2 * Register map access API
4 * Copyright 2011 Wolfson Microelectronics plc
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23 #include <linux/hwspinlock.h>
25 #define CREATE_TRACE_POINTS
31 * Sometimes for failures during very early init the trace
32 * infrastructure isn't available early enough to be used. For this
33 * sort of problem defining LOG_DEVICE will add printks for basic
34 * register I/O on a specific device.
38 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
39 unsigned int mask, unsigned int val,
40 bool *change, bool force_write);
42 static int _regmap_bus_reg_read(void *context, unsigned int reg,
44 static int _regmap_bus_read(void *context, unsigned int reg,
46 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
48 static int _regmap_bus_reg_write(void *context, unsigned int reg,
50 static int _regmap_bus_raw_write(void *context, unsigned int reg,
53 bool regmap_reg_in_ranges(unsigned int reg,
54 const struct regmap_range *ranges,
57 const struct regmap_range *r;
60 for (i = 0, r = ranges; i < nranges; i++, r++)
61 if (regmap_reg_in_range(reg, r))
65 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
67 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
68 const struct regmap_access_table *table)
70 /* Check "no ranges" first */
71 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
74 /* In case zero "yes ranges" are supplied, any reg is OK */
75 if (!table->n_yes_ranges)
78 return regmap_reg_in_ranges(reg, table->yes_ranges,
81 EXPORT_SYMBOL_GPL(regmap_check_range_table);
83 bool regmap_writeable(struct regmap *map, unsigned int reg)
85 if (map->max_register && reg > map->max_register)
88 if (map->writeable_reg)
89 return map->writeable_reg(map->dev, reg);
92 return regmap_check_range_table(map, reg, map->wr_table);
97 bool regmap_cached(struct regmap *map, unsigned int reg)
102 if (map->cache_type == REGCACHE_NONE)
108 if (map->max_register && reg > map->max_register)
111 map->lock(map->lock_arg);
112 ret = regcache_read(map, reg, &val);
113 map->unlock(map->lock_arg);
120 bool regmap_readable(struct regmap *map, unsigned int reg)
125 if (map->max_register && reg > map->max_register)
128 if (map->format.format_write)
131 if (map->readable_reg)
132 return map->readable_reg(map->dev, reg);
135 return regmap_check_range_table(map, reg, map->rd_table);
140 bool regmap_volatile(struct regmap *map, unsigned int reg)
142 if (!map->format.format_write && !regmap_readable(map, reg))
145 if (map->volatile_reg)
146 return map->volatile_reg(map->dev, reg);
148 if (map->volatile_table)
149 return regmap_check_range_table(map, reg, map->volatile_table);
157 bool regmap_precious(struct regmap *map, unsigned int reg)
159 if (!regmap_readable(map, reg))
162 if (map->precious_reg)
163 return map->precious_reg(map->dev, reg);
165 if (map->precious_table)
166 return regmap_check_range_table(map, reg, map->precious_table);
171 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
176 for (i = 0; i < num; i++)
177 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
183 static void regmap_format_2_6_write(struct regmap *map,
184 unsigned int reg, unsigned int val)
186 u8 *out = map->work_buf;
188 *out = (reg << 6) | val;
191 static void regmap_format_4_12_write(struct regmap *map,
192 unsigned int reg, unsigned int val)
194 __be16 *out = map->work_buf;
195 *out = cpu_to_be16((reg << 12) | val);
198 static void regmap_format_7_9_write(struct regmap *map,
199 unsigned int reg, unsigned int val)
201 __be16 *out = map->work_buf;
202 *out = cpu_to_be16((reg << 9) | val);
205 static void regmap_format_10_14_write(struct regmap *map,
206 unsigned int reg, unsigned int val)
208 u8 *out = map->work_buf;
211 out[1] = (val >> 8) | (reg << 6);
215 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
222 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
226 b[0] = cpu_to_be16(val << shift);
229 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
233 b[0] = cpu_to_le16(val << shift);
236 static void regmap_format_16_native(void *buf, unsigned int val,
239 *(u16 *)buf = val << shift;
242 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
253 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
257 b[0] = cpu_to_be32(val << shift);
260 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
264 b[0] = cpu_to_le32(val << shift);
267 static void regmap_format_32_native(void *buf, unsigned int val,
270 *(u32 *)buf = val << shift;
274 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
278 b[0] = cpu_to_be64((u64)val << shift);
281 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
285 b[0] = cpu_to_le64((u64)val << shift);
288 static void regmap_format_64_native(void *buf, unsigned int val,
291 *(u64 *)buf = (u64)val << shift;
295 static void regmap_parse_inplace_noop(void *buf)
299 static unsigned int regmap_parse_8(const void *buf)
306 static unsigned int regmap_parse_16_be(const void *buf)
308 const __be16 *b = buf;
310 return be16_to_cpu(b[0]);
313 static unsigned int regmap_parse_16_le(const void *buf)
315 const __le16 *b = buf;
317 return le16_to_cpu(b[0]);
320 static void regmap_parse_16_be_inplace(void *buf)
324 b[0] = be16_to_cpu(b[0]);
327 static void regmap_parse_16_le_inplace(void *buf)
331 b[0] = le16_to_cpu(b[0]);
334 static unsigned int regmap_parse_16_native(const void *buf)
339 static unsigned int regmap_parse_24(const void *buf)
342 unsigned int ret = b[2];
343 ret |= ((unsigned int)b[1]) << 8;
344 ret |= ((unsigned int)b[0]) << 16;
349 static unsigned int regmap_parse_32_be(const void *buf)
351 const __be32 *b = buf;
353 return be32_to_cpu(b[0]);
356 static unsigned int regmap_parse_32_le(const void *buf)
358 const __le32 *b = buf;
360 return le32_to_cpu(b[0]);
363 static void regmap_parse_32_be_inplace(void *buf)
367 b[0] = be32_to_cpu(b[0]);
370 static void regmap_parse_32_le_inplace(void *buf)
374 b[0] = le32_to_cpu(b[0]);
377 static unsigned int regmap_parse_32_native(const void *buf)
383 static unsigned int regmap_parse_64_be(const void *buf)
385 const __be64 *b = buf;
387 return be64_to_cpu(b[0]);
390 static unsigned int regmap_parse_64_le(const void *buf)
392 const __le64 *b = buf;
394 return le64_to_cpu(b[0]);
397 static void regmap_parse_64_be_inplace(void *buf)
401 b[0] = be64_to_cpu(b[0]);
404 static void regmap_parse_64_le_inplace(void *buf)
408 b[0] = le64_to_cpu(b[0]);
411 static unsigned int regmap_parse_64_native(const void *buf)
417 static void regmap_lock_hwlock(void *__map)
419 struct regmap *map = __map;
421 hwspin_lock_timeout(map->hwlock, UINT_MAX);
424 static void regmap_lock_hwlock_irq(void *__map)
426 struct regmap *map = __map;
428 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
431 static void regmap_lock_hwlock_irqsave(void *__map)
433 struct regmap *map = __map;
435 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
436 &map->spinlock_flags);
439 static void regmap_unlock_hwlock(void *__map)
441 struct regmap *map = __map;
443 hwspin_unlock(map->hwlock);
446 static void regmap_unlock_hwlock_irq(void *__map)
448 struct regmap *map = __map;
450 hwspin_unlock_irq(map->hwlock);
453 static void regmap_unlock_hwlock_irqrestore(void *__map)
455 struct regmap *map = __map;
457 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
460 static void regmap_lock_unlock_none(void *__map)
465 static void regmap_lock_mutex(void *__map)
467 struct regmap *map = __map;
468 mutex_lock(&map->mutex);
471 static void regmap_unlock_mutex(void *__map)
473 struct regmap *map = __map;
474 mutex_unlock(&map->mutex);
477 static void regmap_lock_spinlock(void *__map)
478 __acquires(&map->spinlock)
480 struct regmap *map = __map;
483 spin_lock_irqsave(&map->spinlock, flags);
484 map->spinlock_flags = flags;
487 static void regmap_unlock_spinlock(void *__map)
488 __releases(&map->spinlock)
490 struct regmap *map = __map;
491 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
494 static void dev_get_regmap_release(struct device *dev, void *res)
497 * We don't actually have anything to do here; the goal here
498 * is not to manage the regmap but to provide a simple way to
499 * get the regmap back given a struct device.
503 static bool _regmap_range_add(struct regmap *map,
504 struct regmap_range_node *data)
506 struct rb_root *root = &map->range_tree;
507 struct rb_node **new = &(root->rb_node), *parent = NULL;
510 struct regmap_range_node *this =
511 rb_entry(*new, struct regmap_range_node, node);
514 if (data->range_max < this->range_min)
515 new = &((*new)->rb_left);
516 else if (data->range_min > this->range_max)
517 new = &((*new)->rb_right);
522 rb_link_node(&data->node, parent, new);
523 rb_insert_color(&data->node, root);
528 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
531 struct rb_node *node = map->range_tree.rb_node;
534 struct regmap_range_node *this =
535 rb_entry(node, struct regmap_range_node, node);
537 if (reg < this->range_min)
538 node = node->rb_left;
539 else if (reg > this->range_max)
540 node = node->rb_right;
548 static void regmap_range_exit(struct regmap *map)
550 struct rb_node *next;
551 struct regmap_range_node *range_node;
553 next = rb_first(&map->range_tree);
555 range_node = rb_entry(next, struct regmap_range_node, node);
556 next = rb_next(&range_node->node);
557 rb_erase(&range_node->node, &map->range_tree);
561 kfree(map->selector_work_buf);
564 int regmap_attach_dev(struct device *dev, struct regmap *map,
565 const struct regmap_config *config)
571 regmap_debugfs_init(map, config->name);
573 /* Add a devres resource for dev_get_regmap() */
574 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
576 regmap_debugfs_exit(map);
584 EXPORT_SYMBOL_GPL(regmap_attach_dev);
586 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
587 const struct regmap_config *config)
589 enum regmap_endian endian;
591 /* Retrieve the endianness specification from the regmap config */
592 endian = config->reg_format_endian;
594 /* If the regmap config specified a non-default value, use that */
595 if (endian != REGMAP_ENDIAN_DEFAULT)
598 /* Retrieve the endianness specification from the bus config */
599 if (bus && bus->reg_format_endian_default)
600 endian = bus->reg_format_endian_default;
602 /* If the bus specified a non-default value, use that */
603 if (endian != REGMAP_ENDIAN_DEFAULT)
606 /* Use this if no other value was found */
607 return REGMAP_ENDIAN_BIG;
610 enum regmap_endian regmap_get_val_endian(struct device *dev,
611 const struct regmap_bus *bus,
612 const struct regmap_config *config)
614 struct device_node *np;
615 enum regmap_endian endian;
617 /* Retrieve the endianness specification from the regmap config */
618 endian = config->val_format_endian;
620 /* If the regmap config specified a non-default value, use that */
621 if (endian != REGMAP_ENDIAN_DEFAULT)
624 /* If the dev and dev->of_node exist try to get endianness from DT */
625 if (dev && dev->of_node) {
628 /* Parse the device's DT node for an endianness specification */
629 if (of_property_read_bool(np, "big-endian"))
630 endian = REGMAP_ENDIAN_BIG;
631 else if (of_property_read_bool(np, "little-endian"))
632 endian = REGMAP_ENDIAN_LITTLE;
633 else if (of_property_read_bool(np, "native-endian"))
634 endian = REGMAP_ENDIAN_NATIVE;
636 /* If the endianness was specified in DT, use that */
637 if (endian != REGMAP_ENDIAN_DEFAULT)
641 /* Retrieve the endianness specification from the bus config */
642 if (bus && bus->val_format_endian_default)
643 endian = bus->val_format_endian_default;
645 /* If the bus specified a non-default value, use that */
646 if (endian != REGMAP_ENDIAN_DEFAULT)
649 /* Use this if no other value was found */
650 return REGMAP_ENDIAN_BIG;
652 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
654 struct regmap *__regmap_init(struct device *dev,
655 const struct regmap_bus *bus,
657 const struct regmap_config *config,
658 struct lock_class_key *lock_key,
659 const char *lock_name)
663 enum regmap_endian reg_endian, val_endian;
669 map = kzalloc(sizeof(*map), GFP_KERNEL);
676 map->name = kstrdup_const(config->name, GFP_KERNEL);
683 if (config->disable_locking) {
684 map->lock = map->unlock = regmap_lock_unlock_none;
685 regmap_debugfs_disable(map);
686 } else if (config->lock && config->unlock) {
687 map->lock = config->lock;
688 map->unlock = config->unlock;
689 map->lock_arg = config->lock_arg;
690 } else if (config->use_hwlock) {
691 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
697 switch (config->hwlock_mode) {
698 case HWLOCK_IRQSTATE:
699 map->lock = regmap_lock_hwlock_irqsave;
700 map->unlock = regmap_unlock_hwlock_irqrestore;
703 map->lock = regmap_lock_hwlock_irq;
704 map->unlock = regmap_unlock_hwlock_irq;
707 map->lock = regmap_lock_hwlock;
708 map->unlock = regmap_unlock_hwlock;
714 if ((bus && bus->fast_io) ||
716 spin_lock_init(&map->spinlock);
717 map->lock = regmap_lock_spinlock;
718 map->unlock = regmap_unlock_spinlock;
719 lockdep_set_class_and_name(&map->spinlock,
720 lock_key, lock_name);
722 mutex_init(&map->mutex);
723 map->lock = regmap_lock_mutex;
724 map->unlock = regmap_unlock_mutex;
725 lockdep_set_class_and_name(&map->mutex,
726 lock_key, lock_name);
732 * When we write in fast-paths with regmap_bulk_write() don't allocate
733 * scratch buffers with sleeping allocations.
735 if ((bus && bus->fast_io) || config->fast_io)
736 map->alloc_flags = GFP_ATOMIC;
738 map->alloc_flags = GFP_KERNEL;
740 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
741 map->format.pad_bytes = config->pad_bits / 8;
742 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
743 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
744 config->val_bits + config->pad_bits, 8);
745 map->reg_shift = config->pad_bits % 8;
746 if (config->reg_stride)
747 map->reg_stride = config->reg_stride;
750 if (is_power_of_2(map->reg_stride))
751 map->reg_stride_order = ilog2(map->reg_stride);
753 map->reg_stride_order = -1;
754 map->use_single_read = config->use_single_rw || !bus || !bus->read;
755 map->use_single_write = config->use_single_rw || !bus || !bus->write;
756 map->can_multi_write = config->can_multi_write && bus && bus->write;
758 map->max_raw_read = bus->max_raw_read;
759 map->max_raw_write = bus->max_raw_write;
763 map->bus_context = bus_context;
764 map->max_register = config->max_register;
765 map->wr_table = config->wr_table;
766 map->rd_table = config->rd_table;
767 map->volatile_table = config->volatile_table;
768 map->precious_table = config->precious_table;
769 map->writeable_reg = config->writeable_reg;
770 map->readable_reg = config->readable_reg;
771 map->volatile_reg = config->volatile_reg;
772 map->precious_reg = config->precious_reg;
773 map->cache_type = config->cache_type;
775 spin_lock_init(&map->async_lock);
776 INIT_LIST_HEAD(&map->async_list);
777 INIT_LIST_HEAD(&map->async_free);
778 init_waitqueue_head(&map->async_waitq);
780 if (config->read_flag_mask ||
781 config->write_flag_mask ||
782 config->zero_flag_mask) {
783 map->read_flag_mask = config->read_flag_mask;
784 map->write_flag_mask = config->write_flag_mask;
786 map->read_flag_mask = bus->read_flag_mask;
790 map->reg_read = config->reg_read;
791 map->reg_write = config->reg_write;
793 map->defer_caching = false;
794 goto skip_format_initialization;
795 } else if (!bus->read || !bus->write) {
796 map->reg_read = _regmap_bus_reg_read;
797 map->reg_write = _regmap_bus_reg_write;
799 map->defer_caching = false;
800 goto skip_format_initialization;
802 map->reg_read = _regmap_bus_read;
803 map->reg_update_bits = bus->reg_update_bits;
806 reg_endian = regmap_get_reg_endian(bus, config);
807 val_endian = regmap_get_val_endian(dev, bus, config);
809 switch (config->reg_bits + map->reg_shift) {
811 switch (config->val_bits) {
813 map->format.format_write = regmap_format_2_6_write;
821 switch (config->val_bits) {
823 map->format.format_write = regmap_format_4_12_write;
831 switch (config->val_bits) {
833 map->format.format_write = regmap_format_7_9_write;
841 switch (config->val_bits) {
843 map->format.format_write = regmap_format_10_14_write;
851 map->format.format_reg = regmap_format_8;
855 switch (reg_endian) {
856 case REGMAP_ENDIAN_BIG:
857 map->format.format_reg = regmap_format_16_be;
859 case REGMAP_ENDIAN_LITTLE:
860 map->format.format_reg = regmap_format_16_le;
862 case REGMAP_ENDIAN_NATIVE:
863 map->format.format_reg = regmap_format_16_native;
871 if (reg_endian != REGMAP_ENDIAN_BIG)
873 map->format.format_reg = regmap_format_24;
877 switch (reg_endian) {
878 case REGMAP_ENDIAN_BIG:
879 map->format.format_reg = regmap_format_32_be;
881 case REGMAP_ENDIAN_LITTLE:
882 map->format.format_reg = regmap_format_32_le;
884 case REGMAP_ENDIAN_NATIVE:
885 map->format.format_reg = regmap_format_32_native;
894 switch (reg_endian) {
895 case REGMAP_ENDIAN_BIG:
896 map->format.format_reg = regmap_format_64_be;
898 case REGMAP_ENDIAN_LITTLE:
899 map->format.format_reg = regmap_format_64_le;
901 case REGMAP_ENDIAN_NATIVE:
902 map->format.format_reg = regmap_format_64_native;
914 if (val_endian == REGMAP_ENDIAN_NATIVE)
915 map->format.parse_inplace = regmap_parse_inplace_noop;
917 switch (config->val_bits) {
919 map->format.format_val = regmap_format_8;
920 map->format.parse_val = regmap_parse_8;
921 map->format.parse_inplace = regmap_parse_inplace_noop;
924 switch (val_endian) {
925 case REGMAP_ENDIAN_BIG:
926 map->format.format_val = regmap_format_16_be;
927 map->format.parse_val = regmap_parse_16_be;
928 map->format.parse_inplace = regmap_parse_16_be_inplace;
930 case REGMAP_ENDIAN_LITTLE:
931 map->format.format_val = regmap_format_16_le;
932 map->format.parse_val = regmap_parse_16_le;
933 map->format.parse_inplace = regmap_parse_16_le_inplace;
935 case REGMAP_ENDIAN_NATIVE:
936 map->format.format_val = regmap_format_16_native;
937 map->format.parse_val = regmap_parse_16_native;
944 if (val_endian != REGMAP_ENDIAN_BIG)
946 map->format.format_val = regmap_format_24;
947 map->format.parse_val = regmap_parse_24;
950 switch (val_endian) {
951 case REGMAP_ENDIAN_BIG:
952 map->format.format_val = regmap_format_32_be;
953 map->format.parse_val = regmap_parse_32_be;
954 map->format.parse_inplace = regmap_parse_32_be_inplace;
956 case REGMAP_ENDIAN_LITTLE:
957 map->format.format_val = regmap_format_32_le;
958 map->format.parse_val = regmap_parse_32_le;
959 map->format.parse_inplace = regmap_parse_32_le_inplace;
961 case REGMAP_ENDIAN_NATIVE:
962 map->format.format_val = regmap_format_32_native;
963 map->format.parse_val = regmap_parse_32_native;
971 switch (val_endian) {
972 case REGMAP_ENDIAN_BIG:
973 map->format.format_val = regmap_format_64_be;
974 map->format.parse_val = regmap_parse_64_be;
975 map->format.parse_inplace = regmap_parse_64_be_inplace;
977 case REGMAP_ENDIAN_LITTLE:
978 map->format.format_val = regmap_format_64_le;
979 map->format.parse_val = regmap_parse_64_le;
980 map->format.parse_inplace = regmap_parse_64_le_inplace;
982 case REGMAP_ENDIAN_NATIVE:
983 map->format.format_val = regmap_format_64_native;
984 map->format.parse_val = regmap_parse_64_native;
993 if (map->format.format_write) {
994 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
995 (val_endian != REGMAP_ENDIAN_BIG))
997 map->use_single_write = true;
1000 if (!map->format.format_write &&
1001 !(map->format.format_reg && map->format.format_val))
1004 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1005 if (map->work_buf == NULL) {
1010 if (map->format.format_write) {
1011 map->defer_caching = false;
1012 map->reg_write = _regmap_bus_formatted_write;
1013 } else if (map->format.format_val) {
1014 map->defer_caching = true;
1015 map->reg_write = _regmap_bus_raw_write;
1018 skip_format_initialization:
1020 map->range_tree = RB_ROOT;
1021 for (i = 0; i < config->num_ranges; i++) {
1022 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1023 struct regmap_range_node *new;
1026 if (range_cfg->range_max < range_cfg->range_min) {
1027 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1028 range_cfg->range_max, range_cfg->range_min);
1032 if (range_cfg->range_max > map->max_register) {
1033 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1034 range_cfg->range_max, map->max_register);
1038 if (range_cfg->selector_reg > map->max_register) {
1040 "Invalid range %d: selector out of map\n", i);
1044 if (range_cfg->window_len == 0) {
1045 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1050 /* Make sure, that this register range has no selector
1051 or data window within its boundary */
1052 for (j = 0; j < config->num_ranges; j++) {
1053 unsigned sel_reg = config->ranges[j].selector_reg;
1054 unsigned win_min = config->ranges[j].window_start;
1055 unsigned win_max = win_min +
1056 config->ranges[j].window_len - 1;
1058 /* Allow data window inside its own virtual range */
1062 if (range_cfg->range_min <= sel_reg &&
1063 sel_reg <= range_cfg->range_max) {
1065 "Range %d: selector for %d in window\n",
1070 if (!(win_max < range_cfg->range_min ||
1071 win_min > range_cfg->range_max)) {
1073 "Range %d: window for %d in window\n",
1079 new = kzalloc(sizeof(*new), GFP_KERNEL);
1086 new->name = range_cfg->name;
1087 new->range_min = range_cfg->range_min;
1088 new->range_max = range_cfg->range_max;
1089 new->selector_reg = range_cfg->selector_reg;
1090 new->selector_mask = range_cfg->selector_mask;
1091 new->selector_shift = range_cfg->selector_shift;
1092 new->window_start = range_cfg->window_start;
1093 new->window_len = range_cfg->window_len;
1095 if (!_regmap_range_add(map, new)) {
1096 dev_err(map->dev, "Failed to add range %d\n", i);
1101 if (map->selector_work_buf == NULL) {
1102 map->selector_work_buf =
1103 kzalloc(map->format.buf_size, GFP_KERNEL);
1104 if (map->selector_work_buf == NULL) {
1111 ret = regcache_init(map, config);
1116 ret = regmap_attach_dev(dev, map, config);
1120 regmap_debugfs_init(map, config->name);
1128 regmap_range_exit(map);
1129 kfree(map->work_buf);
1132 hwspin_lock_free(map->hwlock);
1134 kfree_const(map->name);
1138 return ERR_PTR(ret);
1140 EXPORT_SYMBOL_GPL(__regmap_init);
1142 static void devm_regmap_release(struct device *dev, void *res)
1144 regmap_exit(*(struct regmap **)res);
1147 struct regmap *__devm_regmap_init(struct device *dev,
1148 const struct regmap_bus *bus,
1150 const struct regmap_config *config,
1151 struct lock_class_key *lock_key,
1152 const char *lock_name)
1154 struct regmap **ptr, *regmap;
1156 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1158 return ERR_PTR(-ENOMEM);
1160 regmap = __regmap_init(dev, bus, bus_context, config,
1161 lock_key, lock_name);
1162 if (!IS_ERR(regmap)) {
1164 devres_add(dev, ptr);
1171 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1173 static void regmap_field_init(struct regmap_field *rm_field,
1174 struct regmap *regmap, struct reg_field reg_field)
1176 rm_field->regmap = regmap;
1177 rm_field->reg = reg_field.reg;
1178 rm_field->shift = reg_field.lsb;
1179 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1180 rm_field->id_size = reg_field.id_size;
1181 rm_field->id_offset = reg_field.id_offset;
1185 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1187 * @dev: Device that will be interacted with
1188 * @regmap: regmap bank in which this register field is located.
1189 * @reg_field: Register field with in the bank.
1191 * The return value will be an ERR_PTR() on error or a valid pointer
1192 * to a struct regmap_field. The regmap_field will be automatically freed
1193 * by the device management code.
1195 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1196 struct regmap *regmap, struct reg_field reg_field)
1198 struct regmap_field *rm_field = devm_kzalloc(dev,
1199 sizeof(*rm_field), GFP_KERNEL);
1201 return ERR_PTR(-ENOMEM);
1203 regmap_field_init(rm_field, regmap, reg_field);
1208 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1211 * devm_regmap_field_free() - Free a register field allocated using
1212 * devm_regmap_field_alloc.
1214 * @dev: Device that will be interacted with
1215 * @field: regmap field which should be freed.
1217 * Free register field allocated using devm_regmap_field_alloc(). Usually
1218 * drivers need not call this function, as the memory allocated via devm
1219 * will be freed as per device-driver life-cyle.
1221 void devm_regmap_field_free(struct device *dev,
1222 struct regmap_field *field)
1224 devm_kfree(dev, field);
1226 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1229 * regmap_field_alloc() - Allocate and initialise a register field.
1231 * @regmap: regmap bank in which this register field is located.
1232 * @reg_field: Register field with in the bank.
1234 * The return value will be an ERR_PTR() on error or a valid pointer
1235 * to a struct regmap_field. The regmap_field should be freed by the
1236 * user once its finished working with it using regmap_field_free().
1238 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1239 struct reg_field reg_field)
1241 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1244 return ERR_PTR(-ENOMEM);
1246 regmap_field_init(rm_field, regmap, reg_field);
1250 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1253 * regmap_field_free() - Free register field allocated using
1254 * regmap_field_alloc.
1256 * @field: regmap field which should be freed.
1258 void regmap_field_free(struct regmap_field *field)
1262 EXPORT_SYMBOL_GPL(regmap_field_free);
1265 * regmap_reinit_cache() - Reinitialise the current register cache
1267 * @map: Register map to operate on.
1268 * @config: New configuration. Only the cache data will be used.
1270 * Discard any existing register cache for the map and initialize a
1271 * new cache. This can be used to restore the cache to defaults or to
1272 * update the cache configuration to reflect runtime discovery of the
1275 * No explicit locking is done here, the user needs to ensure that
1276 * this function will not race with other calls to regmap.
1278 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1281 regmap_debugfs_exit(map);
1283 map->max_register = config->max_register;
1284 map->writeable_reg = config->writeable_reg;
1285 map->readable_reg = config->readable_reg;
1286 map->volatile_reg = config->volatile_reg;
1287 map->precious_reg = config->precious_reg;
1288 map->cache_type = config->cache_type;
1290 regmap_debugfs_init(map, config->name);
1292 map->cache_bypass = false;
1293 map->cache_only = false;
1295 return regcache_init(map, config);
1297 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1300 * regmap_exit() - Free a previously allocated register map
1302 * @map: Register map to operate on.
1304 void regmap_exit(struct regmap *map)
1306 struct regmap_async *async;
1309 regmap_debugfs_exit(map);
1310 regmap_range_exit(map);
1311 if (map->bus && map->bus->free_context)
1312 map->bus->free_context(map->bus_context);
1313 kfree(map->work_buf);
1314 while (!list_empty(&map->async_free)) {
1315 async = list_first_entry_or_null(&map->async_free,
1316 struct regmap_async,
1318 list_del(&async->list);
1319 kfree(async->work_buf);
1323 hwspin_lock_free(map->hwlock);
1324 kfree_const(map->name);
1327 EXPORT_SYMBOL_GPL(regmap_exit);
1329 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1331 struct regmap **r = res;
1337 /* If the user didn't specify a name match any */
1339 return (*r)->name == data;
1345 * dev_get_regmap() - Obtain the regmap (if any) for a device
1347 * @dev: Device to retrieve the map for
1348 * @name: Optional name for the register map, usually NULL.
1350 * Returns the regmap for the device if one is present, or NULL. If
1351 * name is specified then it must match the name specified when
1352 * registering the device, if it is NULL then the first regmap found
1353 * will be used. Devices with multiple register maps are very rare,
1354 * generic code should normally not need to specify a name.
1356 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1358 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1359 dev_get_regmap_match, (void *)name);
1365 EXPORT_SYMBOL_GPL(dev_get_regmap);
1368 * regmap_get_device() - Obtain the device from a regmap
1370 * @map: Register map to operate on.
1372 * Returns the underlying device that the regmap has been created for.
1374 struct device *regmap_get_device(struct regmap *map)
1378 EXPORT_SYMBOL_GPL(regmap_get_device);
1380 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1381 struct regmap_range_node *range,
1382 unsigned int val_num)
1384 void *orig_work_buf;
1385 unsigned int win_offset;
1386 unsigned int win_page;
1390 win_offset = (*reg - range->range_min) % range->window_len;
1391 win_page = (*reg - range->range_min) / range->window_len;
1394 /* Bulk write shouldn't cross range boundary */
1395 if (*reg + val_num - 1 > range->range_max)
1398 /* ... or single page boundary */
1399 if (val_num > range->window_len - win_offset)
1403 /* It is possible to have selector register inside data window.
1404 In that case, selector register is located on every page and
1405 it needs no page switching, when accessed alone. */
1407 range->window_start + win_offset != range->selector_reg) {
1408 /* Use separate work_buf during page switching */
1409 orig_work_buf = map->work_buf;
1410 map->work_buf = map->selector_work_buf;
1412 ret = _regmap_update_bits(map, range->selector_reg,
1413 range->selector_mask,
1414 win_page << range->selector_shift,
1417 map->work_buf = orig_work_buf;
1423 *reg = range->window_start + win_offset;
1428 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1434 if (!mask || !map->work_buf)
1437 buf = map->work_buf;
1439 for (i = 0; i < max_bytes; i++)
1440 buf[i] |= (mask >> (8 * i)) & 0xff;
1443 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1444 const void *val, size_t val_len)
1446 struct regmap_range_node *range;
1447 unsigned long flags;
1448 void *work_val = map->work_buf + map->format.reg_bytes +
1449 map->format.pad_bytes;
1451 int ret = -ENOTSUPP;
1457 /* Check for unwritable registers before we start */
1458 if (map->writeable_reg)
1459 for (i = 0; i < val_len / map->format.val_bytes; i++)
1460 if (!map->writeable_reg(map->dev,
1461 reg + regmap_get_offset(map, i)))
1464 if (!map->cache_bypass && map->format.parse_val) {
1466 int val_bytes = map->format.val_bytes;
1467 for (i = 0; i < val_len / val_bytes; i++) {
1468 ival = map->format.parse_val(val + (i * val_bytes));
1469 ret = regcache_write(map,
1470 reg + regmap_get_offset(map, i),
1474 "Error in caching of register: %x ret: %d\n",
1479 if (map->cache_only) {
1480 map->cache_dirty = true;
1485 range = _regmap_range_lookup(map, reg);
1487 int val_num = val_len / map->format.val_bytes;
1488 int win_offset = (reg - range->range_min) % range->window_len;
1489 int win_residue = range->window_len - win_offset;
1491 /* If the write goes beyond the end of the window split it */
1492 while (val_num > win_residue) {
1493 dev_dbg(map->dev, "Writing window %d/%zu\n",
1494 win_residue, val_len / map->format.val_bytes);
1495 ret = _regmap_raw_write_impl(map, reg, val,
1497 map->format.val_bytes);
1502 val_num -= win_residue;
1503 val += win_residue * map->format.val_bytes;
1504 val_len -= win_residue * map->format.val_bytes;
1506 win_offset = (reg - range->range_min) %
1508 win_residue = range->window_len - win_offset;
1511 ret = _regmap_select_page(map, ®, range, val_num);
1516 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1517 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1518 map->write_flag_mask);
1521 * Essentially all I/O mechanisms will be faster with a single
1522 * buffer to write. Since register syncs often generate raw
1523 * writes of single registers optimise that case.
1525 if (val != work_val && val_len == map->format.val_bytes) {
1526 memcpy(work_val, val, map->format.val_bytes);
1530 if (map->async && map->bus->async_write) {
1531 struct regmap_async *async;
1533 trace_regmap_async_write_start(map, reg, val_len);
1535 spin_lock_irqsave(&map->async_lock, flags);
1536 async = list_first_entry_or_null(&map->async_free,
1537 struct regmap_async,
1540 list_del(&async->list);
1541 spin_unlock_irqrestore(&map->async_lock, flags);
1544 async = map->bus->async_alloc();
1548 async->work_buf = kzalloc(map->format.buf_size,
1549 GFP_KERNEL | GFP_DMA);
1550 if (!async->work_buf) {
1558 /* If the caller supplied the value we can use it safely. */
1559 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1560 map->format.reg_bytes + map->format.val_bytes);
1562 spin_lock_irqsave(&map->async_lock, flags);
1563 list_add_tail(&async->list, &map->async_list);
1564 spin_unlock_irqrestore(&map->async_lock, flags);
1566 if (val != work_val)
1567 ret = map->bus->async_write(map->bus_context,
1569 map->format.reg_bytes +
1570 map->format.pad_bytes,
1571 val, val_len, async);
1573 ret = map->bus->async_write(map->bus_context,
1575 map->format.reg_bytes +
1576 map->format.pad_bytes +
1577 val_len, NULL, 0, async);
1580 dev_err(map->dev, "Failed to schedule write: %d\n",
1583 spin_lock_irqsave(&map->async_lock, flags);
1584 list_move(&async->list, &map->async_free);
1585 spin_unlock_irqrestore(&map->async_lock, flags);
1591 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1593 /* If we're doing a single register write we can probably just
1594 * send the work_buf directly, otherwise try to do a gather
1597 if (val == work_val)
1598 ret = map->bus->write(map->bus_context, map->work_buf,
1599 map->format.reg_bytes +
1600 map->format.pad_bytes +
1602 else if (map->bus->gather_write)
1603 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1604 map->format.reg_bytes +
1605 map->format.pad_bytes,
1608 /* If that didn't work fall back on linearising by hand. */
1609 if (ret == -ENOTSUPP) {
1610 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1611 buf = kzalloc(len, GFP_KERNEL);
1615 memcpy(buf, map->work_buf, map->format.reg_bytes);
1616 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1618 ret = map->bus->write(map->bus_context, buf, len);
1621 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1622 /* regcache_drop_region() takes lock that we already have,
1623 * thus call map->cache_ops->drop() directly
1625 if (map->cache_ops && map->cache_ops->drop)
1626 map->cache_ops->drop(map, reg, reg + 1);
1629 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1635 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1637 * @map: Map to check.
1639 bool regmap_can_raw_write(struct regmap *map)
1641 return map->bus && map->bus->write && map->format.format_val &&
1642 map->format.format_reg;
1644 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1647 * regmap_get_raw_read_max - Get the maximum size we can read
1649 * @map: Map to check.
1651 size_t regmap_get_raw_read_max(struct regmap *map)
1653 return map->max_raw_read;
1655 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1658 * regmap_get_raw_write_max - Get the maximum size we can read
1660 * @map: Map to check.
1662 size_t regmap_get_raw_write_max(struct regmap *map)
1664 return map->max_raw_write;
1666 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1668 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1672 struct regmap_range_node *range;
1673 struct regmap *map = context;
1675 WARN_ON(!map->bus || !map->format.format_write);
1677 range = _regmap_range_lookup(map, reg);
1679 ret = _regmap_select_page(map, ®, range, 1);
1684 map->format.format_write(map, reg, val);
1686 trace_regmap_hw_write_start(map, reg, 1);
1688 ret = map->bus->write(map->bus_context, map->work_buf,
1689 map->format.buf_size);
1691 trace_regmap_hw_write_done(map, reg, 1);
1696 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1699 struct regmap *map = context;
1701 return map->bus->reg_write(map->bus_context, reg, val);
1704 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1707 struct regmap *map = context;
1709 WARN_ON(!map->bus || !map->format.format_val);
1711 map->format.format_val(map->work_buf + map->format.reg_bytes
1712 + map->format.pad_bytes, val, 0);
1713 return _regmap_raw_write_impl(map, reg,
1715 map->format.reg_bytes +
1716 map->format.pad_bytes,
1717 map->format.val_bytes);
1720 static inline void *_regmap_map_get_context(struct regmap *map)
1722 return (map->bus) ? map : map->bus_context;
1725 int _regmap_write(struct regmap *map, unsigned int reg,
1729 void *context = _regmap_map_get_context(map);
1731 if (!regmap_writeable(map, reg))
1734 if (!map->cache_bypass && !map->defer_caching) {
1735 ret = regcache_write(map, reg, val);
1738 if (map->cache_only) {
1739 map->cache_dirty = true;
1745 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1746 dev_info(map->dev, "%x <= %x\n", reg, val);
1749 trace_regmap_reg_write(map, reg, val);
1751 return map->reg_write(context, reg, val);
1755 * regmap_write() - Write a value to a single register
1757 * @map: Register map to write to
1758 * @reg: Register to write to
1759 * @val: Value to be written
1761 * A value of zero will be returned on success, a negative errno will
1762 * be returned in error cases.
1764 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1768 if (!IS_ALIGNED(reg, map->reg_stride))
1771 map->lock(map->lock_arg);
1773 ret = _regmap_write(map, reg, val);
1775 map->unlock(map->lock_arg);
1779 EXPORT_SYMBOL_GPL(regmap_write);
1782 * regmap_write_async() - Write a value to a single register asynchronously
1784 * @map: Register map to write to
1785 * @reg: Register to write to
1786 * @val: Value to be written
1788 * A value of zero will be returned on success, a negative errno will
1789 * be returned in error cases.
1791 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1795 if (!IS_ALIGNED(reg, map->reg_stride))
1798 map->lock(map->lock_arg);
1802 ret = _regmap_write(map, reg, val);
1806 map->unlock(map->lock_arg);
1810 EXPORT_SYMBOL_GPL(regmap_write_async);
1812 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1813 const void *val, size_t val_len)
1815 size_t val_bytes = map->format.val_bytes;
1816 size_t val_count = val_len / val_bytes;
1817 size_t chunk_count, chunk_bytes;
1818 size_t chunk_regs = val_count;
1824 if (map->use_single_write)
1826 else if (map->max_raw_write && val_len > map->max_raw_write)
1827 chunk_regs = map->max_raw_write / val_bytes;
1829 chunk_count = val_count / chunk_regs;
1830 chunk_bytes = chunk_regs * val_bytes;
1832 /* Write as many bytes as possible with chunk_size */
1833 for (i = 0; i < chunk_count; i++) {
1834 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1838 reg += regmap_get_offset(map, chunk_regs);
1840 val_len -= chunk_bytes;
1843 /* Write remaining bytes */
1845 ret = _regmap_raw_write_impl(map, reg, val, val_len);
1851 * regmap_raw_write() - Write raw values to one or more registers
1853 * @map: Register map to write to
1854 * @reg: Initial register to write to
1855 * @val: Block of data to be written, laid out for direct transmission to the
1857 * @val_len: Length of data pointed to by val.
1859 * This function is intended to be used for things like firmware
1860 * download where a large block of data needs to be transferred to the
1861 * device. No formatting will be done on the data provided.
1863 * A value of zero will be returned on success, a negative errno will
1864 * be returned in error cases.
1866 int regmap_raw_write(struct regmap *map, unsigned int reg,
1867 const void *val, size_t val_len)
1871 if (!regmap_can_raw_write(map))
1873 if (val_len % map->format.val_bytes)
1876 map->lock(map->lock_arg);
1878 ret = _regmap_raw_write(map, reg, val, val_len);
1880 map->unlock(map->lock_arg);
1884 EXPORT_SYMBOL_GPL(regmap_raw_write);
1887 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1890 * @field: Register field to write to
1891 * @mask: Bitmask to change
1892 * @val: Value to be written
1893 * @change: Boolean indicating if a write was done
1894 * @async: Boolean indicating asynchronously
1895 * @force: Boolean indicating use force update
1897 * Perform a read/modify/write cycle on the register field with change,
1898 * async, force option.
1900 * A value of zero will be returned on success, a negative errno will
1901 * be returned in error cases.
1903 int regmap_field_update_bits_base(struct regmap_field *field,
1904 unsigned int mask, unsigned int val,
1905 bool *change, bool async, bool force)
1907 mask = (mask << field->shift) & field->mask;
1909 return regmap_update_bits_base(field->regmap, field->reg,
1910 mask, val << field->shift,
1911 change, async, force);
1913 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1916 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
1917 * register field with port ID
1919 * @field: Register field to write to
1921 * @mask: Bitmask to change
1922 * @val: Value to be written
1923 * @change: Boolean indicating if a write was done
1924 * @async: Boolean indicating asynchronously
1925 * @force: Boolean indicating use force update
1927 * A value of zero will be returned on success, a negative errno will
1928 * be returned in error cases.
1930 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
1931 unsigned int mask, unsigned int val,
1932 bool *change, bool async, bool force)
1934 if (id >= field->id_size)
1937 mask = (mask << field->shift) & field->mask;
1939 return regmap_update_bits_base(field->regmap,
1940 field->reg + (field->id_offset * id),
1941 mask, val << field->shift,
1942 change, async, force);
1944 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1947 * regmap_bulk_write() - Write multiple registers to the device
1949 * @map: Register map to write to
1950 * @reg: First register to be write from
1951 * @val: Block of data to be written, in native register size for device
1952 * @val_count: Number of registers to write
1954 * This function is intended to be used for writing a large block of
1955 * data to the device either in single transfer or multiple transfer.
1957 * A value of zero will be returned on success, a negative errno will
1958 * be returned in error cases.
1960 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1964 size_t val_bytes = map->format.val_bytes;
1966 if (!IS_ALIGNED(reg, map->reg_stride))
1970 * Some devices don't support bulk write, for them we have a series of
1971 * single write operations.
1973 if (!map->bus || !map->format.parse_inplace) {
1974 map->lock(map->lock_arg);
1975 for (i = 0; i < val_count; i++) {
1978 switch (val_bytes) {
1980 ival = *(u8 *)(val + (i * val_bytes));
1983 ival = *(u16 *)(val + (i * val_bytes));
1986 ival = *(u32 *)(val + (i * val_bytes));
1990 ival = *(u64 *)(val + (i * val_bytes));
1998 ret = _regmap_write(map,
1999 reg + regmap_get_offset(map, i),
2005 map->unlock(map->lock_arg);
2009 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2013 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2014 map->format.parse_inplace(wval + i);
2016 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2022 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2025 * _regmap_raw_multi_reg_write()
2027 * the (register,newvalue) pairs in regs have not been formatted, but
2028 * they are all in the same page and have been changed to being page
2029 * relative. The page register has been written if that was necessary.
2031 static int _regmap_raw_multi_reg_write(struct regmap *map,
2032 const struct reg_sequence *regs,
2039 size_t val_bytes = map->format.val_bytes;
2040 size_t reg_bytes = map->format.reg_bytes;
2041 size_t pad_bytes = map->format.pad_bytes;
2042 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2043 size_t len = pair_size * num_regs;
2048 buf = kzalloc(len, GFP_KERNEL);
2052 /* We have to linearise by hand. */
2056 for (i = 0; i < num_regs; i++) {
2057 unsigned int reg = regs[i].reg;
2058 unsigned int val = regs[i].def;
2059 trace_regmap_hw_write_start(map, reg, 1);
2060 map->format.format_reg(u8, reg, map->reg_shift);
2061 u8 += reg_bytes + pad_bytes;
2062 map->format.format_val(u8, val, 0);
2066 *u8 |= map->write_flag_mask;
2068 ret = map->bus->write(map->bus_context, buf, len);
2072 for (i = 0; i < num_regs; i++) {
2073 int reg = regs[i].reg;
2074 trace_regmap_hw_write_done(map, reg, 1);
2079 static unsigned int _regmap_register_page(struct regmap *map,
2081 struct regmap_range_node *range)
2083 unsigned int win_page = (reg - range->range_min) / range->window_len;
2088 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2089 struct reg_sequence *regs,
2094 struct reg_sequence *base;
2095 unsigned int this_page = 0;
2096 unsigned int page_change = 0;
2098 * the set of registers are not neccessarily in order, but
2099 * since the order of write must be preserved this algorithm
2100 * chops the set each time the page changes. This also applies
2101 * if there is a delay required at any point in the sequence.
2104 for (i = 0, n = 0; i < num_regs; i++, n++) {
2105 unsigned int reg = regs[i].reg;
2106 struct regmap_range_node *range;
2108 range = _regmap_range_lookup(map, reg);
2110 unsigned int win_page = _regmap_register_page(map, reg,
2114 this_page = win_page;
2115 if (win_page != this_page) {
2116 this_page = win_page;
2121 /* If we have both a page change and a delay make sure to
2122 * write the regs and apply the delay before we change the
2126 if (page_change || regs[i].delay_us) {
2128 /* For situations where the first write requires
2129 * a delay we need to make sure we don't call
2130 * raw_multi_reg_write with n=0
2131 * This can't occur with page breaks as we
2132 * never write on the first iteration
2134 if (regs[i].delay_us && i == 0)
2137 ret = _regmap_raw_multi_reg_write(map, base, n);
2141 if (regs[i].delay_us)
2142 udelay(regs[i].delay_us);
2148 ret = _regmap_select_page(map,
2161 return _regmap_raw_multi_reg_write(map, base, n);
2165 static int _regmap_multi_reg_write(struct regmap *map,
2166 const struct reg_sequence *regs,
2172 if (!map->can_multi_write) {
2173 for (i = 0; i < num_regs; i++) {
2174 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2178 if (regs[i].delay_us)
2179 udelay(regs[i].delay_us);
2184 if (!map->format.parse_inplace)
2187 if (map->writeable_reg)
2188 for (i = 0; i < num_regs; i++) {
2189 int reg = regs[i].reg;
2190 if (!map->writeable_reg(map->dev, reg))
2192 if (!IS_ALIGNED(reg, map->reg_stride))
2196 if (!map->cache_bypass) {
2197 for (i = 0; i < num_regs; i++) {
2198 unsigned int val = regs[i].def;
2199 unsigned int reg = regs[i].reg;
2200 ret = regcache_write(map, reg, val);
2203 "Error in caching of register: %x ret: %d\n",
2208 if (map->cache_only) {
2209 map->cache_dirty = true;
2216 for (i = 0; i < num_regs; i++) {
2217 unsigned int reg = regs[i].reg;
2218 struct regmap_range_node *range;
2220 /* Coalesce all the writes between a page break or a delay
2223 range = _regmap_range_lookup(map, reg);
2224 if (range || regs[i].delay_us) {
2225 size_t len = sizeof(struct reg_sequence)*num_regs;
2226 struct reg_sequence *base = kmemdup(regs, len,
2230 ret = _regmap_range_multi_paged_reg_write(map, base,
2237 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2241 * regmap_multi_reg_write() - Write multiple registers to the device
2243 * @map: Register map to write to
2244 * @regs: Array of structures containing register,value to be written
2245 * @num_regs: Number of registers to write
2247 * Write multiple registers to the device where the set of register, value
2248 * pairs are supplied in any order, possibly not all in a single range.
2250 * The 'normal' block write mode will send ultimately send data on the
2251 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2252 * addressed. However, this alternative block multi write mode will send
2253 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2254 * must of course support the mode.
2256 * A value of zero will be returned on success, a negative errno will be
2257 * returned in error cases.
2259 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2264 map->lock(map->lock_arg);
2266 ret = _regmap_multi_reg_write(map, regs, num_regs);
2268 map->unlock(map->lock_arg);
2272 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2275 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2276 * device but not the cache
2278 * @map: Register map to write to
2279 * @regs: Array of structures containing register,value to be written
2280 * @num_regs: Number of registers to write
2282 * Write multiple registers to the device but not the cache where the set
2283 * of register are supplied in any order.
2285 * This function is intended to be used for writing a large block of data
2286 * atomically to the device in single transfer for those I2C client devices
2287 * that implement this alternative block write mode.
2289 * A value of zero will be returned on success, a negative errno will
2290 * be returned in error cases.
2292 int regmap_multi_reg_write_bypassed(struct regmap *map,
2293 const struct reg_sequence *regs,
2299 map->lock(map->lock_arg);
2301 bypass = map->cache_bypass;
2302 map->cache_bypass = true;
2304 ret = _regmap_multi_reg_write(map, regs, num_regs);
2306 map->cache_bypass = bypass;
2308 map->unlock(map->lock_arg);
2312 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2315 * regmap_raw_write_async() - Write raw values to one or more registers
2318 * @map: Register map to write to
2319 * @reg: Initial register to write to
2320 * @val: Block of data to be written, laid out for direct transmission to the
2321 * device. Must be valid until regmap_async_complete() is called.
2322 * @val_len: Length of data pointed to by val.
2324 * This function is intended to be used for things like firmware
2325 * download where a large block of data needs to be transferred to the
2326 * device. No formatting will be done on the data provided.
2328 * If supported by the underlying bus the write will be scheduled
2329 * asynchronously, helping maximise I/O speed on higher speed buses
2330 * like SPI. regmap_async_complete() can be called to ensure that all
2331 * asynchrnous writes have been completed.
2333 * A value of zero will be returned on success, a negative errno will
2334 * be returned in error cases.
2336 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2337 const void *val, size_t val_len)
2341 if (val_len % map->format.val_bytes)
2343 if (!IS_ALIGNED(reg, map->reg_stride))
2346 map->lock(map->lock_arg);
2350 ret = _regmap_raw_write(map, reg, val, val_len);
2354 map->unlock(map->lock_arg);
2358 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2360 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2361 unsigned int val_len)
2363 struct regmap_range_node *range;
2368 if (!map->bus || !map->bus->read)
2371 range = _regmap_range_lookup(map, reg);
2373 ret = _regmap_select_page(map, ®, range,
2374 val_len / map->format.val_bytes);
2379 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2380 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2381 map->read_flag_mask);
2382 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2384 ret = map->bus->read(map->bus_context, map->work_buf,
2385 map->format.reg_bytes + map->format.pad_bytes,
2388 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2393 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2396 struct regmap *map = context;
2398 return map->bus->reg_read(map->bus_context, reg, val);
2401 static int _regmap_bus_read(void *context, unsigned int reg,
2405 struct regmap *map = context;
2406 void *work_val = map->work_buf + map->format.reg_bytes +
2407 map->format.pad_bytes;
2409 if (!map->format.parse_val)
2412 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2414 *val = map->format.parse_val(work_val);
2419 static int _regmap_read(struct regmap *map, unsigned int reg,
2423 void *context = _regmap_map_get_context(map);
2425 if (!map->cache_bypass) {
2426 ret = regcache_read(map, reg, val);
2431 if (map->cache_only)
2434 if (!regmap_readable(map, reg))
2437 ret = map->reg_read(context, reg, val);
2440 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2441 dev_info(map->dev, "%x => %x\n", reg, *val);
2444 trace_regmap_reg_read(map, reg, *val);
2446 if (!map->cache_bypass)
2447 regcache_write(map, reg, *val);
2454 * regmap_read() - Read a value from a single register
2456 * @map: Register map to read from
2457 * @reg: Register to be read from
2458 * @val: Pointer to store read value
2460 * A value of zero will be returned on success, a negative errno will
2461 * be returned in error cases.
2463 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2467 if (!IS_ALIGNED(reg, map->reg_stride))
2470 map->lock(map->lock_arg);
2472 ret = _regmap_read(map, reg, val);
2474 map->unlock(map->lock_arg);
2478 EXPORT_SYMBOL_GPL(regmap_read);
2481 * regmap_raw_read() - Read raw data from the device
2483 * @map: Register map to read from
2484 * @reg: First register to be read from
2485 * @val: Pointer to store read value
2486 * @val_len: Size of data to read
2488 * A value of zero will be returned on success, a negative errno will
2489 * be returned in error cases.
2491 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2494 size_t val_bytes = map->format.val_bytes;
2495 size_t val_count = val_len / val_bytes;
2501 if (val_len % map->format.val_bytes)
2503 if (!IS_ALIGNED(reg, map->reg_stride))
2508 map->lock(map->lock_arg);
2510 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2511 map->cache_type == REGCACHE_NONE) {
2512 size_t chunk_count, chunk_bytes;
2513 size_t chunk_regs = val_count;
2515 if (!map->bus->read) {
2520 if (map->use_single_read)
2522 else if (map->max_raw_read && val_len > map->max_raw_read)
2523 chunk_regs = map->max_raw_read / val_bytes;
2525 chunk_count = val_count / chunk_regs;
2526 chunk_bytes = chunk_regs * val_bytes;
2528 /* Read bytes that fit into whole chunks */
2529 for (i = 0; i < chunk_count; i++) {
2530 ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2534 reg += regmap_get_offset(map, chunk_regs);
2536 val_len -= chunk_bytes;
2539 /* Read remaining bytes */
2541 ret = _regmap_raw_read(map, reg, val, val_len);
2546 /* Otherwise go word by word for the cache; should be low
2547 * cost as we expect to hit the cache.
2549 for (i = 0; i < val_count; i++) {
2550 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2555 map->format.format_val(val + (i * val_bytes), v, 0);
2560 map->unlock(map->lock_arg);
2564 EXPORT_SYMBOL_GPL(regmap_raw_read);
2567 * regmap_field_read() - Read a value to a single register field
2569 * @field: Register field to read from
2570 * @val: Pointer to store read value
2572 * A value of zero will be returned on success, a negative errno will
2573 * be returned in error cases.
2575 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2578 unsigned int reg_val;
2579 ret = regmap_read(field->regmap, field->reg, ®_val);
2583 reg_val &= field->mask;
2584 reg_val >>= field->shift;
2589 EXPORT_SYMBOL_GPL(regmap_field_read);
2592 * regmap_fields_read() - Read a value to a single register field with port ID
2594 * @field: Register field to read from
2596 * @val: Pointer to store read value
2598 * A value of zero will be returned on success, a negative errno will
2599 * be returned in error cases.
2601 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2605 unsigned int reg_val;
2607 if (id >= field->id_size)
2610 ret = regmap_read(field->regmap,
2611 field->reg + (field->id_offset * id),
2616 reg_val &= field->mask;
2617 reg_val >>= field->shift;
2622 EXPORT_SYMBOL_GPL(regmap_fields_read);
2625 * regmap_bulk_read() - Read multiple registers from the device
2627 * @map: Register map to read from
2628 * @reg: First register to be read from
2629 * @val: Pointer to store read value, in native register size for device
2630 * @val_count: Number of registers to read
2632 * A value of zero will be returned on success, a negative errno will
2633 * be returned in error cases.
2635 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2639 size_t val_bytes = map->format.val_bytes;
2640 bool vol = regmap_volatile_range(map, reg, val_count);
2642 if (!IS_ALIGNED(reg, map->reg_stride))
2647 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2648 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2652 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2653 map->format.parse_inplace(val + i);
2662 map->lock(map->lock_arg);
2664 for (i = 0; i < val_count; i++) {
2667 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2672 switch (map->format.val_bytes) {
2694 map->unlock(map->lock_arg);
2699 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2701 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2702 unsigned int mask, unsigned int val,
2703 bool *change, bool force_write)
2706 unsigned int tmp, orig;
2711 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2712 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2713 if (ret == 0 && change)
2716 ret = _regmap_read(map, reg, &orig);
2723 if (force_write || (tmp != orig)) {
2724 ret = _regmap_write(map, reg, tmp);
2725 if (ret == 0 && change)
2734 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2736 * @map: Register map to update
2737 * @reg: Register to update
2738 * @mask: Bitmask to change
2739 * @val: New value for bitmask
2740 * @change: Boolean indicating if a write was done
2741 * @async: Boolean indicating asynchronously
2742 * @force: Boolean indicating use force update
2744 * Perform a read/modify/write cycle on a register map with change, async, force
2749 * With most buses the read must be done synchronously so this is most useful
2750 * for devices with a cache which do not need to interact with the hardware to
2751 * determine the current register value.
2753 * Returns zero for success, a negative number on error.
2755 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2756 unsigned int mask, unsigned int val,
2757 bool *change, bool async, bool force)
2761 map->lock(map->lock_arg);
2765 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2769 map->unlock(map->lock_arg);
2773 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2775 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2777 struct regmap *map = async->map;
2780 trace_regmap_async_io_complete(map);
2782 spin_lock(&map->async_lock);
2783 list_move(&async->list, &map->async_free);
2784 wake = list_empty(&map->async_list);
2787 map->async_ret = ret;
2789 spin_unlock(&map->async_lock);
2792 wake_up(&map->async_waitq);
2794 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2796 static int regmap_async_is_done(struct regmap *map)
2798 unsigned long flags;
2801 spin_lock_irqsave(&map->async_lock, flags);
2802 ret = list_empty(&map->async_list);
2803 spin_unlock_irqrestore(&map->async_lock, flags);
2809 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2811 * @map: Map to operate on.
2813 * Blocks until any pending asynchronous I/O has completed. Returns
2814 * an error code for any failed I/O operations.
2816 int regmap_async_complete(struct regmap *map)
2818 unsigned long flags;
2821 /* Nothing to do with no async support */
2822 if (!map->bus || !map->bus->async_write)
2825 trace_regmap_async_complete_start(map);
2827 wait_event(map->async_waitq, regmap_async_is_done(map));
2829 spin_lock_irqsave(&map->async_lock, flags);
2830 ret = map->async_ret;
2832 spin_unlock_irqrestore(&map->async_lock, flags);
2834 trace_regmap_async_complete_done(map);
2838 EXPORT_SYMBOL_GPL(regmap_async_complete);
2841 * regmap_register_patch - Register and apply register updates to be applied
2842 * on device initialistion
2844 * @map: Register map to apply updates to.
2845 * @regs: Values to update.
2846 * @num_regs: Number of entries in regs.
2848 * Register a set of register updates to be applied to the device
2849 * whenever the device registers are synchronised with the cache and
2850 * apply them immediately. Typically this is used to apply
2851 * corrections to be applied to the device defaults on startup, such
2852 * as the updates some vendors provide to undocumented registers.
2854 * The caller must ensure that this function cannot be called
2855 * concurrently with either itself or regcache_sync().
2857 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2860 struct reg_sequence *p;
2864 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2868 p = krealloc(map->patch,
2869 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2872 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2874 map->patch_regs += num_regs;
2879 map->lock(map->lock_arg);
2881 bypass = map->cache_bypass;
2883 map->cache_bypass = true;
2886 ret = _regmap_multi_reg_write(map, regs, num_regs);
2889 map->cache_bypass = bypass;
2891 map->unlock(map->lock_arg);
2893 regmap_async_complete(map);
2897 EXPORT_SYMBOL_GPL(regmap_register_patch);
2900 * regmap_get_val_bytes() - Report the size of a register value
2902 * @map: Register map to operate on.
2904 * Report the size of a register value, mainly intended to for use by
2905 * generic infrastructure built on top of regmap.
2907 int regmap_get_val_bytes(struct regmap *map)
2909 if (map->format.format_write)
2912 return map->format.val_bytes;
2914 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2917 * regmap_get_max_register() - Report the max register value
2919 * @map: Register map to operate on.
2921 * Report the max register value, mainly intended to for use by
2922 * generic infrastructure built on top of regmap.
2924 int regmap_get_max_register(struct regmap *map)
2926 return map->max_register ? map->max_register : -EINVAL;
2928 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2931 * regmap_get_reg_stride() - Report the register address stride
2933 * @map: Register map to operate on.
2935 * Report the register address stride, mainly intended to for use by
2936 * generic infrastructure built on top of regmap.
2938 int regmap_get_reg_stride(struct regmap *map)
2940 return map->reg_stride;
2942 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2944 int regmap_parse_val(struct regmap *map, const void *buf,
2947 if (!map->format.parse_val)
2950 *val = map->format.parse_val(buf);
2954 EXPORT_SYMBOL_GPL(regmap_parse_val);
2956 static int __init regmap_initcall(void)
2958 regmap_debugfs_initcall();
2962 postcore_initcall(regmap_initcall);