2 * bcache setup/teardown code, and some metadata io - read a superblock and
3 * figure out what to do with it.
6 * Copyright 2012 Google, Inc.
14 #include "writeback.h"
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
27 MODULE_LICENSE("GPL");
30 static const char bcache_magic[] = {
31 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 static const char invalid_uuid[] = {
36 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 static struct kobject *bcache_kobj;
41 struct mutex bch_register_lock;
42 LIST_HEAD(bch_cache_sets);
43 static LIST_HEAD(uncached_devices);
45 static int bcache_major;
46 static DEFINE_IDA(bcache_device_idx);
47 static wait_queue_head_t unregister_wait;
48 struct workqueue_struct *bcache_wq;
50 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
51 /* limitation of partitions number on single bcache device */
52 #define BCACHE_MINORS 128
53 /* limitation of bcache devices number on single system */
54 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS)
58 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
63 struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
69 s = (struct cache_sb *) bh->b_data;
71 sb->offset = le64_to_cpu(s->offset);
72 sb->version = le64_to_cpu(s->version);
74 memcpy(sb->magic, s->magic, 16);
75 memcpy(sb->uuid, s->uuid, 16);
76 memcpy(sb->set_uuid, s->set_uuid, 16);
77 memcpy(sb->label, s->label, SB_LABEL_SIZE);
79 sb->flags = le64_to_cpu(s->flags);
80 sb->seq = le64_to_cpu(s->seq);
81 sb->last_mount = le32_to_cpu(s->last_mount);
82 sb->first_bucket = le16_to_cpu(s->first_bucket);
83 sb->keys = le16_to_cpu(s->keys);
85 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
86 sb->d[i] = le64_to_cpu(s->d[i]);
88 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
89 sb->version, sb->flags, sb->seq, sb->keys);
91 err = "Not a bcache superblock";
92 if (sb->offset != SB_SECTOR)
95 if (memcmp(sb->magic, bcache_magic, 16))
98 err = "Too many journal buckets";
99 if (sb->keys > SB_JOURNAL_BUCKETS)
102 err = "Bad checksum";
103 if (s->csum != csum_set(s))
107 if (bch_is_zero(sb->uuid, 16))
110 sb->block_size = le16_to_cpu(s->block_size);
112 err = "Superblock block size smaller than device block size";
113 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
116 switch (sb->version) {
117 case BCACHE_SB_VERSION_BDEV:
118 sb->data_offset = BDEV_DATA_START_DEFAULT;
120 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
121 sb->data_offset = le64_to_cpu(s->data_offset);
123 err = "Bad data offset";
124 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
128 case BCACHE_SB_VERSION_CDEV:
129 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
130 sb->nbuckets = le64_to_cpu(s->nbuckets);
131 sb->bucket_size = le16_to_cpu(s->bucket_size);
133 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
134 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
136 err = "Too many buckets";
137 if (sb->nbuckets > LONG_MAX)
140 err = "Not enough buckets";
141 if (sb->nbuckets < 1 << 7)
144 err = "Bad block/bucket size";
145 if (!is_power_of_2(sb->block_size) ||
146 sb->block_size > PAGE_SECTORS ||
147 !is_power_of_2(sb->bucket_size) ||
148 sb->bucket_size < PAGE_SECTORS)
151 err = "Invalid superblock: device too small";
152 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
156 if (bch_is_zero(sb->set_uuid, 16))
159 err = "Bad cache device number in set";
160 if (!sb->nr_in_set ||
161 sb->nr_in_set <= sb->nr_this_dev ||
162 sb->nr_in_set > MAX_CACHES_PER_SET)
165 err = "Journal buckets not sequential";
166 for (i = 0; i < sb->keys; i++)
167 if (sb->d[i] != sb->first_bucket + i)
170 err = "Too many journal buckets";
171 if (sb->first_bucket + sb->keys > sb->nbuckets)
174 err = "Invalid superblock: first bucket comes before end of super";
175 if (sb->first_bucket * sb->bucket_size < 16)
180 err = "Unsupported superblock version";
184 sb->last_mount = get_seconds();
187 get_page(bh->b_page);
194 static void write_bdev_super_endio(struct bio *bio)
196 struct cached_dev *dc = bio->bi_private;
197 /* XXX: error checking */
199 closure_put(&dc->sb_write);
202 static void __write_super(struct cache_sb *sb, struct bio *bio)
204 struct cache_sb *out = page_address(bio_first_page_all(bio));
207 bio->bi_iter.bi_sector = SB_SECTOR;
208 bio->bi_iter.bi_size = SB_SIZE;
209 bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
210 bch_bio_map(bio, NULL);
212 out->offset = cpu_to_le64(sb->offset);
213 out->version = cpu_to_le64(sb->version);
215 memcpy(out->uuid, sb->uuid, 16);
216 memcpy(out->set_uuid, sb->set_uuid, 16);
217 memcpy(out->label, sb->label, SB_LABEL_SIZE);
219 out->flags = cpu_to_le64(sb->flags);
220 out->seq = cpu_to_le64(sb->seq);
222 out->last_mount = cpu_to_le32(sb->last_mount);
223 out->first_bucket = cpu_to_le16(sb->first_bucket);
224 out->keys = cpu_to_le16(sb->keys);
226 for (i = 0; i < sb->keys; i++)
227 out->d[i] = cpu_to_le64(sb->d[i]);
229 out->csum = csum_set(out);
231 pr_debug("ver %llu, flags %llu, seq %llu",
232 sb->version, sb->flags, sb->seq);
237 static void bch_write_bdev_super_unlock(struct closure *cl)
239 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
241 up(&dc->sb_write_mutex);
244 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
246 struct closure *cl = &dc->sb_write;
247 struct bio *bio = &dc->sb_bio;
249 down(&dc->sb_write_mutex);
250 closure_init(cl, parent);
253 bio_set_dev(bio, dc->bdev);
254 bio->bi_end_io = write_bdev_super_endio;
255 bio->bi_private = dc;
258 /* I/O request sent to backing device */
259 __write_super(&dc->sb, bio);
261 closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
264 static void write_super_endio(struct bio *bio)
266 struct cache *ca = bio->bi_private;
269 bch_count_io_errors(ca, bio->bi_status, 0,
270 "writing superblock");
271 closure_put(&ca->set->sb_write);
274 static void bcache_write_super_unlock(struct closure *cl)
276 struct cache_set *c = container_of(cl, struct cache_set, sb_write);
278 up(&c->sb_write_mutex);
281 void bcache_write_super(struct cache_set *c)
283 struct closure *cl = &c->sb_write;
287 down(&c->sb_write_mutex);
288 closure_init(cl, &c->cl);
292 for_each_cache(ca, c, i) {
293 struct bio *bio = &ca->sb_bio;
295 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
296 ca->sb.seq = c->sb.seq;
297 ca->sb.last_mount = c->sb.last_mount;
299 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
302 bio_set_dev(bio, ca->bdev);
303 bio->bi_end_io = write_super_endio;
304 bio->bi_private = ca;
307 __write_super(&ca->sb, bio);
310 closure_return_with_destructor(cl, bcache_write_super_unlock);
315 static void uuid_endio(struct bio *bio)
317 struct closure *cl = bio->bi_private;
318 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
320 cache_set_err_on(bio->bi_status, c, "accessing uuids");
321 bch_bbio_free(bio, c);
325 static void uuid_io_unlock(struct closure *cl)
327 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
329 up(&c->uuid_write_mutex);
332 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
333 struct bkey *k, struct closure *parent)
335 struct closure *cl = &c->uuid_write;
336 struct uuid_entry *u;
341 down(&c->uuid_write_mutex);
342 closure_init(cl, parent);
344 for (i = 0; i < KEY_PTRS(k); i++) {
345 struct bio *bio = bch_bbio_alloc(c);
347 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
348 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
350 bio->bi_end_io = uuid_endio;
351 bio->bi_private = cl;
352 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
353 bch_bio_map(bio, c->uuids);
355 bch_submit_bbio(bio, c, k, i);
357 if (op != REQ_OP_WRITE)
361 bch_extent_to_text(buf, sizeof(buf), k);
362 pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
364 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
365 if (!bch_is_zero(u->uuid, 16))
366 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
367 u - c->uuids, u->uuid, u->label,
368 u->first_reg, u->last_reg, u->invalidated);
370 closure_return_with_destructor(cl, uuid_io_unlock);
373 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
375 struct bkey *k = &j->uuid_bucket;
377 if (__bch_btree_ptr_invalid(c, k))
378 return "bad uuid pointer";
380 bkey_copy(&c->uuid_bucket, k);
381 uuid_io(c, REQ_OP_READ, 0, k, cl);
383 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
384 struct uuid_entry_v0 *u0 = (void *) c->uuids;
385 struct uuid_entry *u1 = (void *) c->uuids;
391 * Since the new uuid entry is bigger than the old, we have to
392 * convert starting at the highest memory address and work down
393 * in order to do it in place
396 for (i = c->nr_uuids - 1;
399 memcpy(u1[i].uuid, u0[i].uuid, 16);
400 memcpy(u1[i].label, u0[i].label, 32);
402 u1[i].first_reg = u0[i].first_reg;
403 u1[i].last_reg = u0[i].last_reg;
404 u1[i].invalidated = u0[i].invalidated;
414 static int __uuid_write(struct cache_set *c)
418 closure_init_stack(&cl);
420 lockdep_assert_held(&bch_register_lock);
422 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
425 SET_KEY_SIZE(&k.key, c->sb.bucket_size);
426 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
429 bkey_copy(&c->uuid_bucket, &k.key);
434 int bch_uuid_write(struct cache_set *c)
436 int ret = __uuid_write(c);
439 bch_journal_meta(c, NULL);
444 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
446 struct uuid_entry *u;
449 u < c->uuids + c->nr_uuids; u++)
450 if (!memcmp(u->uuid, uuid, 16))
456 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
458 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
459 return uuid_find(c, zero_uuid);
463 * Bucket priorities/gens:
465 * For each bucket, we store on disk its
469 * See alloc.c for an explanation of the gen. The priority is used to implement
470 * lru (and in the future other) cache replacement policies; for most purposes
471 * it's just an opaque integer.
473 * The gens and the priorities don't have a whole lot to do with each other, and
474 * it's actually the gens that must be written out at specific times - it's no
475 * big deal if the priorities don't get written, if we lose them we just reuse
476 * buckets in suboptimal order.
478 * On disk they're stored in a packed array, and in as many buckets are required
479 * to fit them all. The buckets we use to store them form a list; the journal
480 * header points to the first bucket, the first bucket points to the second
483 * This code is used by the allocation code; periodically (whenever it runs out
484 * of buckets to allocate from) the allocation code will invalidate some
485 * buckets, but it can't use those buckets until their new gens are safely on
489 static void prio_endio(struct bio *bio)
491 struct cache *ca = bio->bi_private;
493 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
494 bch_bbio_free(bio, ca->set);
495 closure_put(&ca->prio);
498 static void prio_io(struct cache *ca, uint64_t bucket, int op,
499 unsigned long op_flags)
501 struct closure *cl = &ca->prio;
502 struct bio *bio = bch_bbio_alloc(ca->set);
504 closure_init_stack(cl);
506 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
507 bio_set_dev(bio, ca->bdev);
508 bio->bi_iter.bi_size = bucket_bytes(ca);
510 bio->bi_end_io = prio_endio;
511 bio->bi_private = ca;
512 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
513 bch_bio_map(bio, ca->disk_buckets);
515 closure_bio_submit(ca->set, bio, &ca->prio);
519 void bch_prio_write(struct cache *ca)
525 closure_init_stack(&cl);
527 lockdep_assert_held(&ca->set->bucket_lock);
529 ca->disk_buckets->seq++;
531 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
532 &ca->meta_sectors_written);
534 //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
535 // fifo_used(&ca->free_inc), fifo_used(&ca->unused));
537 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
539 struct prio_set *p = ca->disk_buckets;
540 struct bucket_disk *d = p->data;
541 struct bucket_disk *end = d + prios_per_bucket(ca);
543 for (b = ca->buckets + i * prios_per_bucket(ca);
544 b < ca->buckets + ca->sb.nbuckets && d < end;
546 d->prio = cpu_to_le16(b->prio);
550 p->next_bucket = ca->prio_buckets[i + 1];
551 p->magic = pset_magic(&ca->sb);
552 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
554 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
555 BUG_ON(bucket == -1);
557 mutex_unlock(&ca->set->bucket_lock);
558 prio_io(ca, bucket, REQ_OP_WRITE, 0);
559 mutex_lock(&ca->set->bucket_lock);
561 ca->prio_buckets[i] = bucket;
562 atomic_dec_bug(&ca->buckets[bucket].pin);
565 mutex_unlock(&ca->set->bucket_lock);
567 bch_journal_meta(ca->set, &cl);
570 mutex_lock(&ca->set->bucket_lock);
573 * Don't want the old priorities to get garbage collected until after we
574 * finish writing the new ones, and they're journalled
576 for (i = 0; i < prio_buckets(ca); i++) {
577 if (ca->prio_last_buckets[i])
578 __bch_bucket_free(ca,
579 &ca->buckets[ca->prio_last_buckets[i]]);
581 ca->prio_last_buckets[i] = ca->prio_buckets[i];
585 static void prio_read(struct cache *ca, uint64_t bucket)
587 struct prio_set *p = ca->disk_buckets;
588 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
590 unsigned bucket_nr = 0;
592 for (b = ca->buckets;
593 b < ca->buckets + ca->sb.nbuckets;
596 ca->prio_buckets[bucket_nr] = bucket;
597 ca->prio_last_buckets[bucket_nr] = bucket;
600 prio_io(ca, bucket, REQ_OP_READ, 0);
602 if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
603 pr_warn("bad csum reading priorities");
605 if (p->magic != pset_magic(&ca->sb))
606 pr_warn("bad magic reading priorities");
608 bucket = p->next_bucket;
612 b->prio = le16_to_cpu(d->prio);
613 b->gen = b->last_gc = d->gen;
619 static int open_dev(struct block_device *b, fmode_t mode)
621 struct bcache_device *d = b->bd_disk->private_data;
622 if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
629 static void release_dev(struct gendisk *b, fmode_t mode)
631 struct bcache_device *d = b->private_data;
635 static int ioctl_dev(struct block_device *b, fmode_t mode,
636 unsigned int cmd, unsigned long arg)
638 struct bcache_device *d = b->bd_disk->private_data;
639 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
644 return d->ioctl(d, mode, cmd, arg);
647 static const struct block_device_operations bcache_ops = {
649 .release = release_dev,
651 .owner = THIS_MODULE,
654 void bcache_device_stop(struct bcache_device *d)
656 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
657 closure_queue(&d->cl);
660 static void bcache_device_unlink(struct bcache_device *d)
662 lockdep_assert_held(&bch_register_lock);
664 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
668 sysfs_remove_link(&d->c->kobj, d->name);
669 sysfs_remove_link(&d->kobj, "cache");
671 for_each_cache(ca, d->c, i)
672 bd_unlink_disk_holder(ca->bdev, d->disk);
676 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
682 for_each_cache(ca, d->c, i)
683 bd_link_disk_holder(ca->bdev, d->disk);
685 snprintf(d->name, BCACHEDEVNAME_SIZE,
686 "%s%u", name, d->id);
688 WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
689 sysfs_create_link(&c->kobj, &d->kobj, d->name),
690 "Couldn't create device <-> cache set symlinks");
692 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
695 static void bcache_device_detach(struct bcache_device *d)
697 lockdep_assert_held(&bch_register_lock);
699 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
700 struct uuid_entry *u = d->c->uuids + d->id;
702 SET_UUID_FLASH_ONLY(u, 0);
703 memcpy(u->uuid, invalid_uuid, 16);
704 u->invalidated = cpu_to_le32(get_seconds());
705 bch_uuid_write(d->c);
708 bcache_device_unlink(d);
710 d->c->devices[d->id] = NULL;
711 closure_put(&d->c->caching);
715 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
722 if (id >= c->devices_max_used)
723 c->devices_max_used = id + 1;
725 closure_get(&c->caching);
728 static inline int first_minor_to_idx(int first_minor)
730 return (first_minor/BCACHE_MINORS);
733 static inline int idx_to_first_minor(int idx)
735 return (idx * BCACHE_MINORS);
738 static void bcache_device_free(struct bcache_device *d)
740 lockdep_assert_held(&bch_register_lock);
742 pr_info("%s stopped", d->disk->disk_name);
745 bcache_device_detach(d);
746 if (d->disk && d->disk->flags & GENHD_FL_UP)
747 del_gendisk(d->disk);
748 if (d->disk && d->disk->queue)
749 blk_cleanup_queue(d->disk->queue);
751 ida_simple_remove(&bcache_device_idx,
752 first_minor_to_idx(d->disk->first_minor));
756 bioset_exit(&d->bio_split);
757 kvfree(d->full_dirty_stripes);
758 kvfree(d->stripe_sectors_dirty);
760 closure_debug_destroy(&d->cl);
763 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
766 struct request_queue *q;
767 const size_t max_stripes = min_t(size_t, INT_MAX,
768 SIZE_MAX / sizeof(atomic_t));
773 d->stripe_size = 1 << 31;
775 d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
777 if (!d->nr_stripes || d->nr_stripes > max_stripes) {
778 pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
779 (unsigned)d->nr_stripes);
783 n = d->nr_stripes * sizeof(atomic_t);
784 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
785 if (!d->stripe_sectors_dirty)
788 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
789 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
790 if (!d->full_dirty_stripes)
793 idx = ida_simple_get(&bcache_device_idx, 0,
794 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
798 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
799 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) ||
800 !(d->disk = alloc_disk(BCACHE_MINORS))) {
801 ida_simple_remove(&bcache_device_idx, idx);
805 set_capacity(d->disk, sectors);
806 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
808 d->disk->major = bcache_major;
809 d->disk->first_minor = idx_to_first_minor(idx);
810 d->disk->fops = &bcache_ops;
811 d->disk->private_data = d;
813 q = blk_alloc_queue(GFP_KERNEL);
817 blk_queue_make_request(q, NULL);
820 q->backing_dev_info->congested_data = d;
821 q->limits.max_hw_sectors = UINT_MAX;
822 q->limits.max_sectors = UINT_MAX;
823 q->limits.max_segment_size = UINT_MAX;
824 q->limits.max_segments = BIO_MAX_PAGES;
825 blk_queue_max_discard_sectors(q, UINT_MAX);
826 q->limits.discard_granularity = 512;
827 q->limits.io_min = block_size;
828 q->limits.logical_block_size = block_size;
829 q->limits.physical_block_size = block_size;
830 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
831 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
832 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
834 blk_queue_write_cache(q, true, true);
841 static void calc_cached_dev_sectors(struct cache_set *c)
843 uint64_t sectors = 0;
844 struct cached_dev *dc;
846 list_for_each_entry(dc, &c->cached_devs, list)
847 sectors += bdev_sectors(dc->bdev);
849 c->cached_dev_sectors = sectors;
852 #define BACKING_DEV_OFFLINE_TIMEOUT 5
853 static int cached_dev_status_update(void *arg)
855 struct cached_dev *dc = arg;
856 struct request_queue *q;
859 * If this delayed worker is stopping outside, directly quit here.
860 * dc->io_disable might be set via sysfs interface, so check it
863 while (!kthread_should_stop() && !dc->io_disable) {
864 q = bdev_get_queue(dc->bdev);
865 if (blk_queue_dying(q))
866 dc->offline_seconds++;
868 dc->offline_seconds = 0;
870 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
871 pr_err("%s: device offline for %d seconds",
872 dc->backing_dev_name,
873 BACKING_DEV_OFFLINE_TIMEOUT);
874 pr_err("%s: disable I/O request due to backing "
875 "device offline", dc->disk.name);
876 dc->io_disable = true;
877 /* let others know earlier that io_disable is true */
879 bcache_device_stop(&dc->disk);
882 schedule_timeout_interruptible(HZ);
885 wait_for_kthread_stop();
890 void bch_cached_dev_run(struct cached_dev *dc)
892 struct bcache_device *d = &dc->disk;
893 char buf[SB_LABEL_SIZE + 1];
896 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
901 memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
902 buf[SB_LABEL_SIZE] = '\0';
903 env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
905 if (atomic_xchg(&dc->running, 1)) {
912 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
914 closure_init_stack(&cl);
916 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
917 bch_write_bdev_super(dc, &cl);
922 bd_link_disk_holder(dc->bdev, dc->disk.disk);
923 /* won't show up in the uevent file, use udevadm monitor -e instead
924 * only class / kset properties are persistent */
925 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
929 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
930 sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
931 pr_debug("error creating sysfs link");
933 dc->status_update_thread = kthread_run(cached_dev_status_update,
934 dc, "bcache_status_update");
935 if (IS_ERR(dc->status_update_thread)) {
936 pr_warn("failed to create bcache_status_update kthread, "
937 "continue to run without monitoring backing "
943 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
944 * work dc->writeback_rate_update is running. Wait until the routine
945 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
946 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
947 * seconds, give up waiting here and continue to cancel it too.
949 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
951 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
954 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
958 schedule_timeout_interruptible(1);
959 } while (time_out > 0);
962 pr_warn("give up waiting for dc->writeback_write_update to quit");
964 cancel_delayed_work_sync(&dc->writeback_rate_update);
967 static void cached_dev_detach_finish(struct work_struct *w)
969 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
971 closure_init_stack(&cl);
973 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
974 BUG_ON(refcount_read(&dc->count));
976 mutex_lock(&bch_register_lock);
978 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
979 cancel_writeback_rate_update_dwork(dc);
981 if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
982 kthread_stop(dc->writeback_thread);
983 dc->writeback_thread = NULL;
986 memset(&dc->sb.set_uuid, 0, 16);
987 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
989 bch_write_bdev_super(dc, &cl);
992 bcache_device_detach(&dc->disk);
993 list_move(&dc->list, &uncached_devices);
995 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
996 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
998 mutex_unlock(&bch_register_lock);
1000 pr_info("Caching disabled for %s", dc->backing_dev_name);
1002 /* Drop ref we took in cached_dev_detach() */
1003 closure_put(&dc->disk.cl);
1006 void bch_cached_dev_detach(struct cached_dev *dc)
1008 lockdep_assert_held(&bch_register_lock);
1010 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1013 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1017 * Block the device from being closed and freed until we're finished
1020 closure_get(&dc->disk.cl);
1022 bch_writeback_queue(dc);
1027 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1030 uint32_t rtime = cpu_to_le32(get_seconds());
1031 struct uuid_entry *u;
1032 struct cached_dev *exist_dc, *t;
1034 if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
1035 (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
1039 pr_err("Can't attach %s: already attached",
1040 dc->backing_dev_name);
1044 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1045 pr_err("Can't attach %s: shutting down",
1046 dc->backing_dev_name);
1050 if (dc->sb.block_size < c->sb.block_size) {
1052 pr_err("Couldn't attach %s: block size less than set's block size",
1053 dc->backing_dev_name);
1057 /* Check whether already attached */
1058 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1059 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1060 pr_err("Tried to attach %s but duplicate UUID already attached",
1061 dc->backing_dev_name);
1067 u = uuid_find(c, dc->sb.uuid);
1070 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1071 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1072 memcpy(u->uuid, invalid_uuid, 16);
1073 u->invalidated = cpu_to_le32(get_seconds());
1078 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1079 pr_err("Couldn't find uuid for %s in set",
1080 dc->backing_dev_name);
1084 u = uuid_find_empty(c);
1086 pr_err("Not caching %s, no room for UUID",
1087 dc->backing_dev_name);
1092 /* Deadlocks since we're called via sysfs...
1093 sysfs_remove_file(&dc->kobj, &sysfs_attach);
1096 if (bch_is_zero(u->uuid, 16)) {
1098 closure_init_stack(&cl);
1100 memcpy(u->uuid, dc->sb.uuid, 16);
1101 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1102 u->first_reg = u->last_reg = rtime;
1105 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1106 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1108 bch_write_bdev_super(dc, &cl);
1111 u->last_reg = rtime;
1115 bcache_device_attach(&dc->disk, c, u - c->uuids);
1116 list_move(&dc->list, &c->cached_devs);
1117 calc_cached_dev_sectors(c);
1121 * dc->c must be set before dc->count != 0 - paired with the mb in
1124 refcount_set(&dc->count, 1);
1126 /* Block writeback thread, but spawn it */
1127 down_write(&dc->writeback_lock);
1128 if (bch_cached_dev_writeback_start(dc)) {
1129 up_write(&dc->writeback_lock);
1133 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1134 bch_sectors_dirty_init(&dc->disk);
1135 atomic_set(&dc->has_dirty, 1);
1136 bch_writeback_queue(dc);
1139 bch_cached_dev_run(dc);
1140 bcache_device_link(&dc->disk, c, "bdev");
1142 /* Allow the writeback thread to proceed */
1143 up_write(&dc->writeback_lock);
1145 pr_info("Caching %s as %s on set %pU",
1146 dc->backing_dev_name,
1147 dc->disk.disk->disk_name,
1148 dc->disk.c->sb.set_uuid);
1152 void bch_cached_dev_release(struct kobject *kobj)
1154 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1157 module_put(THIS_MODULE);
1160 static void cached_dev_free(struct closure *cl)
1162 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1164 mutex_lock(&bch_register_lock);
1166 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1167 cancel_writeback_rate_update_dwork(dc);
1169 if (!IS_ERR_OR_NULL(dc->writeback_thread))
1170 kthread_stop(dc->writeback_thread);
1171 if (dc->writeback_write_wq)
1172 destroy_workqueue(dc->writeback_write_wq);
1173 if (!IS_ERR_OR_NULL(dc->status_update_thread))
1174 kthread_stop(dc->status_update_thread);
1176 if (atomic_read(&dc->running))
1177 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1178 bcache_device_free(&dc->disk);
1179 list_del(&dc->list);
1181 mutex_unlock(&bch_register_lock);
1183 if (!IS_ERR_OR_NULL(dc->bdev))
1184 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1186 wake_up(&unregister_wait);
1188 kobject_put(&dc->disk.kobj);
1191 static void cached_dev_flush(struct closure *cl)
1193 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1194 struct bcache_device *d = &dc->disk;
1196 mutex_lock(&bch_register_lock);
1197 bcache_device_unlink(d);
1198 mutex_unlock(&bch_register_lock);
1200 bch_cache_accounting_destroy(&dc->accounting);
1201 kobject_del(&d->kobj);
1203 continue_at(cl, cached_dev_free, system_wq);
1206 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1210 struct request_queue *q = bdev_get_queue(dc->bdev);
1212 __module_get(THIS_MODULE);
1213 INIT_LIST_HEAD(&dc->list);
1214 closure_init(&dc->disk.cl, NULL);
1215 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1216 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1217 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1218 sema_init(&dc->sb_write_mutex, 1);
1219 INIT_LIST_HEAD(&dc->io_lru);
1220 spin_lock_init(&dc->io_lock);
1221 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1223 dc->sequential_cutoff = 4 << 20;
1225 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1226 list_add(&io->lru, &dc->io_lru);
1227 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1230 dc->disk.stripe_size = q->limits.io_opt >> 9;
1232 if (dc->disk.stripe_size)
1233 dc->partial_stripes_expensive =
1234 q->limits.raid_partial_stripes_expensive;
1236 ret = bcache_device_init(&dc->disk, block_size,
1237 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1241 dc->disk.disk->queue->backing_dev_info->ra_pages =
1242 max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1243 q->backing_dev_info->ra_pages);
1245 atomic_set(&dc->io_errors, 0);
1246 dc->io_disable = false;
1247 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1248 /* default to auto */
1249 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1251 bch_cached_dev_request_init(dc);
1252 bch_cached_dev_writeback_init(dc);
1256 /* Cached device - bcache superblock */
1258 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1259 struct block_device *bdev,
1260 struct cached_dev *dc)
1262 const char *err = "cannot allocate memory";
1263 struct cache_set *c;
1265 bdevname(bdev, dc->backing_dev_name);
1266 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1268 dc->bdev->bd_holder = dc;
1270 bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1271 bio_first_bvec_all(&dc->sb_bio)->bv_page = sb_page;
1275 if (cached_dev_init(dc, sb->block_size << 9))
1278 err = "error creating kobject";
1279 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1282 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1285 pr_info("registered backing device %s", dc->backing_dev_name);
1287 list_add(&dc->list, &uncached_devices);
1288 list_for_each_entry(c, &bch_cache_sets, list)
1289 bch_cached_dev_attach(dc, c, NULL);
1291 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1292 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1293 bch_cached_dev_run(dc);
1297 pr_notice("error %s: %s", dc->backing_dev_name, err);
1298 bcache_device_stop(&dc->disk);
1301 /* Flash only volumes */
1303 void bch_flash_dev_release(struct kobject *kobj)
1305 struct bcache_device *d = container_of(kobj, struct bcache_device,
1310 static void flash_dev_free(struct closure *cl)
1312 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1313 mutex_lock(&bch_register_lock);
1314 bcache_device_free(d);
1315 mutex_unlock(&bch_register_lock);
1316 kobject_put(&d->kobj);
1319 static void flash_dev_flush(struct closure *cl)
1321 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1323 mutex_lock(&bch_register_lock);
1324 bcache_device_unlink(d);
1325 mutex_unlock(&bch_register_lock);
1326 kobject_del(&d->kobj);
1327 continue_at(cl, flash_dev_free, system_wq);
1330 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1332 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1337 closure_init(&d->cl, NULL);
1338 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1340 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1342 if (bcache_device_init(d, block_bytes(c), u->sectors))
1345 bcache_device_attach(d, c, u - c->uuids);
1346 bch_sectors_dirty_init(d);
1347 bch_flash_dev_request_init(d);
1350 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1353 bcache_device_link(d, c, "volume");
1357 kobject_put(&d->kobj);
1361 static int flash_devs_run(struct cache_set *c)
1364 struct uuid_entry *u;
1367 u < c->uuids + c->nr_uuids && !ret;
1369 if (UUID_FLASH_ONLY(u))
1370 ret = flash_dev_run(c, u);
1375 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1377 struct uuid_entry *u;
1379 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1382 if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1385 u = uuid_find_empty(c);
1387 pr_err("Can't create volume, no room for UUID");
1391 get_random_bytes(u->uuid, 16);
1392 memset(u->label, 0, 32);
1393 u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1395 SET_UUID_FLASH_ONLY(u, 1);
1396 u->sectors = size >> 9;
1400 return flash_dev_run(c, u);
1403 bool bch_cached_dev_error(struct cached_dev *dc)
1405 struct cache_set *c;
1407 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1410 dc->io_disable = true;
1411 /* make others know io_disable is true earlier */
1414 pr_err("stop %s: too many IO errors on backing device %s\n",
1415 dc->disk.disk->disk_name, dc->backing_dev_name);
1418 * If the cached device is still attached to a cache set,
1419 * even dc->io_disable is true and no more I/O requests
1420 * accepted, cache device internal I/O (writeback scan or
1421 * garbage collection) may still prevent bcache device from
1422 * being stopped. So here CACHE_SET_IO_DISABLE should be
1423 * set to c->flags too, to make the internal I/O to cache
1424 * device rejected and stopped immediately.
1425 * If c is NULL, that means the bcache device is not attached
1426 * to any cache set, then no CACHE_SET_IO_DISABLE bit to set.
1429 if (c && test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1430 pr_info("CACHE_SET_IO_DISABLE already set");
1432 bcache_device_stop(&dc->disk);
1439 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1443 if (c->on_error != ON_ERROR_PANIC &&
1444 test_bit(CACHE_SET_STOPPING, &c->flags))
1447 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1448 pr_info("CACHE_SET_IO_DISABLE already set");
1450 /* XXX: we can be called from atomic context
1451 acquire_console_sem();
1454 printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1456 va_start(args, fmt);
1460 printk(", disabling caching\n");
1462 if (c->on_error == ON_ERROR_PANIC)
1463 panic("panic forced after error\n");
1465 bch_cache_set_unregister(c);
1469 void bch_cache_set_release(struct kobject *kobj)
1471 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1473 module_put(THIS_MODULE);
1476 static void cache_set_free(struct closure *cl)
1478 struct cache_set *c = container_of(cl, struct cache_set, cl);
1482 if (!IS_ERR_OR_NULL(c->debug))
1483 debugfs_remove(c->debug);
1485 bch_open_buckets_free(c);
1486 bch_btree_cache_free(c);
1487 bch_journal_free(c);
1489 for_each_cache(ca, c, i)
1492 c->cache[ca->sb.nr_this_dev] = NULL;
1493 kobject_put(&ca->kobj);
1496 bch_bset_sort_state_free(&c->sort);
1497 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1499 if (c->moving_gc_wq)
1500 destroy_workqueue(c->moving_gc_wq);
1501 bioset_exit(&c->bio_split);
1502 mempool_exit(&c->fill_iter);
1503 mempool_exit(&c->bio_meta);
1504 mempool_exit(&c->search);
1507 mutex_lock(&bch_register_lock);
1509 mutex_unlock(&bch_register_lock);
1511 pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1512 wake_up(&unregister_wait);
1514 closure_debug_destroy(&c->cl);
1515 kobject_put(&c->kobj);
1518 static void cache_set_flush(struct closure *cl)
1520 struct cache_set *c = container_of(cl, struct cache_set, caching);
1525 bch_cache_accounting_destroy(&c->accounting);
1527 kobject_put(&c->internal);
1528 kobject_del(&c->kobj);
1531 kthread_stop(c->gc_thread);
1533 if (!IS_ERR_OR_NULL(c->root))
1534 list_add(&c->root->list, &c->btree_cache);
1536 /* Should skip this if we're unregistering because of an error */
1537 list_for_each_entry(b, &c->btree_cache, list) {
1538 mutex_lock(&b->write_lock);
1539 if (btree_node_dirty(b))
1540 __bch_btree_node_write(b, NULL);
1541 mutex_unlock(&b->write_lock);
1544 for_each_cache(ca, c, i)
1545 if (ca->alloc_thread)
1546 kthread_stop(ca->alloc_thread);
1548 if (c->journal.cur) {
1549 cancel_delayed_work_sync(&c->journal.work);
1550 /* flush last journal entry if needed */
1551 c->journal.work.work.func(&c->journal.work.work);
1558 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1559 * cache set is unregistering due to too many I/O errors. In this condition,
1560 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1561 * value and whether the broken cache has dirty data:
1563 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device
1564 * BCH_CACHED_STOP_AUTO 0 NO
1565 * BCH_CACHED_STOP_AUTO 1 YES
1566 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES
1567 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES
1569 * The expected behavior is, if stop_when_cache_set_failed is configured to
1570 * "auto" via sysfs interface, the bcache device will not be stopped if the
1571 * backing device is clean on the broken cache device.
1573 static void conditional_stop_bcache_device(struct cache_set *c,
1574 struct bcache_device *d,
1575 struct cached_dev *dc)
1577 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1578 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.",
1579 d->disk->disk_name, c->sb.set_uuid);
1580 bcache_device_stop(d);
1581 } else if (atomic_read(&dc->has_dirty)) {
1583 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1584 * and dc->has_dirty == 1
1586 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.",
1587 d->disk->disk_name);
1589 * There might be a small time gap that cache set is
1590 * released but bcache device is not. Inside this time
1591 * gap, regular I/O requests will directly go into
1592 * backing device as no cache set attached to. This
1593 * behavior may also introduce potential inconsistence
1594 * data in writeback mode while cache is dirty.
1595 * Therefore before calling bcache_device_stop() due
1596 * to a broken cache device, dc->io_disable should be
1597 * explicitly set to true.
1599 dc->io_disable = true;
1600 /* make others know io_disable is true earlier */
1602 bcache_device_stop(d);
1605 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1606 * and dc->has_dirty == 0
1608 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.",
1609 d->disk->disk_name);
1613 static void __cache_set_unregister(struct closure *cl)
1615 struct cache_set *c = container_of(cl, struct cache_set, caching);
1616 struct cached_dev *dc;
1617 struct bcache_device *d;
1620 mutex_lock(&bch_register_lock);
1622 for (i = 0; i < c->devices_max_used; i++) {
1627 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1628 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1629 dc = container_of(d, struct cached_dev, disk);
1630 bch_cached_dev_detach(dc);
1631 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1632 conditional_stop_bcache_device(c, d, dc);
1634 bcache_device_stop(d);
1638 mutex_unlock(&bch_register_lock);
1640 continue_at(cl, cache_set_flush, system_wq);
1643 void bch_cache_set_stop(struct cache_set *c)
1645 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1646 closure_queue(&c->caching);
1649 void bch_cache_set_unregister(struct cache_set *c)
1651 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1652 bch_cache_set_stop(c);
1655 #define alloc_bucket_pages(gfp, c) \
1656 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1658 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1661 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1665 __module_get(THIS_MODULE);
1666 closure_init(&c->cl, NULL);
1667 set_closure_fn(&c->cl, cache_set_free, system_wq);
1669 closure_init(&c->caching, &c->cl);
1670 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1672 /* Maybe create continue_at_noreturn() and use it here? */
1673 closure_set_stopped(&c->cl);
1674 closure_put(&c->cl);
1676 kobject_init(&c->kobj, &bch_cache_set_ktype);
1677 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1679 bch_cache_accounting_init(&c->accounting, &c->cl);
1681 memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1682 c->sb.block_size = sb->block_size;
1683 c->sb.bucket_size = sb->bucket_size;
1684 c->sb.nr_in_set = sb->nr_in_set;
1685 c->sb.last_mount = sb->last_mount;
1686 c->bucket_bits = ilog2(sb->bucket_size);
1687 c->block_bits = ilog2(sb->block_size);
1688 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry);
1689 c->devices_max_used = 0;
1690 c->btree_pages = bucket_pages(c);
1691 if (c->btree_pages > BTREE_MAX_PAGES)
1692 c->btree_pages = max_t(int, c->btree_pages / 4,
1695 sema_init(&c->sb_write_mutex, 1);
1696 mutex_init(&c->bucket_lock);
1697 init_waitqueue_head(&c->btree_cache_wait);
1698 init_waitqueue_head(&c->bucket_wait);
1699 init_waitqueue_head(&c->gc_wait);
1700 sema_init(&c->uuid_write_mutex, 1);
1702 spin_lock_init(&c->btree_gc_time.lock);
1703 spin_lock_init(&c->btree_split_time.lock);
1704 spin_lock_init(&c->btree_read_time.lock);
1706 bch_moving_init_cache_set(c);
1708 INIT_LIST_HEAD(&c->list);
1709 INIT_LIST_HEAD(&c->cached_devs);
1710 INIT_LIST_HEAD(&c->btree_cache);
1711 INIT_LIST_HEAD(&c->btree_cache_freeable);
1712 INIT_LIST_HEAD(&c->btree_cache_freed);
1713 INIT_LIST_HEAD(&c->data_buckets);
1715 iter_size = (sb->bucket_size / sb->block_size + 1) *
1716 sizeof(struct btree_iter_set);
1718 if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) ||
1719 mempool_init_slab_pool(&c->search, 32, bch_search_cache) ||
1720 mempool_init_kmalloc_pool(&c->bio_meta, 2,
1721 sizeof(struct bbio) + sizeof(struct bio_vec) *
1723 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
1724 bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1725 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) ||
1726 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1727 !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1728 WQ_MEM_RECLAIM, 0)) ||
1729 bch_journal_alloc(c) ||
1730 bch_btree_cache_alloc(c) ||
1731 bch_open_buckets_alloc(c) ||
1732 bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1735 c->congested_read_threshold_us = 2000;
1736 c->congested_write_threshold_us = 20000;
1737 c->error_limit = DEFAULT_IO_ERROR_LIMIT;
1738 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1742 bch_cache_set_unregister(c);
1746 static void run_cache_set(struct cache_set *c)
1748 const char *err = "cannot allocate memory";
1749 struct cached_dev *dc, *t;
1754 closure_init_stack(&cl);
1756 for_each_cache(ca, c, i)
1757 c->nbuckets += ca->sb.nbuckets;
1760 if (CACHE_SYNC(&c->sb)) {
1765 err = "cannot allocate memory for journal";
1766 if (bch_journal_read(c, &journal))
1769 pr_debug("btree_journal_read() done");
1771 err = "no journal entries found";
1772 if (list_empty(&journal))
1775 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1777 err = "IO error reading priorities";
1778 for_each_cache(ca, c, i)
1779 prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1782 * If prio_read() fails it'll call cache_set_error and we'll
1783 * tear everything down right away, but if we perhaps checked
1784 * sooner we could avoid journal replay.
1789 err = "bad btree root";
1790 if (__bch_btree_ptr_invalid(c, k))
1793 err = "error reading btree root";
1794 c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1795 if (IS_ERR_OR_NULL(c->root))
1798 list_del_init(&c->root->list);
1799 rw_unlock(true, c->root);
1801 err = uuid_read(c, j, &cl);
1805 err = "error in recovery";
1806 if (bch_btree_check(c))
1809 bch_journal_mark(c, &journal);
1810 bch_initial_gc_finish(c);
1811 pr_debug("btree_check() done");
1814 * bcache_journal_next() can't happen sooner, or
1815 * btree_gc_finish() will give spurious errors about last_gc >
1816 * gc_gen - this is a hack but oh well.
1818 bch_journal_next(&c->journal);
1820 err = "error starting allocator thread";
1821 for_each_cache(ca, c, i)
1822 if (bch_cache_allocator_start(ca))
1826 * First place it's safe to allocate: btree_check() and
1827 * btree_gc_finish() have to run before we have buckets to
1828 * allocate, and bch_bucket_alloc_set() might cause a journal
1829 * entry to be written so bcache_journal_next() has to be called
1832 * If the uuids were in the old format we have to rewrite them
1833 * before the next journal entry is written:
1835 if (j->version < BCACHE_JSET_VERSION_UUID)
1838 bch_journal_replay(c, &journal);
1840 pr_notice("invalidating existing data");
1842 for_each_cache(ca, c, i) {
1845 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1846 2, SB_JOURNAL_BUCKETS);
1848 for (j = 0; j < ca->sb.keys; j++)
1849 ca->sb.d[j] = ca->sb.first_bucket + j;
1852 bch_initial_gc_finish(c);
1854 err = "error starting allocator thread";
1855 for_each_cache(ca, c, i)
1856 if (bch_cache_allocator_start(ca))
1859 mutex_lock(&c->bucket_lock);
1860 for_each_cache(ca, c, i)
1862 mutex_unlock(&c->bucket_lock);
1864 err = "cannot allocate new UUID bucket";
1865 if (__uuid_write(c))
1868 err = "cannot allocate new btree root";
1869 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1870 if (IS_ERR_OR_NULL(c->root))
1873 mutex_lock(&c->root->write_lock);
1874 bkey_copy_key(&c->root->key, &MAX_KEY);
1875 bch_btree_node_write(c->root, &cl);
1876 mutex_unlock(&c->root->write_lock);
1878 bch_btree_set_root(c->root);
1879 rw_unlock(true, c->root);
1882 * We don't want to write the first journal entry until
1883 * everything is set up - fortunately journal entries won't be
1884 * written until the SET_CACHE_SYNC() here:
1886 SET_CACHE_SYNC(&c->sb, true);
1888 bch_journal_next(&c->journal);
1889 bch_journal_meta(c, &cl);
1892 err = "error starting gc thread";
1893 if (bch_gc_thread_start(c))
1897 c->sb.last_mount = get_seconds();
1898 bcache_write_super(c);
1900 list_for_each_entry_safe(dc, t, &uncached_devices, list)
1901 bch_cached_dev_attach(dc, c, NULL);
1905 set_bit(CACHE_SET_RUNNING, &c->flags);
1909 /* XXX: test this, it's broken */
1910 bch_cache_set_error(c, "%s", err);
1913 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1915 return ca->sb.block_size == c->sb.block_size &&
1916 ca->sb.bucket_size == c->sb.bucket_size &&
1917 ca->sb.nr_in_set == c->sb.nr_in_set;
1920 static const char *register_cache_set(struct cache *ca)
1923 const char *err = "cannot allocate memory";
1924 struct cache_set *c;
1926 list_for_each_entry(c, &bch_cache_sets, list)
1927 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1928 if (c->cache[ca->sb.nr_this_dev])
1929 return "duplicate cache set member";
1931 if (!can_attach_cache(ca, c))
1932 return "cache sb does not match set";
1934 if (!CACHE_SYNC(&ca->sb))
1935 SET_CACHE_SYNC(&c->sb, false);
1940 c = bch_cache_set_alloc(&ca->sb);
1944 err = "error creating kobject";
1945 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1946 kobject_add(&c->internal, &c->kobj, "internal"))
1949 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1952 bch_debug_init_cache_set(c);
1954 list_add(&c->list, &bch_cache_sets);
1956 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1957 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1958 sysfs_create_link(&c->kobj, &ca->kobj, buf))
1961 if (ca->sb.seq > c->sb.seq) {
1962 c->sb.version = ca->sb.version;
1963 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1964 c->sb.flags = ca->sb.flags;
1965 c->sb.seq = ca->sb.seq;
1966 pr_debug("set version = %llu", c->sb.version);
1969 kobject_get(&ca->kobj);
1971 ca->set->cache[ca->sb.nr_this_dev] = ca;
1972 c->cache_by_alloc[c->caches_loaded++] = ca;
1974 if (c->caches_loaded == c->sb.nr_in_set)
1979 bch_cache_set_unregister(c);
1985 void bch_cache_release(struct kobject *kobj)
1987 struct cache *ca = container_of(kobj, struct cache, kobj);
1991 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1992 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1995 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1996 kfree(ca->prio_buckets);
1999 free_heap(&ca->heap);
2000 free_fifo(&ca->free_inc);
2002 for (i = 0; i < RESERVE_NR; i++)
2003 free_fifo(&ca->free[i]);
2005 if (ca->sb_bio.bi_inline_vecs[0].bv_page)
2006 put_page(bio_first_page_all(&ca->sb_bio));
2008 if (!IS_ERR_OR_NULL(ca->bdev))
2009 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2012 module_put(THIS_MODULE);
2015 static int cache_alloc(struct cache *ca)
2018 size_t btree_buckets;
2021 __module_get(THIS_MODULE);
2022 kobject_init(&ca->kobj, &bch_cache_ktype);
2024 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2027 * when ca->sb.njournal_buckets is not zero, journal exists,
2028 * and in bch_journal_replay(), tree node may split,
2029 * so bucket of RESERVE_BTREE type is needed,
2030 * the worst situation is all journal buckets are valid journal,
2031 * and all the keys need to replay,
2032 * so the number of RESERVE_BTREE type buckets should be as much
2033 * as journal buckets
2035 btree_buckets = ca->sb.njournal_buckets ?: 8;
2036 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2038 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, GFP_KERNEL) ||
2039 !init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
2040 !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
2041 !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
2042 !init_fifo(&ca->free_inc, free << 2, GFP_KERNEL) ||
2043 !init_heap(&ca->heap, free << 3, GFP_KERNEL) ||
2044 !(ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2045 ca->sb.nbuckets))) ||
2046 !(ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2047 prio_buckets(ca), 2),
2049 !(ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca)))
2052 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2054 for_each_bucket(b, ca)
2055 atomic_set(&b->pin, 0);
2060 static int register_cache(struct cache_sb *sb, struct page *sb_page,
2061 struct block_device *bdev, struct cache *ca)
2063 const char *err = NULL; /* must be set for any error case */
2066 bdevname(bdev, ca->cache_dev_name);
2067 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2069 ca->bdev->bd_holder = ca;
2071 bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
2072 bio_first_bvec_all(&ca->sb_bio)->bv_page = sb_page;
2075 if (blk_queue_discard(bdev_get_queue(bdev)))
2076 ca->discard = CACHE_DISCARD(&ca->sb);
2078 ret = cache_alloc(ca);
2080 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2082 err = "cache_alloc(): -ENOMEM";
2084 err = "cache_alloc(): unknown error";
2088 if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
2089 err = "error calling kobject_add";
2094 mutex_lock(&bch_register_lock);
2095 err = register_cache_set(ca);
2096 mutex_unlock(&bch_register_lock);
2103 pr_info("registered cache device %s", ca->cache_dev_name);
2106 kobject_put(&ca->kobj);
2110 pr_notice("error %s: %s", ca->cache_dev_name, err);
2115 /* Global interfaces/init */
2117 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
2118 const char *, size_t);
2120 kobj_attribute_write(register, register_bcache);
2121 kobj_attribute_write(register_quiet, register_bcache);
2123 static bool bch_is_open_backing(struct block_device *bdev) {
2124 struct cache_set *c, *tc;
2125 struct cached_dev *dc, *t;
2127 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2128 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2129 if (dc->bdev == bdev)
2131 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2132 if (dc->bdev == bdev)
2137 static bool bch_is_open_cache(struct block_device *bdev) {
2138 struct cache_set *c, *tc;
2142 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2143 for_each_cache(ca, c, i)
2144 if (ca->bdev == bdev)
2149 static bool bch_is_open(struct block_device *bdev) {
2150 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2153 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2154 const char *buffer, size_t size)
2157 const char *err = "cannot allocate memory";
2159 struct cache_sb *sb = NULL;
2160 struct block_device *bdev = NULL;
2161 struct page *sb_page = NULL;
2163 if (!try_module_get(THIS_MODULE))
2166 if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
2167 !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
2170 err = "failed to open device";
2171 bdev = blkdev_get_by_path(strim(path),
2172 FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2175 if (bdev == ERR_PTR(-EBUSY)) {
2176 bdev = lookup_bdev(strim(path));
2177 mutex_lock(&bch_register_lock);
2178 if (!IS_ERR(bdev) && bch_is_open(bdev))
2179 err = "device already registered";
2181 err = "device busy";
2182 mutex_unlock(&bch_register_lock);
2185 if (attr == &ksysfs_register_quiet)
2191 err = "failed to set blocksize";
2192 if (set_blocksize(bdev, 4096))
2195 err = read_super(sb, bdev, &sb_page);
2199 err = "failed to register device";
2200 if (SB_IS_BDEV(sb)) {
2201 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2205 mutex_lock(&bch_register_lock);
2206 register_bdev(sb, sb_page, bdev, dc);
2207 mutex_unlock(&bch_register_lock);
2209 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2213 if (register_cache(sb, sb_page, bdev, ca) != 0)
2221 module_put(THIS_MODULE);
2225 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2227 pr_info("error %s: %s", path, err);
2232 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2234 if (code == SYS_DOWN ||
2236 code == SYS_POWER_OFF) {
2238 unsigned long start = jiffies;
2239 bool stopped = false;
2241 struct cache_set *c, *tc;
2242 struct cached_dev *dc, *tdc;
2244 mutex_lock(&bch_register_lock);
2246 if (list_empty(&bch_cache_sets) &&
2247 list_empty(&uncached_devices))
2250 pr_info("Stopping all devices:");
2252 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2253 bch_cache_set_stop(c);
2255 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2256 bcache_device_stop(&dc->disk);
2258 /* What's a condition variable? */
2260 long timeout = start + 2 * HZ - jiffies;
2262 stopped = list_empty(&bch_cache_sets) &&
2263 list_empty(&uncached_devices);
2265 if (timeout < 0 || stopped)
2268 prepare_to_wait(&unregister_wait, &wait,
2269 TASK_UNINTERRUPTIBLE);
2271 mutex_unlock(&bch_register_lock);
2272 schedule_timeout(timeout);
2273 mutex_lock(&bch_register_lock);
2276 finish_wait(&unregister_wait, &wait);
2279 pr_info("All devices stopped");
2281 pr_notice("Timeout waiting for devices to be closed");
2283 mutex_unlock(&bch_register_lock);
2289 static struct notifier_block reboot = {
2290 .notifier_call = bcache_reboot,
2291 .priority = INT_MAX, /* before any real devices */
2294 static void bcache_exit(void)
2299 kobject_put(bcache_kobj);
2301 destroy_workqueue(bcache_wq);
2303 unregister_blkdev(bcache_major, "bcache");
2304 unregister_reboot_notifier(&reboot);
2305 mutex_destroy(&bch_register_lock);
2308 static int __init bcache_init(void)
2310 static const struct attribute *files[] = {
2311 &ksysfs_register.attr,
2312 &ksysfs_register_quiet.attr,
2316 mutex_init(&bch_register_lock);
2317 init_waitqueue_head(&unregister_wait);
2318 register_reboot_notifier(&reboot);
2320 bcache_major = register_blkdev(0, "bcache");
2321 if (bcache_major < 0) {
2322 unregister_reboot_notifier(&reboot);
2323 mutex_destroy(&bch_register_lock);
2324 return bcache_major;
2327 if (!(bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0)) ||
2328 !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2329 bch_request_init() ||
2330 bch_debug_init(bcache_kobj) || closure_debug_init() ||
2331 sysfs_create_files(bcache_kobj, files))
2340 module_exit(bcache_exit);
2341 module_init(bcache_init);