]> Git Repo - linux.git/blob - arch/x86/events/intel/lbr.c
drm/xe/tests: Convert xe_mocs live tests
[linux.git] / arch / x86 / events / intel / lbr.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/perf_event.h>
3 #include <linux/types.h>
4
5 #include <asm/cpu_device_id.h>
6 #include <asm/perf_event.h>
7 #include <asm/msr.h>
8
9 #include "../perf_event.h"
10
11 /*
12  * Intel LBR_SELECT bits
13  * Intel Vol3a, April 2011, Section 16.7 Table 16-10
14  *
15  * Hardware branch filter (not available on all CPUs)
16  */
17 #define LBR_KERNEL_BIT          0 /* do not capture at ring0 */
18 #define LBR_USER_BIT            1 /* do not capture at ring > 0 */
19 #define LBR_JCC_BIT             2 /* do not capture conditional branches */
20 #define LBR_REL_CALL_BIT        3 /* do not capture relative calls */
21 #define LBR_IND_CALL_BIT        4 /* do not capture indirect calls */
22 #define LBR_RETURN_BIT          5 /* do not capture near returns */
23 #define LBR_IND_JMP_BIT         6 /* do not capture indirect jumps */
24 #define LBR_REL_JMP_BIT         7 /* do not capture relative jumps */
25 #define LBR_FAR_BIT             8 /* do not capture far branches */
26 #define LBR_CALL_STACK_BIT      9 /* enable call stack */
27
28 /*
29  * Following bit only exists in Linux; we mask it out before writing it to
30  * the actual MSR. But it helps the constraint perf code to understand
31  * that this is a separate configuration.
32  */
33 #define LBR_NO_INFO_BIT        63 /* don't read LBR_INFO. */
34
35 #define LBR_KERNEL      (1 << LBR_KERNEL_BIT)
36 #define LBR_USER        (1 << LBR_USER_BIT)
37 #define LBR_JCC         (1 << LBR_JCC_BIT)
38 #define LBR_REL_CALL    (1 << LBR_REL_CALL_BIT)
39 #define LBR_IND_CALL    (1 << LBR_IND_CALL_BIT)
40 #define LBR_RETURN      (1 << LBR_RETURN_BIT)
41 #define LBR_REL_JMP     (1 << LBR_REL_JMP_BIT)
42 #define LBR_IND_JMP     (1 << LBR_IND_JMP_BIT)
43 #define LBR_FAR         (1 << LBR_FAR_BIT)
44 #define LBR_CALL_STACK  (1 << LBR_CALL_STACK_BIT)
45 #define LBR_NO_INFO     (1ULL << LBR_NO_INFO_BIT)
46
47 #define LBR_PLM (LBR_KERNEL | LBR_USER)
48
49 #define LBR_SEL_MASK    0x3ff   /* valid bits in LBR_SELECT */
50 #define LBR_NOT_SUPP    -1      /* LBR filter not supported */
51 #define LBR_IGN         0       /* ignored */
52
53 #define LBR_ANY          \
54         (LBR_JCC        |\
55          LBR_REL_CALL   |\
56          LBR_IND_CALL   |\
57          LBR_RETURN     |\
58          LBR_REL_JMP    |\
59          LBR_IND_JMP    |\
60          LBR_FAR)
61
62 #define LBR_FROM_FLAG_MISPRED   BIT_ULL(63)
63 #define LBR_FROM_FLAG_IN_TX     BIT_ULL(62)
64 #define LBR_FROM_FLAG_ABORT     BIT_ULL(61)
65
66 #define LBR_FROM_SIGNEXT_2MSB   (BIT_ULL(60) | BIT_ULL(59))
67
68 /*
69  * Intel LBR_CTL bits
70  *
71  * Hardware branch filter for Arch LBR
72  */
73 #define ARCH_LBR_KERNEL_BIT             1  /* capture at ring0 */
74 #define ARCH_LBR_USER_BIT               2  /* capture at ring > 0 */
75 #define ARCH_LBR_CALL_STACK_BIT         3  /* enable call stack */
76 #define ARCH_LBR_JCC_BIT                16 /* capture conditional branches */
77 #define ARCH_LBR_REL_JMP_BIT            17 /* capture relative jumps */
78 #define ARCH_LBR_IND_JMP_BIT            18 /* capture indirect jumps */
79 #define ARCH_LBR_REL_CALL_BIT           19 /* capture relative calls */
80 #define ARCH_LBR_IND_CALL_BIT           20 /* capture indirect calls */
81 #define ARCH_LBR_RETURN_BIT             21 /* capture near returns */
82 #define ARCH_LBR_OTHER_BRANCH_BIT       22 /* capture other branches */
83
84 #define ARCH_LBR_KERNEL                 (1ULL << ARCH_LBR_KERNEL_BIT)
85 #define ARCH_LBR_USER                   (1ULL << ARCH_LBR_USER_BIT)
86 #define ARCH_LBR_CALL_STACK             (1ULL << ARCH_LBR_CALL_STACK_BIT)
87 #define ARCH_LBR_JCC                    (1ULL << ARCH_LBR_JCC_BIT)
88 #define ARCH_LBR_REL_JMP                (1ULL << ARCH_LBR_REL_JMP_BIT)
89 #define ARCH_LBR_IND_JMP                (1ULL << ARCH_LBR_IND_JMP_BIT)
90 #define ARCH_LBR_REL_CALL               (1ULL << ARCH_LBR_REL_CALL_BIT)
91 #define ARCH_LBR_IND_CALL               (1ULL << ARCH_LBR_IND_CALL_BIT)
92 #define ARCH_LBR_RETURN                 (1ULL << ARCH_LBR_RETURN_BIT)
93 #define ARCH_LBR_OTHER_BRANCH           (1ULL << ARCH_LBR_OTHER_BRANCH_BIT)
94
95 #define ARCH_LBR_ANY                     \
96         (ARCH_LBR_JCC                   |\
97          ARCH_LBR_REL_JMP               |\
98          ARCH_LBR_IND_JMP               |\
99          ARCH_LBR_REL_CALL              |\
100          ARCH_LBR_IND_CALL              |\
101          ARCH_LBR_RETURN                |\
102          ARCH_LBR_OTHER_BRANCH)
103
104 #define ARCH_LBR_CTL_MASK                       0x7f000e
105
106 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
107
108 static __always_inline bool is_lbr_call_stack_bit_set(u64 config)
109 {
110         if (static_cpu_has(X86_FEATURE_ARCH_LBR))
111                 return !!(config & ARCH_LBR_CALL_STACK);
112
113         return !!(config & LBR_CALL_STACK);
114 }
115
116 /*
117  * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
118  * otherwise it becomes near impossible to get a reliable stack.
119  */
120
121 static void __intel_pmu_lbr_enable(bool pmi)
122 {
123         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
124         u64 debugctl, lbr_select = 0, orig_debugctl;
125
126         /*
127          * No need to unfreeze manually, as v4 can do that as part
128          * of the GLOBAL_STATUS ack.
129          */
130         if (pmi && x86_pmu.version >= 4)
131                 return;
132
133         /*
134          * No need to reprogram LBR_SELECT in a PMI, as it
135          * did not change.
136          */
137         if (cpuc->lbr_sel)
138                 lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
139         if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && !pmi && cpuc->lbr_sel)
140                 wrmsrl(MSR_LBR_SELECT, lbr_select);
141
142         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
143         orig_debugctl = debugctl;
144
145         if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
146                 debugctl |= DEBUGCTLMSR_LBR;
147         /*
148          * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
149          * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
150          * may cause superfluous increase/decrease of LBR_TOS.
151          */
152         if (is_lbr_call_stack_bit_set(lbr_select))
153                 debugctl &= ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
154         else
155                 debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
156
157         if (orig_debugctl != debugctl)
158                 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
159
160         if (static_cpu_has(X86_FEATURE_ARCH_LBR))
161                 wrmsrl(MSR_ARCH_LBR_CTL, lbr_select | ARCH_LBR_CTL_LBREN);
162 }
163
164 void intel_pmu_lbr_reset_32(void)
165 {
166         int i;
167
168         for (i = 0; i < x86_pmu.lbr_nr; i++)
169                 wrmsrl(x86_pmu.lbr_from + i, 0);
170 }
171
172 void intel_pmu_lbr_reset_64(void)
173 {
174         int i;
175
176         for (i = 0; i < x86_pmu.lbr_nr; i++) {
177                 wrmsrl(x86_pmu.lbr_from + i, 0);
178                 wrmsrl(x86_pmu.lbr_to   + i, 0);
179                 if (x86_pmu.lbr_has_info)
180                         wrmsrl(x86_pmu.lbr_info + i, 0);
181         }
182 }
183
184 static void intel_pmu_arch_lbr_reset(void)
185 {
186         /* Write to ARCH_LBR_DEPTH MSR, all LBR entries are reset to 0 */
187         wrmsrl(MSR_ARCH_LBR_DEPTH, x86_pmu.lbr_nr);
188 }
189
190 void intel_pmu_lbr_reset(void)
191 {
192         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
193
194         if (!x86_pmu.lbr_nr)
195                 return;
196
197         x86_pmu.lbr_reset();
198
199         cpuc->last_task_ctx = NULL;
200         cpuc->last_log_id = 0;
201         if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && cpuc->lbr_select)
202                 wrmsrl(MSR_LBR_SELECT, 0);
203 }
204
205 /*
206  * TOS = most recently recorded branch
207  */
208 static inline u64 intel_pmu_lbr_tos(void)
209 {
210         u64 tos;
211
212         rdmsrl(x86_pmu.lbr_tos, tos);
213         return tos;
214 }
215
216 enum {
217         LBR_NONE,
218         LBR_VALID,
219 };
220
221 /*
222  * For format LBR_FORMAT_EIP_FLAGS2, bits 61:62 in MSR_LAST_BRANCH_FROM_x
223  * are the TSX flags when TSX is supported, but when TSX is not supported
224  * they have no consistent behavior:
225  *
226  *   - For wrmsr(), bits 61:62 are considered part of the sign extension.
227  *   - For HW updates (branch captures) bits 61:62 are always OFF and are not
228  *     part of the sign extension.
229  *
230  * Therefore, if:
231  *
232  *   1) LBR format LBR_FORMAT_EIP_FLAGS2
233  *   2) CPU has no TSX support enabled
234  *
235  * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
236  * value from rdmsr() must be converted to have a 61 bits sign extension,
237  * ignoring the TSX flags.
238  */
239 static inline bool lbr_from_signext_quirk_needed(void)
240 {
241         bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
242                            boot_cpu_has(X86_FEATURE_RTM);
243
244         return !tsx_support;
245 }
246
247 static DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
248
249 /* If quirk is enabled, ensure sign extension is 63 bits: */
250 inline u64 lbr_from_signext_quirk_wr(u64 val)
251 {
252         if (static_branch_unlikely(&lbr_from_quirk_key)) {
253                 /*
254                  * Sign extend into bits 61:62 while preserving bit 63.
255                  *
256                  * Quirk is enabled when TSX is disabled. Therefore TSX bits
257                  * in val are always OFF and must be changed to be sign
258                  * extension bits. Since bits 59:60 are guaranteed to be
259                  * part of the sign extension bits, we can just copy them
260                  * to 61:62.
261                  */
262                 val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
263         }
264         return val;
265 }
266
267 /*
268  * If quirk is needed, ensure sign extension is 61 bits:
269  */
270 static u64 lbr_from_signext_quirk_rd(u64 val)
271 {
272         if (static_branch_unlikely(&lbr_from_quirk_key)) {
273                 /*
274                  * Quirk is on when TSX is not enabled. Therefore TSX
275                  * flags must be read as OFF.
276                  */
277                 val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
278         }
279         return val;
280 }
281
282 static __always_inline void wrlbr_from(unsigned int idx, u64 val)
283 {
284         val = lbr_from_signext_quirk_wr(val);
285         wrmsrl(x86_pmu.lbr_from + idx, val);
286 }
287
288 static __always_inline void wrlbr_to(unsigned int idx, u64 val)
289 {
290         wrmsrl(x86_pmu.lbr_to + idx, val);
291 }
292
293 static __always_inline void wrlbr_info(unsigned int idx, u64 val)
294 {
295         wrmsrl(x86_pmu.lbr_info + idx, val);
296 }
297
298 static __always_inline u64 rdlbr_from(unsigned int idx, struct lbr_entry *lbr)
299 {
300         u64 val;
301
302         if (lbr)
303                 return lbr->from;
304
305         rdmsrl(x86_pmu.lbr_from + idx, val);
306
307         return lbr_from_signext_quirk_rd(val);
308 }
309
310 static __always_inline u64 rdlbr_to(unsigned int idx, struct lbr_entry *lbr)
311 {
312         u64 val;
313
314         if (lbr)
315                 return lbr->to;
316
317         rdmsrl(x86_pmu.lbr_to + idx, val);
318
319         return val;
320 }
321
322 static __always_inline u64 rdlbr_info(unsigned int idx, struct lbr_entry *lbr)
323 {
324         u64 val;
325
326         if (lbr)
327                 return lbr->info;
328
329         rdmsrl(x86_pmu.lbr_info + idx, val);
330
331         return val;
332 }
333
334 static inline void
335 wrlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
336 {
337         wrlbr_from(idx, lbr->from);
338         wrlbr_to(idx, lbr->to);
339         if (need_info)
340                 wrlbr_info(idx, lbr->info);
341 }
342
343 static inline bool
344 rdlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
345 {
346         u64 from = rdlbr_from(idx, NULL);
347
348         /* Don't read invalid entry */
349         if (!from)
350                 return false;
351
352         lbr->from = from;
353         lbr->to = rdlbr_to(idx, NULL);
354         if (need_info)
355                 lbr->info = rdlbr_info(idx, NULL);
356
357         return true;
358 }
359
360 void intel_pmu_lbr_restore(void *ctx)
361 {
362         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
363         struct x86_perf_task_context *task_ctx = ctx;
364         bool need_info = x86_pmu.lbr_has_info;
365         u64 tos = task_ctx->tos;
366         unsigned lbr_idx, mask;
367         int i;
368
369         mask = x86_pmu.lbr_nr - 1;
370         for (i = 0; i < task_ctx->valid_lbrs; i++) {
371                 lbr_idx = (tos - i) & mask;
372                 wrlbr_all(&task_ctx->lbr[i], lbr_idx, need_info);
373         }
374
375         for (; i < x86_pmu.lbr_nr; i++) {
376                 lbr_idx = (tos - i) & mask;
377                 wrlbr_from(lbr_idx, 0);
378                 wrlbr_to(lbr_idx, 0);
379                 if (need_info)
380                         wrlbr_info(lbr_idx, 0);
381         }
382
383         wrmsrl(x86_pmu.lbr_tos, tos);
384
385         if (cpuc->lbr_select)
386                 wrmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
387 }
388
389 static void intel_pmu_arch_lbr_restore(void *ctx)
390 {
391         struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
392         struct lbr_entry *entries = task_ctx->entries;
393         int i;
394
395         /* Fast reset the LBRs before restore if the call stack is not full. */
396         if (!entries[x86_pmu.lbr_nr - 1].from)
397                 intel_pmu_arch_lbr_reset();
398
399         for (i = 0; i < x86_pmu.lbr_nr; i++) {
400                 if (!entries[i].from)
401                         break;
402                 wrlbr_all(&entries[i], i, true);
403         }
404 }
405
406 /*
407  * Restore the Architecture LBR state from the xsave area in the perf
408  * context data for the task via the XRSTORS instruction.
409  */
410 static void intel_pmu_arch_lbr_xrstors(void *ctx)
411 {
412         struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
413
414         xrstors(&task_ctx->xsave, XFEATURE_MASK_LBR);
415 }
416
417 static __always_inline bool lbr_is_reset_in_cstate(void *ctx)
418 {
419         if (static_cpu_has(X86_FEATURE_ARCH_LBR))
420                 return x86_pmu.lbr_deep_c_reset && !rdlbr_from(0, NULL);
421
422         return !rdlbr_from(((struct x86_perf_task_context *)ctx)->tos, NULL);
423 }
424
425 static void __intel_pmu_lbr_restore(void *ctx)
426 {
427         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
428
429         if (task_context_opt(ctx)->lbr_callstack_users == 0 ||
430             task_context_opt(ctx)->lbr_stack_state == LBR_NONE) {
431                 intel_pmu_lbr_reset();
432                 return;
433         }
434
435         /*
436          * Does not restore the LBR registers, if
437          * - No one else touched them, and
438          * - Was not cleared in Cstate
439          */
440         if ((ctx == cpuc->last_task_ctx) &&
441             (task_context_opt(ctx)->log_id == cpuc->last_log_id) &&
442             !lbr_is_reset_in_cstate(ctx)) {
443                 task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
444                 return;
445         }
446
447         x86_pmu.lbr_restore(ctx);
448
449         task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
450 }
451
452 void intel_pmu_lbr_save(void *ctx)
453 {
454         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
455         struct x86_perf_task_context *task_ctx = ctx;
456         bool need_info = x86_pmu.lbr_has_info;
457         unsigned lbr_idx, mask;
458         u64 tos;
459         int i;
460
461         mask = x86_pmu.lbr_nr - 1;
462         tos = intel_pmu_lbr_tos();
463         for (i = 0; i < x86_pmu.lbr_nr; i++) {
464                 lbr_idx = (tos - i) & mask;
465                 if (!rdlbr_all(&task_ctx->lbr[i], lbr_idx, need_info))
466                         break;
467         }
468         task_ctx->valid_lbrs = i;
469         task_ctx->tos = tos;
470
471         if (cpuc->lbr_select)
472                 rdmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
473 }
474
475 static void intel_pmu_arch_lbr_save(void *ctx)
476 {
477         struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
478         struct lbr_entry *entries = task_ctx->entries;
479         int i;
480
481         for (i = 0; i < x86_pmu.lbr_nr; i++) {
482                 if (!rdlbr_all(&entries[i], i, true))
483                         break;
484         }
485
486         /* LBR call stack is not full. Reset is required in restore. */
487         if (i < x86_pmu.lbr_nr)
488                 entries[x86_pmu.lbr_nr - 1].from = 0;
489 }
490
491 /*
492  * Save the Architecture LBR state to the xsave area in the perf
493  * context data for the task via the XSAVES instruction.
494  */
495 static void intel_pmu_arch_lbr_xsaves(void *ctx)
496 {
497         struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
498
499         xsaves(&task_ctx->xsave, XFEATURE_MASK_LBR);
500 }
501
502 static void __intel_pmu_lbr_save(void *ctx)
503 {
504         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
505
506         if (task_context_opt(ctx)->lbr_callstack_users == 0) {
507                 task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
508                 return;
509         }
510
511         x86_pmu.lbr_save(ctx);
512
513         task_context_opt(ctx)->lbr_stack_state = LBR_VALID;
514
515         cpuc->last_task_ctx = ctx;
516         cpuc->last_log_id = ++task_context_opt(ctx)->log_id;
517 }
518
519 void intel_pmu_lbr_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
520                                  struct perf_event_pmu_context *next_epc)
521 {
522         void *prev_ctx_data, *next_ctx_data;
523
524         swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
525
526         /*
527          * Architecture specific synchronization makes sense in case
528          * both prev_epc->task_ctx_data and next_epc->task_ctx_data
529          * pointers are allocated.
530          */
531
532         prev_ctx_data = next_epc->task_ctx_data;
533         next_ctx_data = prev_epc->task_ctx_data;
534
535         if (!prev_ctx_data || !next_ctx_data)
536                 return;
537
538         swap(task_context_opt(prev_ctx_data)->lbr_callstack_users,
539              task_context_opt(next_ctx_data)->lbr_callstack_users);
540 }
541
542 void intel_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
543 {
544         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
545         void *task_ctx;
546
547         if (!cpuc->lbr_users)
548                 return;
549
550         /*
551          * If LBR callstack feature is enabled and the stack was saved when
552          * the task was scheduled out, restore the stack. Otherwise flush
553          * the LBR stack.
554          */
555         task_ctx = pmu_ctx ? pmu_ctx->task_ctx_data : NULL;
556         if (task_ctx) {
557                 if (sched_in)
558                         __intel_pmu_lbr_restore(task_ctx);
559                 else
560                         __intel_pmu_lbr_save(task_ctx);
561                 return;
562         }
563
564         /*
565          * Since a context switch can flip the address space and LBR entries
566          * are not tagged with an identifier, we need to wipe the LBR, even for
567          * per-cpu events. You simply cannot resolve the branches from the old
568          * address space.
569          */
570         if (sched_in)
571                 intel_pmu_lbr_reset();
572 }
573
574 static inline bool branch_user_callstack(unsigned br_sel)
575 {
576         return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
577 }
578
579 void intel_pmu_lbr_add(struct perf_event *event)
580 {
581         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
582
583         if (!x86_pmu.lbr_nr)
584                 return;
585
586         if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
587                 cpuc->lbr_select = 1;
588
589         cpuc->br_sel = event->hw.branch_reg.reg;
590
591         if (branch_user_callstack(cpuc->br_sel) && event->pmu_ctx->task_ctx_data)
592                 task_context_opt(event->pmu_ctx->task_ctx_data)->lbr_callstack_users++;
593
594         /*
595          * Request pmu::sched_task() callback, which will fire inside the
596          * regular perf event scheduling, so that call will:
597          *
598          *  - restore or wipe; when LBR-callstack,
599          *  - wipe; otherwise,
600          *
601          * when this is from __perf_event_task_sched_in().
602          *
603          * However, if this is from perf_install_in_context(), no such callback
604          * will follow and we'll need to reset the LBR here if this is the
605          * first LBR event.
606          *
607          * The problem is, we cannot tell these cases apart... but we can
608          * exclude the biggest chunk of cases by looking at
609          * event->total_time_running. An event that has accrued runtime cannot
610          * be 'new'. Conversely, a new event can get installed through the
611          * context switch path for the first time.
612          */
613         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
614                 cpuc->lbr_pebs_users++;
615         perf_sched_cb_inc(event->pmu);
616         if (!cpuc->lbr_users++ && !event->total_time_running)
617                 intel_pmu_lbr_reset();
618 }
619
620 void release_lbr_buffers(void)
621 {
622         struct kmem_cache *kmem_cache;
623         struct cpu_hw_events *cpuc;
624         int cpu;
625
626         if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
627                 return;
628
629         for_each_possible_cpu(cpu) {
630                 cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
631                 kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
632                 if (kmem_cache && cpuc->lbr_xsave) {
633                         kmem_cache_free(kmem_cache, cpuc->lbr_xsave);
634                         cpuc->lbr_xsave = NULL;
635                 }
636         }
637 }
638
639 void reserve_lbr_buffers(void)
640 {
641         struct kmem_cache *kmem_cache;
642         struct cpu_hw_events *cpuc;
643         int cpu;
644
645         if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
646                 return;
647
648         for_each_possible_cpu(cpu) {
649                 cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
650                 kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
651                 if (!kmem_cache || cpuc->lbr_xsave)
652                         continue;
653
654                 cpuc->lbr_xsave = kmem_cache_alloc_node(kmem_cache,
655                                                         GFP_KERNEL | __GFP_ZERO,
656                                                         cpu_to_node(cpu));
657         }
658 }
659
660 void intel_pmu_lbr_del(struct perf_event *event)
661 {
662         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
663
664         if (!x86_pmu.lbr_nr)
665                 return;
666
667         if (branch_user_callstack(cpuc->br_sel) &&
668             event->pmu_ctx->task_ctx_data)
669                 task_context_opt(event->pmu_ctx->task_ctx_data)->lbr_callstack_users--;
670
671         if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
672                 cpuc->lbr_select = 0;
673
674         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
675                 cpuc->lbr_pebs_users--;
676         cpuc->lbr_users--;
677         WARN_ON_ONCE(cpuc->lbr_users < 0);
678         WARN_ON_ONCE(cpuc->lbr_pebs_users < 0);
679         perf_sched_cb_dec(event->pmu);
680
681         /*
682          * The logged occurrences information is only valid for the
683          * current LBR group. If another LBR group is scheduled in
684          * later, the information from the stale LBRs will be wrongly
685          * interpreted. Reset the LBRs here.
686          *
687          * Only clear once for a branch counter group with the leader
688          * event. Because
689          * - Cannot simply reset the LBRs with the !cpuc->lbr_users.
690          *   Because it's possible that the last LBR user is not in a
691          *   branch counter group, e.g., a branch_counters group +
692          *   several normal LBR events.
693          * - The LBR reset can be done with any one of the events in a
694          *   branch counter group, since they are always scheduled together.
695          *   It's easy to force the leader event an LBR event.
696          */
697         if (is_branch_counters_group(event) && event == event->group_leader)
698                 intel_pmu_lbr_reset();
699 }
700
701 static inline bool vlbr_exclude_host(void)
702 {
703         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
704
705         return test_bit(INTEL_PMC_IDX_FIXED_VLBR,
706                 (unsigned long *)&cpuc->intel_ctrl_guest_mask);
707 }
708
709 void intel_pmu_lbr_enable_all(bool pmi)
710 {
711         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
712
713         if (cpuc->lbr_users && !vlbr_exclude_host())
714                 __intel_pmu_lbr_enable(pmi);
715 }
716
717 void intel_pmu_lbr_disable_all(void)
718 {
719         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
720
721         if (cpuc->lbr_users && !vlbr_exclude_host()) {
722                 if (static_cpu_has(X86_FEATURE_ARCH_LBR))
723                         return __intel_pmu_arch_lbr_disable();
724
725                 __intel_pmu_lbr_disable();
726         }
727 }
728
729 void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
730 {
731         unsigned long mask = x86_pmu.lbr_nr - 1;
732         struct perf_branch_entry *br = cpuc->lbr_entries;
733         u64 tos = intel_pmu_lbr_tos();
734         int i;
735
736         for (i = 0; i < x86_pmu.lbr_nr; i++) {
737                 unsigned long lbr_idx = (tos - i) & mask;
738                 union {
739                         struct {
740                                 u32 from;
741                                 u32 to;
742                         };
743                         u64     lbr;
744                 } msr_lastbranch;
745
746                 rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
747
748                 perf_clear_branch_entry_bitfields(br);
749
750                 br->from        = msr_lastbranch.from;
751                 br->to          = msr_lastbranch.to;
752                 br++;
753         }
754         cpuc->lbr_stack.nr = i;
755         cpuc->lbr_stack.hw_idx = tos;
756 }
757
758 /*
759  * Due to lack of segmentation in Linux the effective address (offset)
760  * is the same as the linear address, allowing us to merge the LIP and EIP
761  * LBR formats.
762  */
763 void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
764 {
765         bool need_info = false, call_stack = false;
766         unsigned long mask = x86_pmu.lbr_nr - 1;
767         struct perf_branch_entry *br = cpuc->lbr_entries;
768         u64 tos = intel_pmu_lbr_tos();
769         int i;
770         int out = 0;
771         int num = x86_pmu.lbr_nr;
772
773         if (cpuc->lbr_sel) {
774                 need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
775                 if (cpuc->lbr_sel->config & LBR_CALL_STACK)
776                         call_stack = true;
777         }
778
779         for (i = 0; i < num; i++) {
780                 unsigned long lbr_idx = (tos - i) & mask;
781                 u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
782                 u16 cycles = 0;
783
784                 from = rdlbr_from(lbr_idx, NULL);
785                 to   = rdlbr_to(lbr_idx, NULL);
786
787                 /*
788                  * Read LBR call stack entries
789                  * until invalid entry (0s) is detected.
790                  */
791                 if (call_stack && !from)
792                         break;
793
794                 if (x86_pmu.lbr_has_info) {
795                         if (need_info) {
796                                 u64 info;
797
798                                 info = rdlbr_info(lbr_idx, NULL);
799                                 mis = !!(info & LBR_INFO_MISPRED);
800                                 pred = !mis;
801                                 cycles = (info & LBR_INFO_CYCLES);
802                                 if (x86_pmu.lbr_has_tsx) {
803                                         in_tx = !!(info & LBR_INFO_IN_TX);
804                                         abort = !!(info & LBR_INFO_ABORT);
805                                 }
806                         }
807                 } else {
808                         int skip = 0;
809
810                         if (x86_pmu.lbr_from_flags) {
811                                 mis = !!(from & LBR_FROM_FLAG_MISPRED);
812                                 pred = !mis;
813                                 skip = 1;
814                         }
815                         if (x86_pmu.lbr_has_tsx) {
816                                 in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
817                                 abort = !!(from & LBR_FROM_FLAG_ABORT);
818                                 skip = 3;
819                         }
820                         from = (u64)((((s64)from) << skip) >> skip);
821
822                         if (x86_pmu.lbr_to_cycles) {
823                                 cycles = ((to >> 48) & LBR_INFO_CYCLES);
824                                 to = (u64)((((s64)to) << 16) >> 16);
825                         }
826                 }
827
828                 /*
829                  * Some CPUs report duplicated abort records,
830                  * with the second entry not having an abort bit set.
831                  * Skip them here. This loop runs backwards,
832                  * so we need to undo the previous record.
833                  * If the abort just happened outside the window
834                  * the extra entry cannot be removed.
835                  */
836                 if (abort && x86_pmu.lbr_double_abort && out > 0)
837                         out--;
838
839                 perf_clear_branch_entry_bitfields(br+out);
840                 br[out].from     = from;
841                 br[out].to       = to;
842                 br[out].mispred  = mis;
843                 br[out].predicted = pred;
844                 br[out].in_tx    = in_tx;
845                 br[out].abort    = abort;
846                 br[out].cycles   = cycles;
847                 out++;
848         }
849         cpuc->lbr_stack.nr = out;
850         cpuc->lbr_stack.hw_idx = tos;
851 }
852
853 static DEFINE_STATIC_KEY_FALSE(x86_lbr_mispred);
854 static DEFINE_STATIC_KEY_FALSE(x86_lbr_cycles);
855 static DEFINE_STATIC_KEY_FALSE(x86_lbr_type);
856
857 static __always_inline int get_lbr_br_type(u64 info)
858 {
859         int type = 0;
860
861         if (static_branch_likely(&x86_lbr_type))
862                 type = (info & LBR_INFO_BR_TYPE) >> LBR_INFO_BR_TYPE_OFFSET;
863
864         return type;
865 }
866
867 static __always_inline bool get_lbr_mispred(u64 info)
868 {
869         bool mispred = 0;
870
871         if (static_branch_likely(&x86_lbr_mispred))
872                 mispred = !!(info & LBR_INFO_MISPRED);
873
874         return mispred;
875 }
876
877 static __always_inline u16 get_lbr_cycles(u64 info)
878 {
879         u16 cycles = info & LBR_INFO_CYCLES;
880
881         if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
882             (!static_branch_likely(&x86_lbr_cycles) ||
883              !(info & LBR_INFO_CYC_CNT_VALID)))
884                 cycles = 0;
885
886         return cycles;
887 }
888
889 static_assert((64 - PERF_BRANCH_ENTRY_INFO_BITS_MAX) > LBR_INFO_BR_CNTR_NUM * LBR_INFO_BR_CNTR_BITS);
890
891 static void intel_pmu_store_lbr(struct cpu_hw_events *cpuc,
892                                 struct lbr_entry *entries)
893 {
894         struct perf_branch_entry *e;
895         struct lbr_entry *lbr;
896         u64 from, to, info;
897         int i;
898
899         for (i = 0; i < x86_pmu.lbr_nr; i++) {
900                 lbr = entries ? &entries[i] : NULL;
901                 e = &cpuc->lbr_entries[i];
902
903                 from = rdlbr_from(i, lbr);
904                 /*
905                  * Read LBR entries until invalid entry (0s) is detected.
906                  */
907                 if (!from)
908                         break;
909
910                 to = rdlbr_to(i, lbr);
911                 info = rdlbr_info(i, lbr);
912
913                 perf_clear_branch_entry_bitfields(e);
914
915                 e->from         = from;
916                 e->to           = to;
917                 e->mispred      = get_lbr_mispred(info);
918                 e->predicted    = !e->mispred;
919                 e->in_tx        = !!(info & LBR_INFO_IN_TX);
920                 e->abort        = !!(info & LBR_INFO_ABORT);
921                 e->cycles       = get_lbr_cycles(info);
922                 e->type         = get_lbr_br_type(info);
923
924                 /*
925                  * Leverage the reserved field of cpuc->lbr_entries[i] to
926                  * temporarily store the branch counters information.
927                  * The later code will decide what content can be disclosed
928                  * to the perf tool. Pleae see intel_pmu_lbr_counters_reorder().
929                  */
930                 e->reserved     = (info >> LBR_INFO_BR_CNTR_OFFSET) & LBR_INFO_BR_CNTR_FULL_MASK;
931         }
932
933         cpuc->lbr_stack.nr = i;
934 }
935
936 /*
937  * The enabled order may be different from the counter order.
938  * Update the lbr_counters with the enabled order.
939  */
940 static void intel_pmu_lbr_counters_reorder(struct cpu_hw_events *cpuc,
941                                            struct perf_event *event)
942 {
943         int i, j, pos = 0, order[X86_PMC_IDX_MAX];
944         struct perf_event *leader, *sibling;
945         u64 src, dst, cnt;
946
947         leader = event->group_leader;
948         if (branch_sample_counters(leader))
949                 order[pos++] = leader->hw.idx;
950
951         for_each_sibling_event(sibling, leader) {
952                 if (!branch_sample_counters(sibling))
953                         continue;
954                 order[pos++] = sibling->hw.idx;
955         }
956
957         WARN_ON_ONCE(!pos);
958
959         for (i = 0; i < cpuc->lbr_stack.nr; i++) {
960                 src = cpuc->lbr_entries[i].reserved;
961                 dst = 0;
962                 for (j = 0; j < pos; j++) {
963                         cnt = (src >> (order[j] * LBR_INFO_BR_CNTR_BITS)) & LBR_INFO_BR_CNTR_MASK;
964                         dst |= cnt << j * LBR_INFO_BR_CNTR_BITS;
965                 }
966                 cpuc->lbr_counters[i] = dst;
967                 cpuc->lbr_entries[i].reserved = 0;
968         }
969 }
970
971 void intel_pmu_lbr_save_brstack(struct perf_sample_data *data,
972                                 struct cpu_hw_events *cpuc,
973                                 struct perf_event *event)
974 {
975         if (is_branch_counters_group(event)) {
976                 intel_pmu_lbr_counters_reorder(cpuc, event);
977                 perf_sample_save_brstack(data, event, &cpuc->lbr_stack, cpuc->lbr_counters);
978                 return;
979         }
980
981         perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL);
982 }
983
984 static void intel_pmu_arch_lbr_read(struct cpu_hw_events *cpuc)
985 {
986         intel_pmu_store_lbr(cpuc, NULL);
987 }
988
989 static void intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events *cpuc)
990 {
991         struct x86_perf_task_context_arch_lbr_xsave *xsave = cpuc->lbr_xsave;
992
993         if (!xsave) {
994                 intel_pmu_store_lbr(cpuc, NULL);
995                 return;
996         }
997         xsaves(&xsave->xsave, XFEATURE_MASK_LBR);
998
999         intel_pmu_store_lbr(cpuc, xsave->lbr.entries);
1000 }
1001
1002 void intel_pmu_lbr_read(void)
1003 {
1004         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1005
1006         /*
1007          * Don't read when all LBRs users are using adaptive PEBS.
1008          *
1009          * This could be smarter and actually check the event,
1010          * but this simple approach seems to work for now.
1011          */
1012         if (!cpuc->lbr_users || vlbr_exclude_host() ||
1013             cpuc->lbr_users == cpuc->lbr_pebs_users)
1014                 return;
1015
1016         x86_pmu.lbr_read(cpuc);
1017
1018         intel_pmu_lbr_filter(cpuc);
1019 }
1020
1021 /*
1022  * SW filter is used:
1023  * - in case there is no HW filter
1024  * - in case the HW filter has errata or limitations
1025  */
1026 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
1027 {
1028         u64 br_type = event->attr.branch_sample_type;
1029         int mask = 0;
1030
1031         if (br_type & PERF_SAMPLE_BRANCH_USER)
1032                 mask |= X86_BR_USER;
1033
1034         if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
1035                 mask |= X86_BR_KERNEL;
1036
1037         /* we ignore BRANCH_HV here */
1038
1039         if (br_type & PERF_SAMPLE_BRANCH_ANY)
1040                 mask |= X86_BR_ANY;
1041
1042         if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
1043                 mask |= X86_BR_ANY_CALL;
1044
1045         if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
1046                 mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
1047
1048         if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
1049                 mask |= X86_BR_IND_CALL;
1050
1051         if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
1052                 mask |= X86_BR_ABORT;
1053
1054         if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
1055                 mask |= X86_BR_IN_TX;
1056
1057         if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
1058                 mask |= X86_BR_NO_TX;
1059
1060         if (br_type & PERF_SAMPLE_BRANCH_COND)
1061                 mask |= X86_BR_JCC;
1062
1063         if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
1064                 if (!x86_pmu_has_lbr_callstack())
1065                         return -EOPNOTSUPP;
1066                 if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
1067                         return -EINVAL;
1068                 mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
1069                         X86_BR_CALL_STACK;
1070         }
1071
1072         if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
1073                 mask |= X86_BR_IND_JMP;
1074
1075         if (br_type & PERF_SAMPLE_BRANCH_CALL)
1076                 mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
1077
1078         if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
1079                 mask |= X86_BR_TYPE_SAVE;
1080
1081         /*
1082          * stash actual user request into reg, it may
1083          * be used by fixup code for some CPU
1084          */
1085         event->hw.branch_reg.reg = mask;
1086         return 0;
1087 }
1088
1089 /*
1090  * setup the HW LBR filter
1091  * Used only when available, may not be enough to disambiguate
1092  * all branches, may need the help of the SW filter
1093  */
1094 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
1095 {
1096         struct hw_perf_event_extra *reg;
1097         u64 br_type = event->attr.branch_sample_type;
1098         u64 mask = 0, v;
1099         int i;
1100
1101         for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
1102                 if (!(br_type & (1ULL << i)))
1103                         continue;
1104
1105                 v = x86_pmu.lbr_sel_map[i];
1106                 if (v == LBR_NOT_SUPP)
1107                         return -EOPNOTSUPP;
1108
1109                 if (v != LBR_IGN)
1110                         mask |= v;
1111         }
1112
1113         reg = &event->hw.branch_reg;
1114         reg->idx = EXTRA_REG_LBR;
1115
1116         if (static_cpu_has(X86_FEATURE_ARCH_LBR)) {
1117                 reg->config = mask;
1118
1119                 /*
1120                  * The Arch LBR HW can retrieve the common branch types
1121                  * from the LBR_INFO. It doesn't require the high overhead
1122                  * SW disassemble.
1123                  * Enable the branch type by default for the Arch LBR.
1124                  */
1125                 reg->reg |= X86_BR_TYPE_SAVE;
1126                 return 0;
1127         }
1128
1129         /*
1130          * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
1131          * in suppress mode. So LBR_SELECT should be set to
1132          * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
1133          * But the 10th bit LBR_CALL_STACK does not operate
1134          * in suppress mode.
1135          */
1136         reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
1137
1138         if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
1139             (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
1140             x86_pmu.lbr_has_info)
1141                 reg->config |= LBR_NO_INFO;
1142
1143         return 0;
1144 }
1145
1146 int intel_pmu_setup_lbr_filter(struct perf_event *event)
1147 {
1148         int ret = 0;
1149
1150         /*
1151          * no LBR on this PMU
1152          */
1153         if (!x86_pmu.lbr_nr)
1154                 return -EOPNOTSUPP;
1155
1156         /*
1157          * setup SW LBR filter
1158          */
1159         ret = intel_pmu_setup_sw_lbr_filter(event);
1160         if (ret)
1161                 return ret;
1162
1163         /*
1164          * setup HW LBR filter, if any
1165          */
1166         if (x86_pmu.lbr_sel_map)
1167                 ret = intel_pmu_setup_hw_lbr_filter(event);
1168
1169         return ret;
1170 }
1171
1172 enum {
1173         ARCH_LBR_BR_TYPE_JCC                    = 0,
1174         ARCH_LBR_BR_TYPE_NEAR_IND_JMP           = 1,
1175         ARCH_LBR_BR_TYPE_NEAR_REL_JMP           = 2,
1176         ARCH_LBR_BR_TYPE_NEAR_IND_CALL          = 3,
1177         ARCH_LBR_BR_TYPE_NEAR_REL_CALL          = 4,
1178         ARCH_LBR_BR_TYPE_NEAR_RET               = 5,
1179         ARCH_LBR_BR_TYPE_KNOWN_MAX              = ARCH_LBR_BR_TYPE_NEAR_RET,
1180
1181         ARCH_LBR_BR_TYPE_MAP_MAX                = 16,
1182 };
1183
1184 static const int arch_lbr_br_type_map[ARCH_LBR_BR_TYPE_MAP_MAX] = {
1185         [ARCH_LBR_BR_TYPE_JCC]                  = X86_BR_JCC,
1186         [ARCH_LBR_BR_TYPE_NEAR_IND_JMP]         = X86_BR_IND_JMP,
1187         [ARCH_LBR_BR_TYPE_NEAR_REL_JMP]         = X86_BR_JMP,
1188         [ARCH_LBR_BR_TYPE_NEAR_IND_CALL]        = X86_BR_IND_CALL,
1189         [ARCH_LBR_BR_TYPE_NEAR_REL_CALL]        = X86_BR_CALL,
1190         [ARCH_LBR_BR_TYPE_NEAR_RET]             = X86_BR_RET,
1191 };
1192
1193 /*
1194  * implement actual branch filter based on user demand.
1195  * Hardware may not exactly satisfy that request, thus
1196  * we need to inspect opcodes. Mismatched branches are
1197  * discarded. Therefore, the number of branches returned
1198  * in PERF_SAMPLE_BRANCH_STACK sample may vary.
1199  */
1200 static void
1201 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
1202 {
1203         u64 from, to;
1204         int br_sel = cpuc->br_sel;
1205         int i, j, type, to_plm;
1206         bool compress = false;
1207
1208         /* if sampling all branches, then nothing to filter */
1209         if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
1210             ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
1211                 return;
1212
1213         for (i = 0; i < cpuc->lbr_stack.nr; i++) {
1214
1215                 from = cpuc->lbr_entries[i].from;
1216                 to = cpuc->lbr_entries[i].to;
1217                 type = cpuc->lbr_entries[i].type;
1218
1219                 /*
1220                  * Parse the branch type recorded in LBR_x_INFO MSR.
1221                  * Doesn't support OTHER_BRANCH decoding for now.
1222                  * OTHER_BRANCH branch type still rely on software decoding.
1223                  */
1224                 if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
1225                     type <= ARCH_LBR_BR_TYPE_KNOWN_MAX) {
1226                         to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
1227                         type = arch_lbr_br_type_map[type] | to_plm;
1228                 } else
1229                         type = branch_type(from, to, cpuc->lbr_entries[i].abort);
1230                 if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
1231                         if (cpuc->lbr_entries[i].in_tx)
1232                                 type |= X86_BR_IN_TX;
1233                         else
1234                                 type |= X86_BR_NO_TX;
1235                 }
1236
1237                 /* if type does not correspond, then discard */
1238                 if (type == X86_BR_NONE || (br_sel & type) != type) {
1239                         cpuc->lbr_entries[i].from = 0;
1240                         compress = true;
1241                 }
1242
1243                 if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
1244                         cpuc->lbr_entries[i].type = common_branch_type(type);
1245         }
1246
1247         if (!compress)
1248                 return;
1249
1250         /* remove all entries with from=0 */
1251         for (i = 0; i < cpuc->lbr_stack.nr; ) {
1252                 if (!cpuc->lbr_entries[i].from) {
1253                         j = i;
1254                         while (++j < cpuc->lbr_stack.nr) {
1255                                 cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
1256                                 cpuc->lbr_counters[j-1] = cpuc->lbr_counters[j];
1257                         }
1258                         cpuc->lbr_stack.nr--;
1259                         if (!cpuc->lbr_entries[i].from)
1260                                 continue;
1261                 }
1262                 i++;
1263         }
1264 }
1265
1266 void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr)
1267 {
1268         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1269
1270         /* Cannot get TOS for large PEBS and Arch LBR */
1271         if (static_cpu_has(X86_FEATURE_ARCH_LBR) ||
1272             (cpuc->n_pebs == cpuc->n_large_pebs))
1273                 cpuc->lbr_stack.hw_idx = -1ULL;
1274         else
1275                 cpuc->lbr_stack.hw_idx = intel_pmu_lbr_tos();
1276
1277         intel_pmu_store_lbr(cpuc, lbr);
1278         intel_pmu_lbr_filter(cpuc);
1279 }
1280
1281 /*
1282  * Map interface branch filters onto LBR filters
1283  */
1284 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1285         [PERF_SAMPLE_BRANCH_ANY_SHIFT]          = LBR_ANY,
1286         [PERF_SAMPLE_BRANCH_USER_SHIFT]         = LBR_USER,
1287         [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]       = LBR_KERNEL,
1288         [PERF_SAMPLE_BRANCH_HV_SHIFT]           = LBR_IGN,
1289         [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]   = LBR_RETURN | LBR_REL_JMP
1290                                                 | LBR_IND_JMP | LBR_FAR,
1291         /*
1292          * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
1293          */
1294         [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1295          LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
1296         /*
1297          * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1298          */
1299         [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
1300         [PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
1301         [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1302 };
1303
1304 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1305         [PERF_SAMPLE_BRANCH_ANY_SHIFT]          = LBR_ANY,
1306         [PERF_SAMPLE_BRANCH_USER_SHIFT]         = LBR_USER,
1307         [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]       = LBR_KERNEL,
1308         [PERF_SAMPLE_BRANCH_HV_SHIFT]           = LBR_IGN,
1309         [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]   = LBR_RETURN | LBR_FAR,
1310         [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]     = LBR_REL_CALL | LBR_IND_CALL
1311                                                 | LBR_FAR,
1312         [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]     = LBR_IND_CALL,
1313         [PERF_SAMPLE_BRANCH_COND_SHIFT]         = LBR_JCC,
1314         [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]     = LBR_IND_JMP,
1315         [PERF_SAMPLE_BRANCH_CALL_SHIFT]         = LBR_REL_CALL,
1316 };
1317
1318 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1319         [PERF_SAMPLE_BRANCH_ANY_SHIFT]          = LBR_ANY,
1320         [PERF_SAMPLE_BRANCH_USER_SHIFT]         = LBR_USER,
1321         [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]       = LBR_KERNEL,
1322         [PERF_SAMPLE_BRANCH_HV_SHIFT]           = LBR_IGN,
1323         [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]   = LBR_RETURN | LBR_FAR,
1324         [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]     = LBR_REL_CALL | LBR_IND_CALL
1325                                                 | LBR_FAR,
1326         [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]     = LBR_IND_CALL,
1327         [PERF_SAMPLE_BRANCH_COND_SHIFT]         = LBR_JCC,
1328         [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]   = LBR_REL_CALL | LBR_IND_CALL
1329                                                 | LBR_RETURN | LBR_CALL_STACK,
1330         [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]     = LBR_IND_JMP,
1331         [PERF_SAMPLE_BRANCH_CALL_SHIFT]         = LBR_REL_CALL,
1332 };
1333
1334 static int arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1335         [PERF_SAMPLE_BRANCH_ANY_SHIFT]          = ARCH_LBR_ANY,
1336         [PERF_SAMPLE_BRANCH_USER_SHIFT]         = ARCH_LBR_USER,
1337         [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]       = ARCH_LBR_KERNEL,
1338         [PERF_SAMPLE_BRANCH_HV_SHIFT]           = LBR_IGN,
1339         [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]   = ARCH_LBR_RETURN |
1340                                                   ARCH_LBR_OTHER_BRANCH,
1341         [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]     = ARCH_LBR_REL_CALL |
1342                                                   ARCH_LBR_IND_CALL |
1343                                                   ARCH_LBR_OTHER_BRANCH,
1344         [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]     = ARCH_LBR_IND_CALL,
1345         [PERF_SAMPLE_BRANCH_COND_SHIFT]         = ARCH_LBR_JCC,
1346         [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]   = ARCH_LBR_REL_CALL |
1347                                                   ARCH_LBR_IND_CALL |
1348                                                   ARCH_LBR_RETURN |
1349                                                   ARCH_LBR_CALL_STACK,
1350         [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]     = ARCH_LBR_IND_JMP,
1351         [PERF_SAMPLE_BRANCH_CALL_SHIFT]         = ARCH_LBR_REL_CALL,
1352 };
1353
1354 /* core */
1355 void __init intel_pmu_lbr_init_core(void)
1356 {
1357         x86_pmu.lbr_nr     = 4;
1358         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1359         x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1360         x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1361
1362         /*
1363          * SW branch filter usage:
1364          * - compensate for lack of HW filter
1365          */
1366 }
1367
1368 /* nehalem/westmere */
1369 void __init intel_pmu_lbr_init_nhm(void)
1370 {
1371         x86_pmu.lbr_nr     = 16;
1372         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1373         x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1374         x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1375
1376         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1377         x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1378
1379         /*
1380          * SW branch filter usage:
1381          * - workaround LBR_SEL errata (see above)
1382          * - support syscall, sysret capture.
1383          *   That requires LBR_FAR but that means far
1384          *   jmp need to be filtered out
1385          */
1386 }
1387
1388 /* sandy bridge */
1389 void __init intel_pmu_lbr_init_snb(void)
1390 {
1391         x86_pmu.lbr_nr   = 16;
1392         x86_pmu.lbr_tos  = MSR_LBR_TOS;
1393         x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1394         x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1395
1396         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1397         x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1398
1399         /*
1400          * SW branch filter usage:
1401          * - support syscall, sysret capture.
1402          *   That requires LBR_FAR but that means far
1403          *   jmp need to be filtered out
1404          */
1405 }
1406
1407 static inline struct kmem_cache *
1408 create_lbr_kmem_cache(size_t size, size_t align)
1409 {
1410         return kmem_cache_create("x86_lbr", size, align, 0, NULL);
1411 }
1412
1413 /* haswell */
1414 void intel_pmu_lbr_init_hsw(void)
1415 {
1416         size_t size = sizeof(struct x86_perf_task_context);
1417
1418         x86_pmu.lbr_nr   = 16;
1419         x86_pmu.lbr_tos  = MSR_LBR_TOS;
1420         x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1421         x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1422
1423         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1424         x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1425
1426         x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1427 }
1428
1429 /* skylake */
1430 __init void intel_pmu_lbr_init_skl(void)
1431 {
1432         size_t size = sizeof(struct x86_perf_task_context);
1433
1434         x86_pmu.lbr_nr   = 32;
1435         x86_pmu.lbr_tos  = MSR_LBR_TOS;
1436         x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1437         x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1438         x86_pmu.lbr_info = MSR_LBR_INFO_0;
1439
1440         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1441         x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1442
1443         x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1444
1445         /*
1446          * SW branch filter usage:
1447          * - support syscall, sysret capture.
1448          *   That requires LBR_FAR but that means far
1449          *   jmp need to be filtered out
1450          */
1451 }
1452
1453 /* atom */
1454 void __init intel_pmu_lbr_init_atom(void)
1455 {
1456         /*
1457          * only models starting at stepping 10 seems
1458          * to have an operational LBR which can freeze
1459          * on PMU interrupt
1460          */
1461         if (boot_cpu_data.x86_vfm == INTEL_ATOM_BONNELL
1462             && boot_cpu_data.x86_stepping < 10) {
1463                 pr_cont("LBR disabled due to erratum");
1464                 return;
1465         }
1466
1467         x86_pmu.lbr_nr     = 8;
1468         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1469         x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1470         x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1471
1472         /*
1473          * SW branch filter usage:
1474          * - compensate for lack of HW filter
1475          */
1476 }
1477
1478 /* slm */
1479 void __init intel_pmu_lbr_init_slm(void)
1480 {
1481         x86_pmu.lbr_nr     = 8;
1482         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1483         x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1484         x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1485
1486         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1487         x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1488
1489         /*
1490          * SW branch filter usage:
1491          * - compensate for lack of HW filter
1492          */
1493         pr_cont("8-deep LBR, ");
1494 }
1495
1496 /* Knights Landing */
1497 void intel_pmu_lbr_init_knl(void)
1498 {
1499         x86_pmu.lbr_nr     = 8;
1500         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1501         x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1502         x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1503
1504         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1505         x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1506
1507         /* Knights Landing does have MISPREDICT bit */
1508         if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP)
1509                 x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS;
1510 }
1511
1512 void intel_pmu_lbr_init(void)
1513 {
1514         switch (x86_pmu.intel_cap.lbr_format) {
1515         case LBR_FORMAT_EIP_FLAGS2:
1516                 x86_pmu.lbr_has_tsx = 1;
1517                 x86_pmu.lbr_from_flags = 1;
1518                 if (lbr_from_signext_quirk_needed())
1519                         static_branch_enable(&lbr_from_quirk_key);
1520                 break;
1521
1522         case LBR_FORMAT_EIP_FLAGS:
1523                 x86_pmu.lbr_from_flags = 1;
1524                 break;
1525
1526         case LBR_FORMAT_INFO:
1527                 x86_pmu.lbr_has_tsx = 1;
1528                 fallthrough;
1529         case LBR_FORMAT_INFO2:
1530                 x86_pmu.lbr_has_info = 1;
1531                 break;
1532
1533         case LBR_FORMAT_TIME:
1534                 x86_pmu.lbr_from_flags = 1;
1535                 x86_pmu.lbr_to_cycles = 1;
1536                 break;
1537         }
1538
1539         if (x86_pmu.lbr_has_info) {
1540                 /*
1541                  * Only used in combination with baseline pebs.
1542                  */
1543                 static_branch_enable(&x86_lbr_mispred);
1544                 static_branch_enable(&x86_lbr_cycles);
1545         }
1546 }
1547
1548 /*
1549  * LBR state size is variable based on the max number of registers.
1550  * This calculates the expected state size, which should match
1551  * what the hardware enumerates for the size of XFEATURE_LBR.
1552  */
1553 static inline unsigned int get_lbr_state_size(void)
1554 {
1555         return sizeof(struct arch_lbr_state) +
1556                x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1557 }
1558
1559 static bool is_arch_lbr_xsave_available(void)
1560 {
1561         if (!boot_cpu_has(X86_FEATURE_XSAVES))
1562                 return false;
1563
1564         /*
1565          * Check the LBR state with the corresponding software structure.
1566          * Disable LBR XSAVES support if the size doesn't match.
1567          */
1568         if (xfeature_size(XFEATURE_LBR) == 0)
1569                 return false;
1570
1571         if (WARN_ON(xfeature_size(XFEATURE_LBR) != get_lbr_state_size()))
1572                 return false;
1573
1574         return true;
1575 }
1576
1577 void __init intel_pmu_arch_lbr_init(void)
1578 {
1579         struct pmu *pmu = x86_get_pmu(smp_processor_id());
1580         union cpuid28_eax eax;
1581         union cpuid28_ebx ebx;
1582         union cpuid28_ecx ecx;
1583         unsigned int unused_edx;
1584         bool arch_lbr_xsave;
1585         size_t size;
1586         u64 lbr_nr;
1587
1588         /* Arch LBR Capabilities */
1589         cpuid(28, &eax.full, &ebx.full, &ecx.full, &unused_edx);
1590
1591         lbr_nr = fls(eax.split.lbr_depth_mask) * 8;
1592         if (!lbr_nr)
1593                 goto clear_arch_lbr;
1594
1595         /* Apply the max depth of Arch LBR */
1596         if (wrmsrl_safe(MSR_ARCH_LBR_DEPTH, lbr_nr))
1597                 goto clear_arch_lbr;
1598
1599         x86_pmu.lbr_depth_mask = eax.split.lbr_depth_mask;
1600         x86_pmu.lbr_deep_c_reset = eax.split.lbr_deep_c_reset;
1601         x86_pmu.lbr_lip = eax.split.lbr_lip;
1602         x86_pmu.lbr_cpl = ebx.split.lbr_cpl;
1603         x86_pmu.lbr_filter = ebx.split.lbr_filter;
1604         x86_pmu.lbr_call_stack = ebx.split.lbr_call_stack;
1605         x86_pmu.lbr_mispred = ecx.split.lbr_mispred;
1606         x86_pmu.lbr_timed_lbr = ecx.split.lbr_timed_lbr;
1607         x86_pmu.lbr_br_type = ecx.split.lbr_br_type;
1608         x86_pmu.lbr_counters = ecx.split.lbr_counters;
1609         x86_pmu.lbr_nr = lbr_nr;
1610
1611         if (!!x86_pmu.lbr_counters)
1612                 x86_pmu.flags |= PMU_FL_BR_CNTR;
1613
1614         if (x86_pmu.lbr_mispred)
1615                 static_branch_enable(&x86_lbr_mispred);
1616         if (x86_pmu.lbr_timed_lbr)
1617                 static_branch_enable(&x86_lbr_cycles);
1618         if (x86_pmu.lbr_br_type)
1619                 static_branch_enable(&x86_lbr_type);
1620
1621         arch_lbr_xsave = is_arch_lbr_xsave_available();
1622         if (arch_lbr_xsave) {
1623                 size = sizeof(struct x86_perf_task_context_arch_lbr_xsave) +
1624                        get_lbr_state_size();
1625                 pmu->task_ctx_cache = create_lbr_kmem_cache(size,
1626                                                             XSAVE_ALIGNMENT);
1627         }
1628
1629         if (!pmu->task_ctx_cache) {
1630                 arch_lbr_xsave = false;
1631
1632                 size = sizeof(struct x86_perf_task_context_arch_lbr) +
1633                        lbr_nr * sizeof(struct lbr_entry);
1634                 pmu->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1635         }
1636
1637         x86_pmu.lbr_from = MSR_ARCH_LBR_FROM_0;
1638         x86_pmu.lbr_to = MSR_ARCH_LBR_TO_0;
1639         x86_pmu.lbr_info = MSR_ARCH_LBR_INFO_0;
1640
1641         /* LBR callstack requires both CPL and Branch Filtering support */
1642         if (!x86_pmu.lbr_cpl ||
1643             !x86_pmu.lbr_filter ||
1644             !x86_pmu.lbr_call_stack)
1645                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_NOT_SUPP;
1646
1647         if (!x86_pmu.lbr_cpl) {
1648                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_NOT_SUPP;
1649                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_NOT_SUPP;
1650         } else if (!x86_pmu.lbr_filter) {
1651                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_NOT_SUPP;
1652                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_NOT_SUPP;
1653                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_NOT_SUPP;
1654                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_NOT_SUPP;
1655                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_NOT_SUPP;
1656                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_NOT_SUPP;
1657                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_NOT_SUPP;
1658         }
1659
1660         x86_pmu.lbr_ctl_mask = ARCH_LBR_CTL_MASK;
1661         x86_pmu.lbr_ctl_map  = arch_lbr_ctl_map;
1662
1663         if (!x86_pmu.lbr_cpl && !x86_pmu.lbr_filter)
1664                 x86_pmu.lbr_ctl_map = NULL;
1665
1666         x86_pmu.lbr_reset = intel_pmu_arch_lbr_reset;
1667         if (arch_lbr_xsave) {
1668                 x86_pmu.lbr_save = intel_pmu_arch_lbr_xsaves;
1669                 x86_pmu.lbr_restore = intel_pmu_arch_lbr_xrstors;
1670                 x86_pmu.lbr_read = intel_pmu_arch_lbr_read_xsave;
1671                 pr_cont("XSAVE ");
1672         } else {
1673                 x86_pmu.lbr_save = intel_pmu_arch_lbr_save;
1674                 x86_pmu.lbr_restore = intel_pmu_arch_lbr_restore;
1675                 x86_pmu.lbr_read = intel_pmu_arch_lbr_read;
1676         }
1677
1678         pr_cont("Architectural LBR, ");
1679
1680         return;
1681
1682 clear_arch_lbr:
1683         setup_clear_cpu_cap(X86_FEATURE_ARCH_LBR);
1684 }
1685
1686 /**
1687  * x86_perf_get_lbr - get the LBR records information
1688  *
1689  * @lbr: the caller's memory to store the LBR records information
1690  */
1691 void x86_perf_get_lbr(struct x86_pmu_lbr *lbr)
1692 {
1693         lbr->nr = x86_pmu.lbr_nr;
1694         lbr->from = x86_pmu.lbr_from;
1695         lbr->to = x86_pmu.lbr_to;
1696         lbr->info = x86_pmu.lbr_info;
1697         lbr->has_callstack = x86_pmu_has_lbr_callstack();
1698 }
1699 EXPORT_SYMBOL_GPL(x86_perf_get_lbr);
1700
1701 struct event_constraint vlbr_constraint =
1702         __EVENT_CONSTRAINT(INTEL_FIXED_VLBR_EVENT, (1ULL << INTEL_PMC_IDX_FIXED_VLBR),
1703                           FIXED_EVENT_FLAGS, 1, 0, PERF_X86_EVENT_LBR_SELECT);
This page took 0.133109 seconds and 4 git commands to generate.