1 // SPDX-License-Identifier: GPL-2.0
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
28 #include "writeback.h"
30 static void sort_key_next(struct btree_iter *iter,
31 struct btree_iter_set *i)
33 i->k = bkey_next(i->k);
36 *i = iter->data[--iter->used];
39 static bool bch_key_sort_cmp(struct btree_iter_set l,
40 struct btree_iter_set r)
42 int64_t c = bkey_cmp(l.k, r.k);
44 return c ? c > 0 : l.k < r.k;
47 static bool __ptr_invalid(struct cache_set *c, const struct bkey *k)
51 for (i = 0; i < KEY_PTRS(k); i++)
52 if (ptr_available(c, k, i)) {
53 struct cache *ca = PTR_CACHE(c, k, i);
54 size_t bucket = PTR_BUCKET_NR(c, k, i);
55 size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
57 if (KEY_SIZE(k) + r > c->sb.bucket_size ||
58 bucket < ca->sb.first_bucket ||
59 bucket >= ca->sb.nbuckets)
66 /* Common among btree and extent ptrs */
68 static const char *bch_ptr_status(struct cache_set *c, const struct bkey *k)
72 for (i = 0; i < KEY_PTRS(k); i++)
73 if (ptr_available(c, k, i)) {
74 struct cache *ca = PTR_CACHE(c, k, i);
75 size_t bucket = PTR_BUCKET_NR(c, k, i);
76 size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
78 if (KEY_SIZE(k) + r > c->sb.bucket_size)
79 return "bad, length too big";
80 if (bucket < ca->sb.first_bucket)
81 return "bad, short offset";
82 if (bucket >= ca->sb.nbuckets)
83 return "bad, offset past end of device";
84 if (ptr_stale(c, k, i))
88 if (!bkey_cmp(k, &ZERO_KEY))
89 return "bad, null key";
91 return "bad, no pointers";
97 void bch_extent_to_text(char *buf, size_t size, const struct bkey *k)
100 char *out = buf, *end = buf + size;
102 #define p(...) (out += scnprintf(out, end - out, __VA_ARGS__))
104 p("%llu:%llu len %llu -> [", KEY_INODE(k), KEY_START(k), KEY_SIZE(k));
106 for (i = 0; i < KEY_PTRS(k); i++) {
110 if (PTR_DEV(k, i) == PTR_CHECK_DEV)
113 p("%llu:%llu gen %llu", PTR_DEV(k, i),
114 PTR_OFFSET(k, i), PTR_GEN(k, i));
122 p(" cs%llu %llx", KEY_CSUM(k), k->ptr[1]);
126 static void bch_bkey_dump(struct btree_keys *keys, const struct bkey *k)
128 struct btree *b = container_of(keys, struct btree, keys);
132 bch_extent_to_text(buf, sizeof(buf), k);
135 for (j = 0; j < KEY_PTRS(k); j++) {
136 size_t n = PTR_BUCKET_NR(b->c, k, j);
137 printk(" bucket %zu", n);
139 if (n >= b->c->sb.first_bucket && n < b->c->sb.nbuckets)
141 PTR_BUCKET(b->c, k, j)->prio);
144 printk(" %s\n", bch_ptr_status(b->c, k));
149 bool __bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k)
153 if (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))
156 if (__ptr_invalid(c, k))
161 bch_extent_to_text(buf, sizeof(buf), k);
162 cache_bug(c, "spotted btree ptr %s: %s", buf, bch_ptr_status(c, k));
166 static bool bch_btree_ptr_invalid(struct btree_keys *bk, const struct bkey *k)
168 struct btree *b = container_of(bk, struct btree, keys);
169 return __bch_btree_ptr_invalid(b->c, k);
172 static bool btree_ptr_bad_expensive(struct btree *b, const struct bkey *k)
178 if (mutex_trylock(&b->c->bucket_lock)) {
179 for (i = 0; i < KEY_PTRS(k); i++)
180 if (ptr_available(b->c, k, i)) {
181 g = PTR_BUCKET(b->c, k, i);
184 g->prio != BTREE_PRIO ||
185 (b->c->gc_mark_valid &&
186 GC_MARK(g) != GC_MARK_METADATA))
190 mutex_unlock(&b->c->bucket_lock);
195 mutex_unlock(&b->c->bucket_lock);
196 bch_extent_to_text(buf, sizeof(buf), k);
198 "inconsistent btree pointer %s: bucket %zi pin %i prio %i gen %i last_gc %i mark %llu",
199 buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin),
200 g->prio, g->gen, g->last_gc, GC_MARK(g));
204 static bool bch_btree_ptr_bad(struct btree_keys *bk, const struct bkey *k)
206 struct btree *b = container_of(bk, struct btree, keys);
209 if (!bkey_cmp(k, &ZERO_KEY) ||
211 bch_ptr_invalid(bk, k))
214 for (i = 0; i < KEY_PTRS(k); i++)
215 if (!ptr_available(b->c, k, i) ||
216 ptr_stale(b->c, k, i))
219 if (expensive_debug_checks(b->c) &&
220 btree_ptr_bad_expensive(b, k))
226 static bool bch_btree_ptr_insert_fixup(struct btree_keys *bk,
228 struct btree_iter *iter,
229 struct bkey *replace_key)
231 struct btree *b = container_of(bk, struct btree, keys);
233 if (!KEY_OFFSET(insert))
234 btree_current_write(b)->prio_blocked++;
239 const struct btree_keys_ops bch_btree_keys_ops = {
240 .sort_cmp = bch_key_sort_cmp,
241 .insert_fixup = bch_btree_ptr_insert_fixup,
242 .key_invalid = bch_btree_ptr_invalid,
243 .key_bad = bch_btree_ptr_bad,
244 .key_to_text = bch_extent_to_text,
245 .key_dump = bch_bkey_dump,
251 * Returns true if l > r - unless l == r, in which case returns true if l is
254 * Necessary for btree_sort_fixup() - if there are multiple keys that compare
255 * equal in different sets, we have to process them newest to oldest.
257 static bool bch_extent_sort_cmp(struct btree_iter_set l,
258 struct btree_iter_set r)
260 int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k));
262 return c ? c > 0 : l.k < r.k;
265 static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter,
268 while (iter->used > 1) {
269 struct btree_iter_set *top = iter->data, *i = top + 1;
271 if (iter->used > 2 &&
272 bch_extent_sort_cmp(i[0], i[1]))
275 if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0)
278 if (!KEY_SIZE(i->k)) {
279 sort_key_next(iter, i);
280 heap_sift(iter, i - top, bch_extent_sort_cmp);
285 if (bkey_cmp(top->k, i->k) >= 0)
286 sort_key_next(iter, i);
288 bch_cut_front(top->k, i->k);
290 heap_sift(iter, i - top, bch_extent_sort_cmp);
292 /* can't happen because of comparison func */
293 BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k)));
295 if (bkey_cmp(i->k, top->k) < 0) {
296 bkey_copy(tmp, top->k);
298 bch_cut_back(&START_KEY(i->k), tmp);
299 bch_cut_front(i->k, top->k);
300 heap_sift(iter, 0, bch_extent_sort_cmp);
304 bch_cut_back(&START_KEY(i->k), top->k);
312 static void bch_subtract_dirty(struct bkey *k,
318 bcache_dev_sectors_dirty_add(c, KEY_INODE(k),
322 static bool bch_extent_insert_fixup(struct btree_keys *b,
324 struct btree_iter *iter,
325 struct bkey *replace_key)
327 struct cache_set *c = container_of(b, struct btree, keys)->c;
330 unsigned old_size, sectors_found = 0;
332 BUG_ON(!KEY_OFFSET(insert));
333 BUG_ON(!KEY_SIZE(insert));
336 struct bkey *k = bch_btree_iter_next(iter);
340 if (bkey_cmp(&START_KEY(k), insert) >= 0) {
347 if (bkey_cmp(k, &START_KEY(insert)) <= 0)
350 old_offset = KEY_START(k);
351 old_size = KEY_SIZE(k);
354 * We might overlap with 0 size extents; we can't skip these
355 * because if they're in the set we're inserting to we have to
356 * adjust them so they don't overlap with the key we're
357 * inserting. But we don't want to check them for replace
361 if (replace_key && KEY_SIZE(k)) {
363 * k might have been split since we inserted/found the
364 * key we're replacing
367 uint64_t offset = KEY_START(k) -
368 KEY_START(replace_key);
370 /* But it must be a subset of the replace key */
371 if (KEY_START(k) < KEY_START(replace_key) ||
372 KEY_OFFSET(k) > KEY_OFFSET(replace_key))
375 /* We didn't find a key that we were supposed to */
376 if (KEY_START(k) > KEY_START(insert) + sectors_found)
379 if (!bch_bkey_equal_header(k, replace_key))
385 BUG_ON(!KEY_PTRS(replace_key));
387 for (i = 0; i < KEY_PTRS(replace_key); i++)
388 if (k->ptr[i] != replace_key->ptr[i] + offset)
391 sectors_found = KEY_OFFSET(k) - KEY_START(insert);
394 if (bkey_cmp(insert, k) < 0 &&
395 bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
397 * We overlapped in the middle of an existing key: that
398 * means we have to split the old key. But we have to do
399 * slightly different things depending on whether the
400 * old key has been written out yet.
405 bch_subtract_dirty(k, c, KEY_START(insert),
408 if (bkey_written(b, k)) {
410 * We insert a new key to cover the top of the
411 * old key, and the old key is modified in place
412 * to represent the bottom split.
414 * It's completely arbitrary whether the new key
415 * is the top or the bottom, but it has to match
416 * up with what btree_sort_fixup() does - it
417 * doesn't check for this kind of overlap, it
418 * depends on us inserting a new key for the top
421 top = bch_bset_search(b, bset_tree_last(b),
423 bch_bset_insert(b, top, k);
425 BKEY_PADDED(key) temp;
426 bkey_copy(&temp.key, k);
427 bch_bset_insert(b, k, &temp.key);
431 bch_cut_front(insert, top);
432 bch_cut_back(&START_KEY(insert), k);
433 bch_bset_fix_invalidated_key(b, k);
437 if (bkey_cmp(insert, k) < 0) {
438 bch_cut_front(insert, k);
440 if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
441 old_offset = KEY_START(insert);
443 if (bkey_written(b, k) &&
444 bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
446 * Completely overwrote, so we don't have to
447 * invalidate the binary search tree
451 __bch_cut_back(&START_KEY(insert), k);
452 bch_bset_fix_invalidated_key(b, k);
456 bch_subtract_dirty(k, c, old_offset, old_size - KEY_SIZE(k));
461 if (!sectors_found) {
463 } else if (sectors_found < KEY_SIZE(insert)) {
464 SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
465 (KEY_SIZE(insert) - sectors_found));
466 SET_KEY_SIZE(insert, sectors_found);
470 if (KEY_DIRTY(insert))
471 bcache_dev_sectors_dirty_add(c, KEY_INODE(insert),
478 bool __bch_extent_invalid(struct cache_set *c, const struct bkey *k)
485 if (KEY_SIZE(k) > KEY_OFFSET(k))
488 if (__ptr_invalid(c, k))
493 bch_extent_to_text(buf, sizeof(buf), k);
494 cache_bug(c, "spotted extent %s: %s", buf, bch_ptr_status(c, k));
498 static bool bch_extent_invalid(struct btree_keys *bk, const struct bkey *k)
500 struct btree *b = container_of(bk, struct btree, keys);
501 return __bch_extent_invalid(b->c, k);
504 static bool bch_extent_bad_expensive(struct btree *b, const struct bkey *k,
507 struct bucket *g = PTR_BUCKET(b->c, k, ptr);
510 if (mutex_trylock(&b->c->bucket_lock)) {
511 if (b->c->gc_mark_valid &&
513 GC_MARK(g) == GC_MARK_METADATA ||
514 (GC_MARK(g) != GC_MARK_DIRTY && KEY_DIRTY(k))))
517 if (g->prio == BTREE_PRIO)
520 mutex_unlock(&b->c->bucket_lock);
525 mutex_unlock(&b->c->bucket_lock);
526 bch_extent_to_text(buf, sizeof(buf), k);
528 "inconsistent extent pointer %s:\nbucket %zu pin %i prio %i gen %i last_gc %i mark %llu",
529 buf, PTR_BUCKET_NR(b->c, k, ptr), atomic_read(&g->pin),
530 g->prio, g->gen, g->last_gc, GC_MARK(g));
534 static bool bch_extent_bad(struct btree_keys *bk, const struct bkey *k)
536 struct btree *b = container_of(bk, struct btree, keys);
540 bch_extent_invalid(bk, k))
543 for (i = 0; i < KEY_PTRS(k); i++)
544 if (!ptr_available(b->c, k, i))
547 if (!expensive_debug_checks(b->c) && KEY_DIRTY(k))
550 for (i = 0; i < KEY_PTRS(k); i++) {
551 stale = ptr_stale(b->c, k, i);
553 btree_bug_on(stale > 96, b,
554 "key too stale: %i, need_gc %u",
555 stale, b->c->need_gc);
557 btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k),
558 b, "stale dirty pointer");
563 if (expensive_debug_checks(b->c) &&
564 bch_extent_bad_expensive(b, k, i))
571 static uint64_t merge_chksums(struct bkey *l, struct bkey *r)
573 return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) &
574 ~((uint64_t)1 << 63);
577 static bool bch_extent_merge(struct btree_keys *bk, struct bkey *l, struct bkey *r)
579 struct btree *b = container_of(bk, struct btree, keys);
582 if (key_merging_disabled(b->c))
585 for (i = 0; i < KEY_PTRS(l); i++)
586 if (l->ptr[i] + MAKE_PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
587 PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
590 /* Keys with no pointers aren't restricted to one bucket and could
593 if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) {
594 SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l));
595 SET_KEY_SIZE(l, USHRT_MAX);
603 l->ptr[KEY_PTRS(l)] = merge_chksums(l, r);
608 SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r));
609 SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r));
614 const struct btree_keys_ops bch_extent_keys_ops = {
615 .sort_cmp = bch_extent_sort_cmp,
616 .sort_fixup = bch_extent_sort_fixup,
617 .insert_fixup = bch_extent_insert_fixup,
618 .key_invalid = bch_extent_invalid,
619 .key_bad = bch_extent_bad,
620 .key_merge = bch_extent_merge,
621 .key_to_text = bch_extent_to_text,
622 .key_dump = bch_bkey_dump,