2 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/log2.h>
28 #include <linux/msi.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_pci.h>
33 #include <linux/of_platform.h>
34 #include <linux/percpu.h>
35 #include <linux/slab.h>
36 #include <linux/syscore_ops.h>
38 #include <linux/irqchip.h>
39 #include <linux/irqchip/arm-gic-v3.h>
40 #include <linux/irqchip/arm-gic-v4.h>
42 #include <asm/cputype.h>
43 #include <asm/exception.h>
45 #include "irq-gic-common.h"
47 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
48 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
49 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
50 #define ITS_FLAGS_SAVE_SUSPEND_STATE (1ULL << 3)
52 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
54 static u32 lpi_id_bits;
57 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
58 * deal with (one configuration byte per interrupt). PENDBASE has to
59 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
61 #define LPI_NRBITS lpi_id_bits
62 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
63 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
65 #define LPI_PROP_DEFAULT_PRIO 0xa0
68 * Collection structure - just an ID, and a redistributor address to
69 * ping. We use one per CPU as a bag of interrupts assigned to this
72 struct its_collection {
78 * The ITS_BASER structure - contains memory information, cached
79 * value of BASER register configuration and ITS page size.
91 * The ITS structure - contains most of the infrastructure, with the
92 * top-level MSI domain, the command queue, the collections, and the
93 * list of devices writing to it.
97 struct list_head entry;
99 phys_addr_t phys_base;
100 struct its_cmd_block *cmd_base;
101 struct its_cmd_block *cmd_write;
102 struct its_baser tables[GITS_BASER_NR_REGS];
103 struct its_collection *collections;
104 struct fwnode_handle *fwnode_handle;
105 u64 (*get_msi_base)(struct its_device *its_dev);
108 struct list_head its_device_list;
110 unsigned long list_nr;
114 unsigned int msi_domain_flags;
115 u32 pre_its_base; /* for Socionext Synquacer */
117 int vlpi_redist_offset;
120 #define ITS_ITT_ALIGN SZ_256
122 /* The maximum number of VPEID bits supported by VLPI commands */
123 #define ITS_MAX_VPEID_BITS (16)
124 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
126 /* Convert page order to size in bytes */
127 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
129 struct event_lpi_map {
130 unsigned long *lpi_map;
132 irq_hw_number_t lpi_base;
134 struct mutex vlpi_lock;
136 struct its_vlpi_map *vlpi_maps;
141 * The ITS view of a device - belongs to an ITS, owns an interrupt
142 * translation table, and a list of interrupts. If it some of its
143 * LPIs are injected into a guest (GICv4), the event_map.vm field
144 * indicates which one.
147 struct list_head entry;
148 struct its_node *its;
149 struct event_lpi_map event_map;
157 struct its_device *dev;
158 struct its_vpe **vpes;
162 static LIST_HEAD(its_nodes);
163 static DEFINE_SPINLOCK(its_lock);
164 static struct rdists *gic_rdists;
165 static struct irq_domain *its_parent;
167 static unsigned long its_list_map;
168 static u16 vmovp_seq_num;
169 static DEFINE_RAW_SPINLOCK(vmovp_lock);
171 static DEFINE_IDA(its_vpeid_ida);
173 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
174 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
175 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
177 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
180 struct its_node *its = its_dev->its;
182 return its->collections + its_dev->event_map.col_map[event];
186 * ITS command descriptors - parameters to be encoded in a command
189 struct its_cmd_desc {
192 struct its_device *dev;
197 struct its_device *dev;
202 struct its_device *dev;
207 struct its_device *dev;
212 struct its_collection *col;
217 struct its_device *dev;
223 struct its_device *dev;
224 struct its_collection *col;
229 struct its_device *dev;
234 struct its_collection *col;
243 struct its_collection *col;
249 struct its_device *dev;
257 struct its_device *dev;
264 struct its_collection *col;
272 * The ITS command block, which is what the ITS actually parses.
274 struct its_cmd_block {
278 #define ITS_CMD_QUEUE_SZ SZ_64K
279 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
281 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
282 struct its_cmd_block *,
283 struct its_cmd_desc *);
285 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
286 struct its_cmd_block *,
287 struct its_cmd_desc *);
289 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
291 u64 mask = GENMASK_ULL(h, l);
293 *raw_cmd |= (val << l) & mask;
296 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
298 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
301 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
303 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
306 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
308 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
311 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
313 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
316 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
318 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
321 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
323 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
326 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
328 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
331 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
333 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
336 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
338 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
341 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
343 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
346 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
348 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
351 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
353 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
356 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
358 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
361 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
363 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
366 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
368 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
371 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
373 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
376 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
378 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
381 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
383 /* Let's fixup BE commands */
384 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
385 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
386 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
387 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
390 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
391 struct its_cmd_block *cmd,
392 struct its_cmd_desc *desc)
394 unsigned long itt_addr;
395 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
397 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
398 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
400 its_encode_cmd(cmd, GITS_CMD_MAPD);
401 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
402 its_encode_size(cmd, size - 1);
403 its_encode_itt(cmd, itt_addr);
404 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
411 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
412 struct its_cmd_block *cmd,
413 struct its_cmd_desc *desc)
415 its_encode_cmd(cmd, GITS_CMD_MAPC);
416 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
417 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
418 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
422 return desc->its_mapc_cmd.col;
425 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
426 struct its_cmd_block *cmd,
427 struct its_cmd_desc *desc)
429 struct its_collection *col;
431 col = dev_event_to_col(desc->its_mapti_cmd.dev,
432 desc->its_mapti_cmd.event_id);
434 its_encode_cmd(cmd, GITS_CMD_MAPTI);
435 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
436 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
437 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
438 its_encode_collection(cmd, col->col_id);
445 static struct its_collection *its_build_movi_cmd(struct its_node *its,
446 struct its_cmd_block *cmd,
447 struct its_cmd_desc *desc)
449 struct its_collection *col;
451 col = dev_event_to_col(desc->its_movi_cmd.dev,
452 desc->its_movi_cmd.event_id);
454 its_encode_cmd(cmd, GITS_CMD_MOVI);
455 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
456 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
457 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
464 static struct its_collection *its_build_discard_cmd(struct its_node *its,
465 struct its_cmd_block *cmd,
466 struct its_cmd_desc *desc)
468 struct its_collection *col;
470 col = dev_event_to_col(desc->its_discard_cmd.dev,
471 desc->its_discard_cmd.event_id);
473 its_encode_cmd(cmd, GITS_CMD_DISCARD);
474 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
475 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
482 static struct its_collection *its_build_inv_cmd(struct its_node *its,
483 struct its_cmd_block *cmd,
484 struct its_cmd_desc *desc)
486 struct its_collection *col;
488 col = dev_event_to_col(desc->its_inv_cmd.dev,
489 desc->its_inv_cmd.event_id);
491 its_encode_cmd(cmd, GITS_CMD_INV);
492 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
493 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
500 static struct its_collection *its_build_int_cmd(struct its_node *its,
501 struct its_cmd_block *cmd,
502 struct its_cmd_desc *desc)
504 struct its_collection *col;
506 col = dev_event_to_col(desc->its_int_cmd.dev,
507 desc->its_int_cmd.event_id);
509 its_encode_cmd(cmd, GITS_CMD_INT);
510 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
511 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
518 static struct its_collection *its_build_clear_cmd(struct its_node *its,
519 struct its_cmd_block *cmd,
520 struct its_cmd_desc *desc)
522 struct its_collection *col;
524 col = dev_event_to_col(desc->its_clear_cmd.dev,
525 desc->its_clear_cmd.event_id);
527 its_encode_cmd(cmd, GITS_CMD_CLEAR);
528 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
529 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
536 static struct its_collection *its_build_invall_cmd(struct its_node *its,
537 struct its_cmd_block *cmd,
538 struct its_cmd_desc *desc)
540 its_encode_cmd(cmd, GITS_CMD_INVALL);
541 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
548 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
549 struct its_cmd_block *cmd,
550 struct its_cmd_desc *desc)
552 its_encode_cmd(cmd, GITS_CMD_VINVALL);
553 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
557 return desc->its_vinvall_cmd.vpe;
560 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
561 struct its_cmd_block *cmd,
562 struct its_cmd_desc *desc)
564 unsigned long vpt_addr;
567 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
568 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
570 its_encode_cmd(cmd, GITS_CMD_VMAPP);
571 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
572 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
573 its_encode_target(cmd, target);
574 its_encode_vpt_addr(cmd, vpt_addr);
575 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
579 return desc->its_vmapp_cmd.vpe;
582 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
583 struct its_cmd_block *cmd,
584 struct its_cmd_desc *desc)
588 if (desc->its_vmapti_cmd.db_enabled)
589 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
593 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
594 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
595 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
596 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
597 its_encode_db_phys_id(cmd, db);
598 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
602 return desc->its_vmapti_cmd.vpe;
605 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
606 struct its_cmd_block *cmd,
607 struct its_cmd_desc *desc)
611 if (desc->its_vmovi_cmd.db_enabled)
612 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
616 its_encode_cmd(cmd, GITS_CMD_VMOVI);
617 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
618 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
619 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
620 its_encode_db_phys_id(cmd, db);
621 its_encode_db_valid(cmd, true);
625 return desc->its_vmovi_cmd.vpe;
628 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
629 struct its_cmd_block *cmd,
630 struct its_cmd_desc *desc)
634 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
635 its_encode_cmd(cmd, GITS_CMD_VMOVP);
636 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
637 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
638 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
639 its_encode_target(cmd, target);
643 return desc->its_vmovp_cmd.vpe;
646 static u64 its_cmd_ptr_to_offset(struct its_node *its,
647 struct its_cmd_block *ptr)
649 return (ptr - its->cmd_base) * sizeof(*ptr);
652 static int its_queue_full(struct its_node *its)
657 widx = its->cmd_write - its->cmd_base;
658 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
660 /* This is incredibly unlikely to happen, unless the ITS locks up. */
661 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
667 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
669 struct its_cmd_block *cmd;
670 u32 count = 1000000; /* 1s! */
672 while (its_queue_full(its)) {
675 pr_err_ratelimited("ITS queue not draining\n");
682 cmd = its->cmd_write++;
684 /* Handle queue wrapping */
685 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
686 its->cmd_write = its->cmd_base;
697 static struct its_cmd_block *its_post_commands(struct its_node *its)
699 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
701 writel_relaxed(wr, its->base + GITS_CWRITER);
703 return its->cmd_write;
706 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
709 * Make sure the commands written to memory are observable by
712 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
713 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
718 static int its_wait_for_range_completion(struct its_node *its,
719 struct its_cmd_block *from,
720 struct its_cmd_block *to)
722 u64 rd_idx, from_idx, to_idx;
723 u32 count = 1000000; /* 1s! */
725 from_idx = its_cmd_ptr_to_offset(its, from);
726 to_idx = its_cmd_ptr_to_offset(its, to);
729 rd_idx = readl_relaxed(its->base + GITS_CREADR);
732 if (from_idx < to_idx && rd_idx >= to_idx)
736 if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
741 pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
742 from_idx, to_idx, rd_idx);
752 /* Warning, macro hell follows */
753 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
754 void name(struct its_node *its, \
756 struct its_cmd_desc *desc) \
758 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
759 synctype *sync_obj; \
760 unsigned long flags; \
762 raw_spin_lock_irqsave(&its->lock, flags); \
764 cmd = its_allocate_entry(its); \
765 if (!cmd) { /* We're soooooo screewed... */ \
766 raw_spin_unlock_irqrestore(&its->lock, flags); \
769 sync_obj = builder(its, cmd, desc); \
770 its_flush_cmd(its, cmd); \
773 sync_cmd = its_allocate_entry(its); \
777 buildfn(its, sync_cmd, sync_obj); \
778 its_flush_cmd(its, sync_cmd); \
782 next_cmd = its_post_commands(its); \
783 raw_spin_unlock_irqrestore(&its->lock, flags); \
785 if (its_wait_for_range_completion(its, cmd, next_cmd)) \
786 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
789 static void its_build_sync_cmd(struct its_node *its,
790 struct its_cmd_block *sync_cmd,
791 struct its_collection *sync_col)
793 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
794 its_encode_target(sync_cmd, sync_col->target_address);
796 its_fixup_cmd(sync_cmd);
799 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
800 struct its_collection, its_build_sync_cmd)
802 static void its_build_vsync_cmd(struct its_node *its,
803 struct its_cmd_block *sync_cmd,
804 struct its_vpe *sync_vpe)
806 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
807 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
809 its_fixup_cmd(sync_cmd);
812 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
813 struct its_vpe, its_build_vsync_cmd)
815 static void its_send_int(struct its_device *dev, u32 event_id)
817 struct its_cmd_desc desc;
819 desc.its_int_cmd.dev = dev;
820 desc.its_int_cmd.event_id = event_id;
822 its_send_single_command(dev->its, its_build_int_cmd, &desc);
825 static void its_send_clear(struct its_device *dev, u32 event_id)
827 struct its_cmd_desc desc;
829 desc.its_clear_cmd.dev = dev;
830 desc.its_clear_cmd.event_id = event_id;
832 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
835 static void its_send_inv(struct its_device *dev, u32 event_id)
837 struct its_cmd_desc desc;
839 desc.its_inv_cmd.dev = dev;
840 desc.its_inv_cmd.event_id = event_id;
842 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
845 static void its_send_mapd(struct its_device *dev, int valid)
847 struct its_cmd_desc desc;
849 desc.its_mapd_cmd.dev = dev;
850 desc.its_mapd_cmd.valid = !!valid;
852 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
855 static void its_send_mapc(struct its_node *its, struct its_collection *col,
858 struct its_cmd_desc desc;
860 desc.its_mapc_cmd.col = col;
861 desc.its_mapc_cmd.valid = !!valid;
863 its_send_single_command(its, its_build_mapc_cmd, &desc);
866 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
868 struct its_cmd_desc desc;
870 desc.its_mapti_cmd.dev = dev;
871 desc.its_mapti_cmd.phys_id = irq_id;
872 desc.its_mapti_cmd.event_id = id;
874 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
877 static void its_send_movi(struct its_device *dev,
878 struct its_collection *col, u32 id)
880 struct its_cmd_desc desc;
882 desc.its_movi_cmd.dev = dev;
883 desc.its_movi_cmd.col = col;
884 desc.its_movi_cmd.event_id = id;
886 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
889 static void its_send_discard(struct its_device *dev, u32 id)
891 struct its_cmd_desc desc;
893 desc.its_discard_cmd.dev = dev;
894 desc.its_discard_cmd.event_id = id;
896 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
899 static void its_send_invall(struct its_node *its, struct its_collection *col)
901 struct its_cmd_desc desc;
903 desc.its_invall_cmd.col = col;
905 its_send_single_command(its, its_build_invall_cmd, &desc);
908 static void its_send_vmapti(struct its_device *dev, u32 id)
910 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
911 struct its_cmd_desc desc;
913 desc.its_vmapti_cmd.vpe = map->vpe;
914 desc.its_vmapti_cmd.dev = dev;
915 desc.its_vmapti_cmd.virt_id = map->vintid;
916 desc.its_vmapti_cmd.event_id = id;
917 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
919 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
922 static void its_send_vmovi(struct its_device *dev, u32 id)
924 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
925 struct its_cmd_desc desc;
927 desc.its_vmovi_cmd.vpe = map->vpe;
928 desc.its_vmovi_cmd.dev = dev;
929 desc.its_vmovi_cmd.event_id = id;
930 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
932 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
935 static void its_send_vmapp(struct its_node *its,
936 struct its_vpe *vpe, bool valid)
938 struct its_cmd_desc desc;
940 desc.its_vmapp_cmd.vpe = vpe;
941 desc.its_vmapp_cmd.valid = valid;
942 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
944 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
947 static void its_send_vmovp(struct its_vpe *vpe)
949 struct its_cmd_desc desc;
950 struct its_node *its;
952 int col_id = vpe->col_idx;
954 desc.its_vmovp_cmd.vpe = vpe;
955 desc.its_vmovp_cmd.its_list = (u16)its_list_map;
958 its = list_first_entry(&its_nodes, struct its_node, entry);
959 desc.its_vmovp_cmd.seq_num = 0;
960 desc.its_vmovp_cmd.col = &its->collections[col_id];
961 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
966 * Yet another marvel of the architecture. If using the
967 * its_list "feature", we need to make sure that all ITSs
968 * receive all VMOVP commands in the same order. The only way
969 * to guarantee this is to make vmovp a serialization point.
973 raw_spin_lock_irqsave(&vmovp_lock, flags);
975 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
978 list_for_each_entry(its, &its_nodes, entry) {
982 if (!vpe->its_vm->vlpi_count[its->list_nr])
985 desc.its_vmovp_cmd.col = &its->collections[col_id];
986 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
989 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
992 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
994 struct its_cmd_desc desc;
996 desc.its_vinvall_cmd.vpe = vpe;
997 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1001 * irqchip functions - assumes MSI, mostly.
1004 static inline u32 its_get_event_id(struct irq_data *d)
1006 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1007 return d->hwirq - its_dev->event_map.lpi_base;
1010 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1012 irq_hw_number_t hwirq;
1013 struct page *prop_page;
1016 if (irqd_is_forwarded_to_vcpu(d)) {
1017 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1018 u32 event = its_get_event_id(d);
1019 struct its_vlpi_map *map;
1021 prop_page = its_dev->event_map.vm->vprop_page;
1022 map = &its_dev->event_map.vlpi_maps[event];
1023 hwirq = map->vintid;
1025 /* Remember the updated property */
1026 map->properties &= ~clr;
1027 map->properties |= set | LPI_PROP_GROUP1;
1029 prop_page = gic_rdists->prop_page;
1033 cfg = page_address(prop_page) + hwirq - 8192;
1035 *cfg |= set | LPI_PROP_GROUP1;
1038 * Make the above write visible to the redistributors.
1039 * And yes, we're flushing exactly: One. Single. Byte.
1042 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1043 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1048 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1050 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1052 lpi_write_config(d, clr, set);
1053 its_send_inv(its_dev, its_get_event_id(d));
1056 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1058 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1059 u32 event = its_get_event_id(d);
1061 if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1064 its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1067 * More fun with the architecture:
1069 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1070 * value or to 1023, depending on the enable bit. But that
1071 * would be issueing a mapping for an /existing/ DevID+EventID
1072 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1073 * to the /same/ vPE, using this opportunity to adjust the
1074 * doorbell. Mouahahahaha. We loves it, Precious.
1076 its_send_vmovi(its_dev, event);
1079 static void its_mask_irq(struct irq_data *d)
1081 if (irqd_is_forwarded_to_vcpu(d))
1082 its_vlpi_set_doorbell(d, false);
1084 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1087 static void its_unmask_irq(struct irq_data *d)
1089 if (irqd_is_forwarded_to_vcpu(d))
1090 its_vlpi_set_doorbell(d, true);
1092 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1095 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1099 const struct cpumask *cpu_mask = cpu_online_mask;
1100 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1101 struct its_collection *target_col;
1102 u32 id = its_get_event_id(d);
1104 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1105 if (irqd_is_forwarded_to_vcpu(d))
1108 /* lpi cannot be routed to a redistributor that is on a foreign node */
1109 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1110 if (its_dev->its->numa_node >= 0) {
1111 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1112 if (!cpumask_intersects(mask_val, cpu_mask))
1117 cpu = cpumask_any_and(mask_val, cpu_mask);
1119 if (cpu >= nr_cpu_ids)
1122 /* don't set the affinity when the target cpu is same as current one */
1123 if (cpu != its_dev->event_map.col_map[id]) {
1124 target_col = &its_dev->its->collections[cpu];
1125 its_send_movi(its_dev, target_col, id);
1126 its_dev->event_map.col_map[id] = cpu;
1127 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1130 return IRQ_SET_MASK_OK_DONE;
1133 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1135 struct its_node *its = its_dev->its;
1137 return its->phys_base + GITS_TRANSLATER;
1140 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1142 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1143 struct its_node *its;
1147 addr = its->get_msi_base(its_dev);
1149 msg->address_lo = lower_32_bits(addr);
1150 msg->address_hi = upper_32_bits(addr);
1151 msg->data = its_get_event_id(d);
1153 iommu_dma_map_msi_msg(d->irq, msg);
1156 static int its_irq_set_irqchip_state(struct irq_data *d,
1157 enum irqchip_irq_state which,
1160 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1161 u32 event = its_get_event_id(d);
1163 if (which != IRQCHIP_STATE_PENDING)
1167 its_send_int(its_dev, event);
1169 its_send_clear(its_dev, event);
1174 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1176 unsigned long flags;
1178 /* Not using the ITS list? Everything is always mapped. */
1182 raw_spin_lock_irqsave(&vmovp_lock, flags);
1185 * If the VM wasn't mapped yet, iterate over the vpes and get
1188 vm->vlpi_count[its->list_nr]++;
1190 if (vm->vlpi_count[its->list_nr] == 1) {
1193 for (i = 0; i < vm->nr_vpes; i++) {
1194 struct its_vpe *vpe = vm->vpes[i];
1195 struct irq_data *d = irq_get_irq_data(vpe->irq);
1197 /* Map the VPE to the first possible CPU */
1198 vpe->col_idx = cpumask_first(cpu_online_mask);
1199 its_send_vmapp(its, vpe, true);
1200 its_send_vinvall(its, vpe);
1201 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1205 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1208 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1210 unsigned long flags;
1212 /* Not using the ITS list? Everything is always mapped. */
1216 raw_spin_lock_irqsave(&vmovp_lock, flags);
1218 if (!--vm->vlpi_count[its->list_nr]) {
1221 for (i = 0; i < vm->nr_vpes; i++)
1222 its_send_vmapp(its, vm->vpes[i], false);
1225 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1228 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1230 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1231 u32 event = its_get_event_id(d);
1237 mutex_lock(&its_dev->event_map.vlpi_lock);
1239 if (!its_dev->event_map.vm) {
1240 struct its_vlpi_map *maps;
1242 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1249 its_dev->event_map.vm = info->map->vm;
1250 its_dev->event_map.vlpi_maps = maps;
1251 } else if (its_dev->event_map.vm != info->map->vm) {
1256 /* Get our private copy of the mapping information */
1257 its_dev->event_map.vlpi_maps[event] = *info->map;
1259 if (irqd_is_forwarded_to_vcpu(d)) {
1260 /* Already mapped, move it around */
1261 its_send_vmovi(its_dev, event);
1263 /* Ensure all the VPEs are mapped on this ITS */
1264 its_map_vm(its_dev->its, info->map->vm);
1267 * Flag the interrupt as forwarded so that we can
1268 * start poking the virtual property table.
1270 irqd_set_forwarded_to_vcpu(d);
1272 /* Write out the property to the prop table */
1273 lpi_write_config(d, 0xff, info->map->properties);
1275 /* Drop the physical mapping */
1276 its_send_discard(its_dev, event);
1278 /* and install the virtual one */
1279 its_send_vmapti(its_dev, event);
1281 /* Increment the number of VLPIs */
1282 its_dev->event_map.nr_vlpis++;
1286 mutex_unlock(&its_dev->event_map.vlpi_lock);
1290 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1292 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1293 u32 event = its_get_event_id(d);
1296 mutex_lock(&its_dev->event_map.vlpi_lock);
1298 if (!its_dev->event_map.vm ||
1299 !its_dev->event_map.vlpi_maps[event].vm) {
1304 /* Copy our mapping information to the incoming request */
1305 *info->map = its_dev->event_map.vlpi_maps[event];
1308 mutex_unlock(&its_dev->event_map.vlpi_lock);
1312 static int its_vlpi_unmap(struct irq_data *d)
1314 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1315 u32 event = its_get_event_id(d);
1318 mutex_lock(&its_dev->event_map.vlpi_lock);
1320 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1325 /* Drop the virtual mapping */
1326 its_send_discard(its_dev, event);
1328 /* and restore the physical one */
1329 irqd_clr_forwarded_to_vcpu(d);
1330 its_send_mapti(its_dev, d->hwirq, event);
1331 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1335 /* Potentially unmap the VM from this ITS */
1336 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1339 * Drop the refcount and make the device available again if
1340 * this was the last VLPI.
1342 if (!--its_dev->event_map.nr_vlpis) {
1343 its_dev->event_map.vm = NULL;
1344 kfree(its_dev->event_map.vlpi_maps);
1348 mutex_unlock(&its_dev->event_map.vlpi_lock);
1352 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1354 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1356 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1359 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1360 lpi_update_config(d, 0xff, info->config);
1362 lpi_write_config(d, 0xff, info->config);
1363 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1368 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1370 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1371 struct its_cmd_info *info = vcpu_info;
1374 if (!its_dev->its->is_v4)
1377 /* Unmap request? */
1379 return its_vlpi_unmap(d);
1381 switch (info->cmd_type) {
1383 return its_vlpi_map(d, info);
1386 return its_vlpi_get(d, info);
1388 case PROP_UPDATE_VLPI:
1389 case PROP_UPDATE_AND_INV_VLPI:
1390 return its_vlpi_prop_update(d, info);
1397 static struct irq_chip its_irq_chip = {
1399 .irq_mask = its_mask_irq,
1400 .irq_unmask = its_unmask_irq,
1401 .irq_eoi = irq_chip_eoi_parent,
1402 .irq_set_affinity = its_set_affinity,
1403 .irq_compose_msi_msg = its_irq_compose_msi_msg,
1404 .irq_set_irqchip_state = its_irq_set_irqchip_state,
1405 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
1409 * How we allocate LPIs:
1411 * The GIC has id_bits bits for interrupt identifiers. From there, we
1412 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
1413 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
1414 * bits to the right.
1416 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
1418 #define IRQS_PER_CHUNK_SHIFT 5
1419 #define IRQS_PER_CHUNK (1UL << IRQS_PER_CHUNK_SHIFT)
1420 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
1422 static unsigned long *lpi_bitmap;
1423 static u32 lpi_chunks;
1424 static DEFINE_SPINLOCK(lpi_lock);
1426 static int its_lpi_to_chunk(int lpi)
1428 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
1431 static int its_chunk_to_lpi(int chunk)
1433 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
1436 static int __init its_lpi_init(u32 id_bits)
1438 lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
1440 lpi_bitmap = kcalloc(BITS_TO_LONGS(lpi_chunks), sizeof(long),
1447 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
1451 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
1453 unsigned long *bitmap = NULL;
1458 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
1460 spin_lock(&lpi_lock);
1463 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
1465 if (chunk_id < lpi_chunks)
1469 } while (nr_chunks > 0);
1474 bitmap = kcalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK),
1480 for (i = 0; i < nr_chunks; i++)
1481 set_bit(chunk_id + i, lpi_bitmap);
1483 *base = its_chunk_to_lpi(chunk_id);
1484 *nr_ids = nr_chunks * IRQS_PER_CHUNK;
1487 spin_unlock(&lpi_lock);
1490 *base = *nr_ids = 0;
1495 static void its_lpi_free_chunks(unsigned long *bitmap, int base, int nr_ids)
1499 spin_lock(&lpi_lock);
1501 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
1502 int chunk = its_lpi_to_chunk(lpi);
1504 BUG_ON(chunk > lpi_chunks);
1505 if (test_bit(chunk, lpi_bitmap)) {
1506 clear_bit(chunk, lpi_bitmap);
1508 pr_err("Bad LPI chunk %d\n", chunk);
1512 spin_unlock(&lpi_lock);
1517 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1519 struct page *prop_page;
1521 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1525 /* Priority 0xa0, Group-1, disabled */
1526 memset(page_address(prop_page),
1527 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
1530 /* Make sure the GIC will observe the written configuration */
1531 gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ);
1536 static void its_free_prop_table(struct page *prop_page)
1538 free_pages((unsigned long)page_address(prop_page),
1539 get_order(LPI_PROPBASE_SZ));
1542 static int __init its_alloc_lpi_tables(void)
1546 lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS);
1547 gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT);
1548 if (!gic_rdists->prop_page) {
1549 pr_err("Failed to allocate PROPBASE\n");
1553 paddr = page_to_phys(gic_rdists->prop_page);
1554 pr_info("GIC: using LPI property table @%pa\n", &paddr);
1556 return its_lpi_init(lpi_id_bits);
1559 static const char *its_base_type_string[] = {
1560 [GITS_BASER_TYPE_DEVICE] = "Devices",
1561 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
1562 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
1563 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
1564 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
1565 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
1566 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
1569 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1571 u32 idx = baser - its->tables;
1573 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1576 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1579 u32 idx = baser - its->tables;
1581 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1582 baser->val = its_read_baser(its, baser);
1585 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1586 u64 cache, u64 shr, u32 psz, u32 order,
1589 u64 val = its_read_baser(its, baser);
1590 u64 esz = GITS_BASER_ENTRY_SIZE(val);
1591 u64 type = GITS_BASER_TYPE(val);
1592 u64 baser_phys, tmp;
1597 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1598 if (alloc_pages > GITS_BASER_PAGES_MAX) {
1599 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1600 &its->phys_base, its_base_type_string[type],
1601 alloc_pages, GITS_BASER_PAGES_MAX);
1602 alloc_pages = GITS_BASER_PAGES_MAX;
1603 order = get_order(GITS_BASER_PAGES_MAX * psz);
1606 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1610 baser_phys = virt_to_phys(base);
1612 /* Check if the physical address of the memory is above 48bits */
1613 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1615 /* 52bit PA is supported only when PageSize=64K */
1616 if (psz != SZ_64K) {
1617 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1618 free_pages((unsigned long)base, order);
1622 /* Convert 52bit PA to 48bit field */
1623 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1628 (type << GITS_BASER_TYPE_SHIFT) |
1629 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
1630 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
1635 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
1639 val |= GITS_BASER_PAGE_SIZE_4K;
1642 val |= GITS_BASER_PAGE_SIZE_16K;
1645 val |= GITS_BASER_PAGE_SIZE_64K;
1649 its_write_baser(its, baser, val);
1652 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1654 * Shareability didn't stick. Just use
1655 * whatever the read reported, which is likely
1656 * to be the only thing this redistributor
1657 * supports. If that's zero, make it
1658 * non-cacheable as well.
1660 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1662 cache = GITS_BASER_nC;
1663 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1668 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1670 * Page size didn't stick. Let's try a smaller
1671 * size and retry. If we reach 4K, then
1672 * something is horribly wrong...
1674 free_pages((unsigned long)base, order);
1680 goto retry_alloc_baser;
1683 goto retry_alloc_baser;
1688 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1689 &its->phys_base, its_base_type_string[type],
1691 free_pages((unsigned long)base, order);
1695 baser->order = order;
1698 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1700 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1701 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1702 its_base_type_string[type],
1703 (unsigned long)virt_to_phys(base),
1704 indirect ? "indirect" : "flat", (int)esz,
1705 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1710 static bool its_parse_indirect_baser(struct its_node *its,
1711 struct its_baser *baser,
1712 u32 psz, u32 *order, u32 ids)
1714 u64 tmp = its_read_baser(its, baser);
1715 u64 type = GITS_BASER_TYPE(tmp);
1716 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1717 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1718 u32 new_order = *order;
1719 bool indirect = false;
1721 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
1722 if ((esz << ids) > (psz * 2)) {
1724 * Find out whether hw supports a single or two-level table by
1725 * table by reading bit at offset '62' after writing '1' to it.
1727 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1728 indirect = !!(baser->val & GITS_BASER_INDIRECT);
1732 * The size of the lvl2 table is equal to ITS page size
1733 * which is 'psz'. For computing lvl1 table size,
1734 * subtract ID bits that sparse lvl2 table from 'ids'
1735 * which is reported by ITS hardware times lvl1 table
1738 ids -= ilog2(psz / (int)esz);
1739 esz = GITS_LVL1_ENTRY_SIZE;
1744 * Allocate as many entries as required to fit the
1745 * range of device IDs that the ITS can grok... The ID
1746 * space being incredibly sparse, this results in a
1747 * massive waste of memory if two-level device table
1748 * feature is not supported by hardware.
1750 new_order = max_t(u32, get_order(esz << ids), new_order);
1751 if (new_order >= MAX_ORDER) {
1752 new_order = MAX_ORDER - 1;
1753 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1754 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1755 &its->phys_base, its_base_type_string[type],
1756 its->device_ids, ids);
1764 static void its_free_tables(struct its_node *its)
1768 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1769 if (its->tables[i].base) {
1770 free_pages((unsigned long)its->tables[i].base,
1771 its->tables[i].order);
1772 its->tables[i].base = NULL;
1777 static int its_alloc_tables(struct its_node *its)
1779 u64 shr = GITS_BASER_InnerShareable;
1780 u64 cache = GITS_BASER_RaWaWb;
1784 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1785 /* erratum 24313: ignore memory access type */
1786 cache = GITS_BASER_nCnB;
1788 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1789 struct its_baser *baser = its->tables + i;
1790 u64 val = its_read_baser(its, baser);
1791 u64 type = GITS_BASER_TYPE(val);
1792 u32 order = get_order(psz);
1793 bool indirect = false;
1796 case GITS_BASER_TYPE_NONE:
1799 case GITS_BASER_TYPE_DEVICE:
1800 indirect = its_parse_indirect_baser(its, baser,
1803 case GITS_BASER_TYPE_VCPU:
1804 indirect = its_parse_indirect_baser(its, baser,
1806 ITS_MAX_VPEID_BITS);
1810 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1812 its_free_tables(its);
1816 /* Update settings which will be used for next BASERn */
1818 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1819 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1825 static int its_alloc_collections(struct its_node *its)
1827 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
1829 if (!its->collections)
1835 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1837 struct page *pend_page;
1839 * The pending pages have to be at least 64kB aligned,
1840 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1842 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
1843 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1847 /* Make sure the GIC will observe the zero-ed page */
1848 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1853 static void its_free_pending_table(struct page *pt)
1855 free_pages((unsigned long)page_address(pt),
1856 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1859 static void its_cpu_init_lpis(void)
1861 void __iomem *rbase = gic_data_rdist_rd_base();
1862 struct page *pend_page;
1865 /* If we didn't allocate the pending table yet, do it now */
1866 pend_page = gic_data_rdist()->pend_page;
1870 pend_page = its_allocate_pending_table(GFP_NOWAIT);
1872 pr_err("Failed to allocate PENDBASE for CPU%d\n",
1873 smp_processor_id());
1877 paddr = page_to_phys(pend_page);
1878 pr_info("CPU%d: using LPI pending table @%pa\n",
1879 smp_processor_id(), &paddr);
1880 gic_data_rdist()->pend_page = pend_page;
1884 val = (page_to_phys(gic_rdists->prop_page) |
1885 GICR_PROPBASER_InnerShareable |
1886 GICR_PROPBASER_RaWaWb |
1887 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1889 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1890 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1892 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1893 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1895 * The HW reports non-shareable, we must
1896 * remove the cacheability attributes as
1899 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1900 GICR_PROPBASER_CACHEABILITY_MASK);
1901 val |= GICR_PROPBASER_nC;
1902 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1904 pr_info_once("GIC: using cache flushing for LPI property table\n");
1905 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1909 val = (page_to_phys(pend_page) |
1910 GICR_PENDBASER_InnerShareable |
1911 GICR_PENDBASER_RaWaWb);
1913 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1914 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1916 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1918 * The HW reports non-shareable, we must remove the
1919 * cacheability attributes as well.
1921 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1922 GICR_PENDBASER_CACHEABILITY_MASK);
1923 val |= GICR_PENDBASER_nC;
1924 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1928 val = readl_relaxed(rbase + GICR_CTLR);
1929 val |= GICR_CTLR_ENABLE_LPIS;
1930 writel_relaxed(val, rbase + GICR_CTLR);
1932 /* Make sure the GIC has seen the above */
1936 static void its_cpu_init_collection(struct its_node *its)
1938 int cpu = smp_processor_id();
1941 /* avoid cross node collections and its mapping */
1942 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1943 struct device_node *cpu_node;
1945 cpu_node = of_get_cpu_node(cpu, NULL);
1946 if (its->numa_node != NUMA_NO_NODE &&
1947 its->numa_node != of_node_to_nid(cpu_node))
1952 * We now have to bind each collection to its target
1955 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1957 * This ITS wants the physical address of the
1960 target = gic_data_rdist()->phys_base;
1962 /* This ITS wants a linear CPU number. */
1963 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1964 target = GICR_TYPER_CPU_NUMBER(target) << 16;
1967 /* Perform collection mapping */
1968 its->collections[cpu].target_address = target;
1969 its->collections[cpu].col_id = cpu;
1971 its_send_mapc(its, &its->collections[cpu], 1);
1972 its_send_invall(its, &its->collections[cpu]);
1975 static void its_cpu_init_collections(void)
1977 struct its_node *its;
1979 spin_lock(&its_lock);
1981 list_for_each_entry(its, &its_nodes, entry)
1982 its_cpu_init_collection(its);
1984 spin_unlock(&its_lock);
1987 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1989 struct its_device *its_dev = NULL, *tmp;
1990 unsigned long flags;
1992 raw_spin_lock_irqsave(&its->lock, flags);
1994 list_for_each_entry(tmp, &its->its_device_list, entry) {
1995 if (tmp->device_id == dev_id) {
2001 raw_spin_unlock_irqrestore(&its->lock, flags);
2006 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2010 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2011 if (GITS_BASER_TYPE(its->tables[i].val) == type)
2012 return &its->tables[i];
2018 static bool its_alloc_table_entry(struct its_baser *baser, u32 id)
2024 /* Don't allow device id that exceeds single, flat table limit */
2025 esz = GITS_BASER_ENTRY_SIZE(baser->val);
2026 if (!(baser->val & GITS_BASER_INDIRECT))
2027 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2029 /* Compute 1st level table index & check if that exceeds table limit */
2030 idx = id >> ilog2(baser->psz / esz);
2031 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2034 table = baser->base;
2036 /* Allocate memory for 2nd level table */
2038 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
2042 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2043 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2044 gic_flush_dcache_to_poc(page_address(page), baser->psz);
2046 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2048 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2049 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2050 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2052 /* Ensure updated table contents are visible to ITS hardware */
2059 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2061 struct its_baser *baser;
2063 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2065 /* Don't allow device id that exceeds ITS hardware limit */
2067 return (ilog2(dev_id) < its->device_ids);
2069 return its_alloc_table_entry(baser, dev_id);
2072 static bool its_alloc_vpe_table(u32 vpe_id)
2074 struct its_node *its;
2077 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2078 * could try and only do it on ITSs corresponding to devices
2079 * that have interrupts targeted at this VPE, but the
2080 * complexity becomes crazy (and you have tons of memory
2083 list_for_each_entry(its, &its_nodes, entry) {
2084 struct its_baser *baser;
2089 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2093 if (!its_alloc_table_entry(baser, vpe_id))
2100 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2101 int nvecs, bool alloc_lpis)
2103 struct its_device *dev;
2104 unsigned long *lpi_map = NULL;
2105 unsigned long flags;
2106 u16 *col_map = NULL;
2113 if (!its_alloc_device_table(its, dev_id))
2116 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2118 * We allocate at least one chunk worth of LPIs bet device,
2119 * and thus that many ITEs. The device may require less though.
2121 nr_ites = max(IRQS_PER_CHUNK, roundup_pow_of_two(nvecs));
2122 sz = nr_ites * its->ite_size;
2123 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2124 itt = kzalloc(sz, GFP_KERNEL);
2126 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
2128 col_map = kcalloc(nr_lpis, sizeof(*col_map),
2131 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2136 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
2144 gic_flush_dcache_to_poc(itt, sz);
2148 dev->nr_ites = nr_ites;
2149 dev->event_map.lpi_map = lpi_map;
2150 dev->event_map.col_map = col_map;
2151 dev->event_map.lpi_base = lpi_base;
2152 dev->event_map.nr_lpis = nr_lpis;
2153 mutex_init(&dev->event_map.vlpi_lock);
2154 dev->device_id = dev_id;
2155 INIT_LIST_HEAD(&dev->entry);
2157 raw_spin_lock_irqsave(&its->lock, flags);
2158 list_add(&dev->entry, &its->its_device_list);
2159 raw_spin_unlock_irqrestore(&its->lock, flags);
2161 /* Map device to its ITT */
2162 its_send_mapd(dev, 1);
2167 static void its_free_device(struct its_device *its_dev)
2169 unsigned long flags;
2171 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2172 list_del(&its_dev->entry);
2173 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2174 kfree(its_dev->itt);
2178 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
2182 idx = find_first_zero_bit(dev->event_map.lpi_map,
2183 dev->event_map.nr_lpis);
2184 if (idx == dev->event_map.nr_lpis)
2187 *hwirq = dev->event_map.lpi_base + idx;
2188 set_bit(idx, dev->event_map.lpi_map);
2193 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2194 int nvec, msi_alloc_info_t *info)
2196 struct its_node *its;
2197 struct its_device *its_dev;
2198 struct msi_domain_info *msi_info;
2202 * We ignore "dev" entierely, and rely on the dev_id that has
2203 * been passed via the scratchpad. This limits this domain's
2204 * usefulness to upper layers that definitely know that they
2205 * are built on top of the ITS.
2207 dev_id = info->scratchpad[0].ul;
2209 msi_info = msi_get_domain_info(domain);
2210 its = msi_info->data;
2212 if (!gic_rdists->has_direct_lpi &&
2214 vpe_proxy.dev->its == its &&
2215 dev_id == vpe_proxy.dev->device_id) {
2216 /* Bad luck. Get yourself a better implementation */
2217 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2222 its_dev = its_find_device(its, dev_id);
2225 * We already have seen this ID, probably through
2226 * another alias (PCI bridge of some sort). No need to
2227 * create the device.
2229 pr_debug("Reusing ITT for devID %x\n", dev_id);
2233 its_dev = its_create_device(its, dev_id, nvec, true);
2237 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2239 info->scratchpad[0].ptr = its_dev;
2243 static struct msi_domain_ops its_msi_domain_ops = {
2244 .msi_prepare = its_msi_prepare,
2247 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2249 irq_hw_number_t hwirq)
2251 struct irq_fwspec fwspec;
2253 if (irq_domain_get_of_node(domain->parent)) {
2254 fwspec.fwnode = domain->parent->fwnode;
2255 fwspec.param_count = 3;
2256 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2257 fwspec.param[1] = hwirq;
2258 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2259 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2260 fwspec.fwnode = domain->parent->fwnode;
2261 fwspec.param_count = 2;
2262 fwspec.param[0] = hwirq;
2263 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2268 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2271 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2272 unsigned int nr_irqs, void *args)
2274 msi_alloc_info_t *info = args;
2275 struct its_device *its_dev = info->scratchpad[0].ptr;
2276 irq_hw_number_t hwirq;
2280 for (i = 0; i < nr_irqs; i++) {
2281 err = its_alloc_device_irq(its_dev, &hwirq);
2285 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
2289 irq_domain_set_hwirq_and_chip(domain, virq + i,
2290 hwirq, &its_irq_chip, its_dev);
2291 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2292 pr_debug("ID:%d pID:%d vID:%d\n",
2293 (int)(hwirq - its_dev->event_map.lpi_base),
2294 (int) hwirq, virq + i);
2300 static int its_irq_domain_activate(struct irq_domain *domain,
2301 struct irq_data *d, bool reserve)
2303 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2304 u32 event = its_get_event_id(d);
2305 const struct cpumask *cpu_mask = cpu_online_mask;
2308 /* get the cpu_mask of local node */
2309 if (its_dev->its->numa_node >= 0)
2310 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2312 /* Bind the LPI to the first possible CPU */
2313 cpu = cpumask_first(cpu_mask);
2314 its_dev->event_map.col_map[event] = cpu;
2315 irq_data_update_effective_affinity(d, cpumask_of(cpu));
2317 /* Map the GIC IRQ and event to the device */
2318 its_send_mapti(its_dev, d->hwirq, event);
2322 static void its_irq_domain_deactivate(struct irq_domain *domain,
2325 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2326 u32 event = its_get_event_id(d);
2328 /* Stop the delivery of interrupts */
2329 its_send_discard(its_dev, event);
2332 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2333 unsigned int nr_irqs)
2335 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2336 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2339 for (i = 0; i < nr_irqs; i++) {
2340 struct irq_data *data = irq_domain_get_irq_data(domain,
2342 u32 event = its_get_event_id(data);
2344 /* Mark interrupt index as unused */
2345 clear_bit(event, its_dev->event_map.lpi_map);
2347 /* Nuke the entry in the domain */
2348 irq_domain_reset_irq_data(data);
2351 /* If all interrupts have been freed, start mopping the floor */
2352 if (bitmap_empty(its_dev->event_map.lpi_map,
2353 its_dev->event_map.nr_lpis)) {
2354 its_lpi_free_chunks(its_dev->event_map.lpi_map,
2355 its_dev->event_map.lpi_base,
2356 its_dev->event_map.nr_lpis);
2357 kfree(its_dev->event_map.col_map);
2359 /* Unmap device/itt */
2360 its_send_mapd(its_dev, 0);
2361 its_free_device(its_dev);
2364 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2367 static const struct irq_domain_ops its_domain_ops = {
2368 .alloc = its_irq_domain_alloc,
2369 .free = its_irq_domain_free,
2370 .activate = its_irq_domain_activate,
2371 .deactivate = its_irq_domain_deactivate,
2377 * If a GICv4 doesn't implement Direct LPIs (which is extremely
2378 * likely), the only way to perform an invalidate is to use a fake
2379 * device to issue an INV command, implying that the LPI has first
2380 * been mapped to some event on that device. Since this is not exactly
2381 * cheap, we try to keep that mapping around as long as possible, and
2382 * only issue an UNMAP if we're short on available slots.
2384 * Broken by design(tm).
2386 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2388 /* Already unmapped? */
2389 if (vpe->vpe_proxy_event == -1)
2392 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2393 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2396 * We don't track empty slots at all, so let's move the
2397 * next_victim pointer if we can quickly reuse that slot
2398 * instead of nuking an existing entry. Not clear that this is
2399 * always a win though, and this might just generate a ripple
2400 * effect... Let's just hope VPEs don't migrate too often.
2402 if (vpe_proxy.vpes[vpe_proxy.next_victim])
2403 vpe_proxy.next_victim = vpe->vpe_proxy_event;
2405 vpe->vpe_proxy_event = -1;
2408 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2410 if (!gic_rdists->has_direct_lpi) {
2411 unsigned long flags;
2413 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2414 its_vpe_db_proxy_unmap_locked(vpe);
2415 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2419 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2421 /* Already mapped? */
2422 if (vpe->vpe_proxy_event != -1)
2425 /* This slot was already allocated. Kick the other VPE out. */
2426 if (vpe_proxy.vpes[vpe_proxy.next_victim])
2427 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2429 /* Map the new VPE instead */
2430 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2431 vpe->vpe_proxy_event = vpe_proxy.next_victim;
2432 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2434 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2435 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2438 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2440 unsigned long flags;
2441 struct its_collection *target_col;
2443 if (gic_rdists->has_direct_lpi) {
2444 void __iomem *rdbase;
2446 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2447 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2448 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2454 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2456 its_vpe_db_proxy_map_locked(vpe);
2458 target_col = &vpe_proxy.dev->its->collections[to];
2459 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2460 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2462 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2465 static int its_vpe_set_affinity(struct irq_data *d,
2466 const struct cpumask *mask_val,
2469 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2470 int cpu = cpumask_first(mask_val);
2473 * Changing affinity is mega expensive, so let's be as lazy as
2474 * we can and only do it if we really have to. Also, if mapped
2475 * into the proxy device, we need to move the doorbell
2476 * interrupt to its new location.
2478 if (vpe->col_idx != cpu) {
2479 int from = vpe->col_idx;
2482 its_send_vmovp(vpe);
2483 its_vpe_db_proxy_move(vpe, from, cpu);
2486 irq_data_update_effective_affinity(d, cpumask_of(cpu));
2488 return IRQ_SET_MASK_OK_DONE;
2491 static void its_vpe_schedule(struct its_vpe *vpe)
2493 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2496 /* Schedule the VPE */
2497 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2498 GENMASK_ULL(51, 12);
2499 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2500 val |= GICR_VPROPBASER_RaWb;
2501 val |= GICR_VPROPBASER_InnerShareable;
2502 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2504 val = virt_to_phys(page_address(vpe->vpt_page)) &
2505 GENMASK_ULL(51, 16);
2506 val |= GICR_VPENDBASER_RaWaWb;
2507 val |= GICR_VPENDBASER_NonShareable;
2509 * There is no good way of finding out if the pending table is
2510 * empty as we can race against the doorbell interrupt very
2511 * easily. So in the end, vpe->pending_last is only an
2512 * indication that the vcpu has something pending, not one
2513 * that the pending table is empty. A good implementation
2514 * would be able to read its coarse map pretty quickly anyway,
2515 * making this a tolerable issue.
2517 val |= GICR_VPENDBASER_PendingLast;
2518 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2519 val |= GICR_VPENDBASER_Valid;
2520 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2523 static void its_vpe_deschedule(struct its_vpe *vpe)
2525 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2526 u32 count = 1000000; /* 1s! */
2530 /* We're being scheduled out */
2531 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2532 val &= ~GICR_VPENDBASER_Valid;
2533 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2536 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2537 clean = !(val & GICR_VPENDBASER_Dirty);
2543 } while (!clean && count);
2545 if (unlikely(!clean && !count)) {
2546 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2548 vpe->pending_last = true;
2550 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2551 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2555 static void its_vpe_invall(struct its_vpe *vpe)
2557 struct its_node *its;
2559 list_for_each_entry(its, &its_nodes, entry) {
2563 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2567 * Sending a VINVALL to a single ITS is enough, as all
2568 * we need is to reach the redistributors.
2570 its_send_vinvall(its, vpe);
2575 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2577 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2578 struct its_cmd_info *info = vcpu_info;
2580 switch (info->cmd_type) {
2582 its_vpe_schedule(vpe);
2585 case DESCHEDULE_VPE:
2586 its_vpe_deschedule(vpe);
2590 its_vpe_invall(vpe);
2598 static void its_vpe_send_cmd(struct its_vpe *vpe,
2599 void (*cmd)(struct its_device *, u32))
2601 unsigned long flags;
2603 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2605 its_vpe_db_proxy_map_locked(vpe);
2606 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2608 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2611 static void its_vpe_send_inv(struct irq_data *d)
2613 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2615 if (gic_rdists->has_direct_lpi) {
2616 void __iomem *rdbase;
2618 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2619 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2620 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2623 its_vpe_send_cmd(vpe, its_send_inv);
2627 static void its_vpe_mask_irq(struct irq_data *d)
2630 * We need to unmask the LPI, which is described by the parent
2631 * irq_data. Instead of calling into the parent (which won't
2632 * exactly do the right thing, let's simply use the
2633 * parent_data pointer. Yes, I'm naughty.
2635 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2636 its_vpe_send_inv(d);
2639 static void its_vpe_unmask_irq(struct irq_data *d)
2641 /* Same hack as above... */
2642 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2643 its_vpe_send_inv(d);
2646 static int its_vpe_set_irqchip_state(struct irq_data *d,
2647 enum irqchip_irq_state which,
2650 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2652 if (which != IRQCHIP_STATE_PENDING)
2655 if (gic_rdists->has_direct_lpi) {
2656 void __iomem *rdbase;
2658 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2660 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2662 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2663 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2668 its_vpe_send_cmd(vpe, its_send_int);
2670 its_vpe_send_cmd(vpe, its_send_clear);
2676 static struct irq_chip its_vpe_irq_chip = {
2677 .name = "GICv4-vpe",
2678 .irq_mask = its_vpe_mask_irq,
2679 .irq_unmask = its_vpe_unmask_irq,
2680 .irq_eoi = irq_chip_eoi_parent,
2681 .irq_set_affinity = its_vpe_set_affinity,
2682 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
2683 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
2686 static int its_vpe_id_alloc(void)
2688 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2691 static void its_vpe_id_free(u16 id)
2693 ida_simple_remove(&its_vpeid_ida, id);
2696 static int its_vpe_init(struct its_vpe *vpe)
2698 struct page *vpt_page;
2701 /* Allocate vpe_id */
2702 vpe_id = its_vpe_id_alloc();
2707 vpt_page = its_allocate_pending_table(GFP_KERNEL);
2709 its_vpe_id_free(vpe_id);
2713 if (!its_alloc_vpe_table(vpe_id)) {
2714 its_vpe_id_free(vpe_id);
2715 its_free_pending_table(vpe->vpt_page);
2719 vpe->vpe_id = vpe_id;
2720 vpe->vpt_page = vpt_page;
2721 vpe->vpe_proxy_event = -1;
2726 static void its_vpe_teardown(struct its_vpe *vpe)
2728 its_vpe_db_proxy_unmap(vpe);
2729 its_vpe_id_free(vpe->vpe_id);
2730 its_free_pending_table(vpe->vpt_page);
2733 static void its_vpe_irq_domain_free(struct irq_domain *domain,
2735 unsigned int nr_irqs)
2737 struct its_vm *vm = domain->host_data;
2740 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2742 for (i = 0; i < nr_irqs; i++) {
2743 struct irq_data *data = irq_domain_get_irq_data(domain,
2745 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
2747 BUG_ON(vm != vpe->its_vm);
2749 clear_bit(data->hwirq, vm->db_bitmap);
2750 its_vpe_teardown(vpe);
2751 irq_domain_reset_irq_data(data);
2754 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
2755 its_lpi_free_chunks(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
2756 its_free_prop_table(vm->vprop_page);
2760 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2761 unsigned int nr_irqs, void *args)
2763 struct its_vm *vm = args;
2764 unsigned long *bitmap;
2765 struct page *vprop_page;
2766 int base, nr_ids, i, err = 0;
2770 bitmap = its_lpi_alloc_chunks(nr_irqs, &base, &nr_ids);
2774 if (nr_ids < nr_irqs) {
2775 its_lpi_free_chunks(bitmap, base, nr_ids);
2779 vprop_page = its_allocate_prop_table(GFP_KERNEL);
2781 its_lpi_free_chunks(bitmap, base, nr_ids);
2785 vm->db_bitmap = bitmap;
2786 vm->db_lpi_base = base;
2787 vm->nr_db_lpis = nr_ids;
2788 vm->vprop_page = vprop_page;
2790 for (i = 0; i < nr_irqs; i++) {
2791 vm->vpes[i]->vpe_db_lpi = base + i;
2792 err = its_vpe_init(vm->vpes[i]);
2795 err = its_irq_gic_domain_alloc(domain, virq + i,
2796 vm->vpes[i]->vpe_db_lpi);
2799 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
2800 &its_vpe_irq_chip, vm->vpes[i]);
2806 its_vpe_irq_domain_free(domain, virq, i - 1);
2808 its_lpi_free_chunks(bitmap, base, nr_ids);
2809 its_free_prop_table(vprop_page);
2815 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
2816 struct irq_data *d, bool reserve)
2818 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2819 struct its_node *its;
2821 /* If we use the list map, we issue VMAPP on demand... */
2825 /* Map the VPE to the first possible CPU */
2826 vpe->col_idx = cpumask_first(cpu_online_mask);
2828 list_for_each_entry(its, &its_nodes, entry) {
2832 its_send_vmapp(its, vpe, true);
2833 its_send_vinvall(its, vpe);
2836 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
2841 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
2844 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2845 struct its_node *its;
2848 * If we use the list map, we unmap the VPE once no VLPIs are
2849 * associated with the VM.
2854 list_for_each_entry(its, &its_nodes, entry) {
2858 its_send_vmapp(its, vpe, false);
2862 static const struct irq_domain_ops its_vpe_domain_ops = {
2863 .alloc = its_vpe_irq_domain_alloc,
2864 .free = its_vpe_irq_domain_free,
2865 .activate = its_vpe_irq_domain_activate,
2866 .deactivate = its_vpe_irq_domain_deactivate,
2869 static int its_force_quiescent(void __iomem *base)
2871 u32 count = 1000000; /* 1s */
2874 val = readl_relaxed(base + GITS_CTLR);
2876 * GIC architecture specification requires the ITS to be both
2877 * disabled and quiescent for writes to GITS_BASER<n> or
2878 * GITS_CBASER to not have UNPREDICTABLE results.
2880 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
2883 /* Disable the generation of all interrupts to this ITS */
2884 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
2885 writel_relaxed(val, base + GITS_CTLR);
2887 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
2889 val = readl_relaxed(base + GITS_CTLR);
2890 if (val & GITS_CTLR_QUIESCENT)
2902 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
2904 struct its_node *its = data;
2906 /* erratum 22375: only alloc 8MB table size */
2907 its->device_ids = 0x14; /* 20 bits, 8MB */
2908 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
2913 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
2915 struct its_node *its = data;
2917 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
2922 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
2924 struct its_node *its = data;
2926 /* On QDF2400, the size of the ITE is 16Bytes */
2932 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
2934 struct its_node *its = its_dev->its;
2937 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
2938 * which maps 32-bit writes targeted at a separate window of
2939 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
2940 * with device ID taken from bits [device_id_bits + 1:2] of
2941 * the window offset.
2943 return its->pre_its_base + (its_dev->device_id << 2);
2946 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
2948 struct its_node *its = data;
2949 u32 pre_its_window[2];
2952 if (!fwnode_property_read_u32_array(its->fwnode_handle,
2953 "socionext,synquacer-pre-its",
2955 ARRAY_SIZE(pre_its_window))) {
2957 its->pre_its_base = pre_its_window[0];
2958 its->get_msi_base = its_irq_get_msi_base_pre_its;
2960 ids = ilog2(pre_its_window[1]) - 2;
2961 if (its->device_ids > ids)
2962 its->device_ids = ids;
2964 /* the pre-ITS breaks isolation, so disable MSI remapping */
2965 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
2971 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
2973 struct its_node *its = data;
2976 * Hip07 insists on using the wrong address for the VLPI
2977 * page. Trick it into doing the right thing...
2979 its->vlpi_redist_offset = SZ_128K;
2983 static const struct gic_quirk its_quirks[] = {
2984 #ifdef CONFIG_CAVIUM_ERRATUM_22375
2986 .desc = "ITS: Cavium errata 22375, 24313",
2987 .iidr = 0xa100034c, /* ThunderX pass 1.x */
2989 .init = its_enable_quirk_cavium_22375,
2992 #ifdef CONFIG_CAVIUM_ERRATUM_23144
2994 .desc = "ITS: Cavium erratum 23144",
2995 .iidr = 0xa100034c, /* ThunderX pass 1.x */
2997 .init = its_enable_quirk_cavium_23144,
3000 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3002 .desc = "ITS: QDF2400 erratum 0065",
3003 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
3005 .init = its_enable_quirk_qdf2400_e0065,
3008 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3011 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3012 * implementation, but with a 'pre-ITS' added that requires
3013 * special handling in software.
3015 .desc = "ITS: Socionext Synquacer pre-ITS",
3018 .init = its_enable_quirk_socionext_synquacer,
3021 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3023 .desc = "ITS: Hip07 erratum 161600802",
3026 .init = its_enable_quirk_hip07_161600802,
3033 static void its_enable_quirks(struct its_node *its)
3035 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3037 gic_enable_quirks(iidr, its_quirks, its);
3040 static int its_save_disable(void)
3042 struct its_node *its;
3045 spin_lock(&its_lock);
3046 list_for_each_entry(its, &its_nodes, entry) {
3049 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3053 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3054 err = its_force_quiescent(base);
3056 pr_err("ITS@%pa: failed to quiesce: %d\n",
3057 &its->phys_base, err);
3058 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3062 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3067 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3070 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3074 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3077 spin_unlock(&its_lock);
3082 static void its_restore_enable(void)
3084 struct its_node *its;
3087 spin_lock(&its_lock);
3088 list_for_each_entry(its, &its_nodes, entry) {
3092 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3098 * Make sure that the ITS is disabled. If it fails to quiesce,
3099 * don't restore it since writing to CBASER or BASER<n>
3100 * registers is undefined according to the GIC v3 ITS
3103 ret = its_force_quiescent(base);
3105 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3106 &its->phys_base, ret);
3110 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3113 * Writing CBASER resets CREADR to 0, so make CWRITER and
3114 * cmd_write line up with it.
3116 its->cmd_write = its->cmd_base;
3117 gits_write_cwriter(0, base + GITS_CWRITER);
3119 /* Restore GITS_BASER from the value cache. */
3120 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3121 struct its_baser *baser = &its->tables[i];
3123 if (!(baser->val & GITS_BASER_VALID))
3126 its_write_baser(its, baser, baser->val);
3128 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3131 * Reinit the collection if it's stored in the ITS. This is
3132 * indicated by the col_id being less than the HCC field.
3133 * CID < HCC as specified in the GIC v3 Documentation.
3135 if (its->collections[smp_processor_id()].col_id <
3136 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3137 its_cpu_init_collection(its);
3139 spin_unlock(&its_lock);
3142 static struct syscore_ops its_syscore_ops = {
3143 .suspend = its_save_disable,
3144 .resume = its_restore_enable,
3147 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3149 struct irq_domain *inner_domain;
3150 struct msi_domain_info *info;
3152 info = kzalloc(sizeof(*info), GFP_KERNEL);
3156 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3157 if (!inner_domain) {
3162 inner_domain->parent = its_parent;
3163 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3164 inner_domain->flags |= its->msi_domain_flags;
3165 info->ops = &its_msi_domain_ops;
3167 inner_domain->host_data = info;
3172 static int its_init_vpe_domain(void)
3174 struct its_node *its;
3178 if (gic_rdists->has_direct_lpi) {
3179 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3183 /* Any ITS will do, even if not v4 */
3184 its = list_first_entry(&its_nodes, struct its_node, entry);
3186 entries = roundup_pow_of_two(nr_cpu_ids);
3187 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3189 if (!vpe_proxy.vpes) {
3190 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3194 /* Use the last possible DevID */
3195 devid = GENMASK(its->device_ids - 1, 0);
3196 vpe_proxy.dev = its_create_device(its, devid, entries, false);
3197 if (!vpe_proxy.dev) {
3198 kfree(vpe_proxy.vpes);
3199 pr_err("ITS: Can't allocate GICv4 proxy device\n");
3203 BUG_ON(entries > vpe_proxy.dev->nr_ites);
3205 raw_spin_lock_init(&vpe_proxy.lock);
3206 vpe_proxy.next_victim = 0;
3207 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3208 devid, vpe_proxy.dev->nr_ites);
3213 static int __init its_compute_its_list_map(struct resource *res,
3214 void __iomem *its_base)
3220 * This is assumed to be done early enough that we're
3221 * guaranteed to be single-threaded, hence no
3222 * locking. Should this change, we should address
3225 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3226 if (its_number >= GICv4_ITS_LIST_MAX) {
3227 pr_err("ITS@%pa: No ITSList entry available!\n",
3232 ctlr = readl_relaxed(its_base + GITS_CTLR);
3233 ctlr &= ~GITS_CTLR_ITS_NUMBER;
3234 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3235 writel_relaxed(ctlr, its_base + GITS_CTLR);
3236 ctlr = readl_relaxed(its_base + GITS_CTLR);
3237 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3238 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3239 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3242 if (test_and_set_bit(its_number, &its_list_map)) {
3243 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3244 &res->start, its_number);
3251 static int __init its_probe_one(struct resource *res,
3252 struct fwnode_handle *handle, int numa_node)
3254 struct its_node *its;
3255 void __iomem *its_base;
3257 u64 baser, tmp, typer;
3260 its_base = ioremap(res->start, resource_size(res));
3262 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3266 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3267 if (val != 0x30 && val != 0x40) {
3268 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3273 err = its_force_quiescent(its_base);
3275 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3279 pr_info("ITS %pR\n", res);
3281 its = kzalloc(sizeof(*its), GFP_KERNEL);
3287 raw_spin_lock_init(&its->lock);
3288 INIT_LIST_HEAD(&its->entry);
3289 INIT_LIST_HEAD(&its->its_device_list);
3290 typer = gic_read_typer(its_base + GITS_TYPER);
3291 its->base = its_base;
3292 its->phys_base = res->start;
3293 its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3294 its->device_ids = GITS_TYPER_DEVBITS(typer);
3295 its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3297 if (!(typer & GITS_TYPER_VMOVP)) {
3298 err = its_compute_its_list_map(res, its_base);
3304 pr_info("ITS@%pa: Using ITS number %d\n",
3307 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3311 its->numa_node = numa_node;
3313 its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
3314 get_order(ITS_CMD_QUEUE_SZ));
3315 if (!its->cmd_base) {
3319 its->cmd_write = its->cmd_base;
3320 its->fwnode_handle = handle;
3321 its->get_msi_base = its_irq_get_msi_base;
3322 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3324 its_enable_quirks(its);
3326 err = its_alloc_tables(its);
3330 err = its_alloc_collections(its);
3332 goto out_free_tables;
3334 baser = (virt_to_phys(its->cmd_base) |
3335 GITS_CBASER_RaWaWb |
3336 GITS_CBASER_InnerShareable |
3337 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
3340 gits_write_cbaser(baser, its->base + GITS_CBASER);
3341 tmp = gits_read_cbaser(its->base + GITS_CBASER);
3343 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3344 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3346 * The HW reports non-shareable, we must
3347 * remove the cacheability attributes as
3350 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3351 GITS_CBASER_CACHEABILITY_MASK);
3352 baser |= GITS_CBASER_nC;
3353 gits_write_cbaser(baser, its->base + GITS_CBASER);
3355 pr_info("ITS: using cache flushing for cmd queue\n");
3356 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3359 gits_write_cwriter(0, its->base + GITS_CWRITER);
3360 ctlr = readl_relaxed(its->base + GITS_CTLR);
3361 ctlr |= GITS_CTLR_ENABLE;
3363 ctlr |= GITS_CTLR_ImDe;
3364 writel_relaxed(ctlr, its->base + GITS_CTLR);
3366 if (GITS_TYPER_HCC(typer))
3367 its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3369 err = its_init_domain(handle, its);
3371 goto out_free_tables;
3373 spin_lock(&its_lock);
3374 list_add(&its->entry, &its_nodes);
3375 spin_unlock(&its_lock);
3380 its_free_tables(its);
3382 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3387 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3391 static bool gic_rdists_supports_plpis(void)
3393 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3396 static int redist_disable_lpis(void)
3398 void __iomem *rbase = gic_data_rdist_rd_base();
3399 u64 timeout = USEC_PER_SEC;
3402 if (!gic_rdists_supports_plpis()) {
3403 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3407 val = readl_relaxed(rbase + GICR_CTLR);
3408 if (!(val & GICR_CTLR_ENABLE_LPIS))
3411 pr_warn("CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3412 smp_processor_id());
3413 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3416 val &= ~GICR_CTLR_ENABLE_LPIS;
3417 writel_relaxed(val, rbase + GICR_CTLR);
3419 /* Make sure any change to GICR_CTLR is observable by the GIC */
3423 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3424 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3425 * Error out if we time out waiting for RWP to clear.
3427 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3429 pr_err("CPU%d: Timeout while disabling LPIs\n",
3430 smp_processor_id());
3438 * After it has been written to 1, it is IMPLEMENTATION
3439 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3440 * cleared to 0. Error out if clearing the bit failed.
3442 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3443 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3450 int its_cpu_init(void)
3452 if (!list_empty(&its_nodes)) {
3455 ret = redist_disable_lpis();
3459 its_cpu_init_lpis();
3460 its_cpu_init_collections();
3466 static const struct of_device_id its_device_id[] = {
3467 { .compatible = "arm,gic-v3-its", },
3471 static int __init its_of_probe(struct device_node *node)
3473 struct device_node *np;
3474 struct resource res;
3476 for (np = of_find_matching_node(node, its_device_id); np;
3477 np = of_find_matching_node(np, its_device_id)) {
3478 if (!of_device_is_available(np))
3480 if (!of_property_read_bool(np, "msi-controller")) {
3481 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3486 if (of_address_to_resource(np, 0, &res)) {
3487 pr_warn("%pOF: no regs?\n", np);
3491 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3498 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3500 #ifdef CONFIG_ACPI_NUMA
3501 struct its_srat_map {
3508 static struct its_srat_map *its_srat_maps __initdata;
3509 static int its_in_srat __initdata;
3511 static int __init acpi_get_its_numa_node(u32 its_id)
3515 for (i = 0; i < its_in_srat; i++) {
3516 if (its_id == its_srat_maps[i].its_id)
3517 return its_srat_maps[i].numa_node;
3519 return NUMA_NO_NODE;
3522 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
3523 const unsigned long end)
3528 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
3529 const unsigned long end)
3532 struct acpi_srat_gic_its_affinity *its_affinity;
3534 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3538 if (its_affinity->header.length < sizeof(*its_affinity)) {
3539 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3540 its_affinity->header.length);
3544 node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3546 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3547 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3551 its_srat_maps[its_in_srat].numa_node = node;
3552 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3554 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3555 its_affinity->proximity_domain, its_affinity->its_id, node);
3560 static void __init acpi_table_parse_srat_its(void)
3564 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3565 sizeof(struct acpi_table_srat),
3566 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3567 gic_acpi_match_srat_its, 0);
3571 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
3573 if (!its_srat_maps) {
3574 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3578 acpi_table_parse_entries(ACPI_SIG_SRAT,
3579 sizeof(struct acpi_table_srat),
3580 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3581 gic_acpi_parse_srat_its, 0);
3584 /* free the its_srat_maps after ITS probing */
3585 static void __init acpi_its_srat_maps_free(void)
3587 kfree(its_srat_maps);
3590 static void __init acpi_table_parse_srat_its(void) { }
3591 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3592 static void __init acpi_its_srat_maps_free(void) { }
3595 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
3596 const unsigned long end)
3598 struct acpi_madt_generic_translator *its_entry;
3599 struct fwnode_handle *dom_handle;
3600 struct resource res;
3603 its_entry = (struct acpi_madt_generic_translator *)header;
3604 memset(&res, 0, sizeof(res));
3605 res.start = its_entry->base_address;
3606 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3607 res.flags = IORESOURCE_MEM;
3609 dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3611 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3616 err = iort_register_domain_token(its_entry->translation_id, res.start,
3619 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3620 &res.start, its_entry->translation_id);
3624 err = its_probe_one(&res, dom_handle,
3625 acpi_get_its_numa_node(its_entry->translation_id));
3629 iort_deregister_domain_token(its_entry->translation_id);
3631 irq_domain_free_fwnode(dom_handle);
3635 static void __init its_acpi_probe(void)
3637 acpi_table_parse_srat_its();
3638 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3639 gic_acpi_parse_madt_its, 0);
3640 acpi_its_srat_maps_free();
3643 static void __init its_acpi_probe(void) { }
3646 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3647 struct irq_domain *parent_domain)
3649 struct device_node *of_node;
3650 struct its_node *its;
3651 bool has_v4 = false;
3654 its_parent = parent_domain;
3655 of_node = to_of_node(handle);
3657 its_of_probe(of_node);
3661 if (list_empty(&its_nodes)) {
3662 pr_warn("ITS: No ITS available, not enabling LPIs\n");
3666 gic_rdists = rdists;
3667 err = its_alloc_lpi_tables();
3671 list_for_each_entry(its, &its_nodes, entry)
3672 has_v4 |= its->is_v4;
3674 if (has_v4 & rdists->has_vlpis) {
3675 if (its_init_vpe_domain() ||
3676 its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3677 rdists->has_vlpis = false;
3678 pr_err("ITS: Disabling GICv4 support\n");
3682 register_syscore_ops(&its_syscore_ops);