2 * Definitions for the 'struct sk_buff' memory handlers.
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
44 /* The interface for checksum offload between the stack and networking drivers
47 * A. IP checksum related features
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
54 * The checksum related features are:
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
92 * Device did not checksum this packet e.g. due to lack of capabilities.
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
96 * CHECKSUM_UNNECESSARY:
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
112 * FCOE: indicates the CRC in FC frame has been validated.
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
152 * The driver is required to checksum the packet as seen by hard_start_xmit()
153 * from skb->csum_start up to the end, and to record/write the checksum at
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
176 * The skb was already checksummed by the protocol, or a checksum is not
179 * CHECKSUM_UNNECESSARY:
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
188 * D. Non-IP checksum (CRC) offloads
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
208 * E. Checksumming on output with GSO.
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE 0
221 #define CHECKSUM_UNNECESSARY 1
222 #define CHECKSUM_COMPLETE 2
223 #define CHECKSUM_PARTIAL 3
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL 3
228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X) \
230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
243 struct pipe_inode_info;
247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248 struct nf_conntrack {
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
257 BRNF_PROTO_UNCHANGED,
265 struct net_device *physindev;
267 /* always valid & non-NULL from FORWARD on, for physdev match */
268 struct net_device *physoutdev;
270 /* prerouting: detect dnat in orig/reply direction */
272 struct in6_addr ipv6_daddr;
274 /* after prerouting + nat detected: store original source
275 * mac since neigh resolution overwrites it, only used while
276 * skb is out in neigh layer.
278 char neigh_header[8];
283 struct sk_buff_head {
284 /* These two members must be first. */
285 struct sk_buff *next;
286 struct sk_buff *prev;
294 /* To allow 64K frame to be packed as single skb without frag_list we
295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296 * buffers which do not start on a page boundary.
298 * Since GRO uses frags we allocate at least 16 regardless of page
301 #if (65536/PAGE_SIZE + 1) < 16
302 #define MAX_SKB_FRAGS 16UL
304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
306 extern int sysctl_max_skb_frags;
308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309 * segment using its current segmentation instead.
311 #define GSO_BY_FRAGS 0xFFFF
313 typedef struct skb_frag_struct skb_frag_t;
315 struct skb_frag_struct {
319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
348 static inline bool skb_frag_must_loop(struct page *p)
350 #if defined(CONFIG_HIGHMEM)
358 * skb_frag_foreach_page - loop over pages in a fragment
360 * @f: skb frag to operate on
361 * @f_off: offset from start of f->page.p
362 * @f_len: length from f_off to loop over
363 * @p: (temp var) current page
364 * @p_off: (temp var) offset from start of current page,
365 * non-zero only on first page.
366 * @p_len: (temp var) length in current page,
367 * < PAGE_SIZE only on first and last page.
368 * @copied: (temp var) length so far, excluding current p_len.
370 * A fragment can hold a compound page, in which case per-page
371 * operations, notably kmap_atomic, must be called for each
374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
375 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
376 p_off = (f_off) & (PAGE_SIZE - 1), \
377 p_len = skb_frag_must_loop(p) ? \
378 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
381 copied += p_len, p++, p_off = 0, \
382 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
384 #define HAVE_HW_TIME_STAMP
387 * struct skb_shared_hwtstamps - hardware time stamps
388 * @hwtstamp: hardware time stamp transformed into duration
389 * since arbitrary point in time
391 * Software time stamps generated by ktime_get_real() are stored in
394 * hwtstamps can only be compared against other hwtstamps from
397 * This structure is attached to packets as part of the
398 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
400 struct skb_shared_hwtstamps {
404 /* Definitions for tx_flags in struct skb_shared_info */
406 /* generate hardware time stamp */
407 SKBTX_HW_TSTAMP = 1 << 0,
409 /* generate software time stamp when queueing packet to NIC */
410 SKBTX_SW_TSTAMP = 1 << 1,
412 /* device driver is going to provide hardware time stamp */
413 SKBTX_IN_PROGRESS = 1 << 2,
415 /* device driver supports TX zero-copy buffers */
416 SKBTX_DEV_ZEROCOPY = 1 << 3,
418 /* generate wifi status information (where possible) */
419 SKBTX_WIFI_STATUS = 1 << 4,
421 /* This indicates at least one fragment might be overwritten
422 * (as in vmsplice(), sendfile() ...)
423 * If we need to compute a TX checksum, we'll need to copy
424 * all frags to avoid possible bad checksum
426 SKBTX_SHARED_FRAG = 1 << 5,
428 /* generate software time stamp when entering packet scheduling */
429 SKBTX_SCHED_TSTAMP = 1 << 6,
432 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
435 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
438 * The callback notifies userspace to release buffers when skb DMA is done in
439 * lower device, the skb last reference should be 0 when calling this.
440 * The zerocopy_success argument is true if zero copy transmit occurred,
441 * false on data copy or out of memory error caused by data copy attempt.
442 * The ctx field is used to track device context.
443 * The desc field is used to track userspace buffer index.
446 void (*callback)(struct ubuf_info *, bool zerocopy_success);
462 struct user_struct *user;
467 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
469 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
470 void mm_unaccount_pinned_pages(struct mmpin *mmp);
472 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
473 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
474 struct ubuf_info *uarg);
476 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
478 refcount_inc(&uarg->refcnt);
481 void sock_zerocopy_put(struct ubuf_info *uarg);
482 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
484 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
486 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
487 struct msghdr *msg, int len,
488 struct ubuf_info *uarg);
490 /* This data is invariant across clones and lives at
491 * the end of the header data, ie. at skb->end.
493 struct skb_shared_info {
498 unsigned short gso_size;
499 /* Warning: this field is not always filled in (UFO)! */
500 unsigned short gso_segs;
501 struct sk_buff *frag_list;
502 struct skb_shared_hwtstamps hwtstamps;
503 unsigned int gso_type;
507 * Warning : all fields before dataref are cleared in __alloc_skb()
511 /* Intermediate layers must ensure that destructor_arg
512 * remains valid until skb destructor */
513 void * destructor_arg;
515 /* must be last field, see pskb_expand_head() */
516 skb_frag_t frags[MAX_SKB_FRAGS];
519 /* We divide dataref into two halves. The higher 16 bits hold references
520 * to the payload part of skb->data. The lower 16 bits hold references to
521 * the entire skb->data. A clone of a headerless skb holds the length of
522 * the header in skb->hdr_len.
524 * All users must obey the rule that the skb->data reference count must be
525 * greater than or equal to the payload reference count.
527 * Holding a reference to the payload part means that the user does not
528 * care about modifications to the header part of skb->data.
530 #define SKB_DATAREF_SHIFT 16
531 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
535 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
536 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
537 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
541 SKB_GSO_TCPV4 = 1 << 0,
543 /* This indicates the skb is from an untrusted source. */
544 SKB_GSO_DODGY = 1 << 1,
546 /* This indicates the tcp segment has CWR set. */
547 SKB_GSO_TCP_ECN = 1 << 2,
549 SKB_GSO_TCP_FIXEDID = 1 << 3,
551 SKB_GSO_TCPV6 = 1 << 4,
553 SKB_GSO_FCOE = 1 << 5,
555 SKB_GSO_GRE = 1 << 6,
557 SKB_GSO_GRE_CSUM = 1 << 7,
559 SKB_GSO_IPXIP4 = 1 << 8,
561 SKB_GSO_IPXIP6 = 1 << 9,
563 SKB_GSO_UDP_TUNNEL = 1 << 10,
565 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
567 SKB_GSO_PARTIAL = 1 << 12,
569 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
571 SKB_GSO_SCTP = 1 << 14,
573 SKB_GSO_ESP = 1 << 15,
575 SKB_GSO_UDP = 1 << 16,
577 SKB_GSO_UDP_L4 = 1 << 17,
580 #if BITS_PER_LONG > 32
581 #define NET_SKBUFF_DATA_USES_OFFSET 1
584 #ifdef NET_SKBUFF_DATA_USES_OFFSET
585 typedef unsigned int sk_buff_data_t;
587 typedef unsigned char *sk_buff_data_t;
591 * struct sk_buff - socket buffer
592 * @next: Next buffer in list
593 * @prev: Previous buffer in list
594 * @tstamp: Time we arrived/left
595 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
596 * @sk: Socket we are owned by
597 * @dev: Device we arrived on/are leaving by
598 * @cb: Control buffer. Free for use by every layer. Put private vars here
599 * @_skb_refdst: destination entry (with norefcount bit)
600 * @sp: the security path, used for xfrm
601 * @len: Length of actual data
602 * @data_len: Data length
603 * @mac_len: Length of link layer header
604 * @hdr_len: writable header length of cloned skb
605 * @csum: Checksum (must include start/offset pair)
606 * @csum_start: Offset from skb->head where checksumming should start
607 * @csum_offset: Offset from csum_start where checksum should be stored
608 * @priority: Packet queueing priority
609 * @ignore_df: allow local fragmentation
610 * @cloned: Head may be cloned (check refcnt to be sure)
611 * @ip_summed: Driver fed us an IP checksum
612 * @nohdr: Payload reference only, must not modify header
613 * @pkt_type: Packet class
614 * @fclone: skbuff clone status
615 * @ipvs_property: skbuff is owned by ipvs
616 * @tc_skip_classify: do not classify packet. set by IFB device
617 * @tc_at_ingress: used within tc_classify to distinguish in/egress
618 * @tc_redirected: packet was redirected by a tc action
619 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
620 * @peeked: this packet has been seen already, so stats have been
621 * done for it, don't do them again
622 * @nf_trace: netfilter packet trace flag
623 * @protocol: Packet protocol from driver
624 * @destructor: Destruct function
625 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
626 * @_nfct: Associated connection, if any (with nfctinfo bits)
627 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
628 * @skb_iif: ifindex of device we arrived on
629 * @tc_index: Traffic control index
630 * @hash: the packet hash
631 * @queue_mapping: Queue mapping for multiqueue devices
632 * @xmit_more: More SKBs are pending for this queue
633 * @ndisc_nodetype: router type (from link layer)
634 * @ooo_okay: allow the mapping of a socket to a queue to be changed
635 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
637 * @sw_hash: indicates hash was computed in software stack
638 * @wifi_acked_valid: wifi_acked was set
639 * @wifi_acked: whether frame was acked on wifi or not
640 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
641 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
642 * @dst_pending_confirm: need to confirm neighbour
643 * @napi_id: id of the NAPI struct this skb came from
644 * @secmark: security marking
645 * @mark: Generic packet mark
646 * @vlan_proto: vlan encapsulation protocol
647 * @vlan_tci: vlan tag control information
648 * @inner_protocol: Protocol (encapsulation)
649 * @inner_transport_header: Inner transport layer header (encapsulation)
650 * @inner_network_header: Network layer header (encapsulation)
651 * @inner_mac_header: Link layer header (encapsulation)
652 * @transport_header: Transport layer header
653 * @network_header: Network layer header
654 * @mac_header: Link layer header
655 * @tail: Tail pointer
657 * @head: Head of buffer
658 * @data: Data head pointer
659 * @truesize: Buffer size
660 * @users: User count - see {datagram,tcp}.c
666 /* These two members must be first. */
667 struct sk_buff *next;
668 struct sk_buff *prev;
671 struct net_device *dev;
672 /* Some protocols might use this space to store information,
673 * while device pointer would be NULL.
674 * UDP receive path is one user.
676 unsigned long dev_scratch;
677 int ip_defrag_offset;
680 struct rb_node rbnode; /* used in netem & tcp stack */
689 * This is the control buffer. It is free to use for every
690 * layer. Please put your private variables there. If you
691 * want to keep them across layers you have to do a skb_clone()
692 * first. This is owned by whoever has the skb queued ATM.
694 char cb[48] __aligned(8);
698 unsigned long _skb_refdst;
699 void (*destructor)(struct sk_buff *skb);
701 struct list_head tcp_tsorted_anchor;
707 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
710 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
711 struct nf_bridge_info *nf_bridge;
718 /* Following fields are _not_ copied in __copy_skb_header()
719 * Note that queue_mapping is here mostly to fill a hole.
723 /* if you move cloned around you also must adapt those constants */
724 #ifdef __BIG_ENDIAN_BITFIELD
725 #define CLONED_MASK (1 << 7)
727 #define CLONED_MASK 1
729 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
731 __u8 __cloned_offset[0];
738 __unused:1; /* one bit hole */
740 /* fields enclosed in headers_start/headers_end are copied
741 * using a single memcpy() in __copy_skb_header()
744 __u32 headers_start[0];
747 /* if you move pkt_type around you also must adapt those constants */
748 #ifdef __BIG_ENDIAN_BITFIELD
749 #define PKT_TYPE_MAX (7 << 5)
751 #define PKT_TYPE_MAX 7
753 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
755 __u8 __pkt_type_offset[0];
765 __u8 wifi_acked_valid:1;
769 /* Indicates the inner headers are valid in the skbuff. */
770 __u8 encapsulation:1;
771 __u8 encap_hdr_csum:1;
773 __u8 csum_complete_sw:1;
775 __u8 csum_not_inet:1;
777 __u8 dst_pending_confirm:1;
778 #ifdef CONFIG_IPV6_NDISC_NODETYPE
779 __u8 ndisc_nodetype:2;
781 __u8 ipvs_property:1;
782 __u8 inner_protocol_type:1;
783 __u8 remcsum_offload:1;
784 #ifdef CONFIG_NET_SWITCHDEV
785 __u8 offload_fwd_mark:1;
786 __u8 offload_mr_fwd_mark:1;
788 #ifdef CONFIG_NET_CLS_ACT
789 __u8 tc_skip_classify:1;
790 __u8 tc_at_ingress:1;
791 __u8 tc_redirected:1;
792 __u8 tc_from_ingress:1;
795 #ifdef CONFIG_NET_SCHED
796 __u16 tc_index; /* traffic control index */
811 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
813 unsigned int napi_id;
814 unsigned int sender_cpu;
817 #ifdef CONFIG_NETWORK_SECMARK
823 __u32 reserved_tailroom;
827 __be16 inner_protocol;
831 __u16 inner_transport_header;
832 __u16 inner_network_header;
833 __u16 inner_mac_header;
836 __u16 transport_header;
837 __u16 network_header;
841 __u32 headers_end[0];
844 /* These elements must be at the end, see alloc_skb() for details. */
849 unsigned int truesize;
855 * Handling routines are only of interest to the kernel
858 #define SKB_ALLOC_FCLONE 0x01
859 #define SKB_ALLOC_RX 0x02
860 #define SKB_ALLOC_NAPI 0x04
862 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
863 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
865 return unlikely(skb->pfmemalloc);
869 * skb might have a dst pointer attached, refcounted or not.
870 * _skb_refdst low order bit is set if refcount was _not_ taken
872 #define SKB_DST_NOREF 1UL
873 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
875 #define SKB_NFCT_PTRMASK ~(7UL)
877 * skb_dst - returns skb dst_entry
880 * Returns skb dst_entry, regardless of reference taken or not.
882 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
884 /* If refdst was not refcounted, check we still are in a
885 * rcu_read_lock section
887 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
888 !rcu_read_lock_held() &&
889 !rcu_read_lock_bh_held());
890 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
894 * skb_dst_set - sets skb dst
898 * Sets skb dst, assuming a reference was taken on dst and should
899 * be released by skb_dst_drop()
901 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
903 skb->_skb_refdst = (unsigned long)dst;
907 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
911 * Sets skb dst, assuming a reference was not taken on dst.
912 * If dst entry is cached, we do not take reference and dst_release
913 * will be avoided by refdst_drop. If dst entry is not cached, we take
914 * reference, so that last dst_release can destroy the dst immediately.
916 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
918 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
919 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
923 * skb_dst_is_noref - Test if skb dst isn't refcounted
926 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
928 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
931 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
933 return (struct rtable *)skb_dst(skb);
936 /* For mangling skb->pkt_type from user space side from applications
937 * such as nft, tc, etc, we only allow a conservative subset of
938 * possible pkt_types to be set.
940 static inline bool skb_pkt_type_ok(u32 ptype)
942 return ptype <= PACKET_OTHERHOST;
945 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
947 #ifdef CONFIG_NET_RX_BUSY_POLL
954 /* decrement the reference count and return true if we can free the skb */
955 static inline bool skb_unref(struct sk_buff *skb)
959 if (likely(refcount_read(&skb->users) == 1))
961 else if (likely(!refcount_dec_and_test(&skb->users)))
967 void skb_release_head_state(struct sk_buff *skb);
968 void kfree_skb(struct sk_buff *skb);
969 void kfree_skb_list(struct sk_buff *segs);
970 void skb_tx_error(struct sk_buff *skb);
971 void consume_skb(struct sk_buff *skb);
972 void __consume_stateless_skb(struct sk_buff *skb);
973 void __kfree_skb(struct sk_buff *skb);
974 extern struct kmem_cache *skbuff_head_cache;
976 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
977 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
978 bool *fragstolen, int *delta_truesize);
980 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
982 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
983 struct sk_buff *build_skb(void *data, unsigned int frag_size);
984 static inline struct sk_buff *alloc_skb(unsigned int size,
987 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
990 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
991 unsigned long data_len,
996 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
997 struct sk_buff_fclones {
1000 struct sk_buff skb2;
1002 refcount_t fclone_ref;
1006 * skb_fclone_busy - check if fclone is busy
1010 * Returns true if skb is a fast clone, and its clone is not freed.
1011 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1012 * so we also check that this didnt happen.
1014 static inline bool skb_fclone_busy(const struct sock *sk,
1015 const struct sk_buff *skb)
1017 const struct sk_buff_fclones *fclones;
1019 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1021 return skb->fclone == SKB_FCLONE_ORIG &&
1022 refcount_read(&fclones->fclone_ref) > 1 &&
1023 fclones->skb2.sk == sk;
1026 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1029 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1032 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1033 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1034 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1035 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1036 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1037 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1038 gfp_t gfp_mask, bool fclone);
1039 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1042 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1045 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1046 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1047 unsigned int headroom);
1048 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1049 int newtailroom, gfp_t priority);
1050 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1051 int offset, int len);
1052 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1053 int offset, int len);
1054 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1055 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1058 * skb_pad - zero pad the tail of an skb
1059 * @skb: buffer to pad
1060 * @pad: space to pad
1062 * Ensure that a buffer is followed by a padding area that is zero
1063 * filled. Used by network drivers which may DMA or transfer data
1064 * beyond the buffer end onto the wire.
1066 * May return error in out of memory cases. The skb is freed on error.
1068 static inline int skb_pad(struct sk_buff *skb, int pad)
1070 return __skb_pad(skb, pad, true);
1072 #define dev_kfree_skb(a) consume_skb(a)
1074 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1075 int getfrag(void *from, char *to, int offset,
1076 int len, int odd, struct sk_buff *skb),
1077 void *from, int length);
1079 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1080 int offset, size_t size);
1082 struct skb_seq_state {
1086 __u32 stepped_offset;
1087 struct sk_buff *root_skb;
1088 struct sk_buff *cur_skb;
1092 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1093 unsigned int to, struct skb_seq_state *st);
1094 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1095 struct skb_seq_state *st);
1096 void skb_abort_seq_read(struct skb_seq_state *st);
1098 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1099 unsigned int to, struct ts_config *config);
1102 * Packet hash types specify the type of hash in skb_set_hash.
1104 * Hash types refer to the protocol layer addresses which are used to
1105 * construct a packet's hash. The hashes are used to differentiate or identify
1106 * flows of the protocol layer for the hash type. Hash types are either
1107 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1109 * Properties of hashes:
1111 * 1) Two packets in different flows have different hash values
1112 * 2) Two packets in the same flow should have the same hash value
1114 * A hash at a higher layer is considered to be more specific. A driver should
1115 * set the most specific hash possible.
1117 * A driver cannot indicate a more specific hash than the layer at which a hash
1118 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1120 * A driver may indicate a hash level which is less specific than the
1121 * actual layer the hash was computed on. For instance, a hash computed
1122 * at L4 may be considered an L3 hash. This should only be done if the
1123 * driver can't unambiguously determine that the HW computed the hash at
1124 * the higher layer. Note that the "should" in the second property above
1127 enum pkt_hash_types {
1128 PKT_HASH_TYPE_NONE, /* Undefined type */
1129 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1130 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1131 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1134 static inline void skb_clear_hash(struct sk_buff *skb)
1141 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1144 skb_clear_hash(skb);
1148 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1150 skb->l4_hash = is_l4;
1151 skb->sw_hash = is_sw;
1156 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1158 /* Used by drivers to set hash from HW */
1159 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1163 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1165 __skb_set_hash(skb, hash, true, is_l4);
1168 void __skb_get_hash(struct sk_buff *skb);
1169 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1170 u32 skb_get_poff(const struct sk_buff *skb);
1171 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1172 const struct flow_keys_basic *keys, int hlen);
1173 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1174 void *data, int hlen_proto);
1176 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1177 int thoff, u8 ip_proto)
1179 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1182 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1183 const struct flow_dissector_key *key,
1184 unsigned int key_count);
1186 bool __skb_flow_dissect(const struct sk_buff *skb,
1187 struct flow_dissector *flow_dissector,
1188 void *target_container,
1189 void *data, __be16 proto, int nhoff, int hlen,
1190 unsigned int flags);
1192 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1193 struct flow_dissector *flow_dissector,
1194 void *target_container, unsigned int flags)
1196 return __skb_flow_dissect(skb, flow_dissector, target_container,
1197 NULL, 0, 0, 0, flags);
1200 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1201 struct flow_keys *flow,
1204 memset(flow, 0, sizeof(*flow));
1205 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1206 NULL, 0, 0, 0, flags);
1210 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1211 struct flow_keys_basic *flow, void *data,
1212 __be16 proto, int nhoff, int hlen,
1215 memset(flow, 0, sizeof(*flow));
1216 return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1217 data, proto, nhoff, hlen, flags);
1221 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1222 struct flow_dissector *flow_dissector,
1223 void *target_container);
1225 static inline __u32 skb_get_hash(struct sk_buff *skb)
1227 if (!skb->l4_hash && !skb->sw_hash)
1228 __skb_get_hash(skb);
1233 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1235 if (!skb->l4_hash && !skb->sw_hash) {
1236 struct flow_keys keys;
1237 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1239 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1245 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1247 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1252 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1254 to->hash = from->hash;
1255 to->sw_hash = from->sw_hash;
1256 to->l4_hash = from->l4_hash;
1259 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1260 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1262 return skb->head + skb->end;
1265 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1270 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1275 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1277 return skb->end - skb->head;
1282 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1284 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1286 return &skb_shinfo(skb)->hwtstamps;
1289 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1291 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1293 return is_zcopy ? skb_uarg(skb) : NULL;
1296 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1298 if (skb && uarg && !skb_zcopy(skb)) {
1299 sock_zerocopy_get(uarg);
1300 skb_shinfo(skb)->destructor_arg = uarg;
1301 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1305 /* Release a reference on a zerocopy structure */
1306 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1308 struct ubuf_info *uarg = skb_zcopy(skb);
1311 if (uarg->callback == sock_zerocopy_callback) {
1312 uarg->zerocopy = uarg->zerocopy && zerocopy;
1313 sock_zerocopy_put(uarg);
1315 uarg->callback(uarg, zerocopy);
1318 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1322 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1323 static inline void skb_zcopy_abort(struct sk_buff *skb)
1325 struct ubuf_info *uarg = skb_zcopy(skb);
1328 sock_zerocopy_put_abort(uarg);
1329 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1334 * skb_queue_empty - check if a queue is empty
1337 * Returns true if the queue is empty, false otherwise.
1339 static inline int skb_queue_empty(const struct sk_buff_head *list)
1341 return list->next == (const struct sk_buff *) list;
1345 * skb_queue_is_last - check if skb is the last entry in the queue
1349 * Returns true if @skb is the last buffer on the list.
1351 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1352 const struct sk_buff *skb)
1354 return skb->next == (const struct sk_buff *) list;
1358 * skb_queue_is_first - check if skb is the first entry in the queue
1362 * Returns true if @skb is the first buffer on the list.
1364 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1365 const struct sk_buff *skb)
1367 return skb->prev == (const struct sk_buff *) list;
1371 * skb_queue_next - return the next packet in the queue
1373 * @skb: current buffer
1375 * Return the next packet in @list after @skb. It is only valid to
1376 * call this if skb_queue_is_last() evaluates to false.
1378 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1379 const struct sk_buff *skb)
1381 /* This BUG_ON may seem severe, but if we just return then we
1382 * are going to dereference garbage.
1384 BUG_ON(skb_queue_is_last(list, skb));
1389 * skb_queue_prev - return the prev packet in the queue
1391 * @skb: current buffer
1393 * Return the prev packet in @list before @skb. It is only valid to
1394 * call this if skb_queue_is_first() evaluates to false.
1396 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1397 const struct sk_buff *skb)
1399 /* This BUG_ON may seem severe, but if we just return then we
1400 * are going to dereference garbage.
1402 BUG_ON(skb_queue_is_first(list, skb));
1407 * skb_get - reference buffer
1408 * @skb: buffer to reference
1410 * Makes another reference to a socket buffer and returns a pointer
1413 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1415 refcount_inc(&skb->users);
1420 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1424 * skb_cloned - is the buffer a clone
1425 * @skb: buffer to check
1427 * Returns true if the buffer was generated with skb_clone() and is
1428 * one of multiple shared copies of the buffer. Cloned buffers are
1429 * shared data so must not be written to under normal circumstances.
1431 static inline int skb_cloned(const struct sk_buff *skb)
1433 return skb->cloned &&
1434 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1437 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1439 might_sleep_if(gfpflags_allow_blocking(pri));
1441 if (skb_cloned(skb))
1442 return pskb_expand_head(skb, 0, 0, pri);
1448 * skb_header_cloned - is the header a clone
1449 * @skb: buffer to check
1451 * Returns true if modifying the header part of the buffer requires
1452 * the data to be copied.
1454 static inline int skb_header_cloned(const struct sk_buff *skb)
1461 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1462 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1463 return dataref != 1;
1466 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1468 might_sleep_if(gfpflags_allow_blocking(pri));
1470 if (skb_header_cloned(skb))
1471 return pskb_expand_head(skb, 0, 0, pri);
1477 * __skb_header_release - release reference to header
1478 * @skb: buffer to operate on
1480 static inline void __skb_header_release(struct sk_buff *skb)
1483 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1488 * skb_shared - is the buffer shared
1489 * @skb: buffer to check
1491 * Returns true if more than one person has a reference to this
1494 static inline int skb_shared(const struct sk_buff *skb)
1496 return refcount_read(&skb->users) != 1;
1500 * skb_share_check - check if buffer is shared and if so clone it
1501 * @skb: buffer to check
1502 * @pri: priority for memory allocation
1504 * If the buffer is shared the buffer is cloned and the old copy
1505 * drops a reference. A new clone with a single reference is returned.
1506 * If the buffer is not shared the original buffer is returned. When
1507 * being called from interrupt status or with spinlocks held pri must
1510 * NULL is returned on a memory allocation failure.
1512 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1514 might_sleep_if(gfpflags_allow_blocking(pri));
1515 if (skb_shared(skb)) {
1516 struct sk_buff *nskb = skb_clone(skb, pri);
1528 * Copy shared buffers into a new sk_buff. We effectively do COW on
1529 * packets to handle cases where we have a local reader and forward
1530 * and a couple of other messy ones. The normal one is tcpdumping
1531 * a packet thats being forwarded.
1535 * skb_unshare - make a copy of a shared buffer
1536 * @skb: buffer to check
1537 * @pri: priority for memory allocation
1539 * If the socket buffer is a clone then this function creates a new
1540 * copy of the data, drops a reference count on the old copy and returns
1541 * the new copy with the reference count at 1. If the buffer is not a clone
1542 * the original buffer is returned. When called with a spinlock held or
1543 * from interrupt state @pri must be %GFP_ATOMIC
1545 * %NULL is returned on a memory allocation failure.
1547 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1550 might_sleep_if(gfpflags_allow_blocking(pri));
1551 if (skb_cloned(skb)) {
1552 struct sk_buff *nskb = skb_copy(skb, pri);
1554 /* Free our shared copy */
1565 * skb_peek - peek at the head of an &sk_buff_head
1566 * @list_: list to peek at
1568 * Peek an &sk_buff. Unlike most other operations you _MUST_
1569 * be careful with this one. A peek leaves the buffer on the
1570 * list and someone else may run off with it. You must hold
1571 * the appropriate locks or have a private queue to do this.
1573 * Returns %NULL for an empty list or a pointer to the head element.
1574 * The reference count is not incremented and the reference is therefore
1575 * volatile. Use with caution.
1577 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1579 struct sk_buff *skb = list_->next;
1581 if (skb == (struct sk_buff *)list_)
1587 * skb_peek_next - peek skb following the given one from a queue
1588 * @skb: skb to start from
1589 * @list_: list to peek at
1591 * Returns %NULL when the end of the list is met or a pointer to the
1592 * next element. The reference count is not incremented and the
1593 * reference is therefore volatile. Use with caution.
1595 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1596 const struct sk_buff_head *list_)
1598 struct sk_buff *next = skb->next;
1600 if (next == (struct sk_buff *)list_)
1606 * skb_peek_tail - peek at the tail of an &sk_buff_head
1607 * @list_: list to peek at
1609 * Peek an &sk_buff. Unlike most other operations you _MUST_
1610 * be careful with this one. A peek leaves the buffer on the
1611 * list and someone else may run off with it. You must hold
1612 * the appropriate locks or have a private queue to do this.
1614 * Returns %NULL for an empty list or a pointer to the tail element.
1615 * The reference count is not incremented and the reference is therefore
1616 * volatile. Use with caution.
1618 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1620 struct sk_buff *skb = list_->prev;
1622 if (skb == (struct sk_buff *)list_)
1629 * skb_queue_len - get queue length
1630 * @list_: list to measure
1632 * Return the length of an &sk_buff queue.
1634 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1640 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1641 * @list: queue to initialize
1643 * This initializes only the list and queue length aspects of
1644 * an sk_buff_head object. This allows to initialize the list
1645 * aspects of an sk_buff_head without reinitializing things like
1646 * the spinlock. It can also be used for on-stack sk_buff_head
1647 * objects where the spinlock is known to not be used.
1649 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1651 list->prev = list->next = (struct sk_buff *)list;
1656 * This function creates a split out lock class for each invocation;
1657 * this is needed for now since a whole lot of users of the skb-queue
1658 * infrastructure in drivers have different locking usage (in hardirq)
1659 * than the networking core (in softirq only). In the long run either the
1660 * network layer or drivers should need annotation to consolidate the
1661 * main types of usage into 3 classes.
1663 static inline void skb_queue_head_init(struct sk_buff_head *list)
1665 spin_lock_init(&list->lock);
1666 __skb_queue_head_init(list);
1669 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1670 struct lock_class_key *class)
1672 skb_queue_head_init(list);
1673 lockdep_set_class(&list->lock, class);
1677 * Insert an sk_buff on a list.
1679 * The "__skb_xxxx()" functions are the non-atomic ones that
1680 * can only be called with interrupts disabled.
1682 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1683 struct sk_buff_head *list);
1684 static inline void __skb_insert(struct sk_buff *newsk,
1685 struct sk_buff *prev, struct sk_buff *next,
1686 struct sk_buff_head *list)
1690 next->prev = prev->next = newsk;
1694 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1695 struct sk_buff *prev,
1696 struct sk_buff *next)
1698 struct sk_buff *first = list->next;
1699 struct sk_buff *last = list->prev;
1709 * skb_queue_splice - join two skb lists, this is designed for stacks
1710 * @list: the new list to add
1711 * @head: the place to add it in the first list
1713 static inline void skb_queue_splice(const struct sk_buff_head *list,
1714 struct sk_buff_head *head)
1716 if (!skb_queue_empty(list)) {
1717 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1718 head->qlen += list->qlen;
1723 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1724 * @list: the new list to add
1725 * @head: the place to add it in the first list
1727 * The list at @list is reinitialised
1729 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1730 struct sk_buff_head *head)
1732 if (!skb_queue_empty(list)) {
1733 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1734 head->qlen += list->qlen;
1735 __skb_queue_head_init(list);
1740 * skb_queue_splice_tail - join two skb lists, each list being a queue
1741 * @list: the new list to add
1742 * @head: the place to add it in the first list
1744 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1745 struct sk_buff_head *head)
1747 if (!skb_queue_empty(list)) {
1748 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1749 head->qlen += list->qlen;
1754 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1755 * @list: the new list to add
1756 * @head: the place to add it in the first list
1758 * Each of the lists is a queue.
1759 * The list at @list is reinitialised
1761 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1762 struct sk_buff_head *head)
1764 if (!skb_queue_empty(list)) {
1765 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1766 head->qlen += list->qlen;
1767 __skb_queue_head_init(list);
1772 * __skb_queue_after - queue a buffer at the list head
1773 * @list: list to use
1774 * @prev: place after this buffer
1775 * @newsk: buffer to queue
1777 * Queue a buffer int the middle of a list. This function takes no locks
1778 * and you must therefore hold required locks before calling it.
1780 * A buffer cannot be placed on two lists at the same time.
1782 static inline void __skb_queue_after(struct sk_buff_head *list,
1783 struct sk_buff *prev,
1784 struct sk_buff *newsk)
1786 __skb_insert(newsk, prev, prev->next, list);
1789 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1790 struct sk_buff_head *list);
1792 static inline void __skb_queue_before(struct sk_buff_head *list,
1793 struct sk_buff *next,
1794 struct sk_buff *newsk)
1796 __skb_insert(newsk, next->prev, next, list);
1800 * __skb_queue_head - queue a buffer at the list head
1801 * @list: list to use
1802 * @newsk: buffer to queue
1804 * Queue a buffer at the start of a list. This function takes no locks
1805 * and you must therefore hold required locks before calling it.
1807 * A buffer cannot be placed on two lists at the same time.
1809 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1810 static inline void __skb_queue_head(struct sk_buff_head *list,
1811 struct sk_buff *newsk)
1813 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1817 * __skb_queue_tail - queue a buffer at the list tail
1818 * @list: list to use
1819 * @newsk: buffer to queue
1821 * Queue a buffer at the end of a list. This function takes no locks
1822 * and you must therefore hold required locks before calling it.
1824 * A buffer cannot be placed on two lists at the same time.
1826 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1827 static inline void __skb_queue_tail(struct sk_buff_head *list,
1828 struct sk_buff *newsk)
1830 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1834 * remove sk_buff from list. _Must_ be called atomically, and with
1837 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1838 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1840 struct sk_buff *next, *prev;
1845 skb->next = skb->prev = NULL;
1851 * __skb_dequeue - remove from the head of the queue
1852 * @list: list to dequeue from
1854 * Remove the head of the list. This function does not take any locks
1855 * so must be used with appropriate locks held only. The head item is
1856 * returned or %NULL if the list is empty.
1858 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1859 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1861 struct sk_buff *skb = skb_peek(list);
1863 __skb_unlink(skb, list);
1868 * __skb_dequeue_tail - remove from the tail of the queue
1869 * @list: list to dequeue from
1871 * Remove the tail of the list. This function does not take any locks
1872 * so must be used with appropriate locks held only. The tail item is
1873 * returned or %NULL if the list is empty.
1875 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1876 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1878 struct sk_buff *skb = skb_peek_tail(list);
1880 __skb_unlink(skb, list);
1885 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1887 return skb->data_len;
1890 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1892 return skb->len - skb->data_len;
1895 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1897 unsigned int i, len = 0;
1899 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1900 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1904 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1906 return skb_headlen(skb) + __skb_pagelen(skb);
1910 * __skb_fill_page_desc - initialise a paged fragment in an skb
1911 * @skb: buffer containing fragment to be initialised
1912 * @i: paged fragment index to initialise
1913 * @page: the page to use for this fragment
1914 * @off: the offset to the data with @page
1915 * @size: the length of the data
1917 * Initialises the @i'th fragment of @skb to point to &size bytes at
1918 * offset @off within @page.
1920 * Does not take any additional reference on the fragment.
1922 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1923 struct page *page, int off, int size)
1925 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1928 * Propagate page pfmemalloc to the skb if we can. The problem is
1929 * that not all callers have unique ownership of the page but rely
1930 * on page_is_pfmemalloc doing the right thing(tm).
1932 frag->page.p = page;
1933 frag->page_offset = off;
1934 skb_frag_size_set(frag, size);
1936 page = compound_head(page);
1937 if (page_is_pfmemalloc(page))
1938 skb->pfmemalloc = true;
1942 * skb_fill_page_desc - initialise a paged fragment in an skb
1943 * @skb: buffer containing fragment to be initialised
1944 * @i: paged fragment index to initialise
1945 * @page: the page to use for this fragment
1946 * @off: the offset to the data with @page
1947 * @size: the length of the data
1949 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1950 * @skb to point to @size bytes at offset @off within @page. In
1951 * addition updates @skb such that @i is the last fragment.
1953 * Does not take any additional reference on the fragment.
1955 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1956 struct page *page, int off, int size)
1958 __skb_fill_page_desc(skb, i, page, off, size);
1959 skb_shinfo(skb)->nr_frags = i + 1;
1962 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1963 int size, unsigned int truesize);
1965 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1966 unsigned int truesize);
1968 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1969 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1970 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1972 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1973 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1975 return skb->head + skb->tail;
1978 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1980 skb->tail = skb->data - skb->head;
1983 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1985 skb_reset_tail_pointer(skb);
1986 skb->tail += offset;
1989 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1990 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1995 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1997 skb->tail = skb->data;
2000 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2002 skb->tail = skb->data + offset;
2005 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2008 * Add data to an sk_buff
2010 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2011 void *skb_put(struct sk_buff *skb, unsigned int len);
2012 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2014 void *tmp = skb_tail_pointer(skb);
2015 SKB_LINEAR_ASSERT(skb);
2021 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2023 void *tmp = __skb_put(skb, len);
2025 memset(tmp, 0, len);
2029 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2032 void *tmp = __skb_put(skb, len);
2034 memcpy(tmp, data, len);
2038 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2040 *(u8 *)__skb_put(skb, 1) = val;
2043 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2045 void *tmp = skb_put(skb, len);
2047 memset(tmp, 0, len);
2052 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2055 void *tmp = skb_put(skb, len);
2057 memcpy(tmp, data, len);
2062 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2064 *(u8 *)skb_put(skb, 1) = val;
2067 void *skb_push(struct sk_buff *skb, unsigned int len);
2068 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2075 void *skb_pull(struct sk_buff *skb, unsigned int len);
2076 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2079 BUG_ON(skb->len < skb->data_len);
2080 return skb->data += len;
2083 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2085 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2088 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2090 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2092 if (len > skb_headlen(skb) &&
2093 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2096 return skb->data += len;
2099 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2101 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2104 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2106 if (likely(len <= skb_headlen(skb)))
2108 if (unlikely(len > skb->len))
2110 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2113 void skb_condense(struct sk_buff *skb);
2116 * skb_headroom - bytes at buffer head
2117 * @skb: buffer to check
2119 * Return the number of bytes of free space at the head of an &sk_buff.
2121 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2123 return skb->data - skb->head;
2127 * skb_tailroom - bytes at buffer end
2128 * @skb: buffer to check
2130 * Return the number of bytes of free space at the tail of an sk_buff
2132 static inline int skb_tailroom(const struct sk_buff *skb)
2134 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2138 * skb_availroom - bytes at buffer end
2139 * @skb: buffer to check
2141 * Return the number of bytes of free space at the tail of an sk_buff
2142 * allocated by sk_stream_alloc()
2144 static inline int skb_availroom(const struct sk_buff *skb)
2146 if (skb_is_nonlinear(skb))
2149 return skb->end - skb->tail - skb->reserved_tailroom;
2153 * skb_reserve - adjust headroom
2154 * @skb: buffer to alter
2155 * @len: bytes to move
2157 * Increase the headroom of an empty &sk_buff by reducing the tail
2158 * room. This is only allowed for an empty buffer.
2160 static inline void skb_reserve(struct sk_buff *skb, int len)
2167 * skb_tailroom_reserve - adjust reserved_tailroom
2168 * @skb: buffer to alter
2169 * @mtu: maximum amount of headlen permitted
2170 * @needed_tailroom: minimum amount of reserved_tailroom
2172 * Set reserved_tailroom so that headlen can be as large as possible but
2173 * not larger than mtu and tailroom cannot be smaller than
2175 * The required headroom should already have been reserved before using
2178 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2179 unsigned int needed_tailroom)
2181 SKB_LINEAR_ASSERT(skb);
2182 if (mtu < skb_tailroom(skb) - needed_tailroom)
2183 /* use at most mtu */
2184 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2186 /* use up to all available space */
2187 skb->reserved_tailroom = needed_tailroom;
2190 #define ENCAP_TYPE_ETHER 0
2191 #define ENCAP_TYPE_IPPROTO 1
2193 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2196 skb->inner_protocol = protocol;
2197 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2200 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2203 skb->inner_ipproto = ipproto;
2204 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2207 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2209 skb->inner_mac_header = skb->mac_header;
2210 skb->inner_network_header = skb->network_header;
2211 skb->inner_transport_header = skb->transport_header;
2214 static inline void skb_reset_mac_len(struct sk_buff *skb)
2216 skb->mac_len = skb->network_header - skb->mac_header;
2219 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2222 return skb->head + skb->inner_transport_header;
2225 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2227 return skb_inner_transport_header(skb) - skb->data;
2230 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2232 skb->inner_transport_header = skb->data - skb->head;
2235 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2238 skb_reset_inner_transport_header(skb);
2239 skb->inner_transport_header += offset;
2242 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2244 return skb->head + skb->inner_network_header;
2247 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2249 skb->inner_network_header = skb->data - skb->head;
2252 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2255 skb_reset_inner_network_header(skb);
2256 skb->inner_network_header += offset;
2259 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2261 return skb->head + skb->inner_mac_header;
2264 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2266 skb->inner_mac_header = skb->data - skb->head;
2269 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2272 skb_reset_inner_mac_header(skb);
2273 skb->inner_mac_header += offset;
2275 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2277 return skb->transport_header != (typeof(skb->transport_header))~0U;
2280 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2282 return skb->head + skb->transport_header;
2285 static inline void skb_reset_transport_header(struct sk_buff *skb)
2287 skb->transport_header = skb->data - skb->head;
2290 static inline void skb_set_transport_header(struct sk_buff *skb,
2293 skb_reset_transport_header(skb);
2294 skb->transport_header += offset;
2297 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2299 return skb->head + skb->network_header;
2302 static inline void skb_reset_network_header(struct sk_buff *skb)
2304 skb->network_header = skb->data - skb->head;
2307 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2309 skb_reset_network_header(skb);
2310 skb->network_header += offset;
2313 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2315 return skb->head + skb->mac_header;
2318 static inline int skb_mac_offset(const struct sk_buff *skb)
2320 return skb_mac_header(skb) - skb->data;
2323 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2325 return skb->network_header - skb->mac_header;
2328 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2330 return skb->mac_header != (typeof(skb->mac_header))~0U;
2333 static inline void skb_reset_mac_header(struct sk_buff *skb)
2335 skb->mac_header = skb->data - skb->head;
2338 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2340 skb_reset_mac_header(skb);
2341 skb->mac_header += offset;
2344 static inline void skb_pop_mac_header(struct sk_buff *skb)
2346 skb->mac_header = skb->network_header;
2349 static inline void skb_probe_transport_header(struct sk_buff *skb,
2350 const int offset_hint)
2352 struct flow_keys_basic keys;
2354 if (skb_transport_header_was_set(skb))
2357 if (skb_flow_dissect_flow_keys_basic(skb, &keys, 0, 0, 0, 0, 0))
2358 skb_set_transport_header(skb, keys.control.thoff);
2360 skb_set_transport_header(skb, offset_hint);
2363 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2365 if (skb_mac_header_was_set(skb)) {
2366 const unsigned char *old_mac = skb_mac_header(skb);
2368 skb_set_mac_header(skb, -skb->mac_len);
2369 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2373 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2375 return skb->csum_start - skb_headroom(skb);
2378 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2380 return skb->head + skb->csum_start;
2383 static inline int skb_transport_offset(const struct sk_buff *skb)
2385 return skb_transport_header(skb) - skb->data;
2388 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2390 return skb->transport_header - skb->network_header;
2393 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2395 return skb->inner_transport_header - skb->inner_network_header;
2398 static inline int skb_network_offset(const struct sk_buff *skb)
2400 return skb_network_header(skb) - skb->data;
2403 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2405 return skb_inner_network_header(skb) - skb->data;
2408 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2410 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2414 * CPUs often take a performance hit when accessing unaligned memory
2415 * locations. The actual performance hit varies, it can be small if the
2416 * hardware handles it or large if we have to take an exception and fix it
2419 * Since an ethernet header is 14 bytes network drivers often end up with
2420 * the IP header at an unaligned offset. The IP header can be aligned by
2421 * shifting the start of the packet by 2 bytes. Drivers should do this
2424 * skb_reserve(skb, NET_IP_ALIGN);
2426 * The downside to this alignment of the IP header is that the DMA is now
2427 * unaligned. On some architectures the cost of an unaligned DMA is high
2428 * and this cost outweighs the gains made by aligning the IP header.
2430 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2433 #ifndef NET_IP_ALIGN
2434 #define NET_IP_ALIGN 2
2438 * The networking layer reserves some headroom in skb data (via
2439 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2440 * the header has to grow. In the default case, if the header has to grow
2441 * 32 bytes or less we avoid the reallocation.
2443 * Unfortunately this headroom changes the DMA alignment of the resulting
2444 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2445 * on some architectures. An architecture can override this value,
2446 * perhaps setting it to a cacheline in size (since that will maintain
2447 * cacheline alignment of the DMA). It must be a power of 2.
2449 * Various parts of the networking layer expect at least 32 bytes of
2450 * headroom, you should not reduce this.
2452 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2453 * to reduce average number of cache lines per packet.
2454 * get_rps_cpus() for example only access one 64 bytes aligned block :
2455 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2458 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2461 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2463 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2465 if (unlikely(skb_is_nonlinear(skb))) {
2470 skb_set_tail_pointer(skb, len);
2473 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2475 __skb_set_length(skb, len);
2478 void skb_trim(struct sk_buff *skb, unsigned int len);
2480 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2483 return ___pskb_trim(skb, len);
2484 __skb_trim(skb, len);
2488 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2490 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2494 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2495 * @skb: buffer to alter
2498 * This is identical to pskb_trim except that the caller knows that
2499 * the skb is not cloned so we should never get an error due to out-
2502 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2504 int err = pskb_trim(skb, len);
2508 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2510 unsigned int diff = len - skb->len;
2512 if (skb_tailroom(skb) < diff) {
2513 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2518 __skb_set_length(skb, len);
2523 * skb_orphan - orphan a buffer
2524 * @skb: buffer to orphan
2526 * If a buffer currently has an owner then we call the owner's
2527 * destructor function and make the @skb unowned. The buffer continues
2528 * to exist but is no longer charged to its former owner.
2530 static inline void skb_orphan(struct sk_buff *skb)
2532 if (skb->destructor) {
2533 skb->destructor(skb);
2534 skb->destructor = NULL;
2542 * skb_orphan_frags - orphan the frags contained in a buffer
2543 * @skb: buffer to orphan frags from
2544 * @gfp_mask: allocation mask for replacement pages
2546 * For each frag in the SKB which needs a destructor (i.e. has an
2547 * owner) create a copy of that frag and release the original
2548 * page by calling the destructor.
2550 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2552 if (likely(!skb_zcopy(skb)))
2554 if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2556 return skb_copy_ubufs(skb, gfp_mask);
2559 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2560 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2562 if (likely(!skb_zcopy(skb)))
2564 return skb_copy_ubufs(skb, gfp_mask);
2568 * __skb_queue_purge - empty a list
2569 * @list: list to empty
2571 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2572 * the list and one reference dropped. This function does not take the
2573 * list lock and the caller must hold the relevant locks to use it.
2575 void skb_queue_purge(struct sk_buff_head *list);
2576 static inline void __skb_queue_purge(struct sk_buff_head *list)
2578 struct sk_buff *skb;
2579 while ((skb = __skb_dequeue(list)) != NULL)
2583 void skb_rbtree_purge(struct rb_root *root);
2585 void *netdev_alloc_frag(unsigned int fragsz);
2587 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2591 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2592 * @dev: network device to receive on
2593 * @length: length to allocate
2595 * Allocate a new &sk_buff and assign it a usage count of one. The
2596 * buffer has unspecified headroom built in. Users should allocate
2597 * the headroom they think they need without accounting for the
2598 * built in space. The built in space is used for optimisations.
2600 * %NULL is returned if there is no free memory. Although this function
2601 * allocates memory it can be called from an interrupt.
2603 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2604 unsigned int length)
2606 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2609 /* legacy helper around __netdev_alloc_skb() */
2610 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2613 return __netdev_alloc_skb(NULL, length, gfp_mask);
2616 /* legacy helper around netdev_alloc_skb() */
2617 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2619 return netdev_alloc_skb(NULL, length);
2623 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2624 unsigned int length, gfp_t gfp)
2626 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2628 if (NET_IP_ALIGN && skb)
2629 skb_reserve(skb, NET_IP_ALIGN);
2633 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2634 unsigned int length)
2636 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2639 static inline void skb_free_frag(void *addr)
2641 page_frag_free(addr);
2644 void *napi_alloc_frag(unsigned int fragsz);
2645 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2646 unsigned int length, gfp_t gfp_mask);
2647 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2648 unsigned int length)
2650 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2652 void napi_consume_skb(struct sk_buff *skb, int budget);
2654 void __kfree_skb_flush(void);
2655 void __kfree_skb_defer(struct sk_buff *skb);
2658 * __dev_alloc_pages - allocate page for network Rx
2659 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2660 * @order: size of the allocation
2662 * Allocate a new page.
2664 * %NULL is returned if there is no free memory.
2666 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2669 /* This piece of code contains several assumptions.
2670 * 1. This is for device Rx, therefor a cold page is preferred.
2671 * 2. The expectation is the user wants a compound page.
2672 * 3. If requesting a order 0 page it will not be compound
2673 * due to the check to see if order has a value in prep_new_page
2674 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2675 * code in gfp_to_alloc_flags that should be enforcing this.
2677 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2679 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2682 static inline struct page *dev_alloc_pages(unsigned int order)
2684 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2688 * __dev_alloc_page - allocate a page for network Rx
2689 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2691 * Allocate a new page.
2693 * %NULL is returned if there is no free memory.
2695 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2697 return __dev_alloc_pages(gfp_mask, 0);
2700 static inline struct page *dev_alloc_page(void)
2702 return dev_alloc_pages(0);
2706 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2707 * @page: The page that was allocated from skb_alloc_page
2708 * @skb: The skb that may need pfmemalloc set
2710 static inline void skb_propagate_pfmemalloc(struct page *page,
2711 struct sk_buff *skb)
2713 if (page_is_pfmemalloc(page))
2714 skb->pfmemalloc = true;
2718 * skb_frag_page - retrieve the page referred to by a paged fragment
2719 * @frag: the paged fragment
2721 * Returns the &struct page associated with @frag.
2723 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2725 return frag->page.p;
2729 * __skb_frag_ref - take an addition reference on a paged fragment.
2730 * @frag: the paged fragment
2732 * Takes an additional reference on the paged fragment @frag.
2734 static inline void __skb_frag_ref(skb_frag_t *frag)
2736 get_page(skb_frag_page(frag));
2740 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2742 * @f: the fragment offset.
2744 * Takes an additional reference on the @f'th paged fragment of @skb.
2746 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2748 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2752 * __skb_frag_unref - release a reference on a paged fragment.
2753 * @frag: the paged fragment
2755 * Releases a reference on the paged fragment @frag.
2757 static inline void __skb_frag_unref(skb_frag_t *frag)
2759 put_page(skb_frag_page(frag));
2763 * skb_frag_unref - release a reference on a paged fragment of an skb.
2765 * @f: the fragment offset
2767 * Releases a reference on the @f'th paged fragment of @skb.
2769 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2771 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2775 * skb_frag_address - gets the address of the data contained in a paged fragment
2776 * @frag: the paged fragment buffer
2778 * Returns the address of the data within @frag. The page must already
2781 static inline void *skb_frag_address(const skb_frag_t *frag)
2783 return page_address(skb_frag_page(frag)) + frag->page_offset;
2787 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2788 * @frag: the paged fragment buffer
2790 * Returns the address of the data within @frag. Checks that the page
2791 * is mapped and returns %NULL otherwise.
2793 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2795 void *ptr = page_address(skb_frag_page(frag));
2799 return ptr + frag->page_offset;
2803 * __skb_frag_set_page - sets the page contained in a paged fragment
2804 * @frag: the paged fragment
2805 * @page: the page to set
2807 * Sets the fragment @frag to contain @page.
2809 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2811 frag->page.p = page;
2815 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2817 * @f: the fragment offset
2818 * @page: the page to set
2820 * Sets the @f'th fragment of @skb to contain @page.
2822 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2825 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2828 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2831 * skb_frag_dma_map - maps a paged fragment via the DMA API
2832 * @dev: the device to map the fragment to
2833 * @frag: the paged fragment to map
2834 * @offset: the offset within the fragment (starting at the
2835 * fragment's own offset)
2836 * @size: the number of bytes to map
2837 * @dir: the direction of the mapping (``PCI_DMA_*``)
2839 * Maps the page associated with @frag to @device.
2841 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2842 const skb_frag_t *frag,
2843 size_t offset, size_t size,
2844 enum dma_data_direction dir)
2846 return dma_map_page(dev, skb_frag_page(frag),
2847 frag->page_offset + offset, size, dir);
2850 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2853 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2857 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2860 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2865 * skb_clone_writable - is the header of a clone writable
2866 * @skb: buffer to check
2867 * @len: length up to which to write
2869 * Returns true if modifying the header part of the cloned buffer
2870 * does not requires the data to be copied.
2872 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2874 return !skb_header_cloned(skb) &&
2875 skb_headroom(skb) + len <= skb->hdr_len;
2878 static inline int skb_try_make_writable(struct sk_buff *skb,
2879 unsigned int write_len)
2881 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2882 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2885 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2890 if (headroom > skb_headroom(skb))
2891 delta = headroom - skb_headroom(skb);
2893 if (delta || cloned)
2894 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2900 * skb_cow - copy header of skb when it is required
2901 * @skb: buffer to cow
2902 * @headroom: needed headroom
2904 * If the skb passed lacks sufficient headroom or its data part
2905 * is shared, data is reallocated. If reallocation fails, an error
2906 * is returned and original skb is not changed.
2908 * The result is skb with writable area skb->head...skb->tail
2909 * and at least @headroom of space at head.
2911 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2913 return __skb_cow(skb, headroom, skb_cloned(skb));
2917 * skb_cow_head - skb_cow but only making the head writable
2918 * @skb: buffer to cow
2919 * @headroom: needed headroom
2921 * This function is identical to skb_cow except that we replace the
2922 * skb_cloned check by skb_header_cloned. It should be used when
2923 * you only need to push on some header and do not need to modify
2926 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2928 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2932 * skb_padto - pad an skbuff up to a minimal size
2933 * @skb: buffer to pad
2934 * @len: minimal length
2936 * Pads up a buffer to ensure the trailing bytes exist and are
2937 * blanked. If the buffer already contains sufficient data it
2938 * is untouched. Otherwise it is extended. Returns zero on
2939 * success. The skb is freed on error.
2941 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2943 unsigned int size = skb->len;
2944 if (likely(size >= len))
2946 return skb_pad(skb, len - size);
2950 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2951 * @skb: buffer to pad
2952 * @len: minimal length
2953 * @free_on_error: free buffer on error
2955 * Pads up a buffer to ensure the trailing bytes exist and are
2956 * blanked. If the buffer already contains sufficient data it
2957 * is untouched. Otherwise it is extended. Returns zero on
2958 * success. The skb is freed on error if @free_on_error is true.
2960 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2963 unsigned int size = skb->len;
2965 if (unlikely(size < len)) {
2967 if (__skb_pad(skb, len, free_on_error))
2969 __skb_put(skb, len);
2975 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2976 * @skb: buffer to pad
2977 * @len: minimal length
2979 * Pads up a buffer to ensure the trailing bytes exist and are
2980 * blanked. If the buffer already contains sufficient data it
2981 * is untouched. Otherwise it is extended. Returns zero on
2982 * success. The skb is freed on error.
2984 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2986 return __skb_put_padto(skb, len, true);
2989 static inline int skb_add_data(struct sk_buff *skb,
2990 struct iov_iter *from, int copy)
2992 const int off = skb->len;
2994 if (skb->ip_summed == CHECKSUM_NONE) {
2996 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2998 skb->csum = csum_block_add(skb->csum, csum, off);
3001 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3004 __skb_trim(skb, off);
3008 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3009 const struct page *page, int off)
3014 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3016 return page == skb_frag_page(frag) &&
3017 off == frag->page_offset + skb_frag_size(frag);
3022 static inline int __skb_linearize(struct sk_buff *skb)
3024 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3028 * skb_linearize - convert paged skb to linear one
3029 * @skb: buffer to linarize
3031 * If there is no free memory -ENOMEM is returned, otherwise zero
3032 * is returned and the old skb data released.
3034 static inline int skb_linearize(struct sk_buff *skb)
3036 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3040 * skb_has_shared_frag - can any frag be overwritten
3041 * @skb: buffer to test
3043 * Return true if the skb has at least one frag that might be modified
3044 * by an external entity (as in vmsplice()/sendfile())
3046 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3048 return skb_is_nonlinear(skb) &&
3049 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3053 * skb_linearize_cow - make sure skb is linear and writable
3054 * @skb: buffer to process
3056 * If there is no free memory -ENOMEM is returned, otherwise zero
3057 * is returned and the old skb data released.
3059 static inline int skb_linearize_cow(struct sk_buff *skb)
3061 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3062 __skb_linearize(skb) : 0;
3065 static __always_inline void
3066 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3069 if (skb->ip_summed == CHECKSUM_COMPLETE)
3070 skb->csum = csum_block_sub(skb->csum,
3071 csum_partial(start, len, 0), off);
3072 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3073 skb_checksum_start_offset(skb) < 0)
3074 skb->ip_summed = CHECKSUM_NONE;
3078 * skb_postpull_rcsum - update checksum for received skb after pull
3079 * @skb: buffer to update
3080 * @start: start of data before pull
3081 * @len: length of data pulled
3083 * After doing a pull on a received packet, you need to call this to
3084 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3085 * CHECKSUM_NONE so that it can be recomputed from scratch.
3087 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3088 const void *start, unsigned int len)
3090 __skb_postpull_rcsum(skb, start, len, 0);
3093 static __always_inline void
3094 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3097 if (skb->ip_summed == CHECKSUM_COMPLETE)
3098 skb->csum = csum_block_add(skb->csum,
3099 csum_partial(start, len, 0), off);
3103 * skb_postpush_rcsum - update checksum for received skb after push
3104 * @skb: buffer to update
3105 * @start: start of data after push
3106 * @len: length of data pushed
3108 * After doing a push on a received packet, you need to call this to
3109 * update the CHECKSUM_COMPLETE checksum.
3111 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3112 const void *start, unsigned int len)
3114 __skb_postpush_rcsum(skb, start, len, 0);
3117 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3120 * skb_push_rcsum - push skb and update receive checksum
3121 * @skb: buffer to update
3122 * @len: length of data pulled
3124 * This function performs an skb_push on the packet and updates
3125 * the CHECKSUM_COMPLETE checksum. It should be used on
3126 * receive path processing instead of skb_push unless you know
3127 * that the checksum difference is zero (e.g., a valid IP header)
3128 * or you are setting ip_summed to CHECKSUM_NONE.
3130 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3133 skb_postpush_rcsum(skb, skb->data, len);
3137 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3139 * pskb_trim_rcsum - trim received skb and update checksum
3140 * @skb: buffer to trim
3143 * This is exactly the same as pskb_trim except that it ensures the
3144 * checksum of received packets are still valid after the operation.
3147 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3149 if (likely(len >= skb->len))
3151 return pskb_trim_rcsum_slow(skb, len);
3154 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3156 if (skb->ip_summed == CHECKSUM_COMPLETE)
3157 skb->ip_summed = CHECKSUM_NONE;
3158 __skb_trim(skb, len);
3162 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3164 if (skb->ip_summed == CHECKSUM_COMPLETE)
3165 skb->ip_summed = CHECKSUM_NONE;
3166 return __skb_grow(skb, len);
3169 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3170 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3171 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3172 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3173 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3175 #define skb_queue_walk(queue, skb) \
3176 for (skb = (queue)->next; \
3177 skb != (struct sk_buff *)(queue); \
3180 #define skb_queue_walk_safe(queue, skb, tmp) \
3181 for (skb = (queue)->next, tmp = skb->next; \
3182 skb != (struct sk_buff *)(queue); \
3183 skb = tmp, tmp = skb->next)
3185 #define skb_queue_walk_from(queue, skb) \
3186 for (; skb != (struct sk_buff *)(queue); \
3189 #define skb_rbtree_walk(skb, root) \
3190 for (skb = skb_rb_first(root); skb != NULL; \
3191 skb = skb_rb_next(skb))
3193 #define skb_rbtree_walk_from(skb) \
3194 for (; skb != NULL; \
3195 skb = skb_rb_next(skb))
3197 #define skb_rbtree_walk_from_safe(skb, tmp) \
3198 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3201 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3202 for (tmp = skb->next; \
3203 skb != (struct sk_buff *)(queue); \
3204 skb = tmp, tmp = skb->next)
3206 #define skb_queue_reverse_walk(queue, skb) \
3207 for (skb = (queue)->prev; \
3208 skb != (struct sk_buff *)(queue); \
3211 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3212 for (skb = (queue)->prev, tmp = skb->prev; \
3213 skb != (struct sk_buff *)(queue); \
3214 skb = tmp, tmp = skb->prev)
3216 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3217 for (tmp = skb->prev; \
3218 skb != (struct sk_buff *)(queue); \
3219 skb = tmp, tmp = skb->prev)
3221 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3223 return skb_shinfo(skb)->frag_list != NULL;
3226 static inline void skb_frag_list_init(struct sk_buff *skb)
3228 skb_shinfo(skb)->frag_list = NULL;
3231 #define skb_walk_frags(skb, iter) \
3232 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3235 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3236 const struct sk_buff *skb);
3237 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3238 struct sk_buff_head *queue,
3240 void (*destructor)(struct sock *sk,
3241 struct sk_buff *skb),
3242 int *peeked, int *off, int *err,
3243 struct sk_buff **last);
3244 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3245 void (*destructor)(struct sock *sk,
3246 struct sk_buff *skb),
3247 int *peeked, int *off, int *err,
3248 struct sk_buff **last);
3249 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3250 void (*destructor)(struct sock *sk,
3251 struct sk_buff *skb),
3252 int *peeked, int *off, int *err);
3253 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3255 __poll_t datagram_poll_mask(struct socket *sock, __poll_t events);
3256 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3257 struct iov_iter *to, int size);
3258 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3259 struct msghdr *msg, int size)
3261 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3263 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3264 struct msghdr *msg);
3265 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3266 struct iov_iter *from, int len);
3267 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3268 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3269 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3270 static inline void skb_free_datagram_locked(struct sock *sk,
3271 struct sk_buff *skb)
3273 __skb_free_datagram_locked(sk, skb, 0);
3275 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3276 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3277 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3278 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3279 int len, __wsum csum);
3280 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3281 struct pipe_inode_info *pipe, unsigned int len,
3282 unsigned int flags);
3283 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3285 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3286 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3287 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3288 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3290 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3291 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3292 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3293 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3294 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3295 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3296 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3297 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3298 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3299 int skb_vlan_pop(struct sk_buff *skb);
3300 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3301 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3304 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3306 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3309 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3311 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3314 struct skb_checksum_ops {
3315 __wsum (*update)(const void *mem, int len, __wsum wsum);
3316 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3319 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3321 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3322 __wsum csum, const struct skb_checksum_ops *ops);
3323 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3326 static inline void * __must_check
3327 __skb_header_pointer(const struct sk_buff *skb, int offset,
3328 int len, void *data, int hlen, void *buffer)
3330 if (hlen - offset >= len)
3331 return data + offset;
3334 skb_copy_bits(skb, offset, buffer, len) < 0)
3340 static inline void * __must_check
3341 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3343 return __skb_header_pointer(skb, offset, len, skb->data,
3344 skb_headlen(skb), buffer);
3348 * skb_needs_linearize - check if we need to linearize a given skb
3349 * depending on the given device features.
3350 * @skb: socket buffer to check
3351 * @features: net device features
3353 * Returns true if either:
3354 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3355 * 2. skb is fragmented and the device does not support SG.
3357 static inline bool skb_needs_linearize(struct sk_buff *skb,
3358 netdev_features_t features)
3360 return skb_is_nonlinear(skb) &&
3361 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3362 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3365 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3367 const unsigned int len)
3369 memcpy(to, skb->data, len);
3372 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3373 const int offset, void *to,
3374 const unsigned int len)
3376 memcpy(to, skb->data + offset, len);
3379 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3381 const unsigned int len)
3383 memcpy(skb->data, from, len);
3386 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3389 const unsigned int len)
3391 memcpy(skb->data + offset, from, len);
3394 void skb_init(void);
3396 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3402 * skb_get_timestamp - get timestamp from a skb
3403 * @skb: skb to get stamp from
3404 * @stamp: pointer to struct timeval to store stamp in
3406 * Timestamps are stored in the skb as offsets to a base timestamp.
3407 * This function converts the offset back to a struct timeval and stores
3410 static inline void skb_get_timestamp(const struct sk_buff *skb,
3411 struct timeval *stamp)
3413 *stamp = ktime_to_timeval(skb->tstamp);
3416 static inline void skb_get_timestampns(const struct sk_buff *skb,
3417 struct timespec *stamp)
3419 *stamp = ktime_to_timespec(skb->tstamp);
3422 static inline void __net_timestamp(struct sk_buff *skb)
3424 skb->tstamp = ktime_get_real();
3427 static inline ktime_t net_timedelta(ktime_t t)
3429 return ktime_sub(ktime_get_real(), t);
3432 static inline ktime_t net_invalid_timestamp(void)
3437 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3439 return skb_shinfo(skb)->meta_len;
3442 static inline void *skb_metadata_end(const struct sk_buff *skb)
3444 return skb_mac_header(skb);
3447 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3448 const struct sk_buff *skb_b,
3451 const void *a = skb_metadata_end(skb_a);
3452 const void *b = skb_metadata_end(skb_b);
3453 /* Using more efficient varaiant than plain call to memcmp(). */
3454 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3458 #define __it(x, op) (x -= sizeof(u##op))
3459 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3460 case 32: diffs |= __it_diff(a, b, 64);
3461 case 24: diffs |= __it_diff(a, b, 64);
3462 case 16: diffs |= __it_diff(a, b, 64);
3463 case 8: diffs |= __it_diff(a, b, 64);
3465 case 28: diffs |= __it_diff(a, b, 64);
3466 case 20: diffs |= __it_diff(a, b, 64);
3467 case 12: diffs |= __it_diff(a, b, 64);
3468 case 4: diffs |= __it_diff(a, b, 32);
3473 return memcmp(a - meta_len, b - meta_len, meta_len);
3477 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3478 const struct sk_buff *skb_b)
3480 u8 len_a = skb_metadata_len(skb_a);
3481 u8 len_b = skb_metadata_len(skb_b);
3483 if (!(len_a | len_b))
3486 return len_a != len_b ?
3487 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3490 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3492 skb_shinfo(skb)->meta_len = meta_len;
3495 static inline void skb_metadata_clear(struct sk_buff *skb)
3497 skb_metadata_set(skb, 0);
3500 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3502 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3504 void skb_clone_tx_timestamp(struct sk_buff *skb);
3505 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3507 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3509 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3513 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3518 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3521 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3523 * PHY drivers may accept clones of transmitted packets for
3524 * timestamping via their phy_driver.txtstamp method. These drivers
3525 * must call this function to return the skb back to the stack with a
3528 * @skb: clone of the the original outgoing packet
3529 * @hwtstamps: hardware time stamps
3532 void skb_complete_tx_timestamp(struct sk_buff *skb,
3533 struct skb_shared_hwtstamps *hwtstamps);
3535 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3536 struct skb_shared_hwtstamps *hwtstamps,
3537 struct sock *sk, int tstype);
3540 * skb_tstamp_tx - queue clone of skb with send time stamps
3541 * @orig_skb: the original outgoing packet
3542 * @hwtstamps: hardware time stamps, may be NULL if not available
3544 * If the skb has a socket associated, then this function clones the
3545 * skb (thus sharing the actual data and optional structures), stores
3546 * the optional hardware time stamping information (if non NULL) or
3547 * generates a software time stamp (otherwise), then queues the clone
3548 * to the error queue of the socket. Errors are silently ignored.
3550 void skb_tstamp_tx(struct sk_buff *orig_skb,
3551 struct skb_shared_hwtstamps *hwtstamps);
3554 * skb_tx_timestamp() - Driver hook for transmit timestamping
3556 * Ethernet MAC Drivers should call this function in their hard_xmit()
3557 * function immediately before giving the sk_buff to the MAC hardware.
3559 * Specifically, one should make absolutely sure that this function is
3560 * called before TX completion of this packet can trigger. Otherwise
3561 * the packet could potentially already be freed.
3563 * @skb: A socket buffer.
3565 static inline void skb_tx_timestamp(struct sk_buff *skb)
3567 skb_clone_tx_timestamp(skb);
3568 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3569 skb_tstamp_tx(skb, NULL);
3573 * skb_complete_wifi_ack - deliver skb with wifi status
3575 * @skb: the original outgoing packet
3576 * @acked: ack status
3579 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3581 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3582 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3584 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3586 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3588 (skb->ip_summed == CHECKSUM_PARTIAL &&
3589 skb_checksum_start_offset(skb) >= 0));
3593 * skb_checksum_complete - Calculate checksum of an entire packet
3594 * @skb: packet to process
3596 * This function calculates the checksum over the entire packet plus
3597 * the value of skb->csum. The latter can be used to supply the
3598 * checksum of a pseudo header as used by TCP/UDP. It returns the
3601 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3602 * this function can be used to verify that checksum on received
3603 * packets. In that case the function should return zero if the
3604 * checksum is correct. In particular, this function will return zero
3605 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3606 * hardware has already verified the correctness of the checksum.
3608 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3610 return skb_csum_unnecessary(skb) ?
3611 0 : __skb_checksum_complete(skb);
3614 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3616 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3617 if (skb->csum_level == 0)
3618 skb->ip_summed = CHECKSUM_NONE;
3624 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3626 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3627 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3629 } else if (skb->ip_summed == CHECKSUM_NONE) {
3630 skb->ip_summed = CHECKSUM_UNNECESSARY;
3631 skb->csum_level = 0;
3635 /* Check if we need to perform checksum complete validation.
3637 * Returns true if checksum complete is needed, false otherwise
3638 * (either checksum is unnecessary or zero checksum is allowed).
3640 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3644 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3645 skb->csum_valid = 1;
3646 __skb_decr_checksum_unnecessary(skb);
3653 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3656 #define CHECKSUM_BREAK 76
3658 /* Unset checksum-complete
3660 * Unset checksum complete can be done when packet is being modified
3661 * (uncompressed for instance) and checksum-complete value is
3664 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3666 if (skb->ip_summed == CHECKSUM_COMPLETE)
3667 skb->ip_summed = CHECKSUM_NONE;
3670 /* Validate (init) checksum based on checksum complete.
3673 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3674 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3675 * checksum is stored in skb->csum for use in __skb_checksum_complete
3676 * non-zero: value of invalid checksum
3679 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3683 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3684 if (!csum_fold(csum_add(psum, skb->csum))) {
3685 skb->csum_valid = 1;
3692 if (complete || skb->len <= CHECKSUM_BREAK) {
3695 csum = __skb_checksum_complete(skb);
3696 skb->csum_valid = !csum;
3703 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3708 /* Perform checksum validate (init). Note that this is a macro since we only
3709 * want to calculate the pseudo header which is an input function if necessary.
3710 * First we try to validate without any computation (checksum unnecessary) and
3711 * then calculate based on checksum complete calling the function to compute
3715 * 0: checksum is validated or try to in skb_checksum_complete
3716 * non-zero: value of invalid checksum
3718 #define __skb_checksum_validate(skb, proto, complete, \
3719 zero_okay, check, compute_pseudo) \
3721 __sum16 __ret = 0; \
3722 skb->csum_valid = 0; \
3723 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3724 __ret = __skb_checksum_validate_complete(skb, \
3725 complete, compute_pseudo(skb, proto)); \
3729 #define skb_checksum_init(skb, proto, compute_pseudo) \
3730 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3732 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3733 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3735 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3736 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3738 #define skb_checksum_validate_zero_check(skb, proto, check, \
3740 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3742 #define skb_checksum_simple_validate(skb) \
3743 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3745 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3747 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3750 static inline void __skb_checksum_convert(struct sk_buff *skb,
3751 __sum16 check, __wsum pseudo)
3753 skb->csum = ~pseudo;
3754 skb->ip_summed = CHECKSUM_COMPLETE;
3757 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3759 if (__skb_checksum_convert_check(skb)) \
3760 __skb_checksum_convert(skb, check, \
3761 compute_pseudo(skb, proto)); \
3764 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3765 u16 start, u16 offset)
3767 skb->ip_summed = CHECKSUM_PARTIAL;
3768 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3769 skb->csum_offset = offset - start;
3772 /* Update skbuf and packet to reflect the remote checksum offload operation.
3773 * When called, ptr indicates the starting point for skb->csum when
3774 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3775 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3777 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3778 int start, int offset, bool nopartial)
3783 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3787 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3788 __skb_checksum_complete(skb);
3789 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3792 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3794 /* Adjust skb->csum since we changed the packet */
3795 skb->csum = csum_add(skb->csum, delta);
3798 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3800 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3801 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3807 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3808 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3809 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3811 if (nfct && atomic_dec_and_test(&nfct->use))
3812 nf_conntrack_destroy(nfct);
3814 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3817 atomic_inc(&nfct->use);
3820 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3821 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3823 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3826 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3829 refcount_inc(&nf_bridge->use);
3831 #endif /* CONFIG_BRIDGE_NETFILTER */
3832 static inline void nf_reset(struct sk_buff *skb)
3834 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3835 nf_conntrack_put(skb_nfct(skb));
3838 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3839 nf_bridge_put(skb->nf_bridge);
3840 skb->nf_bridge = NULL;
3844 static inline void nf_reset_trace(struct sk_buff *skb)
3846 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3851 static inline void ipvs_reset(struct sk_buff *skb)
3853 #if IS_ENABLED(CONFIG_IP_VS)
3854 skb->ipvs_property = 0;
3858 /* Note: This doesn't put any conntrack and bridge info in dst. */
3859 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3862 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3863 dst->_nfct = src->_nfct;
3864 nf_conntrack_get(skb_nfct(src));
3866 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3867 dst->nf_bridge = src->nf_bridge;
3868 nf_bridge_get(src->nf_bridge);
3870 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3872 dst->nf_trace = src->nf_trace;
3876 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3878 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3879 nf_conntrack_put(skb_nfct(dst));
3881 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3882 nf_bridge_put(dst->nf_bridge);
3884 __nf_copy(dst, src, true);
3887 #ifdef CONFIG_NETWORK_SECMARK
3888 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3890 to->secmark = from->secmark;
3893 static inline void skb_init_secmark(struct sk_buff *skb)
3898 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3901 static inline void skb_init_secmark(struct sk_buff *skb)
3905 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3907 return !skb->destructor &&
3908 #if IS_ENABLED(CONFIG_XFRM)
3912 !skb->_skb_refdst &&
3913 !skb_has_frag_list(skb);
3916 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3918 skb->queue_mapping = queue_mapping;
3921 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3923 return skb->queue_mapping;
3926 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3928 to->queue_mapping = from->queue_mapping;
3931 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3933 skb->queue_mapping = rx_queue + 1;
3936 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3938 return skb->queue_mapping - 1;
3941 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3943 return skb->queue_mapping != 0;
3946 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3948 skb->dst_pending_confirm = val;
3951 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3953 return skb->dst_pending_confirm != 0;
3956 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3965 /* Keeps track of mac header offset relative to skb->head.
3966 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3967 * For non-tunnel skb it points to skb_mac_header() and for
3968 * tunnel skb it points to outer mac header.
3969 * Keeps track of level of encapsulation of network headers.
3980 #define SKB_SGO_CB_OFFSET 32
3981 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3983 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3985 return (skb_mac_header(inner_skb) - inner_skb->head) -
3986 SKB_GSO_CB(inner_skb)->mac_offset;
3989 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3991 int new_headroom, headroom;
3994 headroom = skb_headroom(skb);
3995 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3999 new_headroom = skb_headroom(skb);
4000 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4004 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4006 /* Do not update partial checksums if remote checksum is enabled. */
4007 if (skb->remcsum_offload)
4010 SKB_GSO_CB(skb)->csum = res;
4011 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4014 /* Compute the checksum for a gso segment. First compute the checksum value
4015 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4016 * then add in skb->csum (checksum from csum_start to end of packet).
4017 * skb->csum and csum_start are then updated to reflect the checksum of the
4018 * resultant packet starting from the transport header-- the resultant checksum
4019 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4022 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4024 unsigned char *csum_start = skb_transport_header(skb);
4025 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4026 __wsum partial = SKB_GSO_CB(skb)->csum;
4028 SKB_GSO_CB(skb)->csum = res;
4029 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4031 return csum_fold(csum_partial(csum_start, plen, partial));
4034 static inline bool skb_is_gso(const struct sk_buff *skb)
4036 return skb_shinfo(skb)->gso_size;
4039 /* Note: Should be called only if skb_is_gso(skb) is true */
4040 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4042 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4045 /* Note: Should be called only if skb_is_gso(skb) is true */
4046 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4048 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4051 static inline void skb_gso_reset(struct sk_buff *skb)
4053 skb_shinfo(skb)->gso_size = 0;
4054 skb_shinfo(skb)->gso_segs = 0;
4055 skb_shinfo(skb)->gso_type = 0;
4058 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4061 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4063 shinfo->gso_size += increment;
4066 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4069 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4071 shinfo->gso_size -= decrement;
4074 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4076 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4078 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4079 * wanted then gso_type will be set. */
4080 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4082 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4083 unlikely(shinfo->gso_type == 0)) {
4084 __skb_warn_lro_forwarding(skb);
4090 static inline void skb_forward_csum(struct sk_buff *skb)
4092 /* Unfortunately we don't support this one. Any brave souls? */
4093 if (skb->ip_summed == CHECKSUM_COMPLETE)
4094 skb->ip_summed = CHECKSUM_NONE;
4098 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4099 * @skb: skb to check
4101 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4102 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4103 * use this helper, to document places where we make this assertion.
4105 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4108 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4112 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4114 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4115 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4116 unsigned int transport_len,
4117 __sum16(*skb_chkf)(struct sk_buff *skb));
4120 * skb_head_is_locked - Determine if the skb->head is locked down
4121 * @skb: skb to check
4123 * The head on skbs build around a head frag can be removed if they are
4124 * not cloned. This function returns true if the skb head is locked down
4125 * due to either being allocated via kmalloc, or by being a clone with
4126 * multiple references to the head.
4128 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4130 return !skb->head_frag || skb_cloned(skb);
4133 /* Local Checksum Offload.
4134 * Compute outer checksum based on the assumption that the
4135 * inner checksum will be offloaded later.
4136 * See Documentation/networking/checksum-offloads.txt for
4137 * explanation of how this works.
4138 * Fill in outer checksum adjustment (e.g. with sum of outer
4139 * pseudo-header) before calling.
4140 * Also ensure that inner checksum is in linear data area.
4142 static inline __wsum lco_csum(struct sk_buff *skb)
4144 unsigned char *csum_start = skb_checksum_start(skb);
4145 unsigned char *l4_hdr = skb_transport_header(skb);
4148 /* Start with complement of inner checksum adjustment */
4149 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4152 /* Add in checksum of our headers (incl. outer checksum
4153 * adjustment filled in by caller) and return result.
4155 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4158 #endif /* __KERNEL__ */
4159 #endif /* _LINUX_SKBUFF_H */