]> Git Repo - linux.git/blob - fs/nfs/dir.c
drm/xe/tests: Convert xe_mocs live tests
[linux.git] / fs / nfs / dir.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996  Added silly rename for unlink   --okir
10  * 28 Sep 1996  Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine [email protected] 
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999  Cache readdir lookups in the page cache. -DaveM
19  */
20
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/hash.h>
43
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48
49 #include "nfstrace.h"
50
51 /* #define NFS_DEBUG_VERBOSE 1 */
52
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_clear_array(struct folio *);
59 static int nfs_do_create(struct inode *dir, struct dentry *dentry,
60                          umode_t mode, int open_flags);
61
62 const struct file_operations nfs_dir_operations = {
63         .llseek         = nfs_llseek_dir,
64         .read           = generic_read_dir,
65         .iterate_shared = nfs_readdir,
66         .open           = nfs_opendir,
67         .release        = nfs_closedir,
68         .fsync          = nfs_fsync_dir,
69 };
70
71 const struct address_space_operations nfs_dir_aops = {
72         .free_folio = nfs_readdir_clear_array,
73 };
74
75 #define NFS_INIT_DTSIZE PAGE_SIZE
76
77 static struct nfs_open_dir_context *
78 alloc_nfs_open_dir_context(struct inode *dir)
79 {
80         struct nfs_inode *nfsi = NFS_I(dir);
81         struct nfs_open_dir_context *ctx;
82
83         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
84         if (ctx != NULL) {
85                 ctx->attr_gencount = nfsi->attr_gencount;
86                 ctx->dtsize = NFS_INIT_DTSIZE;
87                 spin_lock(&dir->i_lock);
88                 if (list_empty(&nfsi->open_files) &&
89                     (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
90                         nfs_set_cache_invalid(dir,
91                                               NFS_INO_INVALID_DATA |
92                                                       NFS_INO_REVAL_FORCED);
93                 list_add_tail_rcu(&ctx->list, &nfsi->open_files);
94                 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
95                 spin_unlock(&dir->i_lock);
96                 return ctx;
97         }
98         return  ERR_PTR(-ENOMEM);
99 }
100
101 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
102 {
103         spin_lock(&dir->i_lock);
104         list_del_rcu(&ctx->list);
105         spin_unlock(&dir->i_lock);
106         kfree_rcu(ctx, rcu_head);
107 }
108
109 /*
110  * Open file
111  */
112 static int
113 nfs_opendir(struct inode *inode, struct file *filp)
114 {
115         int res = 0;
116         struct nfs_open_dir_context *ctx;
117
118         dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
119
120         nfs_inc_stats(inode, NFSIOS_VFSOPEN);
121
122         ctx = alloc_nfs_open_dir_context(inode);
123         if (IS_ERR(ctx)) {
124                 res = PTR_ERR(ctx);
125                 goto out;
126         }
127         filp->private_data = ctx;
128 out:
129         return res;
130 }
131
132 static int
133 nfs_closedir(struct inode *inode, struct file *filp)
134 {
135         put_nfs_open_dir_context(file_inode(filp), filp->private_data);
136         return 0;
137 }
138
139 struct nfs_cache_array_entry {
140         u64 cookie;
141         u64 ino;
142         const char *name;
143         unsigned int name_len;
144         unsigned char d_type;
145 };
146
147 struct nfs_cache_array {
148         u64 change_attr;
149         u64 last_cookie;
150         unsigned int size;
151         unsigned char folio_full : 1,
152                       folio_is_eof : 1,
153                       cookies_are_ordered : 1;
154         struct nfs_cache_array_entry array[];
155 };
156
157 struct nfs_readdir_descriptor {
158         struct file     *file;
159         struct folio    *folio;
160         struct dir_context *ctx;
161         pgoff_t         folio_index;
162         pgoff_t         folio_index_max;
163         u64             dir_cookie;
164         u64             last_cookie;
165         loff_t          current_index;
166
167         __be32          verf[NFS_DIR_VERIFIER_SIZE];
168         unsigned long   dir_verifier;
169         unsigned long   timestamp;
170         unsigned long   gencount;
171         unsigned long   attr_gencount;
172         unsigned int    cache_entry_index;
173         unsigned int    buffer_fills;
174         unsigned int    dtsize;
175         bool clear_cache;
176         bool plus;
177         bool eob;
178         bool eof;
179 };
180
181 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
182 {
183         struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
184         unsigned int maxsize = server->dtsize;
185
186         if (sz > maxsize)
187                 sz = maxsize;
188         if (sz < NFS_MIN_FILE_IO_SIZE)
189                 sz = NFS_MIN_FILE_IO_SIZE;
190         desc->dtsize = sz;
191 }
192
193 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
194 {
195         nfs_set_dtsize(desc, desc->dtsize >> 1);
196 }
197
198 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
199 {
200         nfs_set_dtsize(desc, desc->dtsize << 1);
201 }
202
203 static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie,
204                                          u64 change_attr)
205 {
206         struct nfs_cache_array *array;
207
208         array = kmap_local_folio(folio, 0);
209         array->change_attr = change_attr;
210         array->last_cookie = last_cookie;
211         array->size = 0;
212         array->folio_full = 0;
213         array->folio_is_eof = 0;
214         array->cookies_are_ordered = 1;
215         kunmap_local(array);
216 }
217
218 /*
219  * we are freeing strings created by nfs_add_to_readdir_array()
220  */
221 static void nfs_readdir_clear_array(struct folio *folio)
222 {
223         struct nfs_cache_array *array;
224         unsigned int i;
225
226         array = kmap_local_folio(folio, 0);
227         for (i = 0; i < array->size; i++)
228                 kfree(array->array[i].name);
229         array->size = 0;
230         kunmap_local(array);
231 }
232
233 static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie,
234                                            u64 change_attr)
235 {
236         nfs_readdir_clear_array(folio);
237         nfs_readdir_folio_init_array(folio, last_cookie, change_attr);
238 }
239
240 static struct folio *
241 nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags)
242 {
243         struct folio *folio = folio_alloc(gfp_flags, 0);
244         if (folio)
245                 nfs_readdir_folio_init_array(folio, last_cookie, 0);
246         return folio;
247 }
248
249 static void nfs_readdir_folio_array_free(struct folio *folio)
250 {
251         if (folio) {
252                 nfs_readdir_clear_array(folio);
253                 folio_put(folio);
254         }
255 }
256
257 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
258 {
259         return array->size == 0 ? array->last_cookie : array->array[0].cookie;
260 }
261
262 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
263 {
264         array->folio_is_eof = 1;
265         array->folio_full = 1;
266 }
267
268 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
269 {
270         return array->folio_full;
271 }
272
273 /*
274  * the caller is responsible for freeing qstr.name
275  * when called by nfs_readdir_add_to_array, the strings will be freed in
276  * nfs_clear_readdir_array()
277  */
278 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
279 {
280         const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
281
282         /*
283          * Avoid a kmemleak false positive. The pointer to the name is stored
284          * in a page cache page which kmemleak does not scan.
285          */
286         if (ret != NULL)
287                 kmemleak_not_leak(ret);
288         return ret;
289 }
290
291 static size_t nfs_readdir_array_maxentries(void)
292 {
293         return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
294                sizeof(struct nfs_cache_array_entry);
295 }
296
297 /*
298  * Check that the next array entry lies entirely within the page bounds
299  */
300 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
301 {
302         if (array->folio_full)
303                 return -ENOSPC;
304         if (array->size == nfs_readdir_array_maxentries()) {
305                 array->folio_full = 1;
306                 return -ENOSPC;
307         }
308         return 0;
309 }
310
311 static int nfs_readdir_folio_array_append(struct folio *folio,
312                                           const struct nfs_entry *entry,
313                                           u64 *cookie)
314 {
315         struct nfs_cache_array *array;
316         struct nfs_cache_array_entry *cache_entry;
317         const char *name;
318         int ret = -ENOMEM;
319
320         name = nfs_readdir_copy_name(entry->name, entry->len);
321
322         array = kmap_local_folio(folio, 0);
323         if (!name)
324                 goto out;
325         ret = nfs_readdir_array_can_expand(array);
326         if (ret) {
327                 kfree(name);
328                 goto out;
329         }
330
331         cache_entry = &array->array[array->size];
332         cache_entry->cookie = array->last_cookie;
333         cache_entry->ino = entry->ino;
334         cache_entry->d_type = entry->d_type;
335         cache_entry->name_len = entry->len;
336         cache_entry->name = name;
337         array->last_cookie = entry->cookie;
338         if (array->last_cookie <= cache_entry->cookie)
339                 array->cookies_are_ordered = 0;
340         array->size++;
341         if (entry->eof != 0)
342                 nfs_readdir_array_set_eof(array);
343 out:
344         *cookie = array->last_cookie;
345         kunmap_local(array);
346         return ret;
347 }
348
349 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
350 /*
351  * Hash algorithm allowing content addressible access to sequences
352  * of directory cookies. Content is addressed by the value of the
353  * cookie index of the first readdir entry in a page.
354  *
355  * We select only the first 18 bits to avoid issues with excessive
356  * memory use for the page cache XArray. 18 bits should allow the caching
357  * of 262144 pages of sequences of readdir entries. Since each page holds
358  * 127 readdir entries for a typical 64-bit system, that works out to a
359  * cache of ~ 33 million entries per directory.
360  */
361 static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie)
362 {
363         if (cookie == 0)
364                 return 0;
365         return hash_64(cookie, 18);
366 }
367
368 static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie,
369                                        u64 change_attr)
370 {
371         struct nfs_cache_array *array = kmap_local_folio(folio, 0);
372         int ret = true;
373
374         if (array->change_attr != change_attr)
375                 ret = false;
376         if (nfs_readdir_array_index_cookie(array) != last_cookie)
377                 ret = false;
378         kunmap_local(array);
379         return ret;
380 }
381
382 static void nfs_readdir_folio_unlock_and_put(struct folio *folio)
383 {
384         folio_unlock(folio);
385         folio_put(folio);
386 }
387
388 static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie,
389                                                 u64 change_attr)
390 {
391         if (folio_test_uptodate(folio)) {
392                 if (nfs_readdir_folio_validate(folio, cookie, change_attr))
393                         return;
394                 nfs_readdir_clear_array(folio);
395         }
396         nfs_readdir_folio_init_array(folio, cookie, change_attr);
397         folio_mark_uptodate(folio);
398 }
399
400 static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping,
401                                                   u64 cookie, u64 change_attr)
402 {
403         pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
404         struct folio *folio;
405
406         folio = filemap_grab_folio(mapping, index);
407         if (IS_ERR(folio))
408                 return NULL;
409         nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
410         return folio;
411 }
412
413 static u64 nfs_readdir_folio_last_cookie(struct folio *folio)
414 {
415         struct nfs_cache_array *array;
416         u64 ret;
417
418         array = kmap_local_folio(folio, 0);
419         ret = array->last_cookie;
420         kunmap_local(array);
421         return ret;
422 }
423
424 static bool nfs_readdir_folio_needs_filling(struct folio *folio)
425 {
426         struct nfs_cache_array *array;
427         bool ret;
428
429         array = kmap_local_folio(folio, 0);
430         ret = !nfs_readdir_array_is_full(array);
431         kunmap_local(array);
432         return ret;
433 }
434
435 static void nfs_readdir_folio_set_eof(struct folio *folio)
436 {
437         struct nfs_cache_array *array;
438
439         array = kmap_local_folio(folio, 0);
440         nfs_readdir_array_set_eof(array);
441         kunmap_local(array);
442 }
443
444 static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping,
445                                                 u64 cookie, u64 change_attr)
446 {
447         pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
448         struct folio *folio;
449
450         folio = __filemap_get_folio(mapping, index,
451                         FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
452                         mapping_gfp_mask(mapping));
453         if (IS_ERR(folio))
454                 return NULL;
455         nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
456         if (nfs_readdir_folio_last_cookie(folio) != cookie)
457                 nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
458         return folio;
459 }
460
461 static inline
462 int is_32bit_api(void)
463 {
464 #ifdef CONFIG_COMPAT
465         return in_compat_syscall();
466 #else
467         return (BITS_PER_LONG == 32);
468 #endif
469 }
470
471 static
472 bool nfs_readdir_use_cookie(const struct file *filp)
473 {
474         if ((filp->f_mode & FMODE_32BITHASH) ||
475             (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
476                 return false;
477         return true;
478 }
479
480 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
481                                         struct nfs_readdir_descriptor *desc)
482 {
483         if (array->folio_full) {
484                 desc->last_cookie = array->last_cookie;
485                 desc->current_index += array->size;
486                 desc->cache_entry_index = 0;
487                 desc->folio_index++;
488         } else
489                 desc->last_cookie = nfs_readdir_array_index_cookie(array);
490 }
491
492 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
493 {
494         desc->current_index = 0;
495         desc->last_cookie = 0;
496         desc->folio_index = 0;
497 }
498
499 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
500                                       struct nfs_readdir_descriptor *desc)
501 {
502         loff_t diff = desc->ctx->pos - desc->current_index;
503         unsigned int index;
504
505         if (diff < 0)
506                 goto out_eof;
507         if (diff >= array->size) {
508                 if (array->folio_is_eof)
509                         goto out_eof;
510                 nfs_readdir_seek_next_array(array, desc);
511                 return -EAGAIN;
512         }
513
514         index = (unsigned int)diff;
515         desc->dir_cookie = array->array[index].cookie;
516         desc->cache_entry_index = index;
517         return 0;
518 out_eof:
519         desc->eof = true;
520         return -EBADCOOKIE;
521 }
522
523 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
524                                               u64 cookie)
525 {
526         if (!array->cookies_are_ordered)
527                 return true;
528         /* Optimisation for monotonically increasing cookies */
529         if (cookie >= array->last_cookie)
530                 return false;
531         if (array->size && cookie < array->array[0].cookie)
532                 return false;
533         return true;
534 }
535
536 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
537                                          struct nfs_readdir_descriptor *desc)
538 {
539         unsigned int i;
540         int status = -EAGAIN;
541
542         if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
543                 goto check_eof;
544
545         for (i = 0; i < array->size; i++) {
546                 if (array->array[i].cookie == desc->dir_cookie) {
547                         if (nfs_readdir_use_cookie(desc->file))
548                                 desc->ctx->pos = desc->dir_cookie;
549                         else
550                                 desc->ctx->pos = desc->current_index + i;
551                         desc->cache_entry_index = i;
552                         return 0;
553                 }
554         }
555 check_eof:
556         if (array->folio_is_eof) {
557                 status = -EBADCOOKIE;
558                 if (desc->dir_cookie == array->last_cookie)
559                         desc->eof = true;
560         } else
561                 nfs_readdir_seek_next_array(array, desc);
562         return status;
563 }
564
565 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
566 {
567         struct nfs_cache_array *array;
568         int status;
569
570         array = kmap_local_folio(desc->folio, 0);
571
572         if (desc->dir_cookie == 0)
573                 status = nfs_readdir_search_for_pos(array, desc);
574         else
575                 status = nfs_readdir_search_for_cookie(array, desc);
576
577         kunmap_local(array);
578         return status;
579 }
580
581 /* Fill a page with xdr information before transferring to the cache page */
582 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
583                                   __be32 *verf, u64 cookie,
584                                   struct page **pages, size_t bufsize,
585                                   __be32 *verf_res)
586 {
587         struct inode *inode = file_inode(desc->file);
588         struct nfs_readdir_arg arg = {
589                 .dentry = file_dentry(desc->file),
590                 .cred = desc->file->f_cred,
591                 .verf = verf,
592                 .cookie = cookie,
593                 .pages = pages,
594                 .page_len = bufsize,
595                 .plus = desc->plus,
596         };
597         struct nfs_readdir_res res = {
598                 .verf = verf_res,
599         };
600         unsigned long   timestamp, gencount;
601         int             error;
602
603  again:
604         timestamp = jiffies;
605         gencount = nfs_inc_attr_generation_counter();
606         desc->dir_verifier = nfs_save_change_attribute(inode);
607         error = NFS_PROTO(inode)->readdir(&arg, &res);
608         if (error < 0) {
609                 /* We requested READDIRPLUS, but the server doesn't grok it */
610                 if (error == -ENOTSUPP && desc->plus) {
611                         NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
612                         desc->plus = arg.plus = false;
613                         goto again;
614                 }
615                 goto error;
616         }
617         desc->timestamp = timestamp;
618         desc->gencount = gencount;
619 error:
620         return error;
621 }
622
623 static int xdr_decode(struct nfs_readdir_descriptor *desc,
624                       struct nfs_entry *entry, struct xdr_stream *xdr)
625 {
626         struct inode *inode = file_inode(desc->file);
627         int error;
628
629         error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
630         if (error)
631                 return error;
632         entry->fattr->time_start = desc->timestamp;
633         entry->fattr->gencount = desc->gencount;
634         return 0;
635 }
636
637 /* Match file and dirent using either filehandle or fileid
638  * Note: caller is responsible for checking the fsid
639  */
640 static
641 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
642 {
643         struct inode *inode;
644         struct nfs_inode *nfsi;
645
646         if (d_really_is_negative(dentry))
647                 return 0;
648
649         inode = d_inode(dentry);
650         if (is_bad_inode(inode) || NFS_STALE(inode))
651                 return 0;
652
653         nfsi = NFS_I(inode);
654         if (entry->fattr->fileid != nfsi->fileid)
655                 return 0;
656         if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
657                 return 0;
658         return 1;
659 }
660
661 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
662
663 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
664                                 unsigned int cache_hits,
665                                 unsigned int cache_misses)
666 {
667         if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
668                 return false;
669         if (ctx->pos == 0 ||
670             cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
671                 return true;
672         return false;
673 }
674
675 /*
676  * This function is called by the getattr code to request the
677  * use of readdirplus to accelerate any future lookups in the same
678  * directory.
679  */
680 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
681 {
682         struct nfs_inode *nfsi = NFS_I(dir);
683         struct nfs_open_dir_context *ctx;
684
685         if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
686             S_ISDIR(dir->i_mode)) {
687                 rcu_read_lock();
688                 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
689                         atomic_inc(&ctx->cache_hits);
690                 rcu_read_unlock();
691         }
692 }
693
694 /*
695  * This function is mainly for use by nfs_getattr().
696  *
697  * If this is an 'ls -l', we want to force use of readdirplus.
698  */
699 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
700 {
701         struct nfs_inode *nfsi = NFS_I(dir);
702         struct nfs_open_dir_context *ctx;
703
704         if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
705             S_ISDIR(dir->i_mode)) {
706                 rcu_read_lock();
707                 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
708                         atomic_inc(&ctx->cache_misses);
709                 rcu_read_unlock();
710         }
711 }
712
713 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
714                                                 unsigned int flags)
715 {
716         if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
717                 return;
718         if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
719                 return;
720         nfs_readdir_record_entry_cache_miss(dir);
721 }
722
723 static
724 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
725                 unsigned long dir_verifier)
726 {
727         struct qstr filename = QSTR_INIT(entry->name, entry->len);
728         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
729         struct dentry *dentry;
730         struct dentry *alias;
731         struct inode *inode;
732         int status;
733
734         if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
735                 return;
736         if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
737                 return;
738         if (filename.len == 0)
739                 return;
740         /* Validate that the name doesn't contain any illegal '\0' */
741         if (strnlen(filename.name, filename.len) != filename.len)
742                 return;
743         /* ...or '/' */
744         if (strnchr(filename.name, filename.len, '/'))
745                 return;
746         if (filename.name[0] == '.') {
747                 if (filename.len == 1)
748                         return;
749                 if (filename.len == 2 && filename.name[1] == '.')
750                         return;
751         }
752         filename.hash = full_name_hash(parent, filename.name, filename.len);
753
754         dentry = d_lookup(parent, &filename);
755 again:
756         if (!dentry) {
757                 dentry = d_alloc_parallel(parent, &filename, &wq);
758                 if (IS_ERR(dentry))
759                         return;
760         }
761         if (!d_in_lookup(dentry)) {
762                 /* Is there a mountpoint here? If so, just exit */
763                 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
764                                         &entry->fattr->fsid))
765                         goto out;
766                 if (nfs_same_file(dentry, entry)) {
767                         if (!entry->fh->size)
768                                 goto out;
769                         nfs_set_verifier(dentry, dir_verifier);
770                         status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
771                         if (!status)
772                                 nfs_setsecurity(d_inode(dentry), entry->fattr);
773                         trace_nfs_readdir_lookup_revalidate(d_inode(parent),
774                                                             dentry, 0, status);
775                         goto out;
776                 } else {
777                         trace_nfs_readdir_lookup_revalidate_failed(
778                                 d_inode(parent), dentry, 0);
779                         d_invalidate(dentry);
780                         dput(dentry);
781                         dentry = NULL;
782                         goto again;
783                 }
784         }
785         if (!entry->fh->size) {
786                 d_lookup_done(dentry);
787                 goto out;
788         }
789
790         inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
791         alias = d_splice_alias(inode, dentry);
792         d_lookup_done(dentry);
793         if (alias) {
794                 if (IS_ERR(alias))
795                         goto out;
796                 dput(dentry);
797                 dentry = alias;
798         }
799         nfs_set_verifier(dentry, dir_verifier);
800         trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
801 out:
802         dput(dentry);
803 }
804
805 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
806                                     struct nfs_entry *entry,
807                                     struct xdr_stream *stream)
808 {
809         int ret;
810
811         if (entry->fattr->label)
812                 entry->fattr->label->len = NFS4_MAXLABELLEN;
813         ret = xdr_decode(desc, entry, stream);
814         if (ret || !desc->plus)
815                 return ret;
816         nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
817         return 0;
818 }
819
820 /* Perform conversion from xdr to cache array */
821 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
822                                     struct nfs_entry *entry,
823                                     struct page **xdr_pages, unsigned int buflen,
824                                     struct folio **arrays, size_t narrays,
825                                     u64 change_attr)
826 {
827         struct address_space *mapping = desc->file->f_mapping;
828         struct folio *new, *folio = *arrays;
829         struct xdr_stream stream;
830         struct page *scratch;
831         struct xdr_buf buf;
832         u64 cookie;
833         int status;
834
835         scratch = alloc_page(GFP_KERNEL);
836         if (scratch == NULL)
837                 return -ENOMEM;
838
839         xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
840         xdr_set_scratch_page(&stream, scratch);
841
842         do {
843                 status = nfs_readdir_entry_decode(desc, entry, &stream);
844                 if (status != 0)
845                         break;
846
847                 status = nfs_readdir_folio_array_append(folio, entry, &cookie);
848                 if (status != -ENOSPC)
849                         continue;
850
851                 if (folio->mapping != mapping) {
852                         if (!--narrays)
853                                 break;
854                         new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL);
855                         if (!new)
856                                 break;
857                         arrays++;
858                         *arrays = folio = new;
859                 } else {
860                         new = nfs_readdir_folio_get_next(mapping, cookie,
861                                                          change_attr);
862                         if (!new)
863                                 break;
864                         if (folio != *arrays)
865                                 nfs_readdir_folio_unlock_and_put(folio);
866                         folio = new;
867                 }
868                 desc->folio_index_max++;
869                 status = nfs_readdir_folio_array_append(folio, entry, &cookie);
870         } while (!status && !entry->eof);
871
872         switch (status) {
873         case -EBADCOOKIE:
874                 if (!entry->eof)
875                         break;
876                 nfs_readdir_folio_set_eof(folio);
877                 fallthrough;
878         case -EAGAIN:
879                 status = 0;
880                 break;
881         case -ENOSPC:
882                 status = 0;
883                 if (!desc->plus)
884                         break;
885                 while (!nfs_readdir_entry_decode(desc, entry, &stream))
886                         ;
887         }
888
889         if (folio != *arrays)
890                 nfs_readdir_folio_unlock_and_put(folio);
891
892         put_page(scratch);
893         return status;
894 }
895
896 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
897 {
898         while (npages--)
899                 put_page(pages[npages]);
900         kfree(pages);
901 }
902
903 /*
904  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
905  * to nfs_readdir_free_pages()
906  */
907 static struct page **nfs_readdir_alloc_pages(size_t npages)
908 {
909         struct page **pages;
910         size_t i;
911
912         pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
913         if (!pages)
914                 return NULL;
915         for (i = 0; i < npages; i++) {
916                 struct page *page = alloc_page(GFP_KERNEL);
917                 if (page == NULL)
918                         goto out_freepages;
919                 pages[i] = page;
920         }
921         return pages;
922
923 out_freepages:
924         nfs_readdir_free_pages(pages, i);
925         return NULL;
926 }
927
928 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
929                                     __be32 *verf_arg, __be32 *verf_res,
930                                     struct folio **arrays, size_t narrays)
931 {
932         u64 change_attr;
933         struct page **pages;
934         struct folio *folio = *arrays;
935         struct nfs_entry *entry;
936         size_t array_size;
937         struct inode *inode = file_inode(desc->file);
938         unsigned int dtsize = desc->dtsize;
939         unsigned int pglen;
940         int status = -ENOMEM;
941
942         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
943         if (!entry)
944                 return -ENOMEM;
945         entry->cookie = nfs_readdir_folio_last_cookie(folio);
946         entry->fh = nfs_alloc_fhandle();
947         entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
948         entry->server = NFS_SERVER(inode);
949         if (entry->fh == NULL || entry->fattr == NULL)
950                 goto out;
951
952         array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
953         pages = nfs_readdir_alloc_pages(array_size);
954         if (!pages)
955                 goto out;
956
957         change_attr = inode_peek_iversion_raw(inode);
958         status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
959                                         dtsize, verf_res);
960         if (status < 0)
961                 goto free_pages;
962
963         pglen = status;
964         if (pglen != 0)
965                 status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
966                                                   arrays, narrays, change_attr);
967         else
968                 nfs_readdir_folio_set_eof(folio);
969         desc->buffer_fills++;
970
971 free_pages:
972         nfs_readdir_free_pages(pages, array_size);
973 out:
974         nfs_free_fattr(entry->fattr);
975         nfs_free_fhandle(entry->fh);
976         kfree(entry);
977         return status;
978 }
979
980 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
981 {
982         folio_put(desc->folio);
983         desc->folio = NULL;
984 }
985
986 static void
987 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
988 {
989         folio_unlock(desc->folio);
990         nfs_readdir_folio_put(desc);
991 }
992
993 static struct folio *
994 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
995 {
996         struct address_space *mapping = desc->file->f_mapping;
997         u64 change_attr = inode_peek_iversion_raw(mapping->host);
998         u64 cookie = desc->last_cookie;
999         struct folio *folio;
1000
1001         folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr);
1002         if (!folio)
1003                 return NULL;
1004         if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio))
1005                 nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
1006         return folio;
1007 }
1008
1009 /*
1010  * Returns 0 if desc->dir_cookie was found on page desc->page_index
1011  * and locks the page to prevent removal from the page cache.
1012  */
1013 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1014 {
1015         struct inode *inode = file_inode(desc->file);
1016         struct nfs_inode *nfsi = NFS_I(inode);
1017         __be32 verf[NFS_DIR_VERIFIER_SIZE];
1018         int res;
1019
1020         desc->folio = nfs_readdir_folio_get_cached(desc);
1021         if (!desc->folio)
1022                 return -ENOMEM;
1023         if (nfs_readdir_folio_needs_filling(desc->folio)) {
1024                 /* Grow the dtsize if we had to go back for more pages */
1025                 if (desc->folio_index == desc->folio_index_max)
1026                         nfs_grow_dtsize(desc);
1027                 desc->folio_index_max = desc->folio_index;
1028                 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1029                                              desc->last_cookie,
1030                                              desc->folio->index, desc->dtsize);
1031                 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1032                                                &desc->folio, 1);
1033                 if (res < 0) {
1034                         nfs_readdir_folio_unlock_and_put_cached(desc);
1035                         trace_nfs_readdir_cache_fill_done(inode, res);
1036                         if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1037                                 invalidate_inode_pages2(desc->file->f_mapping);
1038                                 nfs_readdir_rewind_search(desc);
1039                                 trace_nfs_readdir_invalidate_cache_range(
1040                                         inode, 0, MAX_LFS_FILESIZE);
1041                                 return -EAGAIN;
1042                         }
1043                         return res;
1044                 }
1045                 /*
1046                  * Set the cookie verifier if the page cache was empty
1047                  */
1048                 if (desc->last_cookie == 0 &&
1049                     memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1050                         memcpy(nfsi->cookieverf, verf,
1051                                sizeof(nfsi->cookieverf));
1052                         invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1053                                                       -1);
1054                         trace_nfs_readdir_invalidate_cache_range(
1055                                 inode, 1, MAX_LFS_FILESIZE);
1056                 }
1057                 desc->clear_cache = false;
1058         }
1059         res = nfs_readdir_search_array(desc);
1060         if (res == 0)
1061                 return 0;
1062         nfs_readdir_folio_unlock_and_put_cached(desc);
1063         return res;
1064 }
1065
1066 /* Search for desc->dir_cookie from the beginning of the page cache */
1067 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1068 {
1069         int res;
1070
1071         do {
1072                 res = find_and_lock_cache_page(desc);
1073         } while (res == -EAGAIN);
1074         return res;
1075 }
1076
1077 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1078
1079 /*
1080  * Once we've found the start of the dirent within a page: fill 'er up...
1081  */
1082 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1083                            const __be32 *verf)
1084 {
1085         struct file     *file = desc->file;
1086         struct nfs_cache_array *array;
1087         unsigned int i;
1088         bool first_emit = !desc->dir_cookie;
1089
1090         array = kmap_local_folio(desc->folio, 0);
1091         for (i = desc->cache_entry_index; i < array->size; i++) {
1092                 struct nfs_cache_array_entry *ent;
1093
1094                 /*
1095                  * nfs_readdir_handle_cache_misses return force clear at
1096                  * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for
1097                  * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1
1098                  * entries need be emitted here.
1099                  */
1100                 if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) {
1101                         desc->eob = true;
1102                         break;
1103                 }
1104
1105                 ent = &array->array[i];
1106                 if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1107                     nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1108                         desc->eob = true;
1109                         break;
1110                 }
1111                 memcpy(desc->verf, verf, sizeof(desc->verf));
1112                 if (i == array->size - 1) {
1113                         desc->dir_cookie = array->last_cookie;
1114                         nfs_readdir_seek_next_array(array, desc);
1115                 } else {
1116                         desc->dir_cookie = array->array[i + 1].cookie;
1117                         desc->last_cookie = array->array[0].cookie;
1118                 }
1119                 if (nfs_readdir_use_cookie(file))
1120                         desc->ctx->pos = desc->dir_cookie;
1121                 else
1122                         desc->ctx->pos++;
1123         }
1124         if (array->folio_is_eof)
1125                 desc->eof = !desc->eob;
1126
1127         kunmap_local(array);
1128         dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1129                         (unsigned long long)desc->dir_cookie);
1130 }
1131
1132 /*
1133  * If we cannot find a cookie in our cache, we suspect that this is
1134  * because it points to a deleted file, so we ask the server to return
1135  * whatever it thinks is the next entry. We then feed this to filldir.
1136  * If all goes well, we should then be able to find our way round the
1137  * cache on the next call to readdir_search_pagecache();
1138  *
1139  * NOTE: we cannot add the anonymous page to the pagecache because
1140  *       the data it contains might not be page aligned. Besides,
1141  *       we should already have a complete representation of the
1142  *       directory in the page cache by the time we get here.
1143  */
1144 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1145 {
1146         struct folio    **arrays;
1147         size_t          i, sz = 512;
1148         __be32          verf[NFS_DIR_VERIFIER_SIZE];
1149         int             status = -ENOMEM;
1150
1151         dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1152                         (unsigned long long)desc->dir_cookie);
1153
1154         arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1155         if (!arrays)
1156                 goto out;
1157         arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL);
1158         if (!arrays[0])
1159                 goto out;
1160
1161         desc->folio_index = 0;
1162         desc->cache_entry_index = 0;
1163         desc->last_cookie = desc->dir_cookie;
1164         desc->folio_index_max = 0;
1165
1166         trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1167                                    -1, desc->dtsize);
1168
1169         status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1170         if (status < 0) {
1171                 trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1172                 goto out_free;
1173         }
1174
1175         for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1176                 desc->folio = arrays[i];
1177                 nfs_do_filldir(desc, verf);
1178         }
1179         desc->folio = NULL;
1180
1181         /*
1182          * Grow the dtsize if we have to go back for more pages,
1183          * or shrink it if we're reading too many.
1184          */
1185         if (!desc->eof) {
1186                 if (!desc->eob)
1187                         nfs_grow_dtsize(desc);
1188                 else if (desc->buffer_fills == 1 &&
1189                          i < (desc->folio_index_max >> 1))
1190                         nfs_shrink_dtsize(desc);
1191         }
1192 out_free:
1193         for (i = 0; i < sz && arrays[i]; i++)
1194                 nfs_readdir_folio_array_free(arrays[i]);
1195 out:
1196         if (!nfs_readdir_use_cookie(desc->file))
1197                 nfs_readdir_rewind_search(desc);
1198         desc->folio_index_max = -1;
1199         kfree(arrays);
1200         dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1201         return status;
1202 }
1203
1204 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1205                                             struct nfs_readdir_descriptor *desc,
1206                                             unsigned int cache_misses,
1207                                             bool force_clear)
1208 {
1209         if (desc->ctx->pos == 0 || !desc->plus)
1210                 return false;
1211         if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1212                 return false;
1213         trace_nfs_readdir_force_readdirplus(inode);
1214         return true;
1215 }
1216
1217 /* The file offset position represents the dirent entry number.  A
1218    last cookie cache takes care of the common case of reading the
1219    whole directory.
1220  */
1221 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1222 {
1223         struct dentry   *dentry = file_dentry(file);
1224         struct inode    *inode = d_inode(dentry);
1225         struct nfs_inode *nfsi = NFS_I(inode);
1226         struct nfs_open_dir_context *dir_ctx = file->private_data;
1227         struct nfs_readdir_descriptor *desc;
1228         unsigned int cache_hits, cache_misses;
1229         bool force_clear;
1230         int res;
1231
1232         dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1233                         file, (long long)ctx->pos);
1234         nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1235
1236         /*
1237          * ctx->pos points to the dirent entry number.
1238          * *desc->dir_cookie has the cookie for the next entry. We have
1239          * to either find the entry with the appropriate number or
1240          * revalidate the cookie.
1241          */
1242         nfs_revalidate_mapping(inode, file->f_mapping);
1243
1244         res = -ENOMEM;
1245         desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1246         if (!desc)
1247                 goto out;
1248         desc->file = file;
1249         desc->ctx = ctx;
1250         desc->folio_index_max = -1;
1251
1252         spin_lock(&file->f_lock);
1253         desc->dir_cookie = dir_ctx->dir_cookie;
1254         desc->folio_index = dir_ctx->page_index;
1255         desc->last_cookie = dir_ctx->last_cookie;
1256         desc->attr_gencount = dir_ctx->attr_gencount;
1257         desc->eof = dir_ctx->eof;
1258         nfs_set_dtsize(desc, dir_ctx->dtsize);
1259         memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1260         cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1261         cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1262         force_clear = dir_ctx->force_clear;
1263         spin_unlock(&file->f_lock);
1264
1265         if (desc->eof) {
1266                 res = 0;
1267                 goto out_free;
1268         }
1269
1270         desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1271         force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1272                                                       force_clear);
1273         desc->clear_cache = force_clear;
1274
1275         do {
1276                 res = readdir_search_pagecache(desc);
1277
1278                 if (res == -EBADCOOKIE) {
1279                         res = 0;
1280                         /* This means either end of directory */
1281                         if (desc->dir_cookie && !desc->eof) {
1282                                 /* Or that the server has 'lost' a cookie */
1283                                 res = uncached_readdir(desc);
1284                                 if (res == 0)
1285                                         continue;
1286                                 if (res == -EBADCOOKIE || res == -ENOTSYNC)
1287                                         res = 0;
1288                         }
1289                         break;
1290                 }
1291                 if (res == -ETOOSMALL && desc->plus) {
1292                         nfs_zap_caches(inode);
1293                         desc->plus = false;
1294                         desc->eof = false;
1295                         continue;
1296                 }
1297                 if (res < 0)
1298                         break;
1299
1300                 nfs_do_filldir(desc, nfsi->cookieverf);
1301                 nfs_readdir_folio_unlock_and_put_cached(desc);
1302                 if (desc->folio_index == desc->folio_index_max)
1303                         desc->clear_cache = force_clear;
1304         } while (!desc->eob && !desc->eof);
1305
1306         spin_lock(&file->f_lock);
1307         dir_ctx->dir_cookie = desc->dir_cookie;
1308         dir_ctx->last_cookie = desc->last_cookie;
1309         dir_ctx->attr_gencount = desc->attr_gencount;
1310         dir_ctx->page_index = desc->folio_index;
1311         dir_ctx->force_clear = force_clear;
1312         dir_ctx->eof = desc->eof;
1313         dir_ctx->dtsize = desc->dtsize;
1314         memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1315         spin_unlock(&file->f_lock);
1316 out_free:
1317         kfree(desc);
1318
1319 out:
1320         dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1321         return res;
1322 }
1323
1324 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1325 {
1326         struct nfs_open_dir_context *dir_ctx = filp->private_data;
1327
1328         dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1329                         filp, offset, whence);
1330
1331         switch (whence) {
1332         default:
1333                 return -EINVAL;
1334         case SEEK_SET:
1335                 if (offset < 0)
1336                         return -EINVAL;
1337                 spin_lock(&filp->f_lock);
1338                 break;
1339         case SEEK_CUR:
1340                 if (offset == 0)
1341                         return filp->f_pos;
1342                 spin_lock(&filp->f_lock);
1343                 offset += filp->f_pos;
1344                 if (offset < 0) {
1345                         spin_unlock(&filp->f_lock);
1346                         return -EINVAL;
1347                 }
1348         }
1349         if (offset != filp->f_pos) {
1350                 filp->f_pos = offset;
1351                 dir_ctx->page_index = 0;
1352                 if (!nfs_readdir_use_cookie(filp)) {
1353                         dir_ctx->dir_cookie = 0;
1354                         dir_ctx->last_cookie = 0;
1355                 } else {
1356                         dir_ctx->dir_cookie = offset;
1357                         dir_ctx->last_cookie = offset;
1358                 }
1359                 dir_ctx->eof = false;
1360         }
1361         spin_unlock(&filp->f_lock);
1362         return offset;
1363 }
1364
1365 /*
1366  * All directory operations under NFS are synchronous, so fsync()
1367  * is a dummy operation.
1368  */
1369 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1370                          int datasync)
1371 {
1372         dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1373
1374         nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1375         return 0;
1376 }
1377
1378 /**
1379  * nfs_force_lookup_revalidate - Mark the directory as having changed
1380  * @dir: pointer to directory inode
1381  *
1382  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1383  * full lookup on all child dentries of 'dir' whenever a change occurs
1384  * on the server that might have invalidated our dcache.
1385  *
1386  * Note that we reserve bit '0' as a tag to let us know when a dentry
1387  * was revalidated while holding a delegation on its inode.
1388  *
1389  * The caller should be holding dir->i_lock
1390  */
1391 void nfs_force_lookup_revalidate(struct inode *dir)
1392 {
1393         NFS_I(dir)->cache_change_attribute += 2;
1394 }
1395 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1396
1397 /**
1398  * nfs_verify_change_attribute - Detects NFS remote directory changes
1399  * @dir: pointer to parent directory inode
1400  * @verf: previously saved change attribute
1401  *
1402  * Return "false" if the verifiers doesn't match the change attribute.
1403  * This would usually indicate that the directory contents have changed on
1404  * the server, and that any dentries need revalidating.
1405  */
1406 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1407 {
1408         return (verf & ~1UL) == nfs_save_change_attribute(dir);
1409 }
1410
1411 static void nfs_set_verifier_delegated(unsigned long *verf)
1412 {
1413         *verf |= 1UL;
1414 }
1415
1416 #if IS_ENABLED(CONFIG_NFS_V4)
1417 static void nfs_unset_verifier_delegated(unsigned long *verf)
1418 {
1419         *verf &= ~1UL;
1420 }
1421 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1422
1423 static bool nfs_test_verifier_delegated(unsigned long verf)
1424 {
1425         return verf & 1;
1426 }
1427
1428 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1429 {
1430         return nfs_test_verifier_delegated(dentry->d_time);
1431 }
1432
1433 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1434 {
1435         struct inode *inode = d_inode(dentry);
1436         struct inode *dir = d_inode_rcu(dentry->d_parent);
1437
1438         if (!dir || !nfs_verify_change_attribute(dir, verf))
1439                 return;
1440         if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1441                 nfs_set_verifier_delegated(&verf);
1442         dentry->d_time = verf;
1443 }
1444
1445 /**
1446  * nfs_set_verifier - save a parent directory verifier in the dentry
1447  * @dentry: pointer to dentry
1448  * @verf: verifier to save
1449  *
1450  * Saves the parent directory verifier in @dentry. If the inode has
1451  * a delegation, we also tag the dentry as having been revalidated
1452  * while holding a delegation so that we know we don't have to
1453  * look it up again after a directory change.
1454  */
1455 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1456 {
1457
1458         spin_lock(&dentry->d_lock);
1459         nfs_set_verifier_locked(dentry, verf);
1460         spin_unlock(&dentry->d_lock);
1461 }
1462 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1463
1464 #if IS_ENABLED(CONFIG_NFS_V4)
1465 /**
1466  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1467  * @inode: pointer to inode
1468  *
1469  * Iterates through the dentries in the inode alias list and clears
1470  * the tag used to indicate that the dentry has been revalidated
1471  * while holding a delegation.
1472  * This function is intended for use when the delegation is being
1473  * returned or revoked.
1474  */
1475 void nfs_clear_verifier_delegated(struct inode *inode)
1476 {
1477         struct dentry *alias;
1478
1479         if (!inode)
1480                 return;
1481         spin_lock(&inode->i_lock);
1482         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1483                 spin_lock(&alias->d_lock);
1484                 nfs_unset_verifier_delegated(&alias->d_time);
1485                 spin_unlock(&alias->d_lock);
1486         }
1487         spin_unlock(&inode->i_lock);
1488 }
1489 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1490 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1491
1492 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1493 {
1494         if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1495             d_really_is_negative(dentry))
1496                 return dentry->d_time == inode_peek_iversion_raw(dir);
1497         return nfs_verify_change_attribute(dir, dentry->d_time);
1498 }
1499
1500 /*
1501  * A check for whether or not the parent directory has changed.
1502  * In the case it has, we assume that the dentries are untrustworthy
1503  * and may need to be looked up again.
1504  * If rcu_walk prevents us from performing a full check, return 0.
1505  */
1506 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1507                               int rcu_walk)
1508 {
1509         if (IS_ROOT(dentry))
1510                 return 1;
1511         if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1512                 return 0;
1513         if (!nfs_dentry_verify_change(dir, dentry))
1514                 return 0;
1515         /* Revalidate nfsi->cache_change_attribute before we declare a match */
1516         if (nfs_mapping_need_revalidate_inode(dir)) {
1517                 if (rcu_walk)
1518                         return 0;
1519                 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1520                         return 0;
1521         }
1522         if (!nfs_dentry_verify_change(dir, dentry))
1523                 return 0;
1524         return 1;
1525 }
1526
1527 /*
1528  * Use intent information to check whether or not we're going to do
1529  * an O_EXCL create using this path component.
1530  */
1531 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1532 {
1533         if (NFS_PROTO(dir)->version == 2)
1534                 return 0;
1535         return flags & LOOKUP_EXCL;
1536 }
1537
1538 /*
1539  * Inode and filehandle revalidation for lookups.
1540  *
1541  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1542  * or if the intent information indicates that we're about to open this
1543  * particular file and the "nocto" mount flag is not set.
1544  *
1545  */
1546 static
1547 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1548 {
1549         struct nfs_server *server = NFS_SERVER(inode);
1550         int ret;
1551
1552         if (IS_AUTOMOUNT(inode))
1553                 return 0;
1554
1555         if (flags & LOOKUP_OPEN) {
1556                 switch (inode->i_mode & S_IFMT) {
1557                 case S_IFREG:
1558                         /* A NFSv4 OPEN will revalidate later */
1559                         if (server->caps & NFS_CAP_ATOMIC_OPEN)
1560                                 goto out;
1561                         fallthrough;
1562                 case S_IFDIR:
1563                         if (server->flags & NFS_MOUNT_NOCTO)
1564                                 break;
1565                         /* NFS close-to-open cache consistency validation */
1566                         goto out_force;
1567                 }
1568         }
1569
1570         /* VFS wants an on-the-wire revalidation */
1571         if (flags & LOOKUP_REVAL)
1572                 goto out_force;
1573 out:
1574         if (inode->i_nlink > 0 ||
1575             (inode->i_nlink == 0 &&
1576              test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1577                 return 0;
1578         else
1579                 return -ESTALE;
1580 out_force:
1581         if (flags & LOOKUP_RCU)
1582                 return -ECHILD;
1583         ret = __nfs_revalidate_inode(server, inode);
1584         if (ret != 0)
1585                 return ret;
1586         goto out;
1587 }
1588
1589 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1590 {
1591         spin_lock(&inode->i_lock);
1592         nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1593         spin_unlock(&inode->i_lock);
1594 }
1595
1596 /*
1597  * We judge how long we want to trust negative
1598  * dentries by looking at the parent inode mtime.
1599  *
1600  * If parent mtime has changed, we revalidate, else we wait for a
1601  * period corresponding to the parent's attribute cache timeout value.
1602  *
1603  * If LOOKUP_RCU prevents us from performing a full check, return 1
1604  * suggesting a reval is needed.
1605  *
1606  * Note that when creating a new file, or looking up a rename target,
1607  * then it shouldn't be necessary to revalidate a negative dentry.
1608  */
1609 static inline
1610 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1611                        unsigned int flags)
1612 {
1613         if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1614                 return 0;
1615         if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1616                 return 1;
1617         /* Case insensitive server? Revalidate negative dentries */
1618         if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1619                 return 1;
1620         return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1621 }
1622
1623 static int
1624 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1625                            struct inode *inode, int error)
1626 {
1627         switch (error) {
1628         case 1:
1629                 break;
1630         case 0:
1631                 /*
1632                  * We can't d_drop the root of a disconnected tree:
1633                  * its d_hash is on the s_anon list and d_drop() would hide
1634                  * it from shrink_dcache_for_unmount(), leading to busy
1635                  * inodes on unmount and further oopses.
1636                  */
1637                 if (inode && IS_ROOT(dentry))
1638                         error = 1;
1639                 break;
1640         }
1641         trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1642         return error;
1643 }
1644
1645 static int
1646 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1647                                unsigned int flags)
1648 {
1649         int ret = 1;
1650         if (nfs_neg_need_reval(dir, dentry, flags)) {
1651                 if (flags & LOOKUP_RCU)
1652                         return -ECHILD;
1653                 ret = 0;
1654         }
1655         return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1656 }
1657
1658 static int
1659 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1660                                 struct inode *inode)
1661 {
1662         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1663         return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1664 }
1665
1666 static int nfs_lookup_revalidate_dentry(struct inode *dir,
1667                                         struct dentry *dentry,
1668                                         struct inode *inode, unsigned int flags)
1669 {
1670         struct nfs_fh *fhandle;
1671         struct nfs_fattr *fattr;
1672         unsigned long dir_verifier;
1673         int ret;
1674
1675         trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1676
1677         ret = -ENOMEM;
1678         fhandle = nfs_alloc_fhandle();
1679         fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1680         if (fhandle == NULL || fattr == NULL)
1681                 goto out;
1682
1683         dir_verifier = nfs_save_change_attribute(dir);
1684         ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1685         if (ret < 0) {
1686                 switch (ret) {
1687                 case -ESTALE:
1688                 case -ENOENT:
1689                         ret = 0;
1690                         break;
1691                 case -ETIMEDOUT:
1692                         if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1693                                 ret = 1;
1694                 }
1695                 goto out;
1696         }
1697
1698         /* Request help from readdirplus */
1699         nfs_lookup_advise_force_readdirplus(dir, flags);
1700
1701         ret = 0;
1702         if (nfs_compare_fh(NFS_FH(inode), fhandle))
1703                 goto out;
1704         if (nfs_refresh_inode(inode, fattr) < 0)
1705                 goto out;
1706
1707         nfs_setsecurity(inode, fattr);
1708         nfs_set_verifier(dentry, dir_verifier);
1709
1710         ret = 1;
1711 out:
1712         nfs_free_fattr(fattr);
1713         nfs_free_fhandle(fhandle);
1714
1715         /*
1716          * If the lookup failed despite the dentry change attribute being
1717          * a match, then we should revalidate the directory cache.
1718          */
1719         if (!ret && nfs_dentry_verify_change(dir, dentry))
1720                 nfs_mark_dir_for_revalidate(dir);
1721         return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1722 }
1723
1724 /*
1725  * This is called every time the dcache has a lookup hit,
1726  * and we should check whether we can really trust that
1727  * lookup.
1728  *
1729  * NOTE! The hit can be a negative hit too, don't assume
1730  * we have an inode!
1731  *
1732  * If the parent directory is seen to have changed, we throw out the
1733  * cached dentry and do a new lookup.
1734  */
1735 static int
1736 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1737                          unsigned int flags)
1738 {
1739         struct inode *inode;
1740         int error;
1741
1742         nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1743         inode = d_inode(dentry);
1744
1745         if (!inode)
1746                 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1747
1748         if (is_bad_inode(inode)) {
1749                 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1750                                 __func__, dentry);
1751                 goto out_bad;
1752         }
1753
1754         if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1755             nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1756                 goto out_bad;
1757
1758         if (nfs_verifier_is_delegated(dentry))
1759                 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1760
1761         /* Force a full look up iff the parent directory has changed */
1762         if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1763             nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1764                 error = nfs_lookup_verify_inode(inode, flags);
1765                 if (error) {
1766                         if (error == -ESTALE)
1767                                 nfs_mark_dir_for_revalidate(dir);
1768                         goto out_bad;
1769                 }
1770                 goto out_valid;
1771         }
1772
1773         if (flags & LOOKUP_RCU)
1774                 return -ECHILD;
1775
1776         if (NFS_STALE(inode))
1777                 goto out_bad;
1778
1779         return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1780 out_valid:
1781         return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1782 out_bad:
1783         if (flags & LOOKUP_RCU)
1784                 return -ECHILD;
1785         return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1786 }
1787
1788 static int
1789 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1790                         int (*reval)(struct inode *, struct dentry *, unsigned int))
1791 {
1792         struct dentry *parent;
1793         struct inode *dir;
1794         int ret;
1795
1796         if (flags & LOOKUP_RCU) {
1797                 if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1798                         return -ECHILD;
1799                 parent = READ_ONCE(dentry->d_parent);
1800                 dir = d_inode_rcu(parent);
1801                 if (!dir)
1802                         return -ECHILD;
1803                 ret = reval(dir, dentry, flags);
1804                 if (parent != READ_ONCE(dentry->d_parent))
1805                         return -ECHILD;
1806         } else {
1807                 /* Wait for unlink to complete */
1808                 wait_var_event(&dentry->d_fsdata,
1809                                dentry->d_fsdata != NFS_FSDATA_BLOCKED);
1810                 parent = dget_parent(dentry);
1811                 ret = reval(d_inode(parent), dentry, flags);
1812                 dput(parent);
1813         }
1814         return ret;
1815 }
1816
1817 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1818 {
1819         return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1820 }
1821
1822 /*
1823  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1824  * when we don't really care about the dentry name. This is called when a
1825  * pathwalk ends on a dentry that was not found via a normal lookup in the
1826  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1827  *
1828  * In this situation, we just want to verify that the inode itself is OK
1829  * since the dentry might have changed on the server.
1830  */
1831 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1832 {
1833         struct inode *inode = d_inode(dentry);
1834         int error = 0;
1835
1836         /*
1837          * I believe we can only get a negative dentry here in the case of a
1838          * procfs-style symlink. Just assume it's correct for now, but we may
1839          * eventually need to do something more here.
1840          */
1841         if (!inode) {
1842                 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1843                                 __func__, dentry);
1844                 return 1;
1845         }
1846
1847         if (is_bad_inode(inode)) {
1848                 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1849                                 __func__, dentry);
1850                 return 0;
1851         }
1852
1853         error = nfs_lookup_verify_inode(inode, flags);
1854         dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1855                         __func__, inode->i_ino, error ? "invalid" : "valid");
1856         return !error;
1857 }
1858
1859 /*
1860  * This is called from dput() when d_count is going to 0.
1861  */
1862 static int nfs_dentry_delete(const struct dentry *dentry)
1863 {
1864         dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1865                 dentry, dentry->d_flags);
1866
1867         /* Unhash any dentry with a stale inode */
1868         if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1869                 return 1;
1870
1871         if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1872                 /* Unhash it, so that ->d_iput() would be called */
1873                 return 1;
1874         }
1875         if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1876                 /* Unhash it, so that ancestors of killed async unlink
1877                  * files will be cleaned up during umount */
1878                 return 1;
1879         }
1880         return 0;
1881
1882 }
1883
1884 /* Ensure that we revalidate inode->i_nlink */
1885 static void nfs_drop_nlink(struct inode *inode)
1886 {
1887         spin_lock(&inode->i_lock);
1888         /* drop the inode if we're reasonably sure this is the last link */
1889         if (inode->i_nlink > 0)
1890                 drop_nlink(inode);
1891         NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1892         nfs_set_cache_invalid(
1893                 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1894                                NFS_INO_INVALID_NLINK);
1895         spin_unlock(&inode->i_lock);
1896 }
1897
1898 /*
1899  * Called when the dentry loses inode.
1900  * We use it to clean up silly-renamed files.
1901  */
1902 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1903 {
1904         if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1905                 nfs_complete_unlink(dentry, inode);
1906                 nfs_drop_nlink(inode);
1907         }
1908         iput(inode);
1909 }
1910
1911 static void nfs_d_release(struct dentry *dentry)
1912 {
1913         /* free cached devname value, if it survived that far */
1914         if (unlikely(dentry->d_fsdata)) {
1915                 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1916                         WARN_ON(1);
1917                 else
1918                         kfree(dentry->d_fsdata);
1919         }
1920 }
1921
1922 const struct dentry_operations nfs_dentry_operations = {
1923         .d_revalidate   = nfs_lookup_revalidate,
1924         .d_weak_revalidate      = nfs_weak_revalidate,
1925         .d_delete       = nfs_dentry_delete,
1926         .d_iput         = nfs_dentry_iput,
1927         .d_automount    = nfs_d_automount,
1928         .d_release      = nfs_d_release,
1929 };
1930 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1931
1932 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1933 {
1934         struct dentry *res;
1935         struct inode *inode = NULL;
1936         struct nfs_fh *fhandle = NULL;
1937         struct nfs_fattr *fattr = NULL;
1938         unsigned long dir_verifier;
1939         int error;
1940
1941         dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1942         nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1943
1944         if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1945                 return ERR_PTR(-ENAMETOOLONG);
1946
1947         /*
1948          * If we're doing an exclusive create, optimize away the lookup
1949          * but don't hash the dentry.
1950          */
1951         if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1952                 return NULL;
1953
1954         res = ERR_PTR(-ENOMEM);
1955         fhandle = nfs_alloc_fhandle();
1956         fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1957         if (fhandle == NULL || fattr == NULL)
1958                 goto out;
1959
1960         dir_verifier = nfs_save_change_attribute(dir);
1961         trace_nfs_lookup_enter(dir, dentry, flags);
1962         error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1963         if (error == -ENOENT) {
1964                 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1965                         dir_verifier = inode_peek_iversion_raw(dir);
1966                 goto no_entry;
1967         }
1968         if (error < 0) {
1969                 res = ERR_PTR(error);
1970                 goto out;
1971         }
1972         inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1973         res = ERR_CAST(inode);
1974         if (IS_ERR(res))
1975                 goto out;
1976
1977         /* Notify readdir to use READDIRPLUS */
1978         nfs_lookup_advise_force_readdirplus(dir, flags);
1979
1980 no_entry:
1981         res = d_splice_alias(inode, dentry);
1982         if (res != NULL) {
1983                 if (IS_ERR(res))
1984                         goto out;
1985                 dentry = res;
1986         }
1987         nfs_set_verifier(dentry, dir_verifier);
1988 out:
1989         trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1990         nfs_free_fattr(fattr);
1991         nfs_free_fhandle(fhandle);
1992         return res;
1993 }
1994 EXPORT_SYMBOL_GPL(nfs_lookup);
1995
1996 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1997 {
1998         /* Case insensitive server? Revalidate dentries */
1999         if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
2000                 d_prune_aliases(inode);
2001 }
2002 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
2003
2004 #if IS_ENABLED(CONFIG_NFS_V4)
2005 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
2006
2007 const struct dentry_operations nfs4_dentry_operations = {
2008         .d_revalidate   = nfs4_lookup_revalidate,
2009         .d_weak_revalidate      = nfs_weak_revalidate,
2010         .d_delete       = nfs_dentry_delete,
2011         .d_iput         = nfs_dentry_iput,
2012         .d_automount    = nfs_d_automount,
2013         .d_release      = nfs_d_release,
2014 };
2015 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2016
2017 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2018 {
2019         return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2020 }
2021
2022 static int do_open(struct inode *inode, struct file *filp)
2023 {
2024         nfs_fscache_open_file(inode, filp);
2025         return 0;
2026 }
2027
2028 static int nfs_finish_open(struct nfs_open_context *ctx,
2029                            struct dentry *dentry,
2030                            struct file *file, unsigned open_flags)
2031 {
2032         int err;
2033
2034         err = finish_open(file, dentry, do_open);
2035         if (err)
2036                 goto out;
2037         if (S_ISREG(file_inode(file)->i_mode))
2038                 nfs_file_set_open_context(file, ctx);
2039         else
2040                 err = -EOPENSTALE;
2041 out:
2042         return err;
2043 }
2044
2045 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2046                     struct file *file, unsigned open_flags,
2047                     umode_t mode)
2048 {
2049         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2050         struct nfs_open_context *ctx;
2051         struct dentry *res;
2052         struct iattr attr = { .ia_valid = ATTR_OPEN };
2053         struct inode *inode;
2054         unsigned int lookup_flags = 0;
2055         unsigned long dir_verifier;
2056         bool switched = false;
2057         int created = 0;
2058         int err;
2059
2060         /* Expect a negative dentry */
2061         BUG_ON(d_inode(dentry));
2062
2063         dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2064                         dir->i_sb->s_id, dir->i_ino, dentry);
2065
2066         err = nfs_check_flags(open_flags);
2067         if (err)
2068                 return err;
2069
2070         /* NFS only supports OPEN on regular files */
2071         if ((open_flags & O_DIRECTORY)) {
2072                 if (!d_in_lookup(dentry)) {
2073                         /*
2074                          * Hashed negative dentry with O_DIRECTORY: dentry was
2075                          * revalidated and is fine, no need to perform lookup
2076                          * again
2077                          */
2078                         return -ENOENT;
2079                 }
2080                 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2081                 goto no_open;
2082         }
2083
2084         if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2085                 return -ENAMETOOLONG;
2086
2087         if (open_flags & O_CREAT) {
2088                 struct nfs_server *server = NFS_SERVER(dir);
2089
2090                 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2091                         mode &= ~current_umask();
2092
2093                 attr.ia_valid |= ATTR_MODE;
2094                 attr.ia_mode = mode;
2095         }
2096         if (open_flags & O_TRUNC) {
2097                 attr.ia_valid |= ATTR_SIZE;
2098                 attr.ia_size = 0;
2099         }
2100
2101         if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2102                 d_drop(dentry);
2103                 switched = true;
2104                 dentry = d_alloc_parallel(dentry->d_parent,
2105                                           &dentry->d_name, &wq);
2106                 if (IS_ERR(dentry))
2107                         return PTR_ERR(dentry);
2108                 if (unlikely(!d_in_lookup(dentry)))
2109                         return finish_no_open(file, dentry);
2110         }
2111
2112         ctx = create_nfs_open_context(dentry, open_flags, file);
2113         err = PTR_ERR(ctx);
2114         if (IS_ERR(ctx))
2115                 goto out;
2116
2117         trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2118         inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2119         if (created)
2120                 file->f_mode |= FMODE_CREATED;
2121         if (IS_ERR(inode)) {
2122                 err = PTR_ERR(inode);
2123                 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2124                 put_nfs_open_context(ctx);
2125                 d_drop(dentry);
2126                 switch (err) {
2127                 case -ENOENT:
2128                         d_splice_alias(NULL, dentry);
2129                         if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2130                                 dir_verifier = inode_peek_iversion_raw(dir);
2131                         else
2132                                 dir_verifier = nfs_save_change_attribute(dir);
2133                         nfs_set_verifier(dentry, dir_verifier);
2134                         break;
2135                 case -EISDIR:
2136                 case -ENOTDIR:
2137                         goto no_open;
2138                 case -ELOOP:
2139                         if (!(open_flags & O_NOFOLLOW))
2140                                 goto no_open;
2141                         break;
2142                         /* case -EINVAL: */
2143                 default:
2144                         break;
2145                 }
2146                 goto out;
2147         }
2148         file->f_mode |= FMODE_CAN_ODIRECT;
2149
2150         err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2151         trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2152         put_nfs_open_context(ctx);
2153 out:
2154         if (unlikely(switched)) {
2155                 d_lookup_done(dentry);
2156                 dput(dentry);
2157         }
2158         return err;
2159
2160 no_open:
2161         res = nfs_lookup(dir, dentry, lookup_flags);
2162         if (!res) {
2163                 inode = d_inode(dentry);
2164                 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2165                     !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2166                         res = ERR_PTR(-ENOTDIR);
2167                 else if (inode && S_ISREG(inode->i_mode))
2168                         res = ERR_PTR(-EOPENSTALE);
2169         } else if (!IS_ERR(res)) {
2170                 inode = d_inode(res);
2171                 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2172                     !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2173                         dput(res);
2174                         res = ERR_PTR(-ENOTDIR);
2175                 } else if (inode && S_ISREG(inode->i_mode)) {
2176                         dput(res);
2177                         res = ERR_PTR(-EOPENSTALE);
2178                 }
2179         }
2180         if (switched) {
2181                 d_lookup_done(dentry);
2182                 if (!res)
2183                         res = dentry;
2184                 else
2185                         dput(dentry);
2186         }
2187         if (IS_ERR(res))
2188                 return PTR_ERR(res);
2189         return finish_no_open(file, res);
2190 }
2191 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2192
2193 static int
2194 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2195                           unsigned int flags)
2196 {
2197         struct inode *inode;
2198
2199         trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
2200
2201         if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2202                 goto full_reval;
2203         if (d_mountpoint(dentry))
2204                 goto full_reval;
2205
2206         inode = d_inode(dentry);
2207
2208         /* We can't create new files in nfs_open_revalidate(), so we
2209          * optimize away revalidation of negative dentries.
2210          */
2211         if (inode == NULL)
2212                 goto full_reval;
2213
2214         if (nfs_verifier_is_delegated(dentry))
2215                 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2216
2217         /* NFS only supports OPEN on regular files */
2218         if (!S_ISREG(inode->i_mode))
2219                 goto full_reval;
2220
2221         /* We cannot do exclusive creation on a positive dentry */
2222         if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2223                 goto reval_dentry;
2224
2225         /* Check if the directory changed */
2226         if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2227                 goto reval_dentry;
2228
2229         /* Let f_op->open() actually open (and revalidate) the file */
2230         return 1;
2231 reval_dentry:
2232         if (flags & LOOKUP_RCU)
2233                 return -ECHILD;
2234         return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2235
2236 full_reval:
2237         return nfs_do_lookup_revalidate(dir, dentry, flags);
2238 }
2239
2240 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2241 {
2242         return __nfs_lookup_revalidate(dentry, flags,
2243                         nfs4_do_lookup_revalidate);
2244 }
2245
2246 #endif /* CONFIG_NFSV4 */
2247
2248 int nfs_atomic_open_v23(struct inode *dir, struct dentry *dentry,
2249                         struct file *file, unsigned int open_flags,
2250                         umode_t mode)
2251 {
2252
2253         /* Same as look+open from lookup_open(), but with different O_TRUNC
2254          * handling.
2255          */
2256         int error = 0;
2257
2258         if (open_flags & O_CREAT) {
2259                 file->f_mode |= FMODE_CREATED;
2260                 error = nfs_do_create(dir, dentry, mode, open_flags);
2261                 if (error)
2262                         return error;
2263                 return finish_open(file, dentry, NULL);
2264         } else if (d_in_lookup(dentry)) {
2265                 /* The only flags nfs_lookup considers are
2266                  * LOOKUP_EXCL and LOOKUP_RENAME_TARGET, and
2267                  * we want those to be zero so the lookup isn't skipped.
2268                  */
2269                 struct dentry *res = nfs_lookup(dir, dentry, 0);
2270
2271                 d_lookup_done(dentry);
2272                 if (unlikely(res)) {
2273                         if (IS_ERR(res))
2274                                 return PTR_ERR(res);
2275                         return finish_no_open(file, res);
2276                 }
2277         }
2278         return finish_no_open(file, NULL);
2279
2280 }
2281 EXPORT_SYMBOL_GPL(nfs_atomic_open_v23);
2282
2283 struct dentry *
2284 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2285                                 struct nfs_fattr *fattr)
2286 {
2287         struct dentry *parent = dget_parent(dentry);
2288         struct inode *dir = d_inode(parent);
2289         struct inode *inode;
2290         struct dentry *d;
2291         int error;
2292
2293         d_drop(dentry);
2294
2295         if (fhandle->size == 0) {
2296                 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2297                 if (error)
2298                         goto out_error;
2299         }
2300         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2301         if (!(fattr->valid & NFS_ATTR_FATTR)) {
2302                 struct nfs_server *server = NFS_SB(dentry->d_sb);
2303                 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2304                                 fattr, NULL);
2305                 if (error < 0)
2306                         goto out_error;
2307         }
2308         inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2309         d = d_splice_alias(inode, dentry);
2310 out:
2311         dput(parent);
2312         return d;
2313 out_error:
2314         d = ERR_PTR(error);
2315         goto out;
2316 }
2317 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2318
2319 /*
2320  * Code common to create, mkdir, and mknod.
2321  */
2322 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2323                                 struct nfs_fattr *fattr)
2324 {
2325         struct dentry *d;
2326
2327         d = nfs_add_or_obtain(dentry, fhandle, fattr);
2328         if (IS_ERR(d))
2329                 return PTR_ERR(d);
2330
2331         /* Callers don't care */
2332         dput(d);
2333         return 0;
2334 }
2335 EXPORT_SYMBOL_GPL(nfs_instantiate);
2336
2337 /*
2338  * Following a failed create operation, we drop the dentry rather
2339  * than retain a negative dentry. This avoids a problem in the event
2340  * that the operation succeeded on the server, but an error in the
2341  * reply path made it appear to have failed.
2342  */
2343 static int nfs_do_create(struct inode *dir, struct dentry *dentry,
2344                          umode_t mode, int open_flags)
2345 {
2346         struct iattr attr;
2347         int error;
2348
2349         open_flags |= O_CREAT;
2350
2351         dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2352                         dir->i_sb->s_id, dir->i_ino, dentry);
2353
2354         attr.ia_mode = mode;
2355         attr.ia_valid = ATTR_MODE;
2356         if (open_flags & O_TRUNC) {
2357                 attr.ia_size = 0;
2358                 attr.ia_valid |= ATTR_SIZE;
2359         }
2360
2361         trace_nfs_create_enter(dir, dentry, open_flags);
2362         error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2363         trace_nfs_create_exit(dir, dentry, open_flags, error);
2364         if (error != 0)
2365                 goto out_err;
2366         return 0;
2367 out_err:
2368         d_drop(dentry);
2369         return error;
2370 }
2371
2372 int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2373                struct dentry *dentry, umode_t mode, bool excl)
2374 {
2375         return nfs_do_create(dir, dentry, mode, excl ? O_EXCL : 0);
2376 }
2377 EXPORT_SYMBOL_GPL(nfs_create);
2378
2379 /*
2380  * See comments for nfs_proc_create regarding failed operations.
2381  */
2382 int
2383 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2384           struct dentry *dentry, umode_t mode, dev_t rdev)
2385 {
2386         struct iattr attr;
2387         int status;
2388
2389         dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2390                         dir->i_sb->s_id, dir->i_ino, dentry);
2391
2392         attr.ia_mode = mode;
2393         attr.ia_valid = ATTR_MODE;
2394
2395         trace_nfs_mknod_enter(dir, dentry);
2396         status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2397         trace_nfs_mknod_exit(dir, dentry, status);
2398         if (status != 0)
2399                 goto out_err;
2400         return 0;
2401 out_err:
2402         d_drop(dentry);
2403         return status;
2404 }
2405 EXPORT_SYMBOL_GPL(nfs_mknod);
2406
2407 /*
2408  * See comments for nfs_proc_create regarding failed operations.
2409  */
2410 int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2411               struct dentry *dentry, umode_t mode)
2412 {
2413         struct iattr attr;
2414         int error;
2415
2416         dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2417                         dir->i_sb->s_id, dir->i_ino, dentry);
2418
2419         attr.ia_valid = ATTR_MODE;
2420         attr.ia_mode = mode | S_IFDIR;
2421
2422         trace_nfs_mkdir_enter(dir, dentry);
2423         error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2424         trace_nfs_mkdir_exit(dir, dentry, error);
2425         if (error != 0)
2426                 goto out_err;
2427         return 0;
2428 out_err:
2429         d_drop(dentry);
2430         return error;
2431 }
2432 EXPORT_SYMBOL_GPL(nfs_mkdir);
2433
2434 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2435 {
2436         if (simple_positive(dentry))
2437                 d_delete(dentry);
2438 }
2439
2440 static void nfs_dentry_remove_handle_error(struct inode *dir,
2441                                            struct dentry *dentry, int error)
2442 {
2443         switch (error) {
2444         case -ENOENT:
2445                 if (d_really_is_positive(dentry))
2446                         d_delete(dentry);
2447                 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2448                 break;
2449         case 0:
2450                 nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2451                 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2452         }
2453 }
2454
2455 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2456 {
2457         int error;
2458
2459         dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2460                         dir->i_sb->s_id, dir->i_ino, dentry);
2461
2462         trace_nfs_rmdir_enter(dir, dentry);
2463         if (d_really_is_positive(dentry)) {
2464                 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2465                 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2466                 /* Ensure the VFS deletes this inode */
2467                 switch (error) {
2468                 case 0:
2469                         clear_nlink(d_inode(dentry));
2470                         break;
2471                 case -ENOENT:
2472                         nfs_dentry_handle_enoent(dentry);
2473                 }
2474                 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2475         } else
2476                 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2477         nfs_dentry_remove_handle_error(dir, dentry, error);
2478         trace_nfs_rmdir_exit(dir, dentry, error);
2479
2480         return error;
2481 }
2482 EXPORT_SYMBOL_GPL(nfs_rmdir);
2483
2484 /*
2485  * Remove a file after making sure there are no pending writes,
2486  * and after checking that the file has only one user. 
2487  *
2488  * We invalidate the attribute cache and free the inode prior to the operation
2489  * to avoid possible races if the server reuses the inode.
2490  */
2491 static int nfs_safe_remove(struct dentry *dentry)
2492 {
2493         struct inode *dir = d_inode(dentry->d_parent);
2494         struct inode *inode = d_inode(dentry);
2495         int error = -EBUSY;
2496                 
2497         dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2498
2499         /* If the dentry was sillyrenamed, we simply call d_delete() */
2500         if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2501                 error = 0;
2502                 goto out;
2503         }
2504
2505         trace_nfs_remove_enter(dir, dentry);
2506         if (inode != NULL) {
2507                 error = NFS_PROTO(dir)->remove(dir, dentry);
2508                 if (error == 0)
2509                         nfs_drop_nlink(inode);
2510         } else
2511                 error = NFS_PROTO(dir)->remove(dir, dentry);
2512         if (error == -ENOENT)
2513                 nfs_dentry_handle_enoent(dentry);
2514         trace_nfs_remove_exit(dir, dentry, error);
2515 out:
2516         return error;
2517 }
2518
2519 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2520  *  belongs to an active ".nfs..." file and we return -EBUSY.
2521  *
2522  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2523  */
2524 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2525 {
2526         int error;
2527
2528         dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2529                 dir->i_ino, dentry);
2530
2531         trace_nfs_unlink_enter(dir, dentry);
2532         spin_lock(&dentry->d_lock);
2533         if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2534                                              &NFS_I(d_inode(dentry))->flags)) {
2535                 spin_unlock(&dentry->d_lock);
2536                 /* Start asynchronous writeout of the inode */
2537                 write_inode_now(d_inode(dentry), 0);
2538                 error = nfs_sillyrename(dir, dentry);
2539                 goto out;
2540         }
2541         /* We must prevent any concurrent open until the unlink
2542          * completes.  ->d_revalidate will wait for ->d_fsdata
2543          * to clear.  We set it here to ensure no lookup succeeds until
2544          * the unlink is complete on the server.
2545          */
2546         error = -ETXTBSY;
2547         if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2548             WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2549                 spin_unlock(&dentry->d_lock);
2550                 goto out;
2551         }
2552         /* old devname */
2553         kfree(dentry->d_fsdata);
2554         dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2555
2556         spin_unlock(&dentry->d_lock);
2557         error = nfs_safe_remove(dentry);
2558         nfs_dentry_remove_handle_error(dir, dentry, error);
2559         dentry->d_fsdata = NULL;
2560         wake_up_var(&dentry->d_fsdata);
2561 out:
2562         trace_nfs_unlink_exit(dir, dentry, error);
2563         return error;
2564 }
2565 EXPORT_SYMBOL_GPL(nfs_unlink);
2566
2567 /*
2568  * To create a symbolic link, most file systems instantiate a new inode,
2569  * add a page to it containing the path, then write it out to the disk
2570  * using prepare_write/commit_write.
2571  *
2572  * Unfortunately the NFS client can't create the in-core inode first
2573  * because it needs a file handle to create an in-core inode (see
2574  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2575  * symlink request has completed on the server.
2576  *
2577  * So instead we allocate a raw page, copy the symname into it, then do
2578  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2579  * now have a new file handle and can instantiate an in-core NFS inode
2580  * and move the raw page into its mapping.
2581  */
2582 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2583                 struct dentry *dentry, const char *symname)
2584 {
2585         struct folio *folio;
2586         char *kaddr;
2587         struct iattr attr;
2588         unsigned int pathlen = strlen(symname);
2589         int error;
2590
2591         dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2592                 dir->i_ino, dentry, symname);
2593
2594         if (pathlen > PAGE_SIZE)
2595                 return -ENAMETOOLONG;
2596
2597         attr.ia_mode = S_IFLNK | S_IRWXUGO;
2598         attr.ia_valid = ATTR_MODE;
2599
2600         folio = folio_alloc(GFP_USER, 0);
2601         if (!folio)
2602                 return -ENOMEM;
2603
2604         kaddr = folio_address(folio);
2605         memcpy(kaddr, symname, pathlen);
2606         if (pathlen < PAGE_SIZE)
2607                 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2608
2609         trace_nfs_symlink_enter(dir, dentry);
2610         error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr);
2611         trace_nfs_symlink_exit(dir, dentry, error);
2612         if (error != 0) {
2613                 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2614                         dir->i_sb->s_id, dir->i_ino,
2615                         dentry, symname, error);
2616                 d_drop(dentry);
2617                 folio_put(folio);
2618                 return error;
2619         }
2620
2621         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2622
2623         /*
2624          * No big deal if we can't add this page to the page cache here.
2625          * READLINK will get the missing page from the server if needed.
2626          */
2627         if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0,
2628                                                         GFP_KERNEL) == 0) {
2629                 folio_mark_uptodate(folio);
2630                 folio_unlock(folio);
2631         }
2632
2633         folio_put(folio);
2634         return 0;
2635 }
2636 EXPORT_SYMBOL_GPL(nfs_symlink);
2637
2638 int
2639 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2640 {
2641         struct inode *inode = d_inode(old_dentry);
2642         int error;
2643
2644         dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2645                 old_dentry, dentry);
2646
2647         trace_nfs_link_enter(inode, dir, dentry);
2648         d_drop(dentry);
2649         if (S_ISREG(inode->i_mode))
2650                 nfs_sync_inode(inode);
2651         error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2652         if (error == 0) {
2653                 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2654                 ihold(inode);
2655                 d_add(dentry, inode);
2656         }
2657         trace_nfs_link_exit(inode, dir, dentry, error);
2658         return error;
2659 }
2660 EXPORT_SYMBOL_GPL(nfs_link);
2661
2662 static void
2663 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2664 {
2665         struct dentry *new_dentry = data->new_dentry;
2666
2667         new_dentry->d_fsdata = NULL;
2668         wake_up_var(&new_dentry->d_fsdata);
2669 }
2670
2671 /*
2672  * RENAME
2673  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2674  * different file handle for the same inode after a rename (e.g. when
2675  * moving to a different directory). A fail-safe method to do so would
2676  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2677  * rename the old file using the sillyrename stuff. This way, the original
2678  * file in old_dir will go away when the last process iput()s the inode.
2679  *
2680  * FIXED.
2681  * 
2682  * It actually works quite well. One needs to have the possibility for
2683  * at least one ".nfs..." file in each directory the file ever gets
2684  * moved or linked to which happens automagically with the new
2685  * implementation that only depends on the dcache stuff instead of
2686  * using the inode layer
2687  *
2688  * Unfortunately, things are a little more complicated than indicated
2689  * above. For a cross-directory move, we want to make sure we can get
2690  * rid of the old inode after the operation.  This means there must be
2691  * no pending writes (if it's a file), and the use count must be 1.
2692  * If these conditions are met, we can drop the dentries before doing
2693  * the rename.
2694  */
2695 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2696                struct dentry *old_dentry, struct inode *new_dir,
2697                struct dentry *new_dentry, unsigned int flags)
2698 {
2699         struct inode *old_inode = d_inode(old_dentry);
2700         struct inode *new_inode = d_inode(new_dentry);
2701         struct dentry *dentry = NULL;
2702         struct rpc_task *task;
2703         bool must_unblock = false;
2704         int error = -EBUSY;
2705
2706         if (flags)
2707                 return -EINVAL;
2708
2709         dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2710                  old_dentry, new_dentry,
2711                  d_count(new_dentry));
2712
2713         trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2714         /*
2715          * For non-directories, check whether the target is busy and if so,
2716          * make a copy of the dentry and then do a silly-rename. If the
2717          * silly-rename succeeds, the copied dentry is hashed and becomes
2718          * the new target.
2719          */
2720         if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2721                 /* We must prevent any concurrent open until the unlink
2722                  * completes.  ->d_revalidate will wait for ->d_fsdata
2723                  * to clear.  We set it here to ensure no lookup succeeds until
2724                  * the unlink is complete on the server.
2725                  */
2726                 error = -ETXTBSY;
2727                 if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2728                     WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2729                         goto out;
2730                 if (new_dentry->d_fsdata) {
2731                         /* old devname */
2732                         kfree(new_dentry->d_fsdata);
2733                         new_dentry->d_fsdata = NULL;
2734                 }
2735
2736                 spin_lock(&new_dentry->d_lock);
2737                 if (d_count(new_dentry) > 2) {
2738                         int err;
2739
2740                         spin_unlock(&new_dentry->d_lock);
2741
2742                         /* copy the target dentry's name */
2743                         dentry = d_alloc(new_dentry->d_parent,
2744                                          &new_dentry->d_name);
2745                         if (!dentry)
2746                                 goto out;
2747
2748                         /* silly-rename the existing target ... */
2749                         err = nfs_sillyrename(new_dir, new_dentry);
2750                         if (err)
2751                                 goto out;
2752
2753                         new_dentry = dentry;
2754                         new_inode = NULL;
2755                 } else {
2756                         new_dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2757                         must_unblock = true;
2758                         spin_unlock(&new_dentry->d_lock);
2759                 }
2760
2761         }
2762
2763         if (S_ISREG(old_inode->i_mode))
2764                 nfs_sync_inode(old_inode);
2765         task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2766                                 must_unblock ? nfs_unblock_rename : NULL);
2767         if (IS_ERR(task)) {
2768                 error = PTR_ERR(task);
2769                 goto out;
2770         }
2771
2772         error = rpc_wait_for_completion_task(task);
2773         if (error != 0) {
2774                 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2775                 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2776                 smp_wmb();
2777         } else
2778                 error = task->tk_status;
2779         rpc_put_task(task);
2780         /* Ensure the inode attributes are revalidated */
2781         if (error == 0) {
2782                 spin_lock(&old_inode->i_lock);
2783                 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2784                 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2785                                                          NFS_INO_INVALID_CTIME |
2786                                                          NFS_INO_REVAL_FORCED);
2787                 spin_unlock(&old_inode->i_lock);
2788         }
2789 out:
2790         trace_nfs_rename_exit(old_dir, old_dentry,
2791                         new_dir, new_dentry, error);
2792         if (!error) {
2793                 if (new_inode != NULL)
2794                         nfs_drop_nlink(new_inode);
2795                 /*
2796                  * The d_move() should be here instead of in an async RPC completion
2797                  * handler because we need the proper locks to move the dentry.  If
2798                  * we're interrupted by a signal, the async RPC completion handler
2799                  * should mark the directories for revalidation.
2800                  */
2801                 d_move(old_dentry, new_dentry);
2802                 nfs_set_verifier(old_dentry,
2803                                         nfs_save_change_attribute(new_dir));
2804         } else if (error == -ENOENT)
2805                 nfs_dentry_handle_enoent(old_dentry);
2806
2807         /* new dentry created? */
2808         if (dentry)
2809                 dput(dentry);
2810         return error;
2811 }
2812 EXPORT_SYMBOL_GPL(nfs_rename);
2813
2814 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2815 static LIST_HEAD(nfs_access_lru_list);
2816 static atomic_long_t nfs_access_nr_entries;
2817
2818 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2819 module_param(nfs_access_max_cachesize, ulong, 0644);
2820 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2821
2822 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2823 {
2824         put_group_info(entry->group_info);
2825         kfree_rcu(entry, rcu_head);
2826         smp_mb__before_atomic();
2827         atomic_long_dec(&nfs_access_nr_entries);
2828         smp_mb__after_atomic();
2829 }
2830
2831 static void nfs_access_free_list(struct list_head *head)
2832 {
2833         struct nfs_access_entry *cache;
2834
2835         while (!list_empty(head)) {
2836                 cache = list_entry(head->next, struct nfs_access_entry, lru);
2837                 list_del(&cache->lru);
2838                 nfs_access_free_entry(cache);
2839         }
2840 }
2841
2842 static unsigned long
2843 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2844 {
2845         LIST_HEAD(head);
2846         struct nfs_inode *nfsi, *next;
2847         struct nfs_access_entry *cache;
2848         long freed = 0;
2849
2850         spin_lock(&nfs_access_lru_lock);
2851         list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2852                 struct inode *inode;
2853
2854                 if (nr_to_scan-- == 0)
2855                         break;
2856                 inode = &nfsi->vfs_inode;
2857                 spin_lock(&inode->i_lock);
2858                 if (list_empty(&nfsi->access_cache_entry_lru))
2859                         goto remove_lru_entry;
2860                 cache = list_entry(nfsi->access_cache_entry_lru.next,
2861                                 struct nfs_access_entry, lru);
2862                 list_move(&cache->lru, &head);
2863                 rb_erase(&cache->rb_node, &nfsi->access_cache);
2864                 freed++;
2865                 if (!list_empty(&nfsi->access_cache_entry_lru))
2866                         list_move_tail(&nfsi->access_cache_inode_lru,
2867                                         &nfs_access_lru_list);
2868                 else {
2869 remove_lru_entry:
2870                         list_del_init(&nfsi->access_cache_inode_lru);
2871                         smp_mb__before_atomic();
2872                         clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2873                         smp_mb__after_atomic();
2874                 }
2875                 spin_unlock(&inode->i_lock);
2876         }
2877         spin_unlock(&nfs_access_lru_lock);
2878         nfs_access_free_list(&head);
2879         return freed;
2880 }
2881
2882 unsigned long
2883 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2884 {
2885         int nr_to_scan = sc->nr_to_scan;
2886         gfp_t gfp_mask = sc->gfp_mask;
2887
2888         if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2889                 return SHRINK_STOP;
2890         return nfs_do_access_cache_scan(nr_to_scan);
2891 }
2892
2893
2894 unsigned long
2895 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2896 {
2897         return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2898 }
2899
2900 static void
2901 nfs_access_cache_enforce_limit(void)
2902 {
2903         long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2904         unsigned long diff;
2905         unsigned int nr_to_scan;
2906
2907         if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2908                 return;
2909         nr_to_scan = 100;
2910         diff = nr_entries - nfs_access_max_cachesize;
2911         if (diff < nr_to_scan)
2912                 nr_to_scan = diff;
2913         nfs_do_access_cache_scan(nr_to_scan);
2914 }
2915
2916 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2917 {
2918         struct rb_root *root_node = &nfsi->access_cache;
2919         struct rb_node *n;
2920         struct nfs_access_entry *entry;
2921
2922         /* Unhook entries from the cache */
2923         while ((n = rb_first(root_node)) != NULL) {
2924                 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2925                 rb_erase(n, root_node);
2926                 list_move(&entry->lru, head);
2927         }
2928         nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2929 }
2930
2931 void nfs_access_zap_cache(struct inode *inode)
2932 {
2933         LIST_HEAD(head);
2934
2935         if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2936                 return;
2937         /* Remove from global LRU init */
2938         spin_lock(&nfs_access_lru_lock);
2939         if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2940                 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2941
2942         spin_lock(&inode->i_lock);
2943         __nfs_access_zap_cache(NFS_I(inode), &head);
2944         spin_unlock(&inode->i_lock);
2945         spin_unlock(&nfs_access_lru_lock);
2946         nfs_access_free_list(&head);
2947 }
2948 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2949
2950 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2951 {
2952         struct group_info *ga, *gb;
2953         int g;
2954
2955         if (uid_lt(a->fsuid, b->fsuid))
2956                 return -1;
2957         if (uid_gt(a->fsuid, b->fsuid))
2958                 return 1;
2959
2960         if (gid_lt(a->fsgid, b->fsgid))
2961                 return -1;
2962         if (gid_gt(a->fsgid, b->fsgid))
2963                 return 1;
2964
2965         ga = a->group_info;
2966         gb = b->group_info;
2967         if (ga == gb)
2968                 return 0;
2969         if (ga == NULL)
2970                 return -1;
2971         if (gb == NULL)
2972                 return 1;
2973         if (ga->ngroups < gb->ngroups)
2974                 return -1;
2975         if (ga->ngroups > gb->ngroups)
2976                 return 1;
2977
2978         for (g = 0; g < ga->ngroups; g++) {
2979                 if (gid_lt(ga->gid[g], gb->gid[g]))
2980                         return -1;
2981                 if (gid_gt(ga->gid[g], gb->gid[g]))
2982                         return 1;
2983         }
2984         return 0;
2985 }
2986
2987 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2988 {
2989         struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2990
2991         while (n != NULL) {
2992                 struct nfs_access_entry *entry =
2993                         rb_entry(n, struct nfs_access_entry, rb_node);
2994                 int cmp = access_cmp(cred, entry);
2995
2996                 if (cmp < 0)
2997                         n = n->rb_left;
2998                 else if (cmp > 0)
2999                         n = n->rb_right;
3000                 else
3001                         return entry;
3002         }
3003         return NULL;
3004 }
3005
3006 static u64 nfs_access_login_time(const struct task_struct *task,
3007                                  const struct cred *cred)
3008 {
3009         const struct task_struct *parent;
3010         const struct cred *pcred;
3011         u64 ret;
3012
3013         rcu_read_lock();
3014         for (;;) {
3015                 parent = rcu_dereference(task->real_parent);
3016                 pcred = __task_cred(parent);
3017                 if (parent == task || cred_fscmp(pcred, cred) != 0)
3018                         break;
3019                 task = parent;
3020         }
3021         ret = task->start_time;
3022         rcu_read_unlock();
3023         return ret;
3024 }
3025
3026 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
3027 {
3028         struct nfs_inode *nfsi = NFS_I(inode);
3029         u64 login_time = nfs_access_login_time(current, cred);
3030         struct nfs_access_entry *cache;
3031         bool retry = true;
3032         int err;
3033
3034         spin_lock(&inode->i_lock);
3035         for(;;) {
3036                 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3037                         goto out_zap;
3038                 cache = nfs_access_search_rbtree(inode, cred);
3039                 err = -ENOENT;
3040                 if (cache == NULL)
3041                         goto out;
3042                 /* Found an entry, is our attribute cache valid? */
3043                 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3044                         break;
3045                 if (!retry)
3046                         break;
3047                 err = -ECHILD;
3048                 if (!may_block)
3049                         goto out;
3050                 spin_unlock(&inode->i_lock);
3051                 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3052                 if (err)
3053                         return err;
3054                 spin_lock(&inode->i_lock);
3055                 retry = false;
3056         }
3057         err = -ENOENT;
3058         if ((s64)(login_time - cache->timestamp) > 0)
3059                 goto out;
3060         *mask = cache->mask;
3061         list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3062         err = 0;
3063 out:
3064         spin_unlock(&inode->i_lock);
3065         return err;
3066 out_zap:
3067         spin_unlock(&inode->i_lock);
3068         nfs_access_zap_cache(inode);
3069         return -ENOENT;
3070 }
3071
3072 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3073 {
3074         /* Only check the most recently returned cache entry,
3075          * but do it without locking.
3076          */
3077         struct nfs_inode *nfsi = NFS_I(inode);
3078         u64 login_time = nfs_access_login_time(current, cred);
3079         struct nfs_access_entry *cache;
3080         int err = -ECHILD;
3081         struct list_head *lh;
3082
3083         rcu_read_lock();
3084         if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3085                 goto out;
3086         lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3087         cache = list_entry(lh, struct nfs_access_entry, lru);
3088         if (lh == &nfsi->access_cache_entry_lru ||
3089             access_cmp(cred, cache) != 0)
3090                 cache = NULL;
3091         if (cache == NULL)
3092                 goto out;
3093         if ((s64)(login_time - cache->timestamp) > 0)
3094                 goto out;
3095         if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3096                 goto out;
3097         *mask = cache->mask;
3098         err = 0;
3099 out:
3100         rcu_read_unlock();
3101         return err;
3102 }
3103
3104 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3105                           u32 *mask, bool may_block)
3106 {
3107         int status;
3108
3109         status = nfs_access_get_cached_rcu(inode, cred, mask);
3110         if (status != 0)
3111                 status = nfs_access_get_cached_locked(inode, cred, mask,
3112                     may_block);
3113
3114         return status;
3115 }
3116 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3117
3118 static void nfs_access_add_rbtree(struct inode *inode,
3119                                   struct nfs_access_entry *set,
3120                                   const struct cred *cred)
3121 {
3122         struct nfs_inode *nfsi = NFS_I(inode);
3123         struct rb_root *root_node = &nfsi->access_cache;
3124         struct rb_node **p = &root_node->rb_node;
3125         struct rb_node *parent = NULL;
3126         struct nfs_access_entry *entry;
3127         int cmp;
3128
3129         spin_lock(&inode->i_lock);
3130         while (*p != NULL) {
3131                 parent = *p;
3132                 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3133                 cmp = access_cmp(cred, entry);
3134
3135                 if (cmp < 0)
3136                         p = &parent->rb_left;
3137                 else if (cmp > 0)
3138                         p = &parent->rb_right;
3139                 else
3140                         goto found;
3141         }
3142         rb_link_node(&set->rb_node, parent, p);
3143         rb_insert_color(&set->rb_node, root_node);
3144         list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3145         spin_unlock(&inode->i_lock);
3146         return;
3147 found:
3148         rb_replace_node(parent, &set->rb_node, root_node);
3149         list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3150         list_del(&entry->lru);
3151         spin_unlock(&inode->i_lock);
3152         nfs_access_free_entry(entry);
3153 }
3154
3155 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3156                           const struct cred *cred)
3157 {
3158         struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3159         if (cache == NULL)
3160                 return;
3161         RB_CLEAR_NODE(&cache->rb_node);
3162         cache->fsuid = cred->fsuid;
3163         cache->fsgid = cred->fsgid;
3164         cache->group_info = get_group_info(cred->group_info);
3165         cache->mask = set->mask;
3166         cache->timestamp = ktime_get_ns();
3167
3168         /* The above field assignments must be visible
3169          * before this item appears on the lru.  We cannot easily
3170          * use rcu_assign_pointer, so just force the memory barrier.
3171          */
3172         smp_wmb();
3173         nfs_access_add_rbtree(inode, cache, cred);
3174
3175         /* Update accounting */
3176         smp_mb__before_atomic();
3177         atomic_long_inc(&nfs_access_nr_entries);
3178         smp_mb__after_atomic();
3179
3180         /* Add inode to global LRU list */
3181         if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3182                 spin_lock(&nfs_access_lru_lock);
3183                 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3184                         list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3185                                         &nfs_access_lru_list);
3186                 spin_unlock(&nfs_access_lru_lock);
3187         }
3188         nfs_access_cache_enforce_limit();
3189 }
3190 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3191
3192 #define NFS_MAY_READ (NFS_ACCESS_READ)
3193 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3194                 NFS_ACCESS_EXTEND | \
3195                 NFS_ACCESS_DELETE)
3196 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3197                 NFS_ACCESS_EXTEND)
3198 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3199 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3200 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3201 static int
3202 nfs_access_calc_mask(u32 access_result, umode_t umode)
3203 {
3204         int mask = 0;
3205
3206         if (access_result & NFS_MAY_READ)
3207                 mask |= MAY_READ;
3208         if (S_ISDIR(umode)) {
3209                 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3210                         mask |= MAY_WRITE;
3211                 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3212                         mask |= MAY_EXEC;
3213         } else if (S_ISREG(umode)) {
3214                 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3215                         mask |= MAY_WRITE;
3216                 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3217                         mask |= MAY_EXEC;
3218         } else if (access_result & NFS_MAY_WRITE)
3219                         mask |= MAY_WRITE;
3220         return mask;
3221 }
3222
3223 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3224 {
3225         entry->mask = access_result;
3226 }
3227 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3228
3229 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3230 {
3231         struct nfs_access_entry cache;
3232         bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3233         int cache_mask = -1;
3234         int status;
3235
3236         trace_nfs_access_enter(inode);
3237
3238         status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3239         if (status == 0)
3240                 goto out_cached;
3241
3242         status = -ECHILD;
3243         if (!may_block)
3244                 goto out;
3245
3246         /*
3247          * Determine which access bits we want to ask for...
3248          */
3249         cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3250                      nfs_access_xattr_mask(NFS_SERVER(inode));
3251         if (S_ISDIR(inode->i_mode))
3252                 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3253         else
3254                 cache.mask |= NFS_ACCESS_EXECUTE;
3255         status = NFS_PROTO(inode)->access(inode, &cache, cred);
3256         if (status != 0) {
3257                 if (status == -ESTALE) {
3258                         if (!S_ISDIR(inode->i_mode))
3259                                 nfs_set_inode_stale(inode);
3260                         else
3261                                 nfs_zap_caches(inode);
3262                 }
3263                 goto out;
3264         }
3265         nfs_access_add_cache(inode, &cache, cred);
3266 out_cached:
3267         cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3268         if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3269                 status = -EACCES;
3270 out:
3271         trace_nfs_access_exit(inode, mask, cache_mask, status);
3272         return status;
3273 }
3274
3275 static int nfs_open_permission_mask(int openflags)
3276 {
3277         int mask = 0;
3278
3279         if (openflags & __FMODE_EXEC) {
3280                 /* ONLY check exec rights */
3281                 mask = MAY_EXEC;
3282         } else {
3283                 if ((openflags & O_ACCMODE) != O_WRONLY)
3284                         mask |= MAY_READ;
3285                 if ((openflags & O_ACCMODE) != O_RDONLY)
3286                         mask |= MAY_WRITE;
3287         }
3288
3289         return mask;
3290 }
3291
3292 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3293 {
3294         return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3295 }
3296 EXPORT_SYMBOL_GPL(nfs_may_open);
3297
3298 static int nfs_execute_ok(struct inode *inode, int mask)
3299 {
3300         struct nfs_server *server = NFS_SERVER(inode);
3301         int ret = 0;
3302
3303         if (S_ISDIR(inode->i_mode))
3304                 return 0;
3305         if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3306                 if (mask & MAY_NOT_BLOCK)
3307                         return -ECHILD;
3308                 ret = __nfs_revalidate_inode(server, inode);
3309         }
3310         if (ret == 0 && !execute_ok(inode))
3311                 ret = -EACCES;
3312         return ret;
3313 }
3314
3315 int nfs_permission(struct mnt_idmap *idmap,
3316                    struct inode *inode,
3317                    int mask)
3318 {
3319         const struct cred *cred = current_cred();
3320         int res = 0;
3321
3322         nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3323
3324         if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3325                 goto out;
3326         /* Is this sys_access() ? */
3327         if (mask & (MAY_ACCESS | MAY_CHDIR))
3328                 goto force_lookup;
3329
3330         switch (inode->i_mode & S_IFMT) {
3331                 case S_IFLNK:
3332                         goto out;
3333                 case S_IFREG:
3334                         if ((mask & MAY_OPEN) &&
3335                            nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3336                                 return 0;
3337                         break;
3338                 case S_IFDIR:
3339                         /*
3340                          * Optimize away all write operations, since the server
3341                          * will check permissions when we perform the op.
3342                          */
3343                         if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3344                                 goto out;
3345         }
3346
3347 force_lookup:
3348         if (!NFS_PROTO(inode)->access)
3349                 goto out_notsup;
3350
3351         res = nfs_do_access(inode, cred, mask);
3352 out:
3353         if (!res && (mask & MAY_EXEC))
3354                 res = nfs_execute_ok(inode, mask);
3355
3356         dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3357                 inode->i_sb->s_id, inode->i_ino, mask, res);
3358         return res;
3359 out_notsup:
3360         if (mask & MAY_NOT_BLOCK)
3361                 return -ECHILD;
3362
3363         res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3364                                                   NFS_INO_INVALID_OTHER);
3365         if (res == 0)
3366                 res = generic_permission(&nop_mnt_idmap, inode, mask);
3367         goto out;
3368 }
3369 EXPORT_SYMBOL_GPL(nfs_permission);
This page took 0.218649 seconds and 4 git commands to generate.