]> Git Repo - linux.git/blob - drivers/scsi/aacraid/commsup.c
mfd: cros-ec: Increase maximum mkbp event size
[linux.git] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. ([email protected])
10  *               2016-2017 Microsemi Corp. ([email protected])
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *  commsup.c
28  *
29  * Abstract: Contain all routines that are required for FSA host/adapter
30  *    communication.
31  *
32  */
33
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/crash_dump.h>
37 #include <linux/types.h>
38 #include <linux/sched.h>
39 #include <linux/pci.h>
40 #include <linux/spinlock.h>
41 #include <linux/slab.h>
42 #include <linux/completion.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46 #include <linux/interrupt.h>
47 #include <linux/semaphore.h>
48 #include <linux/bcd.h>
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_host.h>
51 #include <scsi/scsi_device.h>
52 #include <scsi/scsi_cmnd.h>
53
54 #include "aacraid.h"
55
56 /**
57  *      fib_map_alloc           -       allocate the fib objects
58  *      @dev: Adapter to allocate for
59  *
60  *      Allocate and map the shared PCI space for the FIB blocks used to
61  *      talk to the Adaptec firmware.
62  */
63
64 static int fib_map_alloc(struct aac_dev *dev)
65 {
66         if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
67                 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
68         else
69                 dev->max_cmd_size = dev->max_fib_size;
70         if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
71                 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
72         } else {
73                 dev->max_cmd_size = dev->max_fib_size;
74         }
75
76         dprintk((KERN_INFO
77           "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
78           &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
79           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
80         dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
81                 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
82                 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
83                 &dev->hw_fib_pa, GFP_KERNEL);
84         if (dev->hw_fib_va == NULL)
85                 return -ENOMEM;
86         return 0;
87 }
88
89 /**
90  *      aac_fib_map_free                -       free the fib objects
91  *      @dev: Adapter to free
92  *
93  *      Free the PCI mappings and the memory allocated for FIB blocks
94  *      on this adapter.
95  */
96
97 void aac_fib_map_free(struct aac_dev *dev)
98 {
99         size_t alloc_size;
100         size_t fib_size;
101         int num_fibs;
102
103         if(!dev->hw_fib_va || !dev->max_cmd_size)
104                 return;
105
106         num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
107         fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
108         alloc_size = fib_size * num_fibs + ALIGN32 - 1;
109
110         dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
111                           dev->hw_fib_pa);
112
113         dev->hw_fib_va = NULL;
114         dev->hw_fib_pa = 0;
115 }
116
117 void aac_fib_vector_assign(struct aac_dev *dev)
118 {
119         u32 i = 0;
120         u32 vector = 1;
121         struct fib *fibptr = NULL;
122
123         for (i = 0, fibptr = &dev->fibs[i];
124                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
125                 i++, fibptr++) {
126                 if ((dev->max_msix == 1) ||
127                   (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
128                         - dev->vector_cap))) {
129                         fibptr->vector_no = 0;
130                 } else {
131                         fibptr->vector_no = vector;
132                         vector++;
133                         if (vector == dev->max_msix)
134                                 vector = 1;
135                 }
136         }
137 }
138
139 /**
140  *      aac_fib_setup   -       setup the fibs
141  *      @dev: Adapter to set up
142  *
143  *      Allocate the PCI space for the fibs, map it and then initialise the
144  *      fib area, the unmapped fib data and also the free list
145  */
146
147 int aac_fib_setup(struct aac_dev * dev)
148 {
149         struct fib *fibptr;
150         struct hw_fib *hw_fib;
151         dma_addr_t hw_fib_pa;
152         int i;
153         u32 max_cmds;
154
155         while (((i = fib_map_alloc(dev)) == -ENOMEM)
156          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
157                 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
158                 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
159                 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
160                         dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
161         }
162         if (i<0)
163                 return -ENOMEM;
164
165         memset(dev->hw_fib_va, 0,
166                 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
167                 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
168
169         /* 32 byte alignment for PMC */
170         hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
171         hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
172                                         (hw_fib_pa - dev->hw_fib_pa));
173
174         /* add Xport header */
175         hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
176                 sizeof(struct aac_fib_xporthdr));
177         hw_fib_pa += sizeof(struct aac_fib_xporthdr);
178
179         /*
180          *      Initialise the fibs
181          */
182         for (i = 0, fibptr = &dev->fibs[i];
183                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
184                 i++, fibptr++)
185         {
186                 fibptr->flags = 0;
187                 fibptr->size = sizeof(struct fib);
188                 fibptr->dev = dev;
189                 fibptr->hw_fib_va = hw_fib;
190                 fibptr->data = (void *) fibptr->hw_fib_va->data;
191                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
192                 sema_init(&fibptr->event_wait, 0);
193                 spin_lock_init(&fibptr->event_lock);
194                 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
195                 hw_fib->header.SenderSize =
196                         cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
197                 fibptr->hw_fib_pa = hw_fib_pa;
198                 fibptr->hw_sgl_pa = hw_fib_pa +
199                         offsetof(struct aac_hba_cmd_req, sge[2]);
200                 /*
201                  * one element is for the ptr to the separate sg list,
202                  * second element for 32 byte alignment
203                  */
204                 fibptr->hw_error_pa = hw_fib_pa +
205                         offsetof(struct aac_native_hba, resp.resp_bytes[0]);
206
207                 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
208                         dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
209                 hw_fib_pa = hw_fib_pa +
210                         dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
211         }
212
213         /*
214          *Assign vector numbers to fibs
215          */
216         aac_fib_vector_assign(dev);
217
218         /*
219          *      Add the fib chain to the free list
220          */
221         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
222         /*
223         *       Set 8 fibs aside for management tools
224         */
225         dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
226         return 0;
227 }
228
229 /**
230  *      aac_fib_alloc_tag-allocate a fib using tags
231  *      @dev: Adapter to allocate the fib for
232  *
233  *      Allocate a fib from the adapter fib pool using tags
234  *      from the blk layer.
235  */
236
237 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
238 {
239         struct fib *fibptr;
240
241         fibptr = &dev->fibs[scmd->request->tag];
242         /*
243          *      Null out fields that depend on being zero at the start of
244          *      each I/O
245          */
246         fibptr->hw_fib_va->header.XferState = 0;
247         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
248         fibptr->callback_data = NULL;
249         fibptr->callback = NULL;
250
251         return fibptr;
252 }
253
254 /**
255  *      aac_fib_alloc   -       allocate a fib
256  *      @dev: Adapter to allocate the fib for
257  *
258  *      Allocate a fib from the adapter fib pool. If the pool is empty we
259  *      return NULL.
260  */
261
262 struct fib *aac_fib_alloc(struct aac_dev *dev)
263 {
264         struct fib * fibptr;
265         unsigned long flags;
266         spin_lock_irqsave(&dev->fib_lock, flags);
267         fibptr = dev->free_fib;
268         if(!fibptr){
269                 spin_unlock_irqrestore(&dev->fib_lock, flags);
270                 return fibptr;
271         }
272         dev->free_fib = fibptr->next;
273         spin_unlock_irqrestore(&dev->fib_lock, flags);
274         /*
275          *      Set the proper node type code and node byte size
276          */
277         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
278         fibptr->size = sizeof(struct fib);
279         /*
280          *      Null out fields that depend on being zero at the start of
281          *      each I/O
282          */
283         fibptr->hw_fib_va->header.XferState = 0;
284         fibptr->flags = 0;
285         fibptr->callback = NULL;
286         fibptr->callback_data = NULL;
287
288         return fibptr;
289 }
290
291 /**
292  *      aac_fib_free    -       free a fib
293  *      @fibptr: fib to free up
294  *
295  *      Frees up a fib and places it on the appropriate queue
296  */
297
298 void aac_fib_free(struct fib *fibptr)
299 {
300         unsigned long flags;
301
302         if (fibptr->done == 2)
303                 return;
304
305         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
306         if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
307                 aac_config.fib_timeouts++;
308         if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
309                 fibptr->hw_fib_va->header.XferState != 0) {
310                 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
311                          (void*)fibptr,
312                          le32_to_cpu(fibptr->hw_fib_va->header.XferState));
313         }
314         fibptr->next = fibptr->dev->free_fib;
315         fibptr->dev->free_fib = fibptr;
316         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
317 }
318
319 /**
320  *      aac_fib_init    -       initialise a fib
321  *      @fibptr: The fib to initialize
322  *
323  *      Set up the generic fib fields ready for use
324  */
325
326 void aac_fib_init(struct fib *fibptr)
327 {
328         struct hw_fib *hw_fib = fibptr->hw_fib_va;
329
330         memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
331         hw_fib->header.StructType = FIB_MAGIC;
332         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
333         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
334         hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
335         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
336 }
337
338 /**
339  *      fib_deallocate          -       deallocate a fib
340  *      @fibptr: fib to deallocate
341  *
342  *      Will deallocate and return to the free pool the FIB pointed to by the
343  *      caller.
344  */
345
346 static void fib_dealloc(struct fib * fibptr)
347 {
348         struct hw_fib *hw_fib = fibptr->hw_fib_va;
349         hw_fib->header.XferState = 0;
350 }
351
352 /*
353  *      Commuication primitives define and support the queuing method we use to
354  *      support host to adapter commuication. All queue accesses happen through
355  *      these routines and are the only routines which have a knowledge of the
356  *       how these queues are implemented.
357  */
358
359 /**
360  *      aac_get_entry           -       get a queue entry
361  *      @dev: Adapter
362  *      @qid: Queue Number
363  *      @entry: Entry return
364  *      @index: Index return
365  *      @nonotify: notification control
366  *
367  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
368  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
369  *      returned.
370  */
371
372 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
373 {
374         struct aac_queue * q;
375         unsigned long idx;
376
377         /*
378          *      All of the queues wrap when they reach the end, so we check
379          *      to see if they have reached the end and if they have we just
380          *      set the index back to zero. This is a wrap. You could or off
381          *      the high bits in all updates but this is a bit faster I think.
382          */
383
384         q = &dev->queues->queue[qid];
385
386         idx = *index = le32_to_cpu(*(q->headers.producer));
387         /* Interrupt Moderation, only interrupt for first two entries */
388         if (idx != le32_to_cpu(*(q->headers.consumer))) {
389                 if (--idx == 0) {
390                         if (qid == AdapNormCmdQueue)
391                                 idx = ADAP_NORM_CMD_ENTRIES;
392                         else
393                                 idx = ADAP_NORM_RESP_ENTRIES;
394                 }
395                 if (idx != le32_to_cpu(*(q->headers.consumer)))
396                         *nonotify = 1;
397         }
398
399         if (qid == AdapNormCmdQueue) {
400                 if (*index >= ADAP_NORM_CMD_ENTRIES)
401                         *index = 0; /* Wrap to front of the Producer Queue. */
402         } else {
403                 if (*index >= ADAP_NORM_RESP_ENTRIES)
404                         *index = 0; /* Wrap to front of the Producer Queue. */
405         }
406
407         /* Queue is full */
408         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
409                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
410                                 qid, atomic_read(&q->numpending));
411                 return 0;
412         } else {
413                 *entry = q->base + *index;
414                 return 1;
415         }
416 }
417
418 /**
419  *      aac_queue_get           -       get the next free QE
420  *      @dev: Adapter
421  *      @index: Returned index
422  *      @priority: Priority of fib
423  *      @fib: Fib to associate with the queue entry
424  *      @wait: Wait if queue full
425  *      @fibptr: Driver fib object to go with fib
426  *      @nonotify: Don't notify the adapter
427  *
428  *      Gets the next free QE off the requested priorty adapter command
429  *      queue and associates the Fib with the QE. The QE represented by
430  *      index is ready to insert on the queue when this routine returns
431  *      success.
432  */
433
434 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
435 {
436         struct aac_entry * entry = NULL;
437         int map = 0;
438
439         if (qid == AdapNormCmdQueue) {
440                 /*  if no entries wait for some if caller wants to */
441                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
442                         printk(KERN_ERR "GetEntries failed\n");
443                 }
444                 /*
445                  *      Setup queue entry with a command, status and fib mapped
446                  */
447                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
448                 map = 1;
449         } else {
450                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
451                         /* if no entries wait for some if caller wants to */
452                 }
453                 /*
454                  *      Setup queue entry with command, status and fib mapped
455                  */
456                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
457                 entry->addr = hw_fib->header.SenderFibAddress;
458                         /* Restore adapters pointer to the FIB */
459                 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
460                 map = 0;
461         }
462         /*
463          *      If MapFib is true than we need to map the Fib and put pointers
464          *      in the queue entry.
465          */
466         if (map)
467                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
468         return 0;
469 }
470
471 /*
472  *      Define the highest level of host to adapter communication routines.
473  *      These routines will support host to adapter FS commuication. These
474  *      routines have no knowledge of the commuication method used. This level
475  *      sends and receives FIBs. This level has no knowledge of how these FIBs
476  *      get passed back and forth.
477  */
478
479 /**
480  *      aac_fib_send    -       send a fib to the adapter
481  *      @command: Command to send
482  *      @fibptr: The fib
483  *      @size: Size of fib data area
484  *      @priority: Priority of Fib
485  *      @wait: Async/sync select
486  *      @reply: True if a reply is wanted
487  *      @callback: Called with reply
488  *      @callback_data: Passed to callback
489  *
490  *      Sends the requested FIB to the adapter and optionally will wait for a
491  *      response FIB. If the caller does not wish to wait for a response than
492  *      an event to wait on must be supplied. This event will be set when a
493  *      response FIB is received from the adapter.
494  */
495
496 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
497                 int priority, int wait, int reply, fib_callback callback,
498                 void *callback_data)
499 {
500         struct aac_dev * dev = fibptr->dev;
501         struct hw_fib * hw_fib = fibptr->hw_fib_va;
502         unsigned long flags = 0;
503         unsigned long mflags = 0;
504         unsigned long sflags = 0;
505
506         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
507                 return -EBUSY;
508
509         if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
510                 return -EINVAL;
511
512         /*
513          *      There are 5 cases with the wait and response requested flags.
514          *      The only invalid cases are if the caller requests to wait and
515          *      does not request a response and if the caller does not want a
516          *      response and the Fib is not allocated from pool. If a response
517          *      is not requesed the Fib will just be deallocaed by the DPC
518          *      routine when the response comes back from the adapter. No
519          *      further processing will be done besides deleting the Fib. We
520          *      will have a debug mode where the adapter can notify the host
521          *      it had a problem and the host can log that fact.
522          */
523         fibptr->flags = 0;
524         if (wait && !reply) {
525                 return -EINVAL;
526         } else if (!wait && reply) {
527                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
528                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
529         } else if (!wait && !reply) {
530                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
531                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
532         } else if (wait && reply) {
533                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
534                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
535         }
536         /*
537          *      Map the fib into 32bits by using the fib number
538          */
539
540         hw_fib->header.SenderFibAddress =
541                 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
542
543         /* use the same shifted value for handle to be compatible
544          * with the new native hba command handle
545          */
546         hw_fib->header.Handle =
547                 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
548
549         /*
550          *      Set FIB state to indicate where it came from and if we want a
551          *      response from the adapter. Also load the command from the
552          *      caller.
553          *
554          *      Map the hw fib pointer as a 32bit value
555          */
556         hw_fib->header.Command = cpu_to_le16(command);
557         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
558         /*
559          *      Set the size of the Fib we want to send to the adapter
560          */
561         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
562         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
563                 return -EMSGSIZE;
564         }
565         /*
566          *      Get a queue entry connect the FIB to it and send an notify
567          *      the adapter a command is ready.
568          */
569         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
570
571         /*
572          *      Fill in the Callback and CallbackContext if we are not
573          *      going to wait.
574          */
575         if (!wait) {
576                 fibptr->callback = callback;
577                 fibptr->callback_data = callback_data;
578                 fibptr->flags = FIB_CONTEXT_FLAG;
579         }
580
581         fibptr->done = 0;
582
583         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
584
585         dprintk((KERN_DEBUG "Fib contents:.\n"));
586         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
587         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
588         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
589         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
590         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
591         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
592
593         if (!dev->queues)
594                 return -EBUSY;
595
596         if (wait) {
597
598                 spin_lock_irqsave(&dev->manage_lock, mflags);
599                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
600                         printk(KERN_INFO "No management Fibs Available:%d\n",
601                                                 dev->management_fib_count);
602                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
603                         return -EBUSY;
604                 }
605                 dev->management_fib_count++;
606                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
607                 spin_lock_irqsave(&fibptr->event_lock, flags);
608         }
609
610         if (dev->sync_mode) {
611                 if (wait)
612                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
613                 spin_lock_irqsave(&dev->sync_lock, sflags);
614                 if (dev->sync_fib) {
615                         list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
616                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
617                 } else {
618                         dev->sync_fib = fibptr;
619                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
620                         aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
621                                 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
622                                 NULL, NULL, NULL, NULL, NULL);
623                 }
624                 if (wait) {
625                         fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
626                         if (down_interruptible(&fibptr->event_wait)) {
627                                 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
628                                 return -EFAULT;
629                         }
630                         return 0;
631                 }
632                 return -EINPROGRESS;
633         }
634
635         if (aac_adapter_deliver(fibptr) != 0) {
636                 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
637                 if (wait) {
638                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
639                         spin_lock_irqsave(&dev->manage_lock, mflags);
640                         dev->management_fib_count--;
641                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
642                 }
643                 return -EBUSY;
644         }
645
646
647         /*
648          *      If the caller wanted us to wait for response wait now.
649          */
650
651         if (wait) {
652                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
653                 /* Only set for first known interruptable command */
654                 if (wait < 0) {
655                         /*
656                          * *VERY* Dangerous to time out a command, the
657                          * assumption is made that we have no hope of
658                          * functioning because an interrupt routing or other
659                          * hardware failure has occurred.
660                          */
661                         unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
662                         while (down_trylock(&fibptr->event_wait)) {
663                                 int blink;
664                                 if (time_is_before_eq_jiffies(timeout)) {
665                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
666                                         atomic_dec(&q->numpending);
667                                         if (wait == -1) {
668                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
669                                                   "Usually a result of a PCI interrupt routing problem;\n"
670                                                   "update mother board BIOS or consider utilizing one of\n"
671                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
672                                         }
673                                         return -ETIMEDOUT;
674                                 }
675
676                                 if (unlikely(pci_channel_offline(dev->pdev)))
677                                         return -EFAULT;
678
679                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
680                                         if (wait == -1) {
681                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
682                                                   "Usually a result of a serious unrecoverable hardware problem\n",
683                                                   blink);
684                                         }
685                                         return -EFAULT;
686                                 }
687                                 /*
688                                  * Allow other processes / CPUS to use core
689                                  */
690                                 schedule();
691                         }
692                 } else if (down_interruptible(&fibptr->event_wait)) {
693                         /* Do nothing ... satisfy
694                          * down_interruptible must_check */
695                 }
696
697                 spin_lock_irqsave(&fibptr->event_lock, flags);
698                 if (fibptr->done == 0) {
699                         fibptr->done = 2; /* Tell interrupt we aborted */
700                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
701                         return -ERESTARTSYS;
702                 }
703                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
704                 BUG_ON(fibptr->done == 0);
705
706                 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
707                         return -ETIMEDOUT;
708                 return 0;
709         }
710         /*
711          *      If the user does not want a response than return success otherwise
712          *      return pending
713          */
714         if (reply)
715                 return -EINPROGRESS;
716         else
717                 return 0;
718 }
719
720 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
721                 void *callback_data)
722 {
723         struct aac_dev *dev = fibptr->dev;
724         int wait;
725         unsigned long flags = 0;
726         unsigned long mflags = 0;
727         struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
728                         fibptr->hw_fib_va;
729
730         fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
731         if (callback) {
732                 wait = 0;
733                 fibptr->callback = callback;
734                 fibptr->callback_data = callback_data;
735         } else
736                 wait = 1;
737
738
739         hbacmd->iu_type = command;
740
741         if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
742                 /* bit1 of request_id must be 0 */
743                 hbacmd->request_id =
744                         cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
745                 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
746         } else if (command != HBA_IU_TYPE_SCSI_TM_REQ)
747                 return -EINVAL;
748
749
750         if (wait) {
751                 spin_lock_irqsave(&dev->manage_lock, mflags);
752                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
753                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
754                         return -EBUSY;
755                 }
756                 dev->management_fib_count++;
757                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
758                 spin_lock_irqsave(&fibptr->event_lock, flags);
759         }
760
761         if (aac_adapter_deliver(fibptr) != 0) {
762                 if (wait) {
763                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
764                         spin_lock_irqsave(&dev->manage_lock, mflags);
765                         dev->management_fib_count--;
766                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
767                 }
768                 return -EBUSY;
769         }
770         FIB_COUNTER_INCREMENT(aac_config.NativeSent);
771
772         if (wait) {
773
774                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
775
776                 if (unlikely(pci_channel_offline(dev->pdev)))
777                         return -EFAULT;
778
779                 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
780                 if (down_interruptible(&fibptr->event_wait))
781                         fibptr->done = 2;
782                 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
783
784                 spin_lock_irqsave(&fibptr->event_lock, flags);
785                 if ((fibptr->done == 0) || (fibptr->done == 2)) {
786                         fibptr->done = 2; /* Tell interrupt we aborted */
787                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
788                         return -ERESTARTSYS;
789                 }
790                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
791                 WARN_ON(fibptr->done == 0);
792
793                 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
794                         return -ETIMEDOUT;
795
796                 return 0;
797         }
798
799         return -EINPROGRESS;
800 }
801
802 /**
803  *      aac_consumer_get        -       get the top of the queue
804  *      @dev: Adapter
805  *      @q: Queue
806  *      @entry: Return entry
807  *
808  *      Will return a pointer to the entry on the top of the queue requested that
809  *      we are a consumer of, and return the address of the queue entry. It does
810  *      not change the state of the queue.
811  */
812
813 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
814 {
815         u32 index;
816         int status;
817         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
818                 status = 0;
819         } else {
820                 /*
821                  *      The consumer index must be wrapped if we have reached
822                  *      the end of the queue, else we just use the entry
823                  *      pointed to by the header index
824                  */
825                 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
826                         index = 0;
827                 else
828                         index = le32_to_cpu(*q->headers.consumer);
829                 *entry = q->base + index;
830                 status = 1;
831         }
832         return(status);
833 }
834
835 /**
836  *      aac_consumer_free       -       free consumer entry
837  *      @dev: Adapter
838  *      @q: Queue
839  *      @qid: Queue ident
840  *
841  *      Frees up the current top of the queue we are a consumer of. If the
842  *      queue was full notify the producer that the queue is no longer full.
843  */
844
845 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
846 {
847         int wasfull = 0;
848         u32 notify;
849
850         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
851                 wasfull = 1;
852
853         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
854                 *q->headers.consumer = cpu_to_le32(1);
855         else
856                 le32_add_cpu(q->headers.consumer, 1);
857
858         if (wasfull) {
859                 switch (qid) {
860
861                 case HostNormCmdQueue:
862                         notify = HostNormCmdNotFull;
863                         break;
864                 case HostNormRespQueue:
865                         notify = HostNormRespNotFull;
866                         break;
867                 default:
868                         BUG();
869                         return;
870                 }
871                 aac_adapter_notify(dev, notify);
872         }
873 }
874
875 /**
876  *      aac_fib_adapter_complete        -       complete adapter issued fib
877  *      @fibptr: fib to complete
878  *      @size: size of fib
879  *
880  *      Will do all necessary work to complete a FIB that was sent from
881  *      the adapter.
882  */
883
884 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
885 {
886         struct hw_fib * hw_fib = fibptr->hw_fib_va;
887         struct aac_dev * dev = fibptr->dev;
888         struct aac_queue * q;
889         unsigned long nointr = 0;
890         unsigned long qflags;
891
892         if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
893                 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
894                 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
895                 kfree(hw_fib);
896                 return 0;
897         }
898
899         if (hw_fib->header.XferState == 0) {
900                 if (dev->comm_interface == AAC_COMM_MESSAGE)
901                         kfree(hw_fib);
902                 return 0;
903         }
904         /*
905          *      If we plan to do anything check the structure type first.
906          */
907         if (hw_fib->header.StructType != FIB_MAGIC &&
908             hw_fib->header.StructType != FIB_MAGIC2 &&
909             hw_fib->header.StructType != FIB_MAGIC2_64) {
910                 if (dev->comm_interface == AAC_COMM_MESSAGE)
911                         kfree(hw_fib);
912                 return -EINVAL;
913         }
914         /*
915          *      This block handles the case where the adapter had sent us a
916          *      command and we have finished processing the command. We
917          *      call completeFib when we are done processing the command
918          *      and want to send a response back to the adapter. This will
919          *      send the completed cdb to the adapter.
920          */
921         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
922                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
923                         kfree (hw_fib);
924                 } else {
925                         u32 index;
926                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
927                         if (size) {
928                                 size += sizeof(struct aac_fibhdr);
929                                 if (size > le16_to_cpu(hw_fib->header.SenderSize))
930                                         return -EMSGSIZE;
931                                 hw_fib->header.Size = cpu_to_le16(size);
932                         }
933                         q = &dev->queues->queue[AdapNormRespQueue];
934                         spin_lock_irqsave(q->lock, qflags);
935                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
936                         *(q->headers.producer) = cpu_to_le32(index + 1);
937                         spin_unlock_irqrestore(q->lock, qflags);
938                         if (!(nointr & (int)aac_config.irq_mod))
939                                 aac_adapter_notify(dev, AdapNormRespQueue);
940                 }
941         } else {
942                 printk(KERN_WARNING "aac_fib_adapter_complete: "
943                         "Unknown xferstate detected.\n");
944                 BUG();
945         }
946         return 0;
947 }
948
949 /**
950  *      aac_fib_complete        -       fib completion handler
951  *      @fib: FIB to complete
952  *
953  *      Will do all necessary work to complete a FIB.
954  */
955
956 int aac_fib_complete(struct fib *fibptr)
957 {
958         struct hw_fib * hw_fib = fibptr->hw_fib_va;
959
960         if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
961                 fib_dealloc(fibptr);
962                 return 0;
963         }
964
965         /*
966          *      Check for a fib which has already been completed or with a
967          *      status wait timeout
968          */
969
970         if (hw_fib->header.XferState == 0 || fibptr->done == 2)
971                 return 0;
972         /*
973          *      If we plan to do anything check the structure type first.
974          */
975
976         if (hw_fib->header.StructType != FIB_MAGIC &&
977             hw_fib->header.StructType != FIB_MAGIC2 &&
978             hw_fib->header.StructType != FIB_MAGIC2_64)
979                 return -EINVAL;
980         /*
981          *      This block completes a cdb which orginated on the host and we
982          *      just need to deallocate the cdb or reinit it. At this point the
983          *      command is complete that we had sent to the adapter and this
984          *      cdb could be reused.
985          */
986
987         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
988                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
989         {
990                 fib_dealloc(fibptr);
991         }
992         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
993         {
994                 /*
995                  *      This handles the case when the host has aborted the I/O
996                  *      to the adapter because the adapter is not responding
997                  */
998                 fib_dealloc(fibptr);
999         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
1000                 fib_dealloc(fibptr);
1001         } else {
1002                 BUG();
1003         }
1004         return 0;
1005 }
1006
1007 /**
1008  *      aac_printf      -       handle printf from firmware
1009  *      @dev: Adapter
1010  *      @val: Message info
1011  *
1012  *      Print a message passed to us by the controller firmware on the
1013  *      Adaptec board
1014  */
1015
1016 void aac_printf(struct aac_dev *dev, u32 val)
1017 {
1018         char *cp = dev->printfbuf;
1019         if (dev->printf_enabled)
1020         {
1021                 int length = val & 0xffff;
1022                 int level = (val >> 16) & 0xffff;
1023
1024                 /*
1025                  *      The size of the printfbuf is set in port.c
1026                  *      There is no variable or define for it
1027                  */
1028                 if (length > 255)
1029                         length = 255;
1030                 if (cp[length] != 0)
1031                         cp[length] = 0;
1032                 if (level == LOG_AAC_HIGH_ERROR)
1033                         printk(KERN_WARNING "%s:%s", dev->name, cp);
1034                 else
1035                         printk(KERN_INFO "%s:%s", dev->name, cp);
1036         }
1037         memset(cp, 0, 256);
1038 }
1039
1040 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1041 {
1042         return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1043 }
1044
1045
1046 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1047 {
1048         switch (aac_aif_data(aifcmd, 1)) {
1049         case AifBuCacheDataLoss:
1050                 if (aac_aif_data(aifcmd, 2))
1051                         dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1052                         aac_aif_data(aifcmd, 2));
1053                 else
1054                         dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1055                 break;
1056         case AifBuCacheDataRecover:
1057                 if (aac_aif_data(aifcmd, 2))
1058                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1059                         aac_aif_data(aifcmd, 2));
1060                 else
1061                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1062                 break;
1063         }
1064 }
1065
1066 /**
1067  *      aac_handle_aif          -       Handle a message from the firmware
1068  *      @dev: Which adapter this fib is from
1069  *      @fibptr: Pointer to fibptr from adapter
1070  *
1071  *      This routine handles a driver notify fib from the adapter and
1072  *      dispatches it to the appropriate routine for handling.
1073  */
1074
1075 #define AIF_SNIFF_TIMEOUT       (500*HZ)
1076 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1077 {
1078         struct hw_fib * hw_fib = fibptr->hw_fib_va;
1079         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1080         u32 channel, id, lun, container;
1081         struct scsi_device *device;
1082         enum {
1083                 NOTHING,
1084                 DELETE,
1085                 ADD,
1086                 CHANGE
1087         } device_config_needed = NOTHING;
1088
1089         /* Sniff for container changes */
1090
1091         if (!dev || !dev->fsa_dev)
1092                 return;
1093         container = channel = id = lun = (u32)-1;
1094
1095         /*
1096          *      We have set this up to try and minimize the number of
1097          * re-configures that take place. As a result of this when
1098          * certain AIF's come in we will set a flag waiting for another
1099          * type of AIF before setting the re-config flag.
1100          */
1101         switch (le32_to_cpu(aifcmd->command)) {
1102         case AifCmdDriverNotify:
1103                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1104                 case AifRawDeviceRemove:
1105                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1106                         if ((container >> 28)) {
1107                                 container = (u32)-1;
1108                                 break;
1109                         }
1110                         channel = (container >> 24) & 0xF;
1111                         if (channel >= dev->maximum_num_channels) {
1112                                 container = (u32)-1;
1113                                 break;
1114                         }
1115                         id = container & 0xFFFF;
1116                         if (id >= dev->maximum_num_physicals) {
1117                                 container = (u32)-1;
1118                                 break;
1119                         }
1120                         lun = (container >> 16) & 0xFF;
1121                         container = (u32)-1;
1122                         channel = aac_phys_to_logical(channel);
1123                         device_config_needed = DELETE;
1124                         break;
1125
1126                 /*
1127                  *      Morph or Expand complete
1128                  */
1129                 case AifDenMorphComplete:
1130                 case AifDenVolumeExtendComplete:
1131                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1132                         if (container >= dev->maximum_num_containers)
1133                                 break;
1134
1135                         /*
1136                          *      Find the scsi_device associated with the SCSI
1137                          * address. Make sure we have the right array, and if
1138                          * so set the flag to initiate a new re-config once we
1139                          * see an AifEnConfigChange AIF come through.
1140                          */
1141
1142                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1143                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1144                                         CONTAINER_TO_CHANNEL(container),
1145                                         CONTAINER_TO_ID(container),
1146                                         CONTAINER_TO_LUN(container));
1147                                 if (device) {
1148                                         dev->fsa_dev[container].config_needed = CHANGE;
1149                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1150                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1151                                         scsi_device_put(device);
1152                                 }
1153                         }
1154                 }
1155
1156                 /*
1157                  *      If we are waiting on something and this happens to be
1158                  * that thing then set the re-configure flag.
1159                  */
1160                 if (container != (u32)-1) {
1161                         if (container >= dev->maximum_num_containers)
1162                                 break;
1163                         if ((dev->fsa_dev[container].config_waiting_on ==
1164                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1165                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1166                                 dev->fsa_dev[container].config_waiting_on = 0;
1167                 } else for (container = 0;
1168                     container < dev->maximum_num_containers; ++container) {
1169                         if ((dev->fsa_dev[container].config_waiting_on ==
1170                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1171                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1172                                 dev->fsa_dev[container].config_waiting_on = 0;
1173                 }
1174                 break;
1175
1176         case AifCmdEventNotify:
1177                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1178                 case AifEnBatteryEvent:
1179                         dev->cache_protected =
1180                                 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1181                         break;
1182                 /*
1183                  *      Add an Array.
1184                  */
1185                 case AifEnAddContainer:
1186                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1187                         if (container >= dev->maximum_num_containers)
1188                                 break;
1189                         dev->fsa_dev[container].config_needed = ADD;
1190                         dev->fsa_dev[container].config_waiting_on =
1191                                 AifEnConfigChange;
1192                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1193                         break;
1194
1195                 /*
1196                  *      Delete an Array.
1197                  */
1198                 case AifEnDeleteContainer:
1199                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1200                         if (container >= dev->maximum_num_containers)
1201                                 break;
1202                         dev->fsa_dev[container].config_needed = DELETE;
1203                         dev->fsa_dev[container].config_waiting_on =
1204                                 AifEnConfigChange;
1205                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1206                         break;
1207
1208                 /*
1209                  *      Container change detected. If we currently are not
1210                  * waiting on something else, setup to wait on a Config Change.
1211                  */
1212                 case AifEnContainerChange:
1213                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1214                         if (container >= dev->maximum_num_containers)
1215                                 break;
1216                         if (dev->fsa_dev[container].config_waiting_on &&
1217                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1218                                 break;
1219                         dev->fsa_dev[container].config_needed = CHANGE;
1220                         dev->fsa_dev[container].config_waiting_on =
1221                                 AifEnConfigChange;
1222                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1223                         break;
1224
1225                 case AifEnConfigChange:
1226                         break;
1227
1228                 case AifEnAddJBOD:
1229                 case AifEnDeleteJBOD:
1230                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1231                         if ((container >> 28)) {
1232                                 container = (u32)-1;
1233                                 break;
1234                         }
1235                         channel = (container >> 24) & 0xF;
1236                         if (channel >= dev->maximum_num_channels) {
1237                                 container = (u32)-1;
1238                                 break;
1239                         }
1240                         id = container & 0xFFFF;
1241                         if (id >= dev->maximum_num_physicals) {
1242                                 container = (u32)-1;
1243                                 break;
1244                         }
1245                         lun = (container >> 16) & 0xFF;
1246                         container = (u32)-1;
1247                         channel = aac_phys_to_logical(channel);
1248                         device_config_needed =
1249                           (((__le32 *)aifcmd->data)[0] ==
1250                             cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1251                         if (device_config_needed == ADD) {
1252                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1253                                         channel,
1254                                         id,
1255                                         lun);
1256                                 if (device) {
1257                                         scsi_remove_device(device);
1258                                         scsi_device_put(device);
1259                                 }
1260                         }
1261                         break;
1262
1263                 case AifEnEnclosureManagement:
1264                         /*
1265                          * If in JBOD mode, automatic exposure of new
1266                          * physical target to be suppressed until configured.
1267                          */
1268                         if (dev->jbod)
1269                                 break;
1270                         switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1271                         case EM_DRIVE_INSERTION:
1272                         case EM_DRIVE_REMOVAL:
1273                         case EM_SES_DRIVE_INSERTION:
1274                         case EM_SES_DRIVE_REMOVAL:
1275                                 container = le32_to_cpu(
1276                                         ((__le32 *)aifcmd->data)[2]);
1277                                 if ((container >> 28)) {
1278                                         container = (u32)-1;
1279                                         break;
1280                                 }
1281                                 channel = (container >> 24) & 0xF;
1282                                 if (channel >= dev->maximum_num_channels) {
1283                                         container = (u32)-1;
1284                                         break;
1285                                 }
1286                                 id = container & 0xFFFF;
1287                                 lun = (container >> 16) & 0xFF;
1288                                 container = (u32)-1;
1289                                 if (id >= dev->maximum_num_physicals) {
1290                                         /* legacy dev_t ? */
1291                                         if ((0x2000 <= id) || lun || channel ||
1292                                           ((channel = (id >> 7) & 0x3F) >=
1293                                           dev->maximum_num_channels))
1294                                                 break;
1295                                         lun = (id >> 4) & 7;
1296                                         id &= 0xF;
1297                                 }
1298                                 channel = aac_phys_to_logical(channel);
1299                                 device_config_needed =
1300                                   ((((__le32 *)aifcmd->data)[3]
1301                                     == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1302                                     (((__le32 *)aifcmd->data)[3]
1303                                     == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1304                                   ADD : DELETE;
1305                                 break;
1306                         }
1307                         case AifBuManagerEvent:
1308                                 aac_handle_aif_bu(dev, aifcmd);
1309                         break;
1310                 }
1311
1312                 /*
1313                  *      If we are waiting on something and this happens to be
1314                  * that thing then set the re-configure flag.
1315                  */
1316                 if (container != (u32)-1) {
1317                         if (container >= dev->maximum_num_containers)
1318                                 break;
1319                         if ((dev->fsa_dev[container].config_waiting_on ==
1320                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1321                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1322                                 dev->fsa_dev[container].config_waiting_on = 0;
1323                 } else for (container = 0;
1324                     container < dev->maximum_num_containers; ++container) {
1325                         if ((dev->fsa_dev[container].config_waiting_on ==
1326                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1327                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1328                                 dev->fsa_dev[container].config_waiting_on = 0;
1329                 }
1330                 break;
1331
1332         case AifCmdJobProgress:
1333                 /*
1334                  *      These are job progress AIF's. When a Clear is being
1335                  * done on a container it is initially created then hidden from
1336                  * the OS. When the clear completes we don't get a config
1337                  * change so we monitor the job status complete on a clear then
1338                  * wait for a container change.
1339                  */
1340
1341                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1342                     (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1343                      ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1344                         for (container = 0;
1345                             container < dev->maximum_num_containers;
1346                             ++container) {
1347                                 /*
1348                                  * Stomp on all config sequencing for all
1349                                  * containers?
1350                                  */
1351                                 dev->fsa_dev[container].config_waiting_on =
1352                                         AifEnContainerChange;
1353                                 dev->fsa_dev[container].config_needed = ADD;
1354                                 dev->fsa_dev[container].config_waiting_stamp =
1355                                         jiffies;
1356                         }
1357                 }
1358                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1359                     ((__le32 *)aifcmd->data)[6] == 0 &&
1360                     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1361                         for (container = 0;
1362                             container < dev->maximum_num_containers;
1363                             ++container) {
1364                                 /*
1365                                  * Stomp on all config sequencing for all
1366                                  * containers?
1367                                  */
1368                                 dev->fsa_dev[container].config_waiting_on =
1369                                         AifEnContainerChange;
1370                                 dev->fsa_dev[container].config_needed = DELETE;
1371                                 dev->fsa_dev[container].config_waiting_stamp =
1372                                         jiffies;
1373                         }
1374                 }
1375                 break;
1376         }
1377
1378         container = 0;
1379 retry_next:
1380         if (device_config_needed == NOTHING)
1381         for (; container < dev->maximum_num_containers; ++container) {
1382                 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1383                         (dev->fsa_dev[container].config_needed != NOTHING) &&
1384                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1385                         device_config_needed =
1386                                 dev->fsa_dev[container].config_needed;
1387                         dev->fsa_dev[container].config_needed = NOTHING;
1388                         channel = CONTAINER_TO_CHANNEL(container);
1389                         id = CONTAINER_TO_ID(container);
1390                         lun = CONTAINER_TO_LUN(container);
1391                         break;
1392                 }
1393         }
1394         if (device_config_needed == NOTHING)
1395                 return;
1396
1397         /*
1398          *      If we decided that a re-configuration needs to be done,
1399          * schedule it here on the way out the door, please close the door
1400          * behind you.
1401          */
1402
1403         /*
1404          *      Find the scsi_device associated with the SCSI address,
1405          * and mark it as changed, invalidating the cache. This deals
1406          * with changes to existing device IDs.
1407          */
1408
1409         if (!dev || !dev->scsi_host_ptr)
1410                 return;
1411         /*
1412          * force reload of disk info via aac_probe_container
1413          */
1414         if ((channel == CONTAINER_CHANNEL) &&
1415           (device_config_needed != NOTHING)) {
1416                 if (dev->fsa_dev[container].valid == 1)
1417                         dev->fsa_dev[container].valid = 2;
1418                 aac_probe_container(dev, container);
1419         }
1420         device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1421         if (device) {
1422                 switch (device_config_needed) {
1423                 case DELETE:
1424 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1425                         scsi_remove_device(device);
1426 #else
1427                         if (scsi_device_online(device)) {
1428                                 scsi_device_set_state(device, SDEV_OFFLINE);
1429                                 sdev_printk(KERN_INFO, device,
1430                                         "Device offlined - %s\n",
1431                                         (channel == CONTAINER_CHANNEL) ?
1432                                                 "array deleted" :
1433                                                 "enclosure services event");
1434                         }
1435 #endif
1436                         break;
1437                 case ADD:
1438                         if (!scsi_device_online(device)) {
1439                                 sdev_printk(KERN_INFO, device,
1440                                         "Device online - %s\n",
1441                                         (channel == CONTAINER_CHANNEL) ?
1442                                                 "array created" :
1443                                                 "enclosure services event");
1444                                 scsi_device_set_state(device, SDEV_RUNNING);
1445                         }
1446                         /* FALLTHRU */
1447                 case CHANGE:
1448                         if ((channel == CONTAINER_CHANNEL)
1449                          && (!dev->fsa_dev[container].valid)) {
1450 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1451                                 scsi_remove_device(device);
1452 #else
1453                                 if (!scsi_device_online(device))
1454                                         break;
1455                                 scsi_device_set_state(device, SDEV_OFFLINE);
1456                                 sdev_printk(KERN_INFO, device,
1457                                         "Device offlined - %s\n",
1458                                         "array failed");
1459 #endif
1460                                 break;
1461                         }
1462                         scsi_rescan_device(&device->sdev_gendev);
1463
1464                 default:
1465                         break;
1466                 }
1467                 scsi_device_put(device);
1468                 device_config_needed = NOTHING;
1469         }
1470         if (device_config_needed == ADD)
1471                 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1472         if (channel == CONTAINER_CHANNEL) {
1473                 container++;
1474                 device_config_needed = NOTHING;
1475                 goto retry_next;
1476         }
1477 }
1478
1479 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1480 {
1481         int index, quirks;
1482         int retval;
1483         struct Scsi_Host *host;
1484         struct scsi_device *dev;
1485         struct scsi_cmnd *command;
1486         struct scsi_cmnd *command_list;
1487         int jafo = 0;
1488         int bled;
1489         u64 dmamask;
1490         int num_of_fibs = 0;
1491
1492         /*
1493          * Assumptions:
1494          *      - host is locked, unless called by the aacraid thread.
1495          *        (a matter of convenience, due to legacy issues surrounding
1496          *        eh_host_adapter_reset).
1497          *      - in_reset is asserted, so no new i/o is getting to the
1498          *        card.
1499          *      - The card is dead, or will be very shortly ;-/ so no new
1500          *        commands are completing in the interrupt service.
1501          */
1502         host = aac->scsi_host_ptr;
1503         scsi_block_requests(host);
1504         aac_adapter_disable_int(aac);
1505         if (aac->thread && aac->thread->pid != current->pid) {
1506                 spin_unlock_irq(host->host_lock);
1507                 kthread_stop(aac->thread);
1508                 aac->thread = NULL;
1509                 jafo = 1;
1510         }
1511
1512         /*
1513          *      If a positive health, means in a known DEAD PANIC
1514          * state and the adapter could be reset to `try again'.
1515          */
1516         bled = forced ? 0 : aac_adapter_check_health(aac);
1517         retval = aac_adapter_restart(aac, bled, reset_type);
1518
1519         if (retval)
1520                 goto out;
1521
1522         /*
1523          *      Loop through the fibs, close the synchronous FIBS
1524          */
1525         retval = 1;
1526         num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1527         for (index = 0; index <  num_of_fibs; index++) {
1528
1529                 struct fib *fib = &aac->fibs[index];
1530                 __le32 XferState = fib->hw_fib_va->header.XferState;
1531                 bool is_response_expected = false;
1532
1533                 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1534                    (XferState & cpu_to_le32(ResponseExpected)))
1535                         is_response_expected = true;
1536
1537                 if (is_response_expected
1538                   || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1539                         unsigned long flagv;
1540                         spin_lock_irqsave(&fib->event_lock, flagv);
1541                         up(&fib->event_wait);
1542                         spin_unlock_irqrestore(&fib->event_lock, flagv);
1543                         schedule();
1544                         retval = 0;
1545                 }
1546         }
1547         /* Give some extra time for ioctls to complete. */
1548         if (retval == 0)
1549                 ssleep(2);
1550         index = aac->cardtype;
1551
1552         /*
1553          * Re-initialize the adapter, first free resources, then carefully
1554          * apply the initialization sequence to come back again. Only risk
1555          * is a change in Firmware dropping cache, it is assumed the caller
1556          * will ensure that i/o is queisced and the card is flushed in that
1557          * case.
1558          */
1559         aac_free_irq(aac);
1560         aac_fib_map_free(aac);
1561         dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1562                           aac->comm_phys);
1563         aac->comm_addr = NULL;
1564         aac->comm_phys = 0;
1565         kfree(aac->queues);
1566         aac->queues = NULL;
1567         kfree(aac->fsa_dev);
1568         aac->fsa_dev = NULL;
1569
1570         dmamask = DMA_BIT_MASK(32);
1571         quirks = aac_get_driver_ident(index)->quirks;
1572         if (quirks & AAC_QUIRK_31BIT)
1573                 retval = pci_set_dma_mask(aac->pdev, dmamask);
1574         else if (!(quirks & AAC_QUIRK_SRC))
1575                 retval = pci_set_dma_mask(aac->pdev, dmamask);
1576         else
1577                 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1578
1579         if (quirks & AAC_QUIRK_31BIT && !retval) {
1580                 dmamask = DMA_BIT_MASK(31);
1581                 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1582         }
1583
1584         if (retval)
1585                 goto out;
1586
1587         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1588                 goto out;
1589
1590         if (jafo) {
1591                 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1592                                           aac->name);
1593                 if (IS_ERR(aac->thread)) {
1594                         retval = PTR_ERR(aac->thread);
1595                         aac->thread = NULL;
1596                         goto out;
1597                 }
1598         }
1599         (void)aac_get_adapter_info(aac);
1600         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1601                 host->sg_tablesize = 34;
1602                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1603         }
1604         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1605                 host->sg_tablesize = 17;
1606                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1607         }
1608         aac_get_config_status(aac, 1);
1609         aac_get_containers(aac);
1610         /*
1611          * This is where the assumption that the Adapter is quiesced
1612          * is important.
1613          */
1614         command_list = NULL;
1615         __shost_for_each_device(dev, host) {
1616                 unsigned long flags;
1617                 spin_lock_irqsave(&dev->list_lock, flags);
1618                 list_for_each_entry(command, &dev->cmd_list, list)
1619                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1620                                 command->SCp.buffer = (struct scatterlist *)command_list;
1621                                 command_list = command;
1622                         }
1623                 spin_unlock_irqrestore(&dev->list_lock, flags);
1624         }
1625         while ((command = command_list)) {
1626                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1627                 command->SCp.buffer = NULL;
1628                 command->result = DID_OK << 16
1629                   | COMMAND_COMPLETE << 8
1630                   | SAM_STAT_TASK_SET_FULL;
1631                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1632                 command->scsi_done(command);
1633         }
1634         /*
1635          * Any Device that was already marked offline needs to be marked
1636          * running
1637          */
1638         __shost_for_each_device(dev, host) {
1639                 if (!scsi_device_online(dev))
1640                         scsi_device_set_state(dev, SDEV_RUNNING);
1641         }
1642         retval = 0;
1643
1644 out:
1645         aac->in_reset = 0;
1646         scsi_unblock_requests(host);
1647
1648         /*
1649          * Issue bus rescan to catch any configuration that might have
1650          * occurred
1651          */
1652         if (!retval && !is_kdump_kernel()) {
1653                 dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1654                 aac_schedule_safw_scan_worker(aac);
1655         }
1656
1657         if (jafo) {
1658                 spin_lock_irq(host->host_lock);
1659         }
1660         return retval;
1661 }
1662
1663 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1664 {
1665         unsigned long flagv = 0;
1666         int retval;
1667         struct Scsi_Host * host;
1668         int bled;
1669
1670         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1671                 return -EBUSY;
1672
1673         if (aac->in_reset) {
1674                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1675                 return -EBUSY;
1676         }
1677         aac->in_reset = 1;
1678         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1679
1680         /*
1681          * Wait for all commands to complete to this specific
1682          * target (block maximum 60 seconds). Although not necessary,
1683          * it does make us a good storage citizen.
1684          */
1685         host = aac->scsi_host_ptr;
1686         scsi_block_requests(host);
1687
1688         /* Quiesce build, flush cache, write through mode */
1689         if (forced < 2)
1690                 aac_send_shutdown(aac);
1691         spin_lock_irqsave(host->host_lock, flagv);
1692         bled = forced ? forced :
1693                         (aac_check_reset != 0 && aac_check_reset != 1);
1694         retval = _aac_reset_adapter(aac, bled, reset_type);
1695         spin_unlock_irqrestore(host->host_lock, flagv);
1696
1697         if ((forced < 2) && (retval == -ENODEV)) {
1698                 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1699                 struct fib * fibctx = aac_fib_alloc(aac);
1700                 if (fibctx) {
1701                         struct aac_pause *cmd;
1702                         int status;
1703
1704                         aac_fib_init(fibctx);
1705
1706                         cmd = (struct aac_pause *) fib_data(fibctx);
1707
1708                         cmd->command = cpu_to_le32(VM_ContainerConfig);
1709                         cmd->type = cpu_to_le32(CT_PAUSE_IO);
1710                         cmd->timeout = cpu_to_le32(1);
1711                         cmd->min = cpu_to_le32(1);
1712                         cmd->noRescan = cpu_to_le32(1);
1713                         cmd->count = cpu_to_le32(0);
1714
1715                         status = aac_fib_send(ContainerCommand,
1716                           fibctx,
1717                           sizeof(struct aac_pause),
1718                           FsaNormal,
1719                           -2 /* Timeout silently */, 1,
1720                           NULL, NULL);
1721
1722                         if (status >= 0)
1723                                 aac_fib_complete(fibctx);
1724                         /* FIB should be freed only after getting
1725                          * the response from the F/W */
1726                         if (status != -ERESTARTSYS)
1727                                 aac_fib_free(fibctx);
1728                 }
1729         }
1730
1731         return retval;
1732 }
1733
1734 int aac_check_health(struct aac_dev * aac)
1735 {
1736         int BlinkLED;
1737         unsigned long time_now, flagv = 0;
1738         struct list_head * entry;
1739
1740         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1741         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1742                 return 0;
1743
1744         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1745                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1746                 return 0; /* OK */
1747         }
1748
1749         aac->in_reset = 1;
1750
1751         /* Fake up an AIF:
1752          *      aac_aifcmd.command = AifCmdEventNotify = 1
1753          *      aac_aifcmd.seqnum = 0xFFFFFFFF
1754          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1755          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1756          *      aac.aifcmd.data[2] = AifHighPriority = 3
1757          *      aac.aifcmd.data[3] = BlinkLED
1758          */
1759
1760         time_now = jiffies/HZ;
1761         entry = aac->fib_list.next;
1762
1763         /*
1764          * For each Context that is on the
1765          * fibctxList, make a copy of the
1766          * fib, and then set the event to wake up the
1767          * thread that is waiting for it.
1768          */
1769         while (entry != &aac->fib_list) {
1770                 /*
1771                  * Extract the fibctx
1772                  */
1773                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1774                 struct hw_fib * hw_fib;
1775                 struct fib * fib;
1776                 /*
1777                  * Check if the queue is getting
1778                  * backlogged
1779                  */
1780                 if (fibctx->count > 20) {
1781                         /*
1782                          * It's *not* jiffies folks,
1783                          * but jiffies / HZ, so do not
1784                          * panic ...
1785                          */
1786                         u32 time_last = fibctx->jiffies;
1787                         /*
1788                          * Has it been > 2 minutes
1789                          * since the last read off
1790                          * the queue?
1791                          */
1792                         if ((time_now - time_last) > aif_timeout) {
1793                                 entry = entry->next;
1794                                 aac_close_fib_context(aac, fibctx);
1795                                 continue;
1796                         }
1797                 }
1798                 /*
1799                  * Warning: no sleep allowed while
1800                  * holding spinlock
1801                  */
1802                 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1803                 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1804                 if (fib && hw_fib) {
1805                         struct aac_aifcmd * aif;
1806
1807                         fib->hw_fib_va = hw_fib;
1808                         fib->dev = aac;
1809                         aac_fib_init(fib);
1810                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1811                         fib->size = sizeof (struct fib);
1812                         fib->data = hw_fib->data;
1813                         aif = (struct aac_aifcmd *)hw_fib->data;
1814                         aif->command = cpu_to_le32(AifCmdEventNotify);
1815                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1816                         ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1817                         ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1818                         ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1819                         ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1820
1821                         /*
1822                          * Put the FIB onto the
1823                          * fibctx's fibs
1824                          */
1825                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
1826                         fibctx->count++;
1827                         /*
1828                          * Set the event to wake up the
1829                          * thread that will waiting.
1830                          */
1831                         up(&fibctx->wait_sem);
1832                 } else {
1833                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1834                         kfree(fib);
1835                         kfree(hw_fib);
1836                 }
1837                 entry = entry->next;
1838         }
1839
1840         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1841
1842         if (BlinkLED < 0) {
1843                 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1844                                 aac->name, BlinkLED);
1845                 goto out;
1846         }
1847
1848         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1849
1850 out:
1851         aac->in_reset = 0;
1852         return BlinkLED;
1853 }
1854
1855 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1856 {
1857         return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1858 }
1859
1860 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1861                                                                 int bus,
1862                                                                 int target)
1863 {
1864         if (bus != CONTAINER_CHANNEL)
1865                 bus = aac_phys_to_logical(bus);
1866
1867         return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1868 }
1869
1870 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1871 {
1872         if (bus != CONTAINER_CHANNEL)
1873                 bus = aac_phys_to_logical(bus);
1874
1875         return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1876 }
1877
1878 static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1879 {
1880         if (sdev)
1881                 scsi_device_put(sdev);
1882 }
1883
1884 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1885 {
1886         struct scsi_device *sdev;
1887
1888         sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1889         scsi_remove_device(sdev);
1890         aac_put_safw_scsi_device(sdev);
1891 }
1892
1893 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1894         int bus, int target)
1895 {
1896         return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1897 }
1898
1899 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1900 {
1901         if (is_safw_raid_volume(dev, bus, target))
1902                 return dev->fsa_dev[target].valid;
1903         else
1904                 return aac_is_safw_scan_count_equal(dev, bus, target);
1905 }
1906
1907 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1908 {
1909         int is_exposed = 0;
1910         struct scsi_device *sdev;
1911
1912         sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1913         if (sdev)
1914                 is_exposed = 1;
1915         aac_put_safw_scsi_device(sdev);
1916
1917         return is_exposed;
1918 }
1919
1920 static int aac_update_safw_host_devices(struct aac_dev *dev)
1921 {
1922         int i;
1923         int bus;
1924         int target;
1925         int is_exposed = 0;
1926         int rcode = 0;
1927
1928         rcode = aac_setup_safw_adapter(dev);
1929         if (unlikely(rcode < 0)) {
1930                 goto out;
1931         }
1932
1933         for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1934
1935                 bus = get_bus_number(i);
1936                 target = get_target_number(i);
1937
1938                 is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1939
1940                 if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1941                         aac_add_safw_device(dev, bus, target);
1942                 else if (!aac_is_safw_target_valid(dev, bus, target) &&
1943                                                                 is_exposed)
1944                         aac_remove_safw_device(dev, bus, target);
1945         }
1946 out:
1947         return rcode;
1948 }
1949
1950 static int aac_scan_safw_host(struct aac_dev *dev)
1951 {
1952         int rcode = 0;
1953
1954         rcode = aac_update_safw_host_devices(dev);
1955         if (rcode)
1956                 aac_schedule_safw_scan_worker(dev);
1957
1958         return rcode;
1959 }
1960
1961 int aac_scan_host(struct aac_dev *dev)
1962 {
1963         int rcode = 0;
1964
1965         mutex_lock(&dev->scan_mutex);
1966         if (dev->sa_firmware)
1967                 rcode = aac_scan_safw_host(dev);
1968         else
1969                 scsi_scan_host(dev->scsi_host_ptr);
1970         mutex_unlock(&dev->scan_mutex);
1971
1972         return rcode;
1973 }
1974
1975 /**
1976  *      aac_handle_sa_aif       Handle a message from the firmware
1977  *      @dev: Which adapter this fib is from
1978  *      @fibptr: Pointer to fibptr from adapter
1979  *
1980  *      This routine handles a driver notify fib from the adapter and
1981  *      dispatches it to the appropriate routine for handling.
1982  */
1983 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1984 {
1985         int i;
1986         u32 events = 0;
1987
1988         if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1989                 events = SA_AIF_HOTPLUG;
1990         else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1991                 events = SA_AIF_HARDWARE;
1992         else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1993                 events = SA_AIF_PDEV_CHANGE;
1994         else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1995                 events = SA_AIF_LDEV_CHANGE;
1996         else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1997                 events = SA_AIF_BPSTAT_CHANGE;
1998         else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1999                 events = SA_AIF_BPCFG_CHANGE;
2000
2001         switch (events) {
2002         case SA_AIF_HOTPLUG:
2003         case SA_AIF_HARDWARE:
2004         case SA_AIF_PDEV_CHANGE:
2005         case SA_AIF_LDEV_CHANGE:
2006         case SA_AIF_BPCFG_CHANGE:
2007
2008                 aac_scan_host(dev);
2009
2010                 break;
2011
2012         case SA_AIF_BPSTAT_CHANGE:
2013                 /* currently do nothing */
2014                 break;
2015         }
2016
2017         for (i = 1; i <= 10; ++i) {
2018                 events = src_readl(dev, MUnit.IDR);
2019                 if (events & (1<<23)) {
2020                         pr_warn(" AIF not cleared by firmware - %d/%d)\n",
2021                                 i, 10);
2022                         ssleep(1);
2023                 }
2024         }
2025 }
2026
2027 static int get_fib_count(struct aac_dev *dev)
2028 {
2029         unsigned int num = 0;
2030         struct list_head *entry;
2031         unsigned long flagv;
2032
2033         /*
2034          * Warning: no sleep allowed while
2035          * holding spinlock. We take the estimate
2036          * and pre-allocate a set of fibs outside the
2037          * lock.
2038          */
2039         num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2040                         / sizeof(struct hw_fib); /* some extra */
2041         spin_lock_irqsave(&dev->fib_lock, flagv);
2042         entry = dev->fib_list.next;
2043         while (entry != &dev->fib_list) {
2044                 entry = entry->next;
2045                 ++num;
2046         }
2047         spin_unlock_irqrestore(&dev->fib_lock, flagv);
2048
2049         return num;
2050 }
2051
2052 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2053                                                 struct fib **fib_pool,
2054                                                 unsigned int num)
2055 {
2056         struct hw_fib **hw_fib_p;
2057         struct fib **fib_p;
2058
2059         hw_fib_p = hw_fib_pool;
2060         fib_p = fib_pool;
2061         while (hw_fib_p < &hw_fib_pool[num]) {
2062                 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2063                 if (!(*(hw_fib_p++))) {
2064                         --hw_fib_p;
2065                         break;
2066                 }
2067
2068                 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2069                 if (!(*(fib_p++))) {
2070                         kfree(*(--hw_fib_p));
2071                         break;
2072                 }
2073         }
2074
2075         /*
2076          * Get the actual number of allocated fibs
2077          */
2078         num = hw_fib_p - hw_fib_pool;
2079         return num;
2080 }
2081
2082 static void wakeup_fibctx_threads(struct aac_dev *dev,
2083                                                 struct hw_fib **hw_fib_pool,
2084                                                 struct fib **fib_pool,
2085                                                 struct fib *fib,
2086                                                 struct hw_fib *hw_fib,
2087                                                 unsigned int num)
2088 {
2089         unsigned long flagv;
2090         struct list_head *entry;
2091         struct hw_fib **hw_fib_p;
2092         struct fib **fib_p;
2093         u32 time_now, time_last;
2094         struct hw_fib *hw_newfib;
2095         struct fib *newfib;
2096         struct aac_fib_context *fibctx;
2097
2098         time_now = jiffies/HZ;
2099         spin_lock_irqsave(&dev->fib_lock, flagv);
2100         entry = dev->fib_list.next;
2101         /*
2102          * For each Context that is on the
2103          * fibctxList, make a copy of the
2104          * fib, and then set the event to wake up the
2105          * thread that is waiting for it.
2106          */
2107
2108         hw_fib_p = hw_fib_pool;
2109         fib_p = fib_pool;
2110         while (entry != &dev->fib_list) {
2111                 /*
2112                  * Extract the fibctx
2113                  */
2114                 fibctx = list_entry(entry, struct aac_fib_context,
2115                                 next);
2116                 /*
2117                  * Check if the queue is getting
2118                  * backlogged
2119                  */
2120                 if (fibctx->count > 20) {
2121                         /*
2122                          * It's *not* jiffies folks,
2123                          * but jiffies / HZ so do not
2124                          * panic ...
2125                          */
2126                         time_last = fibctx->jiffies;
2127                         /*
2128                          * Has it been > 2 minutes
2129                          * since the last read off
2130                          * the queue?
2131                          */
2132                         if ((time_now - time_last) > aif_timeout) {
2133                                 entry = entry->next;
2134                                 aac_close_fib_context(dev, fibctx);
2135                                 continue;
2136                         }
2137                 }
2138                 /*
2139                  * Warning: no sleep allowed while
2140                  * holding spinlock
2141                  */
2142                 if (hw_fib_p >= &hw_fib_pool[num]) {
2143                         pr_warn("aifd: didn't allocate NewFib\n");
2144                         entry = entry->next;
2145                         continue;
2146                 }
2147
2148                 hw_newfib = *hw_fib_p;
2149                 *(hw_fib_p++) = NULL;
2150                 newfib = *fib_p;
2151                 *(fib_p++) = NULL;
2152                 /*
2153                  * Make the copy of the FIB
2154                  */
2155                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2156                 memcpy(newfib, fib, sizeof(struct fib));
2157                 newfib->hw_fib_va = hw_newfib;
2158                 /*
2159                  * Put the FIB onto the
2160                  * fibctx's fibs
2161                  */
2162                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2163                 fibctx->count++;
2164                 /*
2165                  * Set the event to wake up the
2166                  * thread that is waiting.
2167                  */
2168                 up(&fibctx->wait_sem);
2169
2170                 entry = entry->next;
2171         }
2172         /*
2173          *      Set the status of this FIB
2174          */
2175         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2176         aac_fib_adapter_complete(fib, sizeof(u32));
2177         spin_unlock_irqrestore(&dev->fib_lock, flagv);
2178
2179 }
2180
2181 static void aac_process_events(struct aac_dev *dev)
2182 {
2183         struct hw_fib *hw_fib;
2184         struct fib *fib;
2185         unsigned long flags;
2186         spinlock_t *t_lock;
2187
2188         t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2189         spin_lock_irqsave(t_lock, flags);
2190
2191         while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2192                 struct list_head *entry;
2193                 struct aac_aifcmd *aifcmd;
2194                 unsigned int  num;
2195                 struct hw_fib **hw_fib_pool, **hw_fib_p;
2196                 struct fib **fib_pool, **fib_p;
2197
2198                 set_current_state(TASK_RUNNING);
2199
2200                 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2201                 list_del(entry);
2202
2203                 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2204                 spin_unlock_irqrestore(t_lock, flags);
2205
2206                 fib = list_entry(entry, struct fib, fiblink);
2207                 hw_fib = fib->hw_fib_va;
2208                 if (dev->sa_firmware) {
2209                         /* Thor AIF */
2210                         aac_handle_sa_aif(dev, fib);
2211                         aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2212                         goto free_fib;
2213                 }
2214                 /*
2215                  *      We will process the FIB here or pass it to a
2216                  *      worker thread that is TBD. We Really can't
2217                  *      do anything at this point since we don't have
2218                  *      anything defined for this thread to do.
2219                  */
2220                 memset(fib, 0, sizeof(struct fib));
2221                 fib->type = FSAFS_NTC_FIB_CONTEXT;
2222                 fib->size = sizeof(struct fib);
2223                 fib->hw_fib_va = hw_fib;
2224                 fib->data = hw_fib->data;
2225                 fib->dev = dev;
2226                 /*
2227                  *      We only handle AifRequest fibs from the adapter.
2228                  */
2229
2230                 aifcmd = (struct aac_aifcmd *) hw_fib->data;
2231                 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2232                         /* Handle Driver Notify Events */
2233                         aac_handle_aif(dev, fib);
2234                         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2235                         aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2236                         goto free_fib;
2237                 }
2238                 /*
2239                  * The u32 here is important and intended. We are using
2240                  * 32bit wrapping time to fit the adapter field
2241                  */
2242
2243                 /* Sniff events */
2244                 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2245                  || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2246                         aac_handle_aif(dev, fib);
2247                 }
2248
2249                 /*
2250                  * get number of fibs to process
2251                  */
2252                 num = get_fib_count(dev);
2253                 if (!num)
2254                         goto free_fib;
2255
2256                 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2257                                                 GFP_KERNEL);
2258                 if (!hw_fib_pool)
2259                         goto free_fib;
2260
2261                 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2262                 if (!fib_pool)
2263                         goto free_hw_fib_pool;
2264
2265                 /*
2266                  * Fill up fib pointer pools with actual fibs
2267                  * and hw_fibs
2268                  */
2269                 num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2270                 if (!num)
2271                         goto free_mem;
2272
2273                 /*
2274                  * wakeup the thread that is waiting for
2275                  * the response from fw (ioctl)
2276                  */
2277                 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2278                                                             fib, hw_fib, num);
2279
2280 free_mem:
2281                 /* Free up the remaining resources */
2282                 hw_fib_p = hw_fib_pool;
2283                 fib_p = fib_pool;
2284                 while (hw_fib_p < &hw_fib_pool[num]) {
2285                         kfree(*hw_fib_p);
2286                         kfree(*fib_p);
2287                         ++fib_p;
2288                         ++hw_fib_p;
2289                 }
2290                 kfree(fib_pool);
2291 free_hw_fib_pool:
2292                 kfree(hw_fib_pool);
2293 free_fib:
2294                 kfree(fib);
2295                 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2296                 spin_lock_irqsave(t_lock, flags);
2297         }
2298         /*
2299          *      There are no more AIF's
2300          */
2301         t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2302         spin_unlock_irqrestore(t_lock, flags);
2303 }
2304
2305 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2306                                                         u32 datasize)
2307 {
2308         struct aac_srb *srbcmd;
2309         struct sgmap64 *sg64;
2310         dma_addr_t addr;
2311         char *dma_buf;
2312         struct fib *fibptr;
2313         int ret = -ENOMEM;
2314         u32 vbus, vid;
2315
2316         fibptr = aac_fib_alloc(dev);
2317         if (!fibptr)
2318                 goto out;
2319
2320         dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2321                                      GFP_KERNEL);
2322         if (!dma_buf)
2323                 goto fib_free_out;
2324
2325         aac_fib_init(fibptr);
2326
2327         vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2328         vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2329
2330         srbcmd = (struct aac_srb *)fib_data(fibptr);
2331
2332         srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2333         srbcmd->channel = cpu_to_le32(vbus);
2334         srbcmd->id = cpu_to_le32(vid);
2335         srbcmd->lun = 0;
2336         srbcmd->flags = cpu_to_le32(SRB_DataOut);
2337         srbcmd->timeout = cpu_to_le32(10);
2338         srbcmd->retry_limit = 0;
2339         srbcmd->cdb_size = cpu_to_le32(12);
2340         srbcmd->count = cpu_to_le32(datasize);
2341
2342         memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2343         srbcmd->cdb[0] = BMIC_OUT;
2344         srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2345         memcpy(dma_buf, (char *)wellness_str, datasize);
2346
2347         sg64 = (struct sgmap64 *)&srbcmd->sg;
2348         sg64->count = cpu_to_le32(1);
2349         sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2350         sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2351         sg64->sg[0].count = cpu_to_le32(datasize);
2352
2353         ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2354                                 FsaNormal, 1, 1, NULL, NULL);
2355
2356         dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2357
2358         /*
2359          * Do not set XferState to zero unless
2360          * receives a response from F/W
2361          */
2362         if (ret >= 0)
2363                 aac_fib_complete(fibptr);
2364
2365         /*
2366          * FIB should be freed only after
2367          * getting the response from the F/W
2368          */
2369         if (ret != -ERESTARTSYS)
2370                 goto fib_free_out;
2371
2372 out:
2373         return ret;
2374 fib_free_out:
2375         aac_fib_free(fibptr);
2376         goto out;
2377 }
2378
2379 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2380 {
2381         struct tm cur_tm;
2382         char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2383         u32 datasize = sizeof(wellness_str);
2384         time64_t local_time;
2385         int ret = -ENODEV;
2386
2387         if (!dev->sa_firmware)
2388                 goto out;
2389
2390         local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2391         time64_to_tm(local_time, 0, &cur_tm);
2392         cur_tm.tm_mon += 1;
2393         cur_tm.tm_year += 1900;
2394         wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2395         wellness_str[9] = bin2bcd(cur_tm.tm_min);
2396         wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2397         wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2398         wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2399         wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2400         wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2401
2402         ret = aac_send_wellness_command(dev, wellness_str, datasize);
2403
2404 out:
2405         return ret;
2406 }
2407
2408 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2409 {
2410         int ret = -ENOMEM;
2411         struct fib *fibptr;
2412         __le32 *info;
2413
2414         fibptr = aac_fib_alloc(dev);
2415         if (!fibptr)
2416                 goto out;
2417
2418         aac_fib_init(fibptr);
2419         info = (__le32 *)fib_data(fibptr);
2420         *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2421         ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2422                                         1, 1, NULL, NULL);
2423
2424         /*
2425          * Do not set XferState to zero unless
2426          * receives a response from F/W
2427          */
2428         if (ret >= 0)
2429                 aac_fib_complete(fibptr);
2430
2431         /*
2432          * FIB should be freed only after
2433          * getting the response from the F/W
2434          */
2435         if (ret != -ERESTARTSYS)
2436                 aac_fib_free(fibptr);
2437
2438 out:
2439         return ret;
2440 }
2441
2442 /**
2443  *      aac_command_thread      -       command processing thread
2444  *      @dev: Adapter to monitor
2445  *
2446  *      Waits on the commandready event in it's queue. When the event gets set
2447  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
2448  *      until the queue is empty. When the queue is empty it will wait for
2449  *      more FIBs.
2450  */
2451
2452 int aac_command_thread(void *data)
2453 {
2454         struct aac_dev *dev = data;
2455         DECLARE_WAITQUEUE(wait, current);
2456         unsigned long next_jiffies = jiffies + HZ;
2457         unsigned long next_check_jiffies = next_jiffies;
2458         long difference = HZ;
2459
2460         /*
2461          *      We can only have one thread per adapter for AIF's.
2462          */
2463         if (dev->aif_thread)
2464                 return -EINVAL;
2465
2466         /*
2467          *      Let the DPC know it has a place to send the AIF's to.
2468          */
2469         dev->aif_thread = 1;
2470         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2471         set_current_state(TASK_INTERRUPTIBLE);
2472         dprintk ((KERN_INFO "aac_command_thread start\n"));
2473         while (1) {
2474
2475                 aac_process_events(dev);
2476
2477                 /*
2478                  *      Background activity
2479                  */
2480                 if ((time_before(next_check_jiffies,next_jiffies))
2481                  && ((difference = next_check_jiffies - jiffies) <= 0)) {
2482                         next_check_jiffies = next_jiffies;
2483                         if (aac_adapter_check_health(dev) == 0) {
2484                                 difference = ((long)(unsigned)check_interval)
2485                                            * HZ;
2486                                 next_check_jiffies = jiffies + difference;
2487                         } else if (!dev->queues)
2488                                 break;
2489                 }
2490                 if (!time_before(next_check_jiffies,next_jiffies)
2491                  && ((difference = next_jiffies - jiffies) <= 0)) {
2492                         struct timespec64 now;
2493                         int ret;
2494
2495                         /* Don't even try to talk to adapter if its sick */
2496                         ret = aac_adapter_check_health(dev);
2497                         if (ret || !dev->queues)
2498                                 break;
2499                         next_check_jiffies = jiffies
2500                                            + ((long)(unsigned)check_interval)
2501                                            * HZ;
2502                         ktime_get_real_ts64(&now);
2503
2504                         /* Synchronize our watches */
2505                         if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2506                          && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2507                                 difference = HZ + HZ / 2 -
2508                                              now.tv_nsec / (NSEC_PER_SEC / HZ);
2509                         else {
2510                                 if (now.tv_nsec > NSEC_PER_SEC / 2)
2511                                         ++now.tv_sec;
2512
2513                                 if (dev->sa_firmware)
2514                                         ret =
2515                                         aac_send_safw_hostttime(dev, &now);
2516                                 else
2517                                         ret = aac_send_hosttime(dev, &now);
2518
2519                                 difference = (long)(unsigned)update_interval*HZ;
2520                         }
2521                         next_jiffies = jiffies + difference;
2522                         if (time_before(next_check_jiffies,next_jiffies))
2523                                 difference = next_check_jiffies - jiffies;
2524                 }
2525                 if (difference <= 0)
2526                         difference = 1;
2527                 set_current_state(TASK_INTERRUPTIBLE);
2528
2529                 if (kthread_should_stop())
2530                         break;
2531
2532                 /*
2533                  * we probably want usleep_range() here instead of the
2534                  * jiffies computation
2535                  */
2536                 schedule_timeout(difference);
2537
2538                 if (kthread_should_stop())
2539                         break;
2540         }
2541         if (dev->queues)
2542                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2543         dev->aif_thread = 0;
2544         return 0;
2545 }
2546
2547 int aac_acquire_irq(struct aac_dev *dev)
2548 {
2549         int i;
2550         int j;
2551         int ret = 0;
2552
2553         if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2554                 for (i = 0; i < dev->max_msix; i++) {
2555                         dev->aac_msix[i].vector_no = i;
2556                         dev->aac_msix[i].dev = dev;
2557                         if (request_irq(pci_irq_vector(dev->pdev, i),
2558                                         dev->a_ops.adapter_intr,
2559                                         0, "aacraid", &(dev->aac_msix[i]))) {
2560                                 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2561                                                 dev->name, dev->id, i);
2562                                 for (j = 0 ; j < i ; j++)
2563                                         free_irq(pci_irq_vector(dev->pdev, j),
2564                                                  &(dev->aac_msix[j]));
2565                                 pci_disable_msix(dev->pdev);
2566                                 ret = -1;
2567                         }
2568                 }
2569         } else {
2570                 dev->aac_msix[0].vector_no = 0;
2571                 dev->aac_msix[0].dev = dev;
2572
2573                 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2574                         IRQF_SHARED, "aacraid",
2575                         &(dev->aac_msix[0])) < 0) {
2576                         if (dev->msi)
2577                                 pci_disable_msi(dev->pdev);
2578                         printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2579                                         dev->name, dev->id);
2580                         ret = -1;
2581                 }
2582         }
2583         return ret;
2584 }
2585
2586 void aac_free_irq(struct aac_dev *dev)
2587 {
2588         int i;
2589         int cpu;
2590
2591         cpu = cpumask_first(cpu_online_mask);
2592         if (aac_is_src(dev)) {
2593                 if (dev->max_msix > 1) {
2594                         for (i = 0; i < dev->max_msix; i++)
2595                                 free_irq(pci_irq_vector(dev->pdev, i),
2596                                          &(dev->aac_msix[i]));
2597                 } else {
2598                         free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2599                 }
2600         } else {
2601                 free_irq(dev->pdev->irq, dev);
2602         }
2603         if (dev->msi)
2604                 pci_disable_msi(dev->pdev);
2605         else if (dev->max_msix > 1)
2606                 pci_disable_msix(dev->pdev);
2607 }
This page took 0.190222 seconds and 4 git commands to generate.