2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 #include <linux/rbtree.h>
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
75 #include <net/l3mdev.h>
78 * This structure really needs to be cleaned up.
79 * Most of it is for TCP, and not used by any of
80 * the other protocols.
83 /* Define this to get the SOCK_DBG debugging facility. */
84 #define SOCK_DEBUGGING
86 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
87 printk(KERN_DEBUG msg); } while (0)
89 /* Validate arguments and do nothing */
90 static inline __printf(2, 3)
91 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
96 /* This is the per-socket lock. The spinlock provides a synchronization
97 * between user contexts and software interrupt processing, whereas the
98 * mini-semaphore synchronizes multiple users amongst themselves.
103 wait_queue_head_t wq;
105 * We express the mutex-alike socket_lock semantics
106 * to the lock validator by explicitly managing
107 * the slock as a lock variant (in addition to
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111 struct lockdep_map dep_map;
119 typedef __u32 __bitwise __portpair;
120 typedef __u64 __bitwise __addrpair;
123 * struct sock_common - minimal network layer representation of sockets
124 * @skc_daddr: Foreign IPv4 addr
125 * @skc_rcv_saddr: Bound local IPv4 addr
126 * @skc_hash: hash value used with various protocol lookup tables
127 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
128 * @skc_dport: placeholder for inet_dport/tw_dport
129 * @skc_num: placeholder for inet_num/tw_num
130 * @skc_family: network address family
131 * @skc_state: Connection state
132 * @skc_reuse: %SO_REUSEADDR setting
133 * @skc_reuseport: %SO_REUSEPORT setting
134 * @skc_bound_dev_if: bound device index if != 0
135 * @skc_bind_node: bind hash linkage for various protocol lookup tables
136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137 * @skc_prot: protocol handlers inside a network family
138 * @skc_net: reference to the network namespace of this socket
139 * @skc_node: main hash linkage for various protocol lookup tables
140 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
141 * @skc_tx_queue_mapping: tx queue number for this connection
142 * @skc_flags: place holder for sk_flags
143 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
144 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
145 * @skc_incoming_cpu: record/match cpu processing incoming packets
146 * @skc_refcnt: reference count
148 * This is the minimal network layer representation of sockets, the header
149 * for struct sock and struct inet_timewait_sock.
152 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
153 * address on 64bit arches : cf INET_MATCH()
156 __addrpair skc_addrpair;
159 __be32 skc_rcv_saddr;
163 unsigned int skc_hash;
164 __u16 skc_u16hashes[2];
166 /* skc_dport && skc_num must be grouped as well */
168 __portpair skc_portpair;
175 unsigned short skc_family;
176 volatile unsigned char skc_state;
177 unsigned char skc_reuse:4;
178 unsigned char skc_reuseport:1;
179 unsigned char skc_ipv6only:1;
180 unsigned char skc_net_refcnt:1;
181 int skc_bound_dev_if;
183 struct hlist_node skc_bind_node;
184 struct hlist_node skc_portaddr_node;
186 struct proto *skc_prot;
187 possible_net_t skc_net;
189 #if IS_ENABLED(CONFIG_IPV6)
190 struct in6_addr skc_v6_daddr;
191 struct in6_addr skc_v6_rcv_saddr;
194 atomic64_t skc_cookie;
196 /* following fields are padding to force
197 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
198 * assuming IPV6 is enabled. We use this padding differently
199 * for different kind of 'sockets'
202 unsigned long skc_flags;
203 struct sock *skc_listener; /* request_sock */
204 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
207 * fields between dontcopy_begin/dontcopy_end
208 * are not copied in sock_copy()
211 int skc_dontcopy_begin[0];
214 struct hlist_node skc_node;
215 struct hlist_nulls_node skc_nulls_node;
217 int skc_tx_queue_mapping;
219 int skc_incoming_cpu;
221 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
224 refcount_t skc_refcnt;
226 int skc_dontcopy_end[0];
229 u32 skc_window_clamp;
230 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
236 * struct sock - network layer representation of sockets
237 * @__sk_common: shared layout with inet_timewait_sock
238 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
239 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
240 * @sk_lock: synchronizer
241 * @sk_kern_sock: True if sock is using kernel lock classes
242 * @sk_rcvbuf: size of receive buffer in bytes
243 * @sk_wq: sock wait queue and async head
244 * @sk_rx_dst: receive input route used by early demux
245 * @sk_dst_cache: destination cache
246 * @sk_dst_pending_confirm: need to confirm neighbour
247 * @sk_policy: flow policy
248 * @sk_receive_queue: incoming packets
249 * @sk_wmem_alloc: transmit queue bytes committed
250 * @sk_tsq_flags: TCP Small Queues flags
251 * @sk_write_queue: Packet sending queue
252 * @sk_omem_alloc: "o" is "option" or "other"
253 * @sk_wmem_queued: persistent queue size
254 * @sk_forward_alloc: space allocated forward
255 * @sk_napi_id: id of the last napi context to receive data for sk
256 * @sk_ll_usec: usecs to busypoll when there is no data
257 * @sk_allocation: allocation mode
258 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
259 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
260 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
261 * @sk_sndbuf: size of send buffer in bytes
262 * @__sk_flags_offset: empty field used to determine location of bitfield
263 * @sk_padding: unused element for alignment
264 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
265 * @sk_no_check_rx: allow zero checksum in RX packets
266 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
267 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
268 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
269 * @sk_gso_max_size: Maximum GSO segment size to build
270 * @sk_gso_max_segs: Maximum number of GSO segments
271 * @sk_pacing_shift: scaling factor for TCP Small Queues
272 * @sk_lingertime: %SO_LINGER l_linger setting
273 * @sk_backlog: always used with the per-socket spinlock held
274 * @sk_callback_lock: used with the callbacks in the end of this struct
275 * @sk_error_queue: rarely used
276 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
277 * IPV6_ADDRFORM for instance)
278 * @sk_err: last error
279 * @sk_err_soft: errors that don't cause failure but are the cause of a
280 * persistent failure not just 'timed out'
281 * @sk_drops: raw/udp drops counter
282 * @sk_ack_backlog: current listen backlog
283 * @sk_max_ack_backlog: listen backlog set in listen()
284 * @sk_uid: user id of owner
285 * @sk_priority: %SO_PRIORITY setting
286 * @sk_type: socket type (%SOCK_STREAM, etc)
287 * @sk_protocol: which protocol this socket belongs in this network family
288 * @sk_peer_pid: &struct pid for this socket's peer
289 * @sk_peer_cred: %SO_PEERCRED setting
290 * @sk_rcvlowat: %SO_RCVLOWAT setting
291 * @sk_rcvtimeo: %SO_RCVTIMEO setting
292 * @sk_sndtimeo: %SO_SNDTIMEO setting
293 * @sk_txhash: computed flow hash for use on transmit
294 * @sk_filter: socket filtering instructions
295 * @sk_timer: sock cleanup timer
296 * @sk_stamp: time stamp of last packet received
297 * @sk_tsflags: SO_TIMESTAMPING socket options
298 * @sk_tskey: counter to disambiguate concurrent tstamp requests
299 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
300 * @sk_socket: Identd and reporting IO signals
301 * @sk_user_data: RPC layer private data
302 * @sk_frag: cached page frag
303 * @sk_peek_off: current peek_offset value
304 * @sk_send_head: front of stuff to transmit
305 * @sk_security: used by security modules
306 * @sk_mark: generic packet mark
307 * @sk_cgrp_data: cgroup data for this cgroup
308 * @sk_memcg: this socket's memory cgroup association
309 * @sk_write_pending: a write to stream socket waits to start
310 * @sk_state_change: callback to indicate change in the state of the sock
311 * @sk_data_ready: callback to indicate there is data to be processed
312 * @sk_write_space: callback to indicate there is bf sending space available
313 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
314 * @sk_backlog_rcv: callback to process the backlog
315 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
316 * @sk_reuseport_cb: reuseport group container
317 * @sk_rcu: used during RCU grace period
321 * Now struct inet_timewait_sock also uses sock_common, so please just
322 * don't add nothing before this first member (__sk_common) --acme
324 struct sock_common __sk_common;
325 #define sk_node __sk_common.skc_node
326 #define sk_nulls_node __sk_common.skc_nulls_node
327 #define sk_refcnt __sk_common.skc_refcnt
328 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
330 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
331 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
332 #define sk_hash __sk_common.skc_hash
333 #define sk_portpair __sk_common.skc_portpair
334 #define sk_num __sk_common.skc_num
335 #define sk_dport __sk_common.skc_dport
336 #define sk_addrpair __sk_common.skc_addrpair
337 #define sk_daddr __sk_common.skc_daddr
338 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
339 #define sk_family __sk_common.skc_family
340 #define sk_state __sk_common.skc_state
341 #define sk_reuse __sk_common.skc_reuse
342 #define sk_reuseport __sk_common.skc_reuseport
343 #define sk_ipv6only __sk_common.skc_ipv6only
344 #define sk_net_refcnt __sk_common.skc_net_refcnt
345 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
346 #define sk_bind_node __sk_common.skc_bind_node
347 #define sk_prot __sk_common.skc_prot
348 #define sk_net __sk_common.skc_net
349 #define sk_v6_daddr __sk_common.skc_v6_daddr
350 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
351 #define sk_cookie __sk_common.skc_cookie
352 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
353 #define sk_flags __sk_common.skc_flags
354 #define sk_rxhash __sk_common.skc_rxhash
356 socket_lock_t sk_lock;
359 struct sk_buff_head sk_error_queue;
360 struct sk_buff_head sk_receive_queue;
362 * The backlog queue is special, it is always used with
363 * the per-socket spinlock held and requires low latency
364 * access. Therefore we special case it's implementation.
365 * Note : rmem_alloc is in this structure to fill a hole
366 * on 64bit arches, not because its logically part of
372 struct sk_buff *head;
373 struct sk_buff *tail;
375 #define sk_rmem_alloc sk_backlog.rmem_alloc
377 int sk_forward_alloc;
378 #ifdef CONFIG_NET_RX_BUSY_POLL
379 unsigned int sk_ll_usec;
380 /* ===== mostly read cache line ===== */
381 unsigned int sk_napi_id;
385 struct sk_filter __rcu *sk_filter;
387 struct socket_wq __rcu *sk_wq;
388 struct socket_wq *sk_wq_raw;
391 struct xfrm_policy __rcu *sk_policy[2];
393 struct dst_entry *sk_rx_dst;
394 struct dst_entry __rcu *sk_dst_cache;
395 atomic_t sk_omem_alloc;
398 /* ===== cache line for TX ===== */
400 refcount_t sk_wmem_alloc;
401 unsigned long sk_tsq_flags;
403 struct sk_buff *sk_send_head;
404 struct rb_root tcp_rtx_queue;
406 struct sk_buff_head sk_write_queue;
408 int sk_write_pending;
409 __u32 sk_dst_pending_confirm;
410 u32 sk_pacing_status; /* see enum sk_pacing */
412 struct timer_list sk_timer;
415 u32 sk_pacing_rate; /* bytes per second */
416 u32 sk_max_pacing_rate;
417 struct page_frag sk_frag;
418 netdev_features_t sk_route_caps;
419 netdev_features_t sk_route_nocaps;
420 netdev_features_t sk_route_forced_caps;
422 unsigned int sk_gso_max_size;
427 * Because of non atomicity rules, all
428 * changes are protected by socket lock.
430 unsigned int __sk_flags_offset[0];
431 #ifdef __BIG_ENDIAN_BITFIELD
432 #define SK_FL_PROTO_SHIFT 16
433 #define SK_FL_PROTO_MASK 0x00ff0000
435 #define SK_FL_TYPE_SHIFT 0
436 #define SK_FL_TYPE_MASK 0x0000ffff
438 #define SK_FL_PROTO_SHIFT 8
439 #define SK_FL_PROTO_MASK 0x0000ff00
441 #define SK_FL_TYPE_SHIFT 16
442 #define SK_FL_TYPE_MASK 0xffff0000
445 unsigned int sk_padding : 1,
452 #define SK_PROTOCOL_MAX U8_MAX
455 unsigned long sk_lingertime;
456 struct proto *sk_prot_creator;
457 rwlock_t sk_callback_lock;
461 u32 sk_max_ack_backlog;
463 struct pid *sk_peer_pid;
464 const struct cred *sk_peer_cred;
471 struct socket *sk_socket;
473 #ifdef CONFIG_SECURITY
476 struct sock_cgroup_data sk_cgrp_data;
477 struct mem_cgroup *sk_memcg;
478 void (*sk_state_change)(struct sock *sk);
479 void (*sk_data_ready)(struct sock *sk);
480 void (*sk_write_space)(struct sock *sk);
481 void (*sk_error_report)(struct sock *sk);
482 int (*sk_backlog_rcv)(struct sock *sk,
483 struct sk_buff *skb);
484 #ifdef CONFIG_SOCK_VALIDATE_XMIT
485 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
486 struct net_device *dev,
487 struct sk_buff *skb);
489 void (*sk_destruct)(struct sock *sk);
490 struct sock_reuseport __rcu *sk_reuseport_cb;
491 struct rcu_head sk_rcu;
496 SK_PACING_NEEDED = 1,
500 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
502 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
503 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
506 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
507 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
508 * on a socket means that the socket will reuse everybody else's port
509 * without looking at the other's sk_reuse value.
512 #define SK_NO_REUSE 0
513 #define SK_CAN_REUSE 1
514 #define SK_FORCE_REUSE 2
516 int sk_set_peek_off(struct sock *sk, int val);
518 static inline int sk_peek_offset(struct sock *sk, int flags)
520 if (unlikely(flags & MSG_PEEK)) {
521 return READ_ONCE(sk->sk_peek_off);
527 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
529 s32 off = READ_ONCE(sk->sk_peek_off);
531 if (unlikely(off >= 0)) {
532 off = max_t(s32, off - val, 0);
533 WRITE_ONCE(sk->sk_peek_off, off);
537 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
539 sk_peek_offset_bwd(sk, -val);
543 * Hashed lists helper routines
545 static inline struct sock *sk_entry(const struct hlist_node *node)
547 return hlist_entry(node, struct sock, sk_node);
550 static inline struct sock *__sk_head(const struct hlist_head *head)
552 return hlist_entry(head->first, struct sock, sk_node);
555 static inline struct sock *sk_head(const struct hlist_head *head)
557 return hlist_empty(head) ? NULL : __sk_head(head);
560 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
562 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
565 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
567 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
570 static inline struct sock *sk_next(const struct sock *sk)
572 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
575 static inline struct sock *sk_nulls_next(const struct sock *sk)
577 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
578 hlist_nulls_entry(sk->sk_nulls_node.next,
579 struct sock, sk_nulls_node) :
583 static inline bool sk_unhashed(const struct sock *sk)
585 return hlist_unhashed(&sk->sk_node);
588 static inline bool sk_hashed(const struct sock *sk)
590 return !sk_unhashed(sk);
593 static inline void sk_node_init(struct hlist_node *node)
598 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
603 static inline void __sk_del_node(struct sock *sk)
605 __hlist_del(&sk->sk_node);
608 /* NB: equivalent to hlist_del_init_rcu */
609 static inline bool __sk_del_node_init(struct sock *sk)
613 sk_node_init(&sk->sk_node);
619 /* Grab socket reference count. This operation is valid only
620 when sk is ALREADY grabbed f.e. it is found in hash table
621 or a list and the lookup is made under lock preventing hash table
625 static __always_inline void sock_hold(struct sock *sk)
627 refcount_inc(&sk->sk_refcnt);
630 /* Ungrab socket in the context, which assumes that socket refcnt
631 cannot hit zero, f.e. it is true in context of any socketcall.
633 static __always_inline void __sock_put(struct sock *sk)
635 refcount_dec(&sk->sk_refcnt);
638 static inline bool sk_del_node_init(struct sock *sk)
640 bool rc = __sk_del_node_init(sk);
643 /* paranoid for a while -acme */
644 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
649 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
651 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
654 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
660 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
662 bool rc = __sk_nulls_del_node_init_rcu(sk);
665 /* paranoid for a while -acme */
666 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
672 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
674 hlist_add_head(&sk->sk_node, list);
677 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
680 __sk_add_node(sk, list);
683 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
686 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
687 sk->sk_family == AF_INET6)
688 hlist_add_tail_rcu(&sk->sk_node, list);
690 hlist_add_head_rcu(&sk->sk_node, list);
693 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
695 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
698 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
701 __sk_nulls_add_node_rcu(sk, list);
704 static inline void __sk_del_bind_node(struct sock *sk)
706 __hlist_del(&sk->sk_bind_node);
709 static inline void sk_add_bind_node(struct sock *sk,
710 struct hlist_head *list)
712 hlist_add_head(&sk->sk_bind_node, list);
715 #define sk_for_each(__sk, list) \
716 hlist_for_each_entry(__sk, list, sk_node)
717 #define sk_for_each_rcu(__sk, list) \
718 hlist_for_each_entry_rcu(__sk, list, sk_node)
719 #define sk_nulls_for_each(__sk, node, list) \
720 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
721 #define sk_nulls_for_each_rcu(__sk, node, list) \
722 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
723 #define sk_for_each_from(__sk) \
724 hlist_for_each_entry_from(__sk, sk_node)
725 #define sk_nulls_for_each_from(__sk, node) \
726 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
727 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
728 #define sk_for_each_safe(__sk, tmp, list) \
729 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
730 #define sk_for_each_bound(__sk, list) \
731 hlist_for_each_entry(__sk, list, sk_bind_node)
734 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
735 * @tpos: the type * to use as a loop cursor.
736 * @pos: the &struct hlist_node to use as a loop cursor.
737 * @head: the head for your list.
738 * @offset: offset of hlist_node within the struct.
741 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
742 for (pos = rcu_dereference(hlist_first_rcu(head)); \
744 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
745 pos = rcu_dereference(hlist_next_rcu(pos)))
747 static inline struct user_namespace *sk_user_ns(struct sock *sk)
749 /* Careful only use this in a context where these parameters
750 * can not change and must all be valid, such as recvmsg from
753 return sk->sk_socket->file->f_cred->user_ns;
767 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
768 SOCK_DBG, /* %SO_DEBUG setting */
769 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
770 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
771 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
772 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
773 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
774 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
775 SOCK_FASYNC, /* fasync() active */
777 SOCK_ZEROCOPY, /* buffers from userspace */
778 SOCK_WIFI_STATUS, /* push wifi status to userspace */
779 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
780 * Will use last 4 bytes of packet sent from
781 * user-space instead.
783 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
784 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
785 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
788 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
790 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
792 nsk->sk_flags = osk->sk_flags;
795 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
797 __set_bit(flag, &sk->sk_flags);
800 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
802 __clear_bit(flag, &sk->sk_flags);
805 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
807 return test_bit(flag, &sk->sk_flags);
811 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
812 static inline int sk_memalloc_socks(void)
814 return static_branch_unlikely(&memalloc_socks_key);
818 static inline int sk_memalloc_socks(void)
825 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
827 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
830 static inline void sk_acceptq_removed(struct sock *sk)
832 sk->sk_ack_backlog--;
835 static inline void sk_acceptq_added(struct sock *sk)
837 sk->sk_ack_backlog++;
840 static inline bool sk_acceptq_is_full(const struct sock *sk)
842 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
846 * Compute minimal free write space needed to queue new packets.
848 static inline int sk_stream_min_wspace(const struct sock *sk)
850 return sk->sk_wmem_queued >> 1;
853 static inline int sk_stream_wspace(const struct sock *sk)
855 return sk->sk_sndbuf - sk->sk_wmem_queued;
858 void sk_stream_write_space(struct sock *sk);
860 /* OOB backlog add */
861 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
863 /* dont let skb dst not refcounted, we are going to leave rcu lock */
866 if (!sk->sk_backlog.tail)
867 sk->sk_backlog.head = skb;
869 sk->sk_backlog.tail->next = skb;
871 sk->sk_backlog.tail = skb;
876 * Take into account size of receive queue and backlog queue
877 * Do not take into account this skb truesize,
878 * to allow even a single big packet to come.
880 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
882 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
884 return qsize > limit;
887 /* The per-socket spinlock must be held here. */
888 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
891 if (sk_rcvqueues_full(sk, limit))
895 * If the skb was allocated from pfmemalloc reserves, only
896 * allow SOCK_MEMALLOC sockets to use it as this socket is
897 * helping free memory
899 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
902 __sk_add_backlog(sk, skb);
903 sk->sk_backlog.len += skb->truesize;
907 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
909 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
911 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
912 return __sk_backlog_rcv(sk, skb);
914 return sk->sk_backlog_rcv(sk, skb);
917 static inline void sk_incoming_cpu_update(struct sock *sk)
919 int cpu = raw_smp_processor_id();
921 if (unlikely(sk->sk_incoming_cpu != cpu))
922 sk->sk_incoming_cpu = cpu;
925 static inline void sock_rps_record_flow_hash(__u32 hash)
928 struct rps_sock_flow_table *sock_flow_table;
931 sock_flow_table = rcu_dereference(rps_sock_flow_table);
932 rps_record_sock_flow(sock_flow_table, hash);
937 static inline void sock_rps_record_flow(const struct sock *sk)
940 if (static_key_false(&rfs_needed)) {
941 /* Reading sk->sk_rxhash might incur an expensive cache line
944 * TCP_ESTABLISHED does cover almost all states where RFS
945 * might be useful, and is cheaper [1] than testing :
946 * IPv4: inet_sk(sk)->inet_daddr
947 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
948 * OR an additional socket flag
949 * [1] : sk_state and sk_prot are in the same cache line.
951 if (sk->sk_state == TCP_ESTABLISHED)
952 sock_rps_record_flow_hash(sk->sk_rxhash);
957 static inline void sock_rps_save_rxhash(struct sock *sk,
958 const struct sk_buff *skb)
961 if (unlikely(sk->sk_rxhash != skb->hash))
962 sk->sk_rxhash = skb->hash;
966 static inline void sock_rps_reset_rxhash(struct sock *sk)
973 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
975 release_sock(__sk); \
976 __rc = __condition; \
978 *(__timeo) = wait_woken(__wait, \
979 TASK_INTERRUPTIBLE, \
982 sched_annotate_sleep(); \
984 __rc = __condition; \
988 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
989 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
990 void sk_stream_wait_close(struct sock *sk, long timeo_p);
991 int sk_stream_error(struct sock *sk, int flags, int err);
992 void sk_stream_kill_queues(struct sock *sk);
993 void sk_set_memalloc(struct sock *sk);
994 void sk_clear_memalloc(struct sock *sk);
996 void __sk_flush_backlog(struct sock *sk);
998 static inline bool sk_flush_backlog(struct sock *sk)
1000 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1001 __sk_flush_backlog(sk);
1007 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1009 struct request_sock_ops;
1010 struct timewait_sock_ops;
1011 struct inet_hashinfo;
1012 struct raw_hashinfo;
1013 struct smc_hashinfo;
1017 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1018 * un-modified. Special care is taken when initializing object to zero.
1020 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1022 if (offsetof(struct sock, sk_node.next) != 0)
1023 memset(sk, 0, offsetof(struct sock, sk_node.next));
1024 memset(&sk->sk_node.pprev, 0,
1025 size - offsetof(struct sock, sk_node.pprev));
1028 /* Networking protocol blocks we attach to sockets.
1029 * socket layer -> transport layer interface
1032 void (*close)(struct sock *sk,
1034 int (*pre_connect)(struct sock *sk,
1035 struct sockaddr *uaddr,
1037 int (*connect)(struct sock *sk,
1038 struct sockaddr *uaddr,
1040 int (*disconnect)(struct sock *sk, int flags);
1042 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1045 int (*ioctl)(struct sock *sk, int cmd,
1047 int (*init)(struct sock *sk);
1048 void (*destroy)(struct sock *sk);
1049 void (*shutdown)(struct sock *sk, int how);
1050 int (*setsockopt)(struct sock *sk, int level,
1051 int optname, char __user *optval,
1052 unsigned int optlen);
1053 int (*getsockopt)(struct sock *sk, int level,
1054 int optname, char __user *optval,
1055 int __user *option);
1056 void (*keepalive)(struct sock *sk, int valbool);
1057 #ifdef CONFIG_COMPAT
1058 int (*compat_setsockopt)(struct sock *sk,
1060 int optname, char __user *optval,
1061 unsigned int optlen);
1062 int (*compat_getsockopt)(struct sock *sk,
1064 int optname, char __user *optval,
1065 int __user *option);
1066 int (*compat_ioctl)(struct sock *sk,
1067 unsigned int cmd, unsigned long arg);
1069 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1071 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1072 size_t len, int noblock, int flags,
1074 int (*sendpage)(struct sock *sk, struct page *page,
1075 int offset, size_t size, int flags);
1076 int (*bind)(struct sock *sk,
1077 struct sockaddr *uaddr, int addr_len);
1079 int (*backlog_rcv) (struct sock *sk,
1080 struct sk_buff *skb);
1082 void (*release_cb)(struct sock *sk);
1084 /* Keeping track of sk's, looking them up, and port selection methods. */
1085 int (*hash)(struct sock *sk);
1086 void (*unhash)(struct sock *sk);
1087 void (*rehash)(struct sock *sk);
1088 int (*get_port)(struct sock *sk, unsigned short snum);
1090 /* Keeping track of sockets in use */
1091 #ifdef CONFIG_PROC_FS
1092 unsigned int inuse_idx;
1095 bool (*stream_memory_free)(const struct sock *sk);
1096 bool (*stream_memory_read)(const struct sock *sk);
1097 /* Memory pressure */
1098 void (*enter_memory_pressure)(struct sock *sk);
1099 void (*leave_memory_pressure)(struct sock *sk);
1100 atomic_long_t *memory_allocated; /* Current allocated memory. */
1101 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1103 * Pressure flag: try to collapse.
1104 * Technical note: it is used by multiple contexts non atomically.
1105 * All the __sk_mem_schedule() is of this nature: accounting
1106 * is strict, actions are advisory and have some latency.
1108 unsigned long *memory_pressure;
1113 u32 sysctl_wmem_offset;
1114 u32 sysctl_rmem_offset;
1119 struct kmem_cache *slab;
1120 unsigned int obj_size;
1121 slab_flags_t slab_flags;
1122 unsigned int useroffset; /* Usercopy region offset */
1123 unsigned int usersize; /* Usercopy region size */
1125 struct percpu_counter *orphan_count;
1127 struct request_sock_ops *rsk_prot;
1128 struct timewait_sock_ops *twsk_prot;
1131 struct inet_hashinfo *hashinfo;
1132 struct udp_table *udp_table;
1133 struct raw_hashinfo *raw_hash;
1134 struct smc_hashinfo *smc_hash;
1137 struct module *owner;
1141 struct list_head node;
1142 #ifdef SOCK_REFCNT_DEBUG
1145 int (*diag_destroy)(struct sock *sk, int err);
1146 } __randomize_layout;
1148 int proto_register(struct proto *prot, int alloc_slab);
1149 void proto_unregister(struct proto *prot);
1150 int sock_load_diag_module(int family, int protocol);
1152 #ifdef SOCK_REFCNT_DEBUG
1153 static inline void sk_refcnt_debug_inc(struct sock *sk)
1155 atomic_inc(&sk->sk_prot->socks);
1158 static inline void sk_refcnt_debug_dec(struct sock *sk)
1160 atomic_dec(&sk->sk_prot->socks);
1161 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1162 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1165 static inline void sk_refcnt_debug_release(const struct sock *sk)
1167 if (refcount_read(&sk->sk_refcnt) != 1)
1168 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1169 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1171 #else /* SOCK_REFCNT_DEBUG */
1172 #define sk_refcnt_debug_inc(sk) do { } while (0)
1173 #define sk_refcnt_debug_dec(sk) do { } while (0)
1174 #define sk_refcnt_debug_release(sk) do { } while (0)
1175 #endif /* SOCK_REFCNT_DEBUG */
1177 static inline bool sk_stream_memory_free(const struct sock *sk)
1179 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1182 return sk->sk_prot->stream_memory_free ?
1183 sk->sk_prot->stream_memory_free(sk) : true;
1186 static inline bool sk_stream_is_writeable(const struct sock *sk)
1188 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1189 sk_stream_memory_free(sk);
1192 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1193 struct cgroup *ancestor)
1195 #ifdef CONFIG_SOCK_CGROUP_DATA
1196 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1203 static inline bool sk_has_memory_pressure(const struct sock *sk)
1205 return sk->sk_prot->memory_pressure != NULL;
1208 static inline bool sk_under_memory_pressure(const struct sock *sk)
1210 if (!sk->sk_prot->memory_pressure)
1213 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1214 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1217 return !!*sk->sk_prot->memory_pressure;
1221 sk_memory_allocated(const struct sock *sk)
1223 return atomic_long_read(sk->sk_prot->memory_allocated);
1227 sk_memory_allocated_add(struct sock *sk, int amt)
1229 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1233 sk_memory_allocated_sub(struct sock *sk, int amt)
1235 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1238 static inline void sk_sockets_allocated_dec(struct sock *sk)
1240 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1243 static inline void sk_sockets_allocated_inc(struct sock *sk)
1245 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1249 sk_sockets_allocated_read_positive(struct sock *sk)
1251 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1255 proto_sockets_allocated_sum_positive(struct proto *prot)
1257 return percpu_counter_sum_positive(prot->sockets_allocated);
1261 proto_memory_allocated(struct proto *prot)
1263 return atomic_long_read(prot->memory_allocated);
1267 proto_memory_pressure(struct proto *prot)
1269 if (!prot->memory_pressure)
1271 return !!*prot->memory_pressure;
1275 #ifdef CONFIG_PROC_FS
1276 /* Called with local bh disabled */
1277 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1278 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1279 int sock_inuse_get(struct net *net);
1281 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1288 /* With per-bucket locks this operation is not-atomic, so that
1289 * this version is not worse.
1291 static inline int __sk_prot_rehash(struct sock *sk)
1293 sk->sk_prot->unhash(sk);
1294 return sk->sk_prot->hash(sk);
1297 /* About 10 seconds */
1298 #define SOCK_DESTROY_TIME (10*HZ)
1300 /* Sockets 0-1023 can't be bound to unless you are superuser */
1301 #define PROT_SOCK 1024
1303 #define SHUTDOWN_MASK 3
1304 #define RCV_SHUTDOWN 1
1305 #define SEND_SHUTDOWN 2
1307 #define SOCK_SNDBUF_LOCK 1
1308 #define SOCK_RCVBUF_LOCK 2
1309 #define SOCK_BINDADDR_LOCK 4
1310 #define SOCK_BINDPORT_LOCK 8
1312 struct socket_alloc {
1313 struct socket socket;
1314 struct inode vfs_inode;
1317 static inline struct socket *SOCKET_I(struct inode *inode)
1319 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1322 static inline struct inode *SOCK_INODE(struct socket *socket)
1324 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1328 * Functions for memory accounting
1330 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1331 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1332 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1333 void __sk_mem_reclaim(struct sock *sk, int amount);
1335 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1336 * do not necessarily have 16x time more memory than 4KB ones.
1338 #define SK_MEM_QUANTUM 4096
1339 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1340 #define SK_MEM_SEND 0
1341 #define SK_MEM_RECV 1
1343 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1344 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1346 long val = sk->sk_prot->sysctl_mem[index];
1348 #if PAGE_SIZE > SK_MEM_QUANTUM
1349 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1350 #elif PAGE_SIZE < SK_MEM_QUANTUM
1351 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1356 static inline int sk_mem_pages(int amt)
1358 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1361 static inline bool sk_has_account(struct sock *sk)
1363 /* return true if protocol supports memory accounting */
1364 return !!sk->sk_prot->memory_allocated;
1367 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1369 if (!sk_has_account(sk))
1371 return size <= sk->sk_forward_alloc ||
1372 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1376 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1378 if (!sk_has_account(sk))
1380 return size<= sk->sk_forward_alloc ||
1381 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1382 skb_pfmemalloc(skb);
1385 static inline void sk_mem_reclaim(struct sock *sk)
1387 if (!sk_has_account(sk))
1389 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1390 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1393 static inline void sk_mem_reclaim_partial(struct sock *sk)
1395 if (!sk_has_account(sk))
1397 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1398 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1401 static inline void sk_mem_charge(struct sock *sk, int size)
1403 if (!sk_has_account(sk))
1405 sk->sk_forward_alloc -= size;
1408 static inline void sk_mem_uncharge(struct sock *sk, int size)
1410 if (!sk_has_account(sk))
1412 sk->sk_forward_alloc += size;
1414 /* Avoid a possible overflow.
1415 * TCP send queues can make this happen, if sk_mem_reclaim()
1416 * is not called and more than 2 GBytes are released at once.
1418 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1419 * no need to hold that much forward allocation anyway.
1421 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1422 __sk_mem_reclaim(sk, 1 << 20);
1425 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1427 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1428 sk->sk_wmem_queued -= skb->truesize;
1429 sk_mem_uncharge(sk, skb->truesize);
1433 static inline void sock_release_ownership(struct sock *sk)
1435 if (sk->sk_lock.owned) {
1436 sk->sk_lock.owned = 0;
1438 /* The sk_lock has mutex_unlock() semantics: */
1439 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1444 * Macro so as to not evaluate some arguments when
1445 * lockdep is not enabled.
1447 * Mark both the sk_lock and the sk_lock.slock as a
1448 * per-address-family lock class.
1450 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1452 sk->sk_lock.owned = 0; \
1453 init_waitqueue_head(&sk->sk_lock.wq); \
1454 spin_lock_init(&(sk)->sk_lock.slock); \
1455 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1456 sizeof((sk)->sk_lock)); \
1457 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1459 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1462 #ifdef CONFIG_LOCKDEP
1463 static inline bool lockdep_sock_is_held(const struct sock *sk)
1465 return lockdep_is_held(&sk->sk_lock) ||
1466 lockdep_is_held(&sk->sk_lock.slock);
1470 void lock_sock_nested(struct sock *sk, int subclass);
1472 static inline void lock_sock(struct sock *sk)
1474 lock_sock_nested(sk, 0);
1477 void release_sock(struct sock *sk);
1479 /* BH context may only use the following locking interface. */
1480 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1481 #define bh_lock_sock_nested(__sk) \
1482 spin_lock_nested(&((__sk)->sk_lock.slock), \
1483 SINGLE_DEPTH_NESTING)
1484 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1486 bool lock_sock_fast(struct sock *sk);
1488 * unlock_sock_fast - complement of lock_sock_fast
1492 * fast unlock socket for user context.
1493 * If slow mode is on, we call regular release_sock()
1495 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1500 spin_unlock_bh(&sk->sk_lock.slock);
1503 /* Used by processes to "lock" a socket state, so that
1504 * interrupts and bottom half handlers won't change it
1505 * from under us. It essentially blocks any incoming
1506 * packets, so that we won't get any new data or any
1507 * packets that change the state of the socket.
1509 * While locked, BH processing will add new packets to
1510 * the backlog queue. This queue is processed by the
1511 * owner of the socket lock right before it is released.
1513 * Since ~2.3.5 it is also exclusive sleep lock serializing
1514 * accesses from user process context.
1517 static inline void sock_owned_by_me(const struct sock *sk)
1519 #ifdef CONFIG_LOCKDEP
1520 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1524 static inline bool sock_owned_by_user(const struct sock *sk)
1526 sock_owned_by_me(sk);
1527 return sk->sk_lock.owned;
1530 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1532 return sk->sk_lock.owned;
1535 /* no reclassification while locks are held */
1536 static inline bool sock_allow_reclassification(const struct sock *csk)
1538 struct sock *sk = (struct sock *)csk;
1540 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1543 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1544 struct proto *prot, int kern);
1545 void sk_free(struct sock *sk);
1546 void sk_destruct(struct sock *sk);
1547 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1548 void sk_free_unlock_clone(struct sock *sk);
1550 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1552 void __sock_wfree(struct sk_buff *skb);
1553 void sock_wfree(struct sk_buff *skb);
1554 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1556 void skb_orphan_partial(struct sk_buff *skb);
1557 void sock_rfree(struct sk_buff *skb);
1558 void sock_efree(struct sk_buff *skb);
1560 void sock_edemux(struct sk_buff *skb);
1562 #define sock_edemux sock_efree
1565 int sock_setsockopt(struct socket *sock, int level, int op,
1566 char __user *optval, unsigned int optlen);
1568 int sock_getsockopt(struct socket *sock, int level, int op,
1569 char __user *optval, int __user *optlen);
1570 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1571 int noblock, int *errcode);
1572 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1573 unsigned long data_len, int noblock,
1574 int *errcode, int max_page_order);
1575 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1576 void sock_kfree_s(struct sock *sk, void *mem, int size);
1577 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1578 void sk_send_sigurg(struct sock *sk);
1580 struct sockcm_cookie {
1585 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1586 struct sockcm_cookie *sockc);
1587 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1588 struct sockcm_cookie *sockc);
1591 * Functions to fill in entries in struct proto_ops when a protocol
1592 * does not implement a particular function.
1594 int sock_no_bind(struct socket *, struct sockaddr *, int);
1595 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1596 int sock_no_socketpair(struct socket *, struct socket *);
1597 int sock_no_accept(struct socket *, struct socket *, int, bool);
1598 int sock_no_getname(struct socket *, struct sockaddr *, int);
1599 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1600 int sock_no_listen(struct socket *, int);
1601 int sock_no_shutdown(struct socket *, int);
1602 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1603 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1604 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1605 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1606 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1607 int sock_no_mmap(struct file *file, struct socket *sock,
1608 struct vm_area_struct *vma);
1609 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1610 size_t size, int flags);
1611 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1612 int offset, size_t size, int flags);
1615 * Functions to fill in entries in struct proto_ops when a protocol
1616 * uses the inet style.
1618 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1619 char __user *optval, int __user *optlen);
1620 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1622 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1623 char __user *optval, unsigned int optlen);
1624 int compat_sock_common_getsockopt(struct socket *sock, int level,
1625 int optname, char __user *optval, int __user *optlen);
1626 int compat_sock_common_setsockopt(struct socket *sock, int level,
1627 int optname, char __user *optval, unsigned int optlen);
1629 void sk_common_release(struct sock *sk);
1632 * Default socket callbacks and setup code
1635 /* Initialise core socket variables */
1636 void sock_init_data(struct socket *sock, struct sock *sk);
1639 * Socket reference counting postulates.
1641 * * Each user of socket SHOULD hold a reference count.
1642 * * Each access point to socket (an hash table bucket, reference from a list,
1643 * running timer, skb in flight MUST hold a reference count.
1644 * * When reference count hits 0, it means it will never increase back.
1645 * * When reference count hits 0, it means that no references from
1646 * outside exist to this socket and current process on current CPU
1647 * is last user and may/should destroy this socket.
1648 * * sk_free is called from any context: process, BH, IRQ. When
1649 * it is called, socket has no references from outside -> sk_free
1650 * may release descendant resources allocated by the socket, but
1651 * to the time when it is called, socket is NOT referenced by any
1652 * hash tables, lists etc.
1653 * * Packets, delivered from outside (from network or from another process)
1654 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1655 * when they sit in queue. Otherwise, packets will leak to hole, when
1656 * socket is looked up by one cpu and unhasing is made by another CPU.
1657 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1658 * (leak to backlog). Packet socket does all the processing inside
1659 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1660 * use separate SMP lock, so that they are prone too.
1663 /* Ungrab socket and destroy it, if it was the last reference. */
1664 static inline void sock_put(struct sock *sk)
1666 if (refcount_dec_and_test(&sk->sk_refcnt))
1669 /* Generic version of sock_put(), dealing with all sockets
1670 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1672 void sock_gen_put(struct sock *sk);
1674 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1675 unsigned int trim_cap, bool refcounted);
1676 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1679 return __sk_receive_skb(sk, skb, nested, 1, true);
1682 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1684 sk->sk_tx_queue_mapping = tx_queue;
1687 static inline void sk_tx_queue_clear(struct sock *sk)
1689 sk->sk_tx_queue_mapping = -1;
1692 static inline int sk_tx_queue_get(const struct sock *sk)
1694 return sk ? sk->sk_tx_queue_mapping : -1;
1697 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1699 sk_tx_queue_clear(sk);
1700 sk->sk_socket = sock;
1703 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1705 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1706 return &rcu_dereference_raw(sk->sk_wq)->wait;
1708 /* Detach socket from process context.
1709 * Announce socket dead, detach it from wait queue and inode.
1710 * Note that parent inode held reference count on this struct sock,
1711 * we do not release it in this function, because protocol
1712 * probably wants some additional cleanups or even continuing
1713 * to work with this socket (TCP).
1715 static inline void sock_orphan(struct sock *sk)
1717 write_lock_bh(&sk->sk_callback_lock);
1718 sock_set_flag(sk, SOCK_DEAD);
1719 sk_set_socket(sk, NULL);
1721 write_unlock_bh(&sk->sk_callback_lock);
1724 static inline void sock_graft(struct sock *sk, struct socket *parent)
1726 WARN_ON(parent->sk);
1727 write_lock_bh(&sk->sk_callback_lock);
1728 sk->sk_wq = parent->wq;
1730 sk_set_socket(sk, parent);
1731 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1732 security_sock_graft(sk, parent);
1733 write_unlock_bh(&sk->sk_callback_lock);
1736 kuid_t sock_i_uid(struct sock *sk);
1737 unsigned long sock_i_ino(struct sock *sk);
1739 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1741 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1744 static inline u32 net_tx_rndhash(void)
1746 u32 v = prandom_u32();
1751 static inline void sk_set_txhash(struct sock *sk)
1753 sk->sk_txhash = net_tx_rndhash();
1756 static inline void sk_rethink_txhash(struct sock *sk)
1762 static inline struct dst_entry *
1763 __sk_dst_get(struct sock *sk)
1765 return rcu_dereference_check(sk->sk_dst_cache,
1766 lockdep_sock_is_held(sk));
1769 static inline struct dst_entry *
1770 sk_dst_get(struct sock *sk)
1772 struct dst_entry *dst;
1775 dst = rcu_dereference(sk->sk_dst_cache);
1776 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1782 static inline void dst_negative_advice(struct sock *sk)
1784 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1786 sk_rethink_txhash(sk);
1788 if (dst && dst->ops->negative_advice) {
1789 ndst = dst->ops->negative_advice(dst);
1792 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1793 sk_tx_queue_clear(sk);
1794 sk->sk_dst_pending_confirm = 0;
1800 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1802 struct dst_entry *old_dst;
1804 sk_tx_queue_clear(sk);
1805 sk->sk_dst_pending_confirm = 0;
1806 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1807 lockdep_sock_is_held(sk));
1808 rcu_assign_pointer(sk->sk_dst_cache, dst);
1809 dst_release(old_dst);
1813 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1815 struct dst_entry *old_dst;
1817 sk_tx_queue_clear(sk);
1818 sk->sk_dst_pending_confirm = 0;
1819 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1820 dst_release(old_dst);
1824 __sk_dst_reset(struct sock *sk)
1826 __sk_dst_set(sk, NULL);
1830 sk_dst_reset(struct sock *sk)
1832 sk_dst_set(sk, NULL);
1835 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1837 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1839 static inline void sk_dst_confirm(struct sock *sk)
1841 if (!sk->sk_dst_pending_confirm)
1842 sk->sk_dst_pending_confirm = 1;
1845 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1847 if (skb_get_dst_pending_confirm(skb)) {
1848 struct sock *sk = skb->sk;
1849 unsigned long now = jiffies;
1851 /* avoid dirtying neighbour */
1852 if (n->confirmed != now)
1854 if (sk && sk->sk_dst_pending_confirm)
1855 sk->sk_dst_pending_confirm = 0;
1859 bool sk_mc_loop(struct sock *sk);
1861 static inline bool sk_can_gso(const struct sock *sk)
1863 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1866 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1868 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1870 sk->sk_route_nocaps |= flags;
1871 sk->sk_route_caps &= ~flags;
1874 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1875 struct iov_iter *from, char *to,
1876 int copy, int offset)
1878 if (skb->ip_summed == CHECKSUM_NONE) {
1880 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1882 skb->csum = csum_block_add(skb->csum, csum, offset);
1883 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1884 if (!copy_from_iter_full_nocache(to, copy, from))
1886 } else if (!copy_from_iter_full(to, copy, from))
1892 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1893 struct iov_iter *from, int copy)
1895 int err, offset = skb->len;
1897 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1900 __skb_trim(skb, offset);
1905 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1906 struct sk_buff *skb,
1912 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1918 skb->data_len += copy;
1919 skb->truesize += copy;
1920 sk->sk_wmem_queued += copy;
1921 sk_mem_charge(sk, copy);
1926 * sk_wmem_alloc_get - returns write allocations
1929 * Returns sk_wmem_alloc minus initial offset of one
1931 static inline int sk_wmem_alloc_get(const struct sock *sk)
1933 return refcount_read(&sk->sk_wmem_alloc) - 1;
1937 * sk_rmem_alloc_get - returns read allocations
1940 * Returns sk_rmem_alloc
1942 static inline int sk_rmem_alloc_get(const struct sock *sk)
1944 return atomic_read(&sk->sk_rmem_alloc);
1948 * sk_has_allocations - check if allocations are outstanding
1951 * Returns true if socket has write or read allocations
1953 static inline bool sk_has_allocations(const struct sock *sk)
1955 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1959 * skwq_has_sleeper - check if there are any waiting processes
1960 * @wq: struct socket_wq
1962 * Returns true if socket_wq has waiting processes
1964 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1965 * barrier call. They were added due to the race found within the tcp code.
1967 * Consider following tcp code paths::
1970 * sys_select receive packet
1972 * __add_wait_queue update tp->rcv_nxt
1974 * tp->rcv_nxt check sock_def_readable
1976 * schedule rcu_read_lock();
1977 * wq = rcu_dereference(sk->sk_wq);
1978 * if (wq && waitqueue_active(&wq->wait))
1979 * wake_up_interruptible(&wq->wait)
1983 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1984 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1985 * could then endup calling schedule and sleep forever if there are no more
1986 * data on the socket.
1989 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1991 return wq && wq_has_sleeper(&wq->wait);
1995 * sock_poll_wait - place memory barrier behind the poll_wait call.
1997 * @wait_address: socket wait queue
2000 * See the comments in the wq_has_sleeper function.
2002 static inline void sock_poll_wait(struct file *filp,
2003 wait_queue_head_t *wait_address, poll_table *p)
2005 if (!poll_does_not_wait(p) && wait_address) {
2006 poll_wait(filp, wait_address, p);
2007 /* We need to be sure we are in sync with the
2008 * socket flags modification.
2010 * This memory barrier is paired in the wq_has_sleeper.
2016 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2018 if (sk->sk_txhash) {
2020 skb->hash = sk->sk_txhash;
2024 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2027 * Queue a received datagram if it will fit. Stream and sequenced
2028 * protocols can't normally use this as they need to fit buffers in
2029 * and play with them.
2031 * Inlined as it's very short and called for pretty much every
2032 * packet ever received.
2034 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2038 skb->destructor = sock_rfree;
2039 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2040 sk_mem_charge(sk, skb->truesize);
2043 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2044 unsigned long expires);
2046 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2048 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2049 struct sk_buff *skb, unsigned int flags,
2050 void (*destructor)(struct sock *sk,
2051 struct sk_buff *skb));
2052 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2053 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2055 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2056 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2059 * Recover an error report and clear atomically
2062 static inline int sock_error(struct sock *sk)
2065 if (likely(!sk->sk_err))
2067 err = xchg(&sk->sk_err, 0);
2071 static inline unsigned long sock_wspace(struct sock *sk)
2075 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2076 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2084 * We use sk->sk_wq_raw, from contexts knowing this
2085 * pointer is not NULL and cannot disappear/change.
2087 static inline void sk_set_bit(int nr, struct sock *sk)
2089 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2090 !sock_flag(sk, SOCK_FASYNC))
2093 set_bit(nr, &sk->sk_wq_raw->flags);
2096 static inline void sk_clear_bit(int nr, struct sock *sk)
2098 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2099 !sock_flag(sk, SOCK_FASYNC))
2102 clear_bit(nr, &sk->sk_wq_raw->flags);
2105 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2107 if (sock_flag(sk, SOCK_FASYNC)) {
2109 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2114 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2115 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2116 * Note: for send buffers, TCP works better if we can build two skbs at
2119 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2121 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2122 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2124 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2126 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2127 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2128 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2132 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2133 bool force_schedule);
2136 * sk_page_frag - return an appropriate page_frag
2139 * If socket allocation mode allows current thread to sleep, it means its
2140 * safe to use the per task page_frag instead of the per socket one.
2142 static inline struct page_frag *sk_page_frag(struct sock *sk)
2144 if (gfpflags_allow_blocking(sk->sk_allocation))
2145 return ¤t->task_frag;
2147 return &sk->sk_frag;
2150 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2152 int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg,
2153 int sg_start, int *sg_curr, unsigned int *sg_size,
2154 int first_coalesce);
2157 * Default write policy as shown to user space via poll/select/SIGIO
2159 static inline bool sock_writeable(const struct sock *sk)
2161 return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2164 static inline gfp_t gfp_any(void)
2166 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2169 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2171 return noblock ? 0 : sk->sk_rcvtimeo;
2174 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2176 return noblock ? 0 : sk->sk_sndtimeo;
2179 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2181 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2184 /* Alas, with timeout socket operations are not restartable.
2185 * Compare this to poll().
2187 static inline int sock_intr_errno(long timeo)
2189 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2192 struct sock_skb_cb {
2196 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2197 * using skb->cb[] would keep using it directly and utilize its
2198 * alignement guarantee.
2200 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2201 sizeof(struct sock_skb_cb)))
2203 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2204 SOCK_SKB_CB_OFFSET))
2206 #define sock_skb_cb_check_size(size) \
2207 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2210 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2212 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2213 atomic_read(&sk->sk_drops) : 0;
2216 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2218 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2220 atomic_add(segs, &sk->sk_drops);
2223 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2224 struct sk_buff *skb);
2225 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2226 struct sk_buff *skb);
2229 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2231 ktime_t kt = skb->tstamp;
2232 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2235 * generate control messages if
2236 * - receive time stamping in software requested
2237 * - software time stamp available and wanted
2238 * - hardware time stamps available and wanted
2240 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2241 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2242 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2243 (hwtstamps->hwtstamp &&
2244 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2245 __sock_recv_timestamp(msg, sk, skb);
2249 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2250 __sock_recv_wifi_status(msg, sk, skb);
2253 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2254 struct sk_buff *skb);
2256 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2257 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2258 struct sk_buff *skb)
2260 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2261 (1UL << SOCK_RCVTSTAMP))
2262 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2263 SOF_TIMESTAMPING_RAW_HARDWARE)
2265 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2266 __sock_recv_ts_and_drops(msg, sk, skb);
2267 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2268 sk->sk_stamp = skb->tstamp;
2269 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2273 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2276 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2277 * @sk: socket sending this packet
2278 * @tsflags: timestamping flags to use
2279 * @tx_flags: completed with instructions for time stamping
2281 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2283 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2286 if (unlikely(tsflags))
2287 __sock_tx_timestamp(tsflags, tx_flags);
2288 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2289 *tx_flags |= SKBTX_WIFI_STATUS;
2293 * sk_eat_skb - Release a skb if it is no longer needed
2294 * @sk: socket to eat this skb from
2295 * @skb: socket buffer to eat
2297 * This routine must be called with interrupts disabled or with the socket
2298 * locked so that the sk_buff queue operation is ok.
2300 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2302 __skb_unlink(skb, &sk->sk_receive_queue);
2307 struct net *sock_net(const struct sock *sk)
2309 return read_pnet(&sk->sk_net);
2313 void sock_net_set(struct sock *sk, struct net *net)
2315 write_pnet(&sk->sk_net, net);
2318 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2321 struct sock *sk = skb->sk;
2323 skb->destructor = NULL;
2330 /* This helper checks if a socket is a full socket,
2331 * ie _not_ a timewait or request socket.
2333 static inline bool sk_fullsock(const struct sock *sk)
2335 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2338 /* Checks if this SKB belongs to an HW offloaded socket
2339 * and whether any SW fallbacks are required based on dev.
2341 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2342 struct net_device *dev)
2344 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2345 struct sock *sk = skb->sk;
2347 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb)
2348 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2354 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2355 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2357 static inline bool sk_listener(const struct sock *sk)
2359 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2362 void sock_enable_timestamp(struct sock *sk, int flag);
2363 int sock_get_timestamp(struct sock *, struct timeval __user *);
2364 int sock_get_timestampns(struct sock *, struct timespec __user *);
2365 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2368 bool sk_ns_capable(const struct sock *sk,
2369 struct user_namespace *user_ns, int cap);
2370 bool sk_capable(const struct sock *sk, int cap);
2371 bool sk_net_capable(const struct sock *sk, int cap);
2373 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2375 /* Take into consideration the size of the struct sk_buff overhead in the
2376 * determination of these values, since that is non-constant across
2377 * platforms. This makes socket queueing behavior and performance
2378 * not depend upon such differences.
2380 #define _SK_MEM_PACKETS 256
2381 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2382 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2383 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2385 extern __u32 sysctl_wmem_max;
2386 extern __u32 sysctl_rmem_max;
2388 extern int sysctl_tstamp_allow_data;
2389 extern int sysctl_optmem_max;
2391 extern __u32 sysctl_wmem_default;
2392 extern __u32 sysctl_rmem_default;
2394 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2396 /* Does this proto have per netns sysctl_wmem ? */
2397 if (proto->sysctl_wmem_offset)
2398 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2400 return *proto->sysctl_wmem;
2403 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2405 /* Does this proto have per netns sysctl_rmem ? */
2406 if (proto->sysctl_rmem_offset)
2407 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2409 return *proto->sysctl_rmem;
2412 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2413 * Some wifi drivers need to tweak it to get more chunks.
2414 * They can use this helper from their ndo_start_xmit()
2416 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2418 if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val)
2420 sk->sk_pacing_shift = val;
2423 /* if a socket is bound to a device, check that the given device
2424 * index is either the same or that the socket is bound to an L3
2425 * master device and the given device index is also enslaved to
2428 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2432 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2435 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2436 if (mdif && mdif == sk->sk_bound_dev_if)
2442 #endif /* _SOCK_H */