfs_evict_inode,
699 .put_super = nilfs_put_super,
700 .sync_fs = nilfs_sync_fs,
701 .freeze_fs = nilfs_freeze,
702 .unfreeze_fs = nilfs_unfreeze,
703 .statfs = nilfs_statfs,
704 .show_options = nilfs_show_options
708 Opt_err, Opt_barrier, Opt_snapshot, Opt_order, Opt_norecovery,
712 static const struct constant_table nilfs_param_err[] = {
713 {"continue", NILFS_MOUNT_ERRORS_CONT},
714 {"panic", NILFS_MOUNT_ERRORS_PANIC},
715 {"remount-ro", NILFS_MOUNT_ERRORS_RO},
719 static const struct fs_parameter_spec nilfs_param_spec[] = {
720 fsparam_enum ("errors", Opt_err, nilfs_param_err),
721 fsparam_flag_no ("barrier", Opt_barrier),
722 fsparam_u64 ("cp", Opt_snapshot),
723 fsparam_string ("order", Opt_order),
724 fsparam_flag ("norecovery", Opt_norecovery),
725 fsparam_flag_no ("discard", Opt_discard),
729 struct nilfs_fs_context {
730 unsigned long ns_mount_opt;
734 static int nilfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
736 struct nilfs_fs_context *nilfs = fc->fs_private;
737 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
738 struct fs_parse_result result;
741 opt = fs_parse(fc, nilfs_param_spec, param, &result);
748 nilfs_clear_opt(nilfs, BARRIER);
750 nilfs_set_opt(nilfs, BARRIER);
753 if (strcmp(param->string, "relaxed") == 0)
754 /* Ordered data semantics */
755 nilfs_clear_opt(nilfs, STRICT_ORDER);
756 else if (strcmp(param->string, "strict") == 0)
757 /* Strict in-order semantics */
758 nilfs_set_opt(nilfs, STRICT_ORDER);
763 nilfs->ns_mount_opt &= ~NILFS_MOUNT_ERROR_MODE;
764 nilfs->ns_mount_opt |= result.uint_32;
768 struct super_block *sb = fc->root->d_sb;
771 "\"%s\" option is invalid for remount",
775 if (result.uint_64 == 0) {
777 "invalid option \"cp=0\": invalid checkpoint number 0");
780 nilfs->cno = result.uint_64;
783 nilfs_set_opt(nilfs, NORECOVERY);
787 nilfs_clear_opt(nilfs, DISCARD);
789 nilfs_set_opt(nilfs, DISCARD);
798 static int nilfs_setup_super(struct super_block *sb, int is_mount)
800 struct the_nilfs *nilfs = sb->s_fs_info;
801 struct nilfs_super_block **sbp;
805 /* nilfs->ns_sem must be locked by the caller. */
806 sbp = nilfs_prepare_super(sb, 0);
811 goto skip_mount_setup;
813 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
814 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
816 if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
817 nilfs_warn(sb, "mounting fs with errors");
819 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
820 nilfs_warn(sb, "maximal mount count reached");
824 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
826 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
827 sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
831 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
832 /* synchronize sbp[1] with sbp[0] */
834 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
835 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
838 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
839 u64 pos, int blocksize,
840 struct buffer_head **pbh)
842 unsigned long long sb_index = pos;
843 unsigned long offset;
845 offset = do_div(sb_index, blocksize);
846 *pbh = sb_bread(sb, sb_index);
849 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
852 int nilfs_store_magic(struct super_block *sb,
853 struct nilfs_super_block *sbp)
855 struct the_nilfs *nilfs = sb->s_fs_info;
857 sb->s_magic = le16_to_cpu(sbp->s_magic);
859 /* FS independent flags */
860 #ifdef NILFS_ATIME_DISABLE
861 sb->s_flags |= SB_NOATIME;
864 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
865 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
866 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
867 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
872 int nilfs_check_feature_compatibility(struct super_block *sb,
873 struct nilfs_super_block *sbp)
877 features = le64_to_cpu(sbp->s_feature_incompat) &
878 ~NILFS_FEATURE_INCOMPAT_SUPP;
881 "couldn't mount because of unsupported optional features (%llx)",
882 (unsigned long long)features);
885 features = le64_to_cpu(sbp->s_feature_compat_ro) &
886 ~NILFS_FEATURE_COMPAT_RO_SUPP;
887 if (!sb_rdonly(sb) && features) {
889 "couldn't mount RDWR because of unsupported optional features (%llx)",
890 (unsigned long long)features);
896 static int nilfs_get_root_dentry(struct super_block *sb,
897 struct nilfs_root *root,
898 struct dentry **root_dentry)
901 struct dentry *dentry;
904 inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
906 ret = PTR_ERR(inode);
907 nilfs_err(sb, "error %d getting root inode", ret);
910 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
912 nilfs_err(sb, "corrupt root inode");
917 if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
918 dentry = d_find_alias(inode);
920 dentry = d_make_root(inode);
929 dentry = d_obtain_root(inode);
930 if (IS_ERR(dentry)) {
931 ret = PTR_ERR(dentry);
935 *root_dentry = dentry;
940 nilfs_err(sb, "error %d getting root dentry", ret);
944 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
945 struct dentry **root_dentry)
947 struct the_nilfs *nilfs = s->s_fs_info;
948 struct nilfs_root *root;
951 mutex_lock(&nilfs->ns_snapshot_mount_mutex);
953 down_read(&nilfs->ns_segctor_sem);
954 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
955 up_read(&nilfs->ns_segctor_sem);
957 ret = (ret == -ENOENT) ? -EINVAL : ret;
961 "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
962 (unsigned long long)cno);
967 ret = nilfs_attach_checkpoint(s, cno, false, &root);
970 "error %d while loading snapshot (checkpoint number=%llu)",
971 ret, (unsigned long long)cno);
974 ret = nilfs_get_root_dentry(s, root, root_dentry);
975 nilfs_put_root(root);
977 mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
982 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
983 * @root_dentry: root dentry of the tree to be shrunk
985 * This function returns true if the tree was in-use.
987 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
989 shrink_dcache_parent(root_dentry);
990 return d_count(root_dentry) > 1;
993 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
995 struct the_nilfs *nilfs = sb->s_fs_info;
996 struct nilfs_root *root;
998 struct dentry *dentry;
1001 if (cno > nilfs->ns_cno)
1004 if (cno >= nilfs_last_cno(nilfs))
1005 return true; /* protect recent checkpoints */
1008 root = nilfs_lookup_root(nilfs, cno);
1010 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1012 dentry = d_find_alias(inode);
1014 ret = nilfs_tree_is_busy(dentry);
1019 nilfs_put_root(root);
1025 * nilfs_fill_super() - initialize a super block instance
1027 * @fc: filesystem context
1029 * This function is called exclusively by nilfs->ns_mount_mutex.
1030 * So, the recovery process is protected from other simultaneous mounts.
1033 nilfs_fill_super(struct super_block *sb, struct fs_context *fc)
1035 struct the_nilfs *nilfs;
1036 struct nilfs_root *fsroot;
1037 struct nilfs_fs_context *ctx = fc->fs_private;
1041 nilfs = alloc_nilfs(sb);
1045 sb->s_fs_info = nilfs;
1047 err = init_nilfs(nilfs, sb);
1051 /* Copy in parsed mount options */
1052 nilfs->ns_mount_opt = ctx->ns_mount_opt;
1054 sb->s_op = &nilfs_sops;
1055 sb->s_export_op = &nilfs_export_ops;
1057 sb->s_time_gran = 1;
1058 sb->s_max_links = NILFS_LINK_MAX;
1060 sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi);
1062 err = load_nilfs(nilfs, sb);
1066 cno = nilfs_last_cno(nilfs);
1067 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1070 "error %d while loading last checkpoint (checkpoint number=%llu)",
1071 err, (unsigned long long)cno);
1075 if (!sb_rdonly(sb)) {
1076 err = nilfs_attach_log_writer(sb, fsroot);
1078 goto failed_checkpoint;
1081 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1083 goto failed_segctor;
1085 nilfs_put_root(fsroot);
1087 if (!sb_rdonly(sb)) {
1088 down_write(&nilfs->ns_sem);
1089 nilfs_setup_super(sb, true);
1090 up_write(&nilfs->ns_sem);
1096 nilfs_detach_log_writer(sb);
1099 nilfs_put_root(fsroot);
1102 nilfs_sysfs_delete_device_group(nilfs);
1103 iput(nilfs->ns_sufile);
1104 iput(nilfs->ns_cpfile);
1105 iput(nilfs->ns_dat);
1108 destroy_nilfs(nilfs);
1112 static int nilfs_reconfigure(struct fs_context *fc)
1114 struct nilfs_fs_context *ctx = fc->fs_private;
1115 struct super_block *sb = fc->root->d_sb;
1116 struct the_nilfs *nilfs = sb->s_fs_info;
1119 sync_filesystem(sb);
1123 if (!nilfs_valid_fs(nilfs)) {
1125 "couldn't remount because the filesystem is in an incomplete recovery state");
1128 if ((bool)(fc->sb_flags & SB_RDONLY) == sb_rdonly(sb))
1130 if (fc->sb_flags & SB_RDONLY) {
1131 sb->s_flags |= SB_RDONLY;
1134 * Remounting a valid RW partition RDONLY, so set
1135 * the RDONLY flag and then mark the partition as valid again.
1137 down_write(&nilfs->ns_sem);
1138 nilfs_cleanup_super(sb);
1139 up_write(&nilfs->ns_sem);
1142 struct nilfs_root *root;
1145 * Mounting a RDONLY partition read-write, so reread and
1146 * store the current valid flag. (It may have been changed
1147 * by fsck since we originally mounted the partition.)
1149 down_read(&nilfs->ns_sem);
1150 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1151 ~NILFS_FEATURE_COMPAT_RO_SUPP;
1152 up_read(&nilfs->ns_sem);
1155 "couldn't remount RDWR because of unsupported optional features (%llx)",
1156 (unsigned long long)features);
1161 sb->s_flags &= ~SB_RDONLY;
1163 root = NILFS_I(d_inode(sb->s_root))->i_root;
1164 err = nilfs_attach_log_writer(sb, root);
1166 sb->s_flags |= SB_RDONLY;
1170 down_write(&nilfs->ns_sem);
1171 nilfs_setup_super(sb, true);
1172 up_write(&nilfs->ns_sem);
1175 sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1176 /* Copy over parsed remount options */
1177 nilfs->ns_mount_opt = ctx->ns_mount_opt;
1186 nilfs_get_tree(struct fs_context *fc)
1188 struct nilfs_fs_context *ctx = fc->fs_private;
1189 struct super_block *s;
1193 if (ctx->cno && !(fc->sb_flags & SB_RDONLY)) {
1195 "invalid option \"cp=%llu\": read-only option is not specified",
1200 err = lookup_bdev(fc->source, &dev);
1204 s = sget_dev(fc, dev);
1209 err = setup_bdev_super(s, fc->sb_flags, fc);
1211 err = nilfs_fill_super(s, fc);
1215 s->s_flags |= SB_ACTIVE;
1216 } else if (!ctx->cno) {
1217 if (nilfs_tree_is_busy(s->s_root)) {
1218 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1220 "the device already has a %s mount.",
1221 sb_rdonly(s) ? "read-only" : "read/write");
1227 * Try reconfigure to setup mount states if the current
1228 * tree is not mounted and only snapshots use this sb.
1230 * Since nilfs_reconfigure() requires fc->root to be
1231 * set, set it first and release it on failure.
1233 fc->root = dget(s->s_root);
1234 err = nilfs_reconfigure(fc);
1237 fc->root = NULL; /* prevent double release */
1245 struct dentry *root_dentry;
1247 err = nilfs_attach_snapshot(s, ctx->cno, &root_dentry);
1250 fc->root = root_dentry;
1254 fc->root = dget(s->s_root);
1258 deactivate_locked_super(s);
1262 static void nilfs_free_fc(struct fs_context *fc)
1264 kfree(fc->fs_private);
1267 static const struct fs_context_operations nilfs_context_ops = {
1268 .parse_param = nilfs_parse_param,
1269 .get_tree = nilfs_get_tree,
1270 .reconfigure = nilfs_reconfigure,
1271 .free = nilfs_free_fc,
1274 static int nilfs_init_fs_context(struct fs_context *fc)
1276 struct nilfs_fs_context *ctx;
1278 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1282 ctx->ns_mount_opt = NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
1283 fc->fs_private = ctx;
1284 fc->ops = &nilfs_context_ops;
1289 struct file_system_type nilfs_fs_type = {
1290 .owner = THIS_MODULE,
1292 .kill_sb = kill_block_super,
1293 .fs_flags = FS_REQUIRES_DEV,
1294 .init_fs_context = nilfs_init_fs_context,
1295 .parameters = nilfs_param_spec,
1297 MODULE_ALIAS_FS("nilfs2");
1299 static void nilfs_inode_init_once(void *obj)
1301 struct nilfs_inode_info *ii = obj;
1303 INIT_LIST_HEAD(&ii->i_dirty);
1304 #ifdef CONFIG_NILFS_XATTR
1305 init_rwsem(&ii->xattr_sem);
1307 inode_init_once(&ii->vfs_inode);
1310 static void nilfs_segbuf_init_once(void *obj)
1312 memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1315 static void nilfs_destroy_cachep(void)
1318 * Make sure all delayed rcu free inodes are flushed before we
1323 kmem_cache_destroy(nilfs_inode_cachep);
1324 kmem_cache_destroy(nilfs_transaction_cachep);
1325 kmem_cache_destroy(nilfs_segbuf_cachep);
1326 kmem_cache_destroy(nilfs_btree_path_cache);
1329 static int __init nilfs_init_cachep(void)
1331 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1332 sizeof(struct nilfs_inode_info), 0,
1333 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1334 nilfs_inode_init_once);
1335 if (!nilfs_inode_cachep)
1338 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1339 sizeof(struct nilfs_transaction_info), 0,
1340 SLAB_RECLAIM_ACCOUNT, NULL);
1341 if (!nilfs_transaction_cachep)
1344 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1345 sizeof(struct nilfs_segment_buffer), 0,
1346 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1347 if (!nilfs_segbuf_cachep)
1350 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1351 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1353 if (!nilfs_btree_path_cache)
1359 nilfs_destroy_cachep();
1363 static int __init init_nilfs_fs(void)
1367 err = nilfs_init_cachep();
1371 err = nilfs_sysfs_init();
1375 err = register_filesystem(&nilfs_fs_type);
1377 goto deinit_sysfs_entry;
1379 printk(KERN_INFO "NILFS version 2 loaded\n");
1385 nilfs_destroy_cachep();
1390 static void __exit exit_nilfs_fs(void)
1392 nilfs_destroy_cachep();
1394 unregister_filesystem(&nilfs_fs_type);
1397 module_init(init_nilfs_fs)
1398 module_exit(exit_nilfs_fs)