]> Git Repo - linux.git/blob - drivers/base/cacheinfo.c
mfd: cros-ec: Increase maximum mkbp event size
[linux.git] / drivers / base / cacheinfo.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <[email protected]>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu)       (&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu)       (ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu)  (ci_cacheinfo(cpu)->info_list)
28
29 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
30 {
31         return ci_cacheinfo(cpu);
32 }
33
34 #ifdef CONFIG_OF
35 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
36                                            struct cacheinfo *sib_leaf)
37 {
38         return sib_leaf->fw_token == this_leaf->fw_token;
39 }
40
41 /* OF properties to query for a given cache type */
42 struct cache_type_info {
43         const char *size_prop;
44         const char *line_size_props[2];
45         const char *nr_sets_prop;
46 };
47
48 static const struct cache_type_info cache_type_info[] = {
49         {
50                 .size_prop       = "cache-size",
51                 .line_size_props = { "cache-line-size",
52                                      "cache-block-size", },
53                 .nr_sets_prop    = "cache-sets",
54         }, {
55                 .size_prop       = "i-cache-size",
56                 .line_size_props = { "i-cache-line-size",
57                                      "i-cache-block-size", },
58                 .nr_sets_prop    = "i-cache-sets",
59         }, {
60                 .size_prop       = "d-cache-size",
61                 .line_size_props = { "d-cache-line-size",
62                                      "d-cache-block-size", },
63                 .nr_sets_prop    = "d-cache-sets",
64         },
65 };
66
67 static inline int get_cacheinfo_idx(enum cache_type type)
68 {
69         if (type == CACHE_TYPE_UNIFIED)
70                 return 0;
71         return type;
72 }
73
74 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
75 {
76         const char *propname;
77         const __be32 *cache_size;
78         int ct_idx;
79
80         ct_idx = get_cacheinfo_idx(this_leaf->type);
81         propname = cache_type_info[ct_idx].size_prop;
82
83         cache_size = of_get_property(np, propname, NULL);
84         if (cache_size)
85                 this_leaf->size = of_read_number(cache_size, 1);
86 }
87
88 /* not cache_line_size() because that's a macro in include/linux/cache.h */
89 static void cache_get_line_size(struct cacheinfo *this_leaf,
90                                 struct device_node *np)
91 {
92         const __be32 *line_size;
93         int i, lim, ct_idx;
94
95         ct_idx = get_cacheinfo_idx(this_leaf->type);
96         lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
97
98         for (i = 0; i < lim; i++) {
99                 const char *propname;
100
101                 propname = cache_type_info[ct_idx].line_size_props[i];
102                 line_size = of_get_property(np, propname, NULL);
103                 if (line_size)
104                         break;
105         }
106
107         if (line_size)
108                 this_leaf->coherency_line_size = of_read_number(line_size, 1);
109 }
110
111 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
112 {
113         const char *propname;
114         const __be32 *nr_sets;
115         int ct_idx;
116
117         ct_idx = get_cacheinfo_idx(this_leaf->type);
118         propname = cache_type_info[ct_idx].nr_sets_prop;
119
120         nr_sets = of_get_property(np, propname, NULL);
121         if (nr_sets)
122                 this_leaf->number_of_sets = of_read_number(nr_sets, 1);
123 }
124
125 static void cache_associativity(struct cacheinfo *this_leaf)
126 {
127         unsigned int line_size = this_leaf->coherency_line_size;
128         unsigned int nr_sets = this_leaf->number_of_sets;
129         unsigned int size = this_leaf->size;
130
131         /*
132          * If the cache is fully associative, there is no need to
133          * check the other properties.
134          */
135         if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
136                 this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
137 }
138
139 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
140                                   struct device_node *np)
141 {
142         return of_property_read_bool(np, "cache-unified");
143 }
144
145 static void cache_of_set_props(struct cacheinfo *this_leaf,
146                                struct device_node *np)
147 {
148         /*
149          * init_cache_level must setup the cache level correctly
150          * overriding the architecturally specified levels, so
151          * if type is NONE at this stage, it should be unified
152          */
153         if (this_leaf->type == CACHE_TYPE_NOCACHE &&
154             cache_node_is_unified(this_leaf, np))
155                 this_leaf->type = CACHE_TYPE_UNIFIED;
156         cache_size(this_leaf, np);
157         cache_get_line_size(this_leaf, np);
158         cache_nr_sets(this_leaf, np);
159         cache_associativity(this_leaf);
160 }
161
162 static int cache_setup_of_node(unsigned int cpu)
163 {
164         struct device_node *np;
165         struct cacheinfo *this_leaf;
166         struct device *cpu_dev = get_cpu_device(cpu);
167         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
168         unsigned int index = 0;
169
170         /* skip if fw_token is already populated */
171         if (this_cpu_ci->info_list->fw_token) {
172                 return 0;
173         }
174
175         if (!cpu_dev) {
176                 pr_err("No cpu device for CPU %d\n", cpu);
177                 return -ENODEV;
178         }
179         np = cpu_dev->of_node;
180         if (!np) {
181                 pr_err("Failed to find cpu%d device node\n", cpu);
182                 return -ENOENT;
183         }
184
185         while (index < cache_leaves(cpu)) {
186                 this_leaf = this_cpu_ci->info_list + index;
187                 if (this_leaf->level != 1)
188                         np = of_find_next_cache_node(np);
189                 else
190                         np = of_node_get(np);/* cpu node itself */
191                 if (!np)
192                         break;
193                 cache_of_set_props(this_leaf, np);
194                 this_leaf->fw_token = np;
195                 index++;
196         }
197
198         if (index != cache_leaves(cpu)) /* not all OF nodes populated */
199                 return -ENOENT;
200
201         return 0;
202 }
203 #else
204 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
205 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
206                                            struct cacheinfo *sib_leaf)
207 {
208         /*
209          * For non-DT/ACPI systems, assume unique level 1 caches, system-wide
210          * shared caches for all other levels. This will be used only if
211          * arch specific code has not populated shared_cpu_map
212          */
213         return !(this_leaf->level == 1);
214 }
215 #endif
216
217 int __weak cache_setup_acpi(unsigned int cpu)
218 {
219         return -ENOTSUPP;
220 }
221
222 static int cache_shared_cpu_map_setup(unsigned int cpu)
223 {
224         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
225         struct cacheinfo *this_leaf, *sib_leaf;
226         unsigned int index;
227         int ret = 0;
228
229         if (this_cpu_ci->cpu_map_populated)
230                 return 0;
231
232         if (of_have_populated_dt())
233                 ret = cache_setup_of_node(cpu);
234         else if (!acpi_disabled)
235                 ret = cache_setup_acpi(cpu);
236
237         if (ret)
238                 return ret;
239
240         for (index = 0; index < cache_leaves(cpu); index++) {
241                 unsigned int i;
242
243                 this_leaf = this_cpu_ci->info_list + index;
244                 /* skip if shared_cpu_map is already populated */
245                 if (!cpumask_empty(&this_leaf->shared_cpu_map))
246                         continue;
247
248                 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
249                 for_each_online_cpu(i) {
250                         struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
251
252                         if (i == cpu || !sib_cpu_ci->info_list)
253                                 continue;/* skip if itself or no cacheinfo */
254                         sib_leaf = sib_cpu_ci->info_list + index;
255                         if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
256                                 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
257                                 cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
258                         }
259                 }
260         }
261
262         return 0;
263 }
264
265 static void cache_shared_cpu_map_remove(unsigned int cpu)
266 {
267         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
268         struct cacheinfo *this_leaf, *sib_leaf;
269         unsigned int sibling, index;
270
271         for (index = 0; index < cache_leaves(cpu); index++) {
272                 this_leaf = this_cpu_ci->info_list + index;
273                 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
274                         struct cpu_cacheinfo *sib_cpu_ci;
275
276                         if (sibling == cpu) /* skip itself */
277                                 continue;
278
279                         sib_cpu_ci = get_cpu_cacheinfo(sibling);
280                         if (!sib_cpu_ci->info_list)
281                                 continue;
282
283                         sib_leaf = sib_cpu_ci->info_list + index;
284                         cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
285                         cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
286                 }
287                 if (of_have_populated_dt())
288                         of_node_put(this_leaf->fw_token);
289         }
290 }
291
292 static void free_cache_attributes(unsigned int cpu)
293 {
294         if (!per_cpu_cacheinfo(cpu))
295                 return;
296
297         cache_shared_cpu_map_remove(cpu);
298
299         kfree(per_cpu_cacheinfo(cpu));
300         per_cpu_cacheinfo(cpu) = NULL;
301 }
302
303 int __weak init_cache_level(unsigned int cpu)
304 {
305         return -ENOENT;
306 }
307
308 int __weak populate_cache_leaves(unsigned int cpu)
309 {
310         return -ENOENT;
311 }
312
313 static int detect_cache_attributes(unsigned int cpu)
314 {
315         int ret;
316
317         if (init_cache_level(cpu) || !cache_leaves(cpu))
318                 return -ENOENT;
319
320         per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
321                                          sizeof(struct cacheinfo), GFP_KERNEL);
322         if (per_cpu_cacheinfo(cpu) == NULL)
323                 return -ENOMEM;
324
325         /*
326          * populate_cache_leaves() may completely setup the cache leaves and
327          * shared_cpu_map or it may leave it partially setup.
328          */
329         ret = populate_cache_leaves(cpu);
330         if (ret)
331                 goto free_ci;
332         /*
333          * For systems using DT for cache hierarchy, fw_token
334          * and shared_cpu_map will be set up here only if they are
335          * not populated already
336          */
337         ret = cache_shared_cpu_map_setup(cpu);
338         if (ret) {
339                 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
340                 goto free_ci;
341         }
342
343         return 0;
344
345 free_ci:
346         free_cache_attributes(cpu);
347         return ret;
348 }
349
350 /* pointer to cpuX/cache device */
351 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
352 #define per_cpu_cache_dev(cpu)  (per_cpu(ci_cache_dev, cpu))
353
354 static cpumask_t cache_dev_map;
355
356 /* pointer to array of devices for cpuX/cache/indexY */
357 static DEFINE_PER_CPU(struct device **, ci_index_dev);
358 #define per_cpu_index_dev(cpu)  (per_cpu(ci_index_dev, cpu))
359 #define per_cache_index_dev(cpu, idx)   ((per_cpu_index_dev(cpu))[idx])
360
361 #define show_one(file_name, object)                             \
362 static ssize_t file_name##_show(struct device *dev,             \
363                 struct device_attribute *attr, char *buf)       \
364 {                                                               \
365         struct cacheinfo *this_leaf = dev_get_drvdata(dev);     \
366         return sprintf(buf, "%u\n", this_leaf->object);         \
367 }
368
369 show_one(id, id);
370 show_one(level, level);
371 show_one(coherency_line_size, coherency_line_size);
372 show_one(number_of_sets, number_of_sets);
373 show_one(physical_line_partition, physical_line_partition);
374 show_one(ways_of_associativity, ways_of_associativity);
375
376 static ssize_t size_show(struct device *dev,
377                          struct device_attribute *attr, char *buf)
378 {
379         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
380
381         return sprintf(buf, "%uK\n", this_leaf->size >> 10);
382 }
383
384 static ssize_t shared_cpumap_show_func(struct device *dev, bool list, char *buf)
385 {
386         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
387         const struct cpumask *mask = &this_leaf->shared_cpu_map;
388
389         return cpumap_print_to_pagebuf(list, buf, mask);
390 }
391
392 static ssize_t shared_cpu_map_show(struct device *dev,
393                                    struct device_attribute *attr, char *buf)
394 {
395         return shared_cpumap_show_func(dev, false, buf);
396 }
397
398 static ssize_t shared_cpu_list_show(struct device *dev,
399                                     struct device_attribute *attr, char *buf)
400 {
401         return shared_cpumap_show_func(dev, true, buf);
402 }
403
404 static ssize_t type_show(struct device *dev,
405                          struct device_attribute *attr, char *buf)
406 {
407         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
408
409         switch (this_leaf->type) {
410         case CACHE_TYPE_DATA:
411                 return sprintf(buf, "Data\n");
412         case CACHE_TYPE_INST:
413                 return sprintf(buf, "Instruction\n");
414         case CACHE_TYPE_UNIFIED:
415                 return sprintf(buf, "Unified\n");
416         default:
417                 return -EINVAL;
418         }
419 }
420
421 static ssize_t allocation_policy_show(struct device *dev,
422                                       struct device_attribute *attr, char *buf)
423 {
424         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
425         unsigned int ci_attr = this_leaf->attributes;
426         int n = 0;
427
428         if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
429                 n = sprintf(buf, "ReadWriteAllocate\n");
430         else if (ci_attr & CACHE_READ_ALLOCATE)
431                 n = sprintf(buf, "ReadAllocate\n");
432         else if (ci_attr & CACHE_WRITE_ALLOCATE)
433                 n = sprintf(buf, "WriteAllocate\n");
434         return n;
435 }
436
437 static ssize_t write_policy_show(struct device *dev,
438                                  struct device_attribute *attr, char *buf)
439 {
440         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
441         unsigned int ci_attr = this_leaf->attributes;
442         int n = 0;
443
444         if (ci_attr & CACHE_WRITE_THROUGH)
445                 n = sprintf(buf, "WriteThrough\n");
446         else if (ci_attr & CACHE_WRITE_BACK)
447                 n = sprintf(buf, "WriteBack\n");
448         return n;
449 }
450
451 static DEVICE_ATTR_RO(id);
452 static DEVICE_ATTR_RO(level);
453 static DEVICE_ATTR_RO(type);
454 static DEVICE_ATTR_RO(coherency_line_size);
455 static DEVICE_ATTR_RO(ways_of_associativity);
456 static DEVICE_ATTR_RO(number_of_sets);
457 static DEVICE_ATTR_RO(size);
458 static DEVICE_ATTR_RO(allocation_policy);
459 static DEVICE_ATTR_RO(write_policy);
460 static DEVICE_ATTR_RO(shared_cpu_map);
461 static DEVICE_ATTR_RO(shared_cpu_list);
462 static DEVICE_ATTR_RO(physical_line_partition);
463
464 static struct attribute *cache_default_attrs[] = {
465         &dev_attr_id.attr,
466         &dev_attr_type.attr,
467         &dev_attr_level.attr,
468         &dev_attr_shared_cpu_map.attr,
469         &dev_attr_shared_cpu_list.attr,
470         &dev_attr_coherency_line_size.attr,
471         &dev_attr_ways_of_associativity.attr,
472         &dev_attr_number_of_sets.attr,
473         &dev_attr_size.attr,
474         &dev_attr_allocation_policy.attr,
475         &dev_attr_write_policy.attr,
476         &dev_attr_physical_line_partition.attr,
477         NULL
478 };
479
480 static umode_t
481 cache_default_attrs_is_visible(struct kobject *kobj,
482                                struct attribute *attr, int unused)
483 {
484         struct device *dev = kobj_to_dev(kobj);
485         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
486         const struct cpumask *mask = &this_leaf->shared_cpu_map;
487         umode_t mode = attr->mode;
488
489         if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
490                 return mode;
491         if ((attr == &dev_attr_type.attr) && this_leaf->type)
492                 return mode;
493         if ((attr == &dev_attr_level.attr) && this_leaf->level)
494                 return mode;
495         if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
496                 return mode;
497         if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
498                 return mode;
499         if ((attr == &dev_attr_coherency_line_size.attr) &&
500             this_leaf->coherency_line_size)
501                 return mode;
502         if ((attr == &dev_attr_ways_of_associativity.attr) &&
503             this_leaf->size) /* allow 0 = full associativity */
504                 return mode;
505         if ((attr == &dev_attr_number_of_sets.attr) &&
506             this_leaf->number_of_sets)
507                 return mode;
508         if ((attr == &dev_attr_size.attr) && this_leaf->size)
509                 return mode;
510         if ((attr == &dev_attr_write_policy.attr) &&
511             (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
512                 return mode;
513         if ((attr == &dev_attr_allocation_policy.attr) &&
514             (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
515                 return mode;
516         if ((attr == &dev_attr_physical_line_partition.attr) &&
517             this_leaf->physical_line_partition)
518                 return mode;
519
520         return 0;
521 }
522
523 static const struct attribute_group cache_default_group = {
524         .attrs = cache_default_attrs,
525         .is_visible = cache_default_attrs_is_visible,
526 };
527
528 static const struct attribute_group *cache_default_groups[] = {
529         &cache_default_group,
530         NULL,
531 };
532
533 static const struct attribute_group *cache_private_groups[] = {
534         &cache_default_group,
535         NULL, /* Place holder for private group */
536         NULL,
537 };
538
539 const struct attribute_group *
540 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
541 {
542         return NULL;
543 }
544
545 static const struct attribute_group **
546 cache_get_attribute_groups(struct cacheinfo *this_leaf)
547 {
548         const struct attribute_group *priv_group =
549                         cache_get_priv_group(this_leaf);
550
551         if (!priv_group)
552                 return cache_default_groups;
553
554         if (!cache_private_groups[1])
555                 cache_private_groups[1] = priv_group;
556
557         return cache_private_groups;
558 }
559
560 /* Add/Remove cache interface for CPU device */
561 static void cpu_cache_sysfs_exit(unsigned int cpu)
562 {
563         int i;
564         struct device *ci_dev;
565
566         if (per_cpu_index_dev(cpu)) {
567                 for (i = 0; i < cache_leaves(cpu); i++) {
568                         ci_dev = per_cache_index_dev(cpu, i);
569                         if (!ci_dev)
570                                 continue;
571                         device_unregister(ci_dev);
572                 }
573                 kfree(per_cpu_index_dev(cpu));
574                 per_cpu_index_dev(cpu) = NULL;
575         }
576         device_unregister(per_cpu_cache_dev(cpu));
577         per_cpu_cache_dev(cpu) = NULL;
578 }
579
580 static int cpu_cache_sysfs_init(unsigned int cpu)
581 {
582         struct device *dev = get_cpu_device(cpu);
583
584         if (per_cpu_cacheinfo(cpu) == NULL)
585                 return -ENOENT;
586
587         per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
588         if (IS_ERR(per_cpu_cache_dev(cpu)))
589                 return PTR_ERR(per_cpu_cache_dev(cpu));
590
591         /* Allocate all required memory */
592         per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
593                                          sizeof(struct device *), GFP_KERNEL);
594         if (unlikely(per_cpu_index_dev(cpu) == NULL))
595                 goto err_out;
596
597         return 0;
598
599 err_out:
600         cpu_cache_sysfs_exit(cpu);
601         return -ENOMEM;
602 }
603
604 static int cache_add_dev(unsigned int cpu)
605 {
606         unsigned int i;
607         int rc;
608         struct device *ci_dev, *parent;
609         struct cacheinfo *this_leaf;
610         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
611         const struct attribute_group **cache_groups;
612
613         rc = cpu_cache_sysfs_init(cpu);
614         if (unlikely(rc < 0))
615                 return rc;
616
617         parent = per_cpu_cache_dev(cpu);
618         for (i = 0; i < cache_leaves(cpu); i++) {
619                 this_leaf = this_cpu_ci->info_list + i;
620                 if (this_leaf->disable_sysfs)
621                         continue;
622                 cache_groups = cache_get_attribute_groups(this_leaf);
623                 ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
624                                            "index%1u", i);
625                 if (IS_ERR(ci_dev)) {
626                         rc = PTR_ERR(ci_dev);
627                         goto err;
628                 }
629                 per_cache_index_dev(cpu, i) = ci_dev;
630         }
631         cpumask_set_cpu(cpu, &cache_dev_map);
632
633         return 0;
634 err:
635         cpu_cache_sysfs_exit(cpu);
636         return rc;
637 }
638
639 static int cacheinfo_cpu_online(unsigned int cpu)
640 {
641         int rc = detect_cache_attributes(cpu);
642
643         if (rc)
644                 return rc;
645         rc = cache_add_dev(cpu);
646         if (rc)
647                 free_cache_attributes(cpu);
648         return rc;
649 }
650
651 static int cacheinfo_cpu_pre_down(unsigned int cpu)
652 {
653         if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
654                 cpu_cache_sysfs_exit(cpu);
655
656         free_cache_attributes(cpu);
657         return 0;
658 }
659
660 static int __init cacheinfo_sysfs_init(void)
661 {
662         return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "base/cacheinfo:online",
663                                  cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
664 }
665 device_initcall(cacheinfo_sysfs_init);
This page took 0.073881 seconds and 4 git commands to generate.