2 * regmap based irq_chip
4 * Copyright 2011 Wolfson Microelectronics plc
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/device.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
24 struct regmap_irq_chip_data {
26 struct irq_chip irq_chip;
29 const struct regmap_irq_chip *chip;
32 struct irq_domain *domain;
38 unsigned int *status_buf;
39 unsigned int *mask_buf;
40 unsigned int *mask_buf_def;
41 unsigned int *wake_buf;
42 unsigned int *type_buf;
43 unsigned int *type_buf_def;
45 unsigned int irq_reg_stride;
46 unsigned int type_reg_stride;
50 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
53 return &data->chip->irqs[irq];
56 static void regmap_irq_lock(struct irq_data *data)
58 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
63 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
64 unsigned int reg, unsigned int mask,
67 if (d->chip->mask_writeonly)
68 return regmap_write_bits(d->map, reg, mask, val);
70 return regmap_update_bits(d->map, reg, mask, val);
73 static void regmap_irq_sync_unlock(struct irq_data *data)
75 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
76 struct regmap *map = d->map;
81 if (d->chip->runtime_pm) {
82 ret = pm_runtime_get_sync(map->dev);
84 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
89 * If there's been a change in the mask write it back to the
90 * hardware. We rely on the use of the regmap core cache to
91 * suppress pointless writes.
93 for (i = 0; i < d->chip->num_regs; i++) {
94 reg = d->chip->mask_base +
95 (i * map->reg_stride * d->irq_reg_stride);
96 if (d->chip->mask_invert) {
97 ret = regmap_irq_update_bits(d, reg,
98 d->mask_buf_def[i], ~d->mask_buf[i]);
99 } else if (d->chip->unmask_base) {
100 /* set mask with mask_base register */
101 ret = regmap_irq_update_bits(d, reg,
102 d->mask_buf_def[i], ~d->mask_buf[i]);
105 "Failed to sync unmasks in %x\n",
107 unmask_offset = d->chip->unmask_base -
109 /* clear mask with unmask_base register */
110 ret = regmap_irq_update_bits(d,
115 ret = regmap_irq_update_bits(d, reg,
116 d->mask_buf_def[i], d->mask_buf[i]);
119 dev_err(d->map->dev, "Failed to sync masks in %x\n",
122 reg = d->chip->wake_base +
123 (i * map->reg_stride * d->irq_reg_stride);
125 if (d->chip->wake_invert)
126 ret = regmap_irq_update_bits(d, reg,
130 ret = regmap_irq_update_bits(d, reg,
135 "Failed to sync wakes in %x: %d\n",
139 if (!d->chip->init_ack_masked)
142 * Ack all the masked interrupts unconditionally,
143 * OR if there is masked interrupt which hasn't been Acked,
144 * it'll be ignored in irq handler, then may introduce irq storm
146 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
147 reg = d->chip->ack_base +
148 (i * map->reg_stride * d->irq_reg_stride);
149 /* some chips ack by write 0 */
150 if (d->chip->ack_invert)
151 ret = regmap_write(map, reg, ~d->mask_buf[i]);
153 ret = regmap_write(map, reg, d->mask_buf[i]);
155 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
160 for (i = 0; i < d->chip->num_type_reg; i++) {
161 if (!d->type_buf_def[i])
163 reg = d->chip->type_base +
164 (i * map->reg_stride * d->type_reg_stride);
165 if (d->chip->type_invert)
166 ret = regmap_irq_update_bits(d, reg,
167 d->type_buf_def[i], ~d->type_buf[i]);
169 ret = regmap_irq_update_bits(d, reg,
170 d->type_buf_def[i], d->type_buf[i]);
172 dev_err(d->map->dev, "Failed to sync type in %x\n",
176 if (d->chip->runtime_pm)
177 pm_runtime_put(map->dev);
179 /* If we've changed our wakeup count propagate it to the parent */
180 if (d->wake_count < 0)
181 for (i = d->wake_count; i < 0; i++)
182 irq_set_irq_wake(d->irq, 0);
183 else if (d->wake_count > 0)
184 for (i = 0; i < d->wake_count; i++)
185 irq_set_irq_wake(d->irq, 1);
189 mutex_unlock(&d->lock);
192 static void regmap_irq_enable(struct irq_data *data)
194 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
195 struct regmap *map = d->map;
196 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
198 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
201 static void regmap_irq_disable(struct irq_data *data)
203 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
204 struct regmap *map = d->map;
205 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
207 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
210 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
212 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
213 struct regmap *map = d->map;
214 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
215 int reg = irq_data->type_reg_offset / map->reg_stride;
217 if (!(irq_data->type_rising_mask | irq_data->type_falling_mask))
220 d->type_buf[reg] &= ~(irq_data->type_falling_mask |
221 irq_data->type_rising_mask);
223 case IRQ_TYPE_EDGE_FALLING:
224 d->type_buf[reg] |= irq_data->type_falling_mask;
227 case IRQ_TYPE_EDGE_RISING:
228 d->type_buf[reg] |= irq_data->type_rising_mask;
231 case IRQ_TYPE_EDGE_BOTH:
232 d->type_buf[reg] |= (irq_data->type_falling_mask |
233 irq_data->type_rising_mask);
242 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
244 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
245 struct regmap *map = d->map;
246 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
250 d->wake_buf[irq_data->reg_offset / map->reg_stride]
255 d->wake_buf[irq_data->reg_offset / map->reg_stride]
263 static const struct irq_chip regmap_irq_chip = {
264 .irq_bus_lock = regmap_irq_lock,
265 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
266 .irq_disable = regmap_irq_disable,
267 .irq_enable = regmap_irq_enable,
268 .irq_set_type = regmap_irq_set_type,
269 .irq_set_wake = regmap_irq_set_wake,
272 static irqreturn_t regmap_irq_thread(int irq, void *d)
274 struct regmap_irq_chip_data *data = d;
275 const struct regmap_irq_chip *chip = data->chip;
276 struct regmap *map = data->map;
278 bool handled = false;
281 if (chip->handle_pre_irq)
282 chip->handle_pre_irq(chip->irq_drv_data);
284 if (chip->runtime_pm) {
285 ret = pm_runtime_get_sync(map->dev);
287 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
289 pm_runtime_put(map->dev);
295 * Read in the statuses, using a single bulk read if possible
296 * in order to reduce the I/O overheads.
298 if (!map->use_single_read && map->reg_stride == 1 &&
299 data->irq_reg_stride == 1) {
300 u8 *buf8 = data->status_reg_buf;
301 u16 *buf16 = data->status_reg_buf;
302 u32 *buf32 = data->status_reg_buf;
304 BUG_ON(!data->status_reg_buf);
306 ret = regmap_bulk_read(map, chip->status_base,
307 data->status_reg_buf,
310 dev_err(map->dev, "Failed to read IRQ status: %d\n",
315 for (i = 0; i < data->chip->num_regs; i++) {
316 switch (map->format.val_bytes) {
318 data->status_buf[i] = buf8[i];
321 data->status_buf[i] = buf16[i];
324 data->status_buf[i] = buf32[i];
333 for (i = 0; i < data->chip->num_regs; i++) {
334 ret = regmap_read(map, chip->status_base +
336 * data->irq_reg_stride),
337 &data->status_buf[i]);
341 "Failed to read IRQ status: %d\n",
343 if (chip->runtime_pm)
344 pm_runtime_put(map->dev);
351 * Ignore masked IRQs and ack if we need to; we ack early so
352 * there is no race between handling and acknowleding the
353 * interrupt. We assume that typically few of the interrupts
354 * will fire simultaneously so don't worry about overhead from
355 * doing a write per register.
357 for (i = 0; i < data->chip->num_regs; i++) {
358 data->status_buf[i] &= ~data->mask_buf[i];
360 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
361 reg = chip->ack_base +
362 (i * map->reg_stride * data->irq_reg_stride);
363 ret = regmap_write(map, reg, data->status_buf[i]);
365 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
370 for (i = 0; i < chip->num_irqs; i++) {
371 if (data->status_buf[chip->irqs[i].reg_offset /
372 map->reg_stride] & chip->irqs[i].mask) {
373 handle_nested_irq(irq_find_mapping(data->domain, i));
378 if (chip->runtime_pm)
379 pm_runtime_put(map->dev);
382 if (chip->handle_post_irq)
383 chip->handle_post_irq(chip->irq_drv_data);
391 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
394 struct regmap_irq_chip_data *data = h->host_data;
396 irq_set_chip_data(virq, data);
397 irq_set_chip(virq, &data->irq_chip);
398 irq_set_nested_thread(virq, 1);
399 irq_set_parent(virq, data->irq);
400 irq_set_noprobe(virq);
405 static const struct irq_domain_ops regmap_domain_ops = {
406 .map = regmap_irq_map,
407 .xlate = irq_domain_xlate_onetwocell,
411 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
413 * @map: The regmap for the device.
414 * @irq: The IRQ the device uses to signal interrupts.
415 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
416 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
417 * @chip: Configuration for the interrupt controller.
418 * @data: Runtime data structure for the controller, allocated on success.
420 * Returns 0 on success or an errno on failure.
422 * In order for this to be efficient the chip really should use a
423 * register cache. The chip driver is responsible for restoring the
424 * register values used by the IRQ controller over suspend and resume.
426 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
427 int irq_base, const struct regmap_irq_chip *chip,
428 struct regmap_irq_chip_data **data)
430 struct regmap_irq_chip_data *d;
436 if (chip->num_regs <= 0)
439 for (i = 0; i < chip->num_irqs; i++) {
440 if (chip->irqs[i].reg_offset % map->reg_stride)
442 if (chip->irqs[i].reg_offset / map->reg_stride >=
448 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
450 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
456 d = kzalloc(sizeof(*d), GFP_KERNEL);
460 d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
465 d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
470 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
472 if (!d->mask_buf_def)
475 if (chip->wake_base) {
476 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
482 if (chip->num_type_reg) {
483 d->type_buf_def = kcalloc(chip->num_type_reg,
484 sizeof(unsigned int), GFP_KERNEL);
485 if (!d->type_buf_def)
488 d->type_buf = kcalloc(chip->num_type_reg, sizeof(unsigned int),
494 d->irq_chip = regmap_irq_chip;
495 d->irq_chip.name = chip->name;
499 d->irq_base = irq_base;
501 if (chip->irq_reg_stride)
502 d->irq_reg_stride = chip->irq_reg_stride;
504 d->irq_reg_stride = 1;
506 if (chip->type_reg_stride)
507 d->type_reg_stride = chip->type_reg_stride;
509 d->type_reg_stride = 1;
511 if (!map->use_single_read && map->reg_stride == 1 &&
512 d->irq_reg_stride == 1) {
513 d->status_reg_buf = kmalloc_array(chip->num_regs,
514 map->format.val_bytes,
516 if (!d->status_reg_buf)
520 mutex_init(&d->lock);
522 for (i = 0; i < chip->num_irqs; i++)
523 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
524 |= chip->irqs[i].mask;
526 /* Mask all the interrupts by default */
527 for (i = 0; i < chip->num_regs; i++) {
528 d->mask_buf[i] = d->mask_buf_def[i];
529 reg = chip->mask_base +
530 (i * map->reg_stride * d->irq_reg_stride);
531 if (chip->mask_invert)
532 ret = regmap_irq_update_bits(d, reg,
533 d->mask_buf[i], ~d->mask_buf[i]);
534 else if (d->chip->unmask_base) {
535 unmask_offset = d->chip->unmask_base -
537 ret = regmap_irq_update_bits(d,
542 ret = regmap_irq_update_bits(d, reg,
543 d->mask_buf[i], d->mask_buf[i]);
545 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
550 if (!chip->init_ack_masked)
553 /* Ack masked but set interrupts */
554 reg = chip->status_base +
555 (i * map->reg_stride * d->irq_reg_stride);
556 ret = regmap_read(map, reg, &d->status_buf[i]);
558 dev_err(map->dev, "Failed to read IRQ status: %d\n",
563 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
564 reg = chip->ack_base +
565 (i * map->reg_stride * d->irq_reg_stride);
566 if (chip->ack_invert)
567 ret = regmap_write(map, reg,
568 ~(d->status_buf[i] & d->mask_buf[i]));
570 ret = regmap_write(map, reg,
571 d->status_buf[i] & d->mask_buf[i]);
573 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
580 /* Wake is disabled by default */
582 for (i = 0; i < chip->num_regs; i++) {
583 d->wake_buf[i] = d->mask_buf_def[i];
584 reg = chip->wake_base +
585 (i * map->reg_stride * d->irq_reg_stride);
587 if (chip->wake_invert)
588 ret = regmap_irq_update_bits(d, reg,
592 ret = regmap_irq_update_bits(d, reg,
596 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
603 if (chip->num_type_reg) {
604 for (i = 0; i < chip->num_irqs; i++) {
605 reg = chip->irqs[i].type_reg_offset / map->reg_stride;
606 d->type_buf_def[reg] |= chip->irqs[i].type_rising_mask |
607 chip->irqs[i].type_falling_mask;
609 for (i = 0; i < chip->num_type_reg; ++i) {
610 if (!d->type_buf_def[i])
613 reg = chip->type_base +
614 (i * map->reg_stride * d->type_reg_stride);
615 if (chip->type_invert)
616 ret = regmap_irq_update_bits(d, reg,
617 d->type_buf_def[i], 0xFF);
619 ret = regmap_irq_update_bits(d, reg,
620 d->type_buf_def[i], 0x0);
623 "Failed to set type in 0x%x: %x\n",
631 d->domain = irq_domain_add_legacy(map->dev->of_node,
632 chip->num_irqs, irq_base, 0,
633 ®map_domain_ops, d);
635 d->domain = irq_domain_add_linear(map->dev->of_node,
637 ®map_domain_ops, d);
639 dev_err(map->dev, "Failed to create IRQ domain\n");
644 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
645 irq_flags | IRQF_ONESHOT,
648 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
649 irq, chip->name, ret);
658 /* Should really dispose of the domain but... */
661 kfree(d->type_buf_def);
663 kfree(d->mask_buf_def);
665 kfree(d->status_buf);
666 kfree(d->status_reg_buf);
670 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
673 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
675 * @irq: Primary IRQ for the device
676 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip()
678 * This function also disposes of all mapped IRQs on the chip.
680 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
690 /* Dispose all virtual irq from irq domain before removing it */
691 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
692 /* Ignore hwirq if holes in the IRQ list */
693 if (!d->chip->irqs[hwirq].mask)
697 * Find the virtual irq of hwirq on chip and if it is
698 * there then dispose it
700 virq = irq_find_mapping(d->domain, hwirq);
702 irq_dispose_mapping(virq);
705 irq_domain_remove(d->domain);
707 kfree(d->type_buf_def);
709 kfree(d->mask_buf_def);
711 kfree(d->status_reg_buf);
712 kfree(d->status_buf);
715 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
717 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
719 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
721 regmap_del_irq_chip(d->irq, d);
724 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
727 struct regmap_irq_chip_data **r = res;
737 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
739 * @dev: The device pointer on which irq_chip belongs to.
740 * @map: The regmap for the device.
741 * @irq: The IRQ the device uses to signal interrupts
742 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
743 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
744 * @chip: Configuration for the interrupt controller.
745 * @data: Runtime data structure for the controller, allocated on success
747 * Returns 0 on success or an errno on failure.
749 * The ®map_irq_chip_data will be automatically released when the device is
752 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
753 int irq_flags, int irq_base,
754 const struct regmap_irq_chip *chip,
755 struct regmap_irq_chip_data **data)
757 struct regmap_irq_chip_data **ptr, *d;
760 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
765 ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
773 devres_add(dev, ptr);
777 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
780 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
782 * @dev: Device for which which resource was allocated.
783 * @irq: Primary IRQ for the device.
784 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip().
786 * A resource managed version of regmap_del_irq_chip().
788 void devm_regmap_del_irq_chip(struct device *dev, int irq,
789 struct regmap_irq_chip_data *data)
793 WARN_ON(irq != data->irq);
794 rc = devres_release(dev, devm_regmap_irq_chip_release,
795 devm_regmap_irq_chip_match, data);
800 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
803 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
805 * @data: regmap irq controller to operate on.
807 * Useful for drivers to request their own IRQs.
809 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
811 WARN_ON(!data->irq_base);
812 return data->irq_base;
814 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
817 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
819 * @data: regmap irq controller to operate on.
820 * @irq: index of the interrupt requested in the chip IRQs.
822 * Useful for drivers to request their own IRQs.
824 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
826 /* Handle holes in the IRQ list */
827 if (!data->chip->irqs[irq].mask)
830 return irq_create_mapping(data->domain, irq);
832 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
835 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
837 * @data: regmap_irq controller to operate on.
839 * Useful for drivers to request their own IRQs and for integration
840 * with subsystems. For ease of integration NULL is accepted as a
841 * domain, allowing devices to just call this even if no domain is
844 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
851 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);