2 * Routines having to do with the 'struct sk_buff' memory handlers.
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
44 #include <linux/interrupt.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
61 #include <net/protocol.h>
64 #include <net/checksum.h>
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
69 #include <trace/events/skb.h>
73 static struct kmem_cache *skbuff_head_cache __read_mostly;
74 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
77 struct pipe_buffer *buf)
82 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
83 struct pipe_buffer *buf)
88 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
95 /* Pipe buffer operations for a socket. */
96 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .map = generic_pipe_buf_map,
99 .unmap = generic_pipe_buf_unmap,
100 .confirm = generic_pipe_buf_confirm,
101 .release = sock_pipe_buf_release,
102 .steal = sock_pipe_buf_steal,
103 .get = sock_pipe_buf_get,
107 * Keep out-of-line to prevent kernel bloat.
108 * __builtin_return_address is not used because it is not always
113 * skb_over_panic - private function
118 * Out of line support code for skb_put(). Not user callable.
120 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
123 "data:%p tail:%#lx end:%#lx dev:%s\n",
124 here, skb->len, sz, skb->head, skb->data,
125 (unsigned long)skb->tail, (unsigned long)skb->end,
126 skb->dev ? skb->dev->name : "<NULL>");
131 * skb_under_panic - private function
136 * Out of line support code for skb_push(). Not user callable.
139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
142 "data:%p tail:%#lx end:%#lx dev:%s\n",
143 here, skb->len, sz, skb->head, skb->data,
144 (unsigned long)skb->tail, (unsigned long)skb->end,
145 skb->dev ? skb->dev->name : "<NULL>");
149 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
150 * 'private' fields and also do memory statistics to find all the
156 * __alloc_skb - allocate a network buffer
157 * @size: size to allocate
158 * @gfp_mask: allocation mask
159 * @fclone: allocate from fclone cache instead of head cache
160 * and allocate a cloned (child) skb
161 * @node: numa node to allocate memory on
163 * Allocate a new &sk_buff. The returned buffer has no headroom and a
164 * tail room of size bytes. The object has a reference count of one.
165 * The return is the buffer. On a failure the return is %NULL.
167 * Buffers may only be allocated from interrupts using a @gfp_mask of
170 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
171 int fclone, int node)
173 struct kmem_cache *cache;
174 struct skb_shared_info *shinfo;
178 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
181 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
186 size = SKB_DATA_ALIGN(size);
187 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
191 prefetchw(data + size);
194 * Only clear those fields we need to clear, not those that we will
195 * actually initialise below. Hence, don't put any more fields after
196 * the tail pointer in struct sk_buff!
198 memset(skb, 0, offsetof(struct sk_buff, tail));
199 skb->truesize = size + sizeof(struct sk_buff);
200 atomic_set(&skb->users, 1);
203 skb_reset_tail_pointer(skb);
204 skb->end = skb->tail + size;
205 #ifdef NET_SKBUFF_DATA_USES_OFFSET
206 skb->mac_header = ~0U;
209 /* make sure we initialize shinfo sequentially */
210 shinfo = skb_shinfo(skb);
211 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
212 atomic_set(&shinfo->dataref, 1);
215 struct sk_buff *child = skb + 1;
216 atomic_t *fclone_ref = (atomic_t *) (child + 1);
218 kmemcheck_annotate_bitfield(child, flags1);
219 kmemcheck_annotate_bitfield(child, flags2);
220 skb->fclone = SKB_FCLONE_ORIG;
221 atomic_set(fclone_ref, 1);
223 child->fclone = SKB_FCLONE_UNAVAILABLE;
228 kmem_cache_free(cache, skb);
232 EXPORT_SYMBOL(__alloc_skb);
235 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
236 * @dev: network device to receive on
237 * @length: length to allocate
238 * @gfp_mask: get_free_pages mask, passed to alloc_skb
240 * Allocate a new &sk_buff and assign it a usage count of one. The
241 * buffer has unspecified headroom built in. Users should allocate
242 * the headroom they think they need without accounting for the
243 * built in space. The built in space is used for optimisations.
245 * %NULL is returned if there is no free memory.
247 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
248 unsigned int length, gfp_t gfp_mask)
252 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
254 skb_reserve(skb, NET_SKB_PAD);
259 EXPORT_SYMBOL(__netdev_alloc_skb);
261 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
264 skb_fill_page_desc(skb, i, page, off, size);
266 skb->data_len += size;
267 skb->truesize += size;
269 EXPORT_SYMBOL(skb_add_rx_frag);
272 * dev_alloc_skb - allocate an skbuff for receiving
273 * @length: length to allocate
275 * Allocate a new &sk_buff and assign it a usage count of one. The
276 * buffer has unspecified headroom built in. Users should allocate
277 * the headroom they think they need without accounting for the
278 * built in space. The built in space is used for optimisations.
280 * %NULL is returned if there is no free memory. Although this function
281 * allocates memory it can be called from an interrupt.
283 struct sk_buff *dev_alloc_skb(unsigned int length)
286 * There is more code here than it seems:
287 * __dev_alloc_skb is an inline
289 return __dev_alloc_skb(length, GFP_ATOMIC);
291 EXPORT_SYMBOL(dev_alloc_skb);
293 static void skb_drop_list(struct sk_buff **listp)
295 struct sk_buff *list = *listp;
300 struct sk_buff *this = list;
306 static inline void skb_drop_fraglist(struct sk_buff *skb)
308 skb_drop_list(&skb_shinfo(skb)->frag_list);
311 static void skb_clone_fraglist(struct sk_buff *skb)
313 struct sk_buff *list;
315 skb_walk_frags(skb, list)
319 static void skb_release_data(struct sk_buff *skb)
322 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
323 &skb_shinfo(skb)->dataref)) {
324 if (skb_shinfo(skb)->nr_frags) {
326 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
327 put_page(skb_shinfo(skb)->frags[i].page);
330 if (skb_has_frag_list(skb))
331 skb_drop_fraglist(skb);
338 * Free an skbuff by memory without cleaning the state.
340 static void kfree_skbmem(struct sk_buff *skb)
342 struct sk_buff *other;
343 atomic_t *fclone_ref;
345 switch (skb->fclone) {
346 case SKB_FCLONE_UNAVAILABLE:
347 kmem_cache_free(skbuff_head_cache, skb);
350 case SKB_FCLONE_ORIG:
351 fclone_ref = (atomic_t *) (skb + 2);
352 if (atomic_dec_and_test(fclone_ref))
353 kmem_cache_free(skbuff_fclone_cache, skb);
356 case SKB_FCLONE_CLONE:
357 fclone_ref = (atomic_t *) (skb + 1);
360 /* The clone portion is available for
361 * fast-cloning again.
363 skb->fclone = SKB_FCLONE_UNAVAILABLE;
365 if (atomic_dec_and_test(fclone_ref))
366 kmem_cache_free(skbuff_fclone_cache, other);
371 static void skb_release_head_state(struct sk_buff *skb)
375 secpath_put(skb->sp);
377 if (skb->destructor) {
379 skb->destructor(skb);
381 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
382 nf_conntrack_put(skb->nfct);
383 nf_conntrack_put_reasm(skb->nfct_reasm);
385 #ifdef CONFIG_BRIDGE_NETFILTER
386 nf_bridge_put(skb->nf_bridge);
388 /* XXX: IS this still necessary? - JHS */
389 #ifdef CONFIG_NET_SCHED
391 #ifdef CONFIG_NET_CLS_ACT
397 /* Free everything but the sk_buff shell. */
398 static void skb_release_all(struct sk_buff *skb)
400 skb_release_head_state(skb);
401 skb_release_data(skb);
405 * __kfree_skb - private function
408 * Free an sk_buff. Release anything attached to the buffer.
409 * Clean the state. This is an internal helper function. Users should
410 * always call kfree_skb
413 void __kfree_skb(struct sk_buff *skb)
415 skb_release_all(skb);
418 EXPORT_SYMBOL(__kfree_skb);
421 * kfree_skb - free an sk_buff
422 * @skb: buffer to free
424 * Drop a reference to the buffer and free it if the usage count has
427 void kfree_skb(struct sk_buff *skb)
431 if (likely(atomic_read(&skb->users) == 1))
433 else if (likely(!atomic_dec_and_test(&skb->users)))
435 trace_kfree_skb(skb, __builtin_return_address(0));
438 EXPORT_SYMBOL(kfree_skb);
441 * consume_skb - free an skbuff
442 * @skb: buffer to free
444 * Drop a ref to the buffer and free it if the usage count has hit zero
445 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
446 * is being dropped after a failure and notes that
448 void consume_skb(struct sk_buff *skb)
452 if (likely(atomic_read(&skb->users) == 1))
454 else if (likely(!atomic_dec_and_test(&skb->users)))
456 trace_consume_skb(skb);
459 EXPORT_SYMBOL(consume_skb);
462 * skb_recycle_check - check if skb can be reused for receive
464 * @skb_size: minimum receive buffer size
466 * Checks that the skb passed in is not shared or cloned, and
467 * that it is linear and its head portion at least as large as
468 * skb_size so that it can be recycled as a receive buffer.
469 * If these conditions are met, this function does any necessary
470 * reference count dropping and cleans up the skbuff as if it
471 * just came from __alloc_skb().
473 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
475 struct skb_shared_info *shinfo;
480 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
483 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
484 if (skb_end_pointer(skb) - skb->head < skb_size)
487 if (skb_shared(skb) || skb_cloned(skb))
490 skb_release_head_state(skb);
492 shinfo = skb_shinfo(skb);
493 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
494 atomic_set(&shinfo->dataref, 1);
496 memset(skb, 0, offsetof(struct sk_buff, tail));
497 skb->data = skb->head + NET_SKB_PAD;
498 skb_reset_tail_pointer(skb);
502 EXPORT_SYMBOL(skb_recycle_check);
504 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
506 new->tstamp = old->tstamp;
508 new->transport_header = old->transport_header;
509 new->network_header = old->network_header;
510 new->mac_header = old->mac_header;
511 skb_dst_copy(new, old);
512 new->rxhash = old->rxhash;
514 new->sp = secpath_get(old->sp);
516 memcpy(new->cb, old->cb, sizeof(old->cb));
517 new->csum = old->csum;
518 new->local_df = old->local_df;
519 new->pkt_type = old->pkt_type;
520 new->ip_summed = old->ip_summed;
521 skb_copy_queue_mapping(new, old);
522 new->priority = old->priority;
523 new->deliver_no_wcard = old->deliver_no_wcard;
524 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
525 new->ipvs_property = old->ipvs_property;
527 new->protocol = old->protocol;
528 new->mark = old->mark;
529 new->skb_iif = old->skb_iif;
531 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
532 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
533 new->nf_trace = old->nf_trace;
535 #ifdef CONFIG_NET_SCHED
536 new->tc_index = old->tc_index;
537 #ifdef CONFIG_NET_CLS_ACT
538 new->tc_verd = old->tc_verd;
541 new->vlan_tci = old->vlan_tci;
543 skb_copy_secmark(new, old);
547 * You should not add any new code to this function. Add it to
548 * __copy_skb_header above instead.
550 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
552 #define C(x) n->x = skb->x
554 n->next = n->prev = NULL;
556 __copy_skb_header(n, skb);
561 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
564 n->destructor = NULL;
570 atomic_set(&n->users, 1);
572 atomic_inc(&(skb_shinfo(skb)->dataref));
580 * skb_morph - morph one skb into another
581 * @dst: the skb to receive the contents
582 * @src: the skb to supply the contents
584 * This is identical to skb_clone except that the target skb is
585 * supplied by the user.
587 * The target skb is returned upon exit.
589 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
591 skb_release_all(dst);
592 return __skb_clone(dst, src);
594 EXPORT_SYMBOL_GPL(skb_morph);
597 * skb_clone - duplicate an sk_buff
598 * @skb: buffer to clone
599 * @gfp_mask: allocation priority
601 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
602 * copies share the same packet data but not structure. The new
603 * buffer has a reference count of 1. If the allocation fails the
604 * function returns %NULL otherwise the new buffer is returned.
606 * If this function is called from an interrupt gfp_mask() must be
610 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
615 if (skb->fclone == SKB_FCLONE_ORIG &&
616 n->fclone == SKB_FCLONE_UNAVAILABLE) {
617 atomic_t *fclone_ref = (atomic_t *) (n + 1);
618 n->fclone = SKB_FCLONE_CLONE;
619 atomic_inc(fclone_ref);
621 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
625 kmemcheck_annotate_bitfield(n, flags1);
626 kmemcheck_annotate_bitfield(n, flags2);
627 n->fclone = SKB_FCLONE_UNAVAILABLE;
630 return __skb_clone(n, skb);
632 EXPORT_SYMBOL(skb_clone);
634 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
636 #ifndef NET_SKBUFF_DATA_USES_OFFSET
638 * Shift between the two data areas in bytes
640 unsigned long offset = new->data - old->data;
643 __copy_skb_header(new, old);
645 #ifndef NET_SKBUFF_DATA_USES_OFFSET
646 /* {transport,network,mac}_header are relative to skb->head */
647 new->transport_header += offset;
648 new->network_header += offset;
649 if (skb_mac_header_was_set(new))
650 new->mac_header += offset;
652 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
653 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
654 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
658 * skb_copy - create private copy of an sk_buff
659 * @skb: buffer to copy
660 * @gfp_mask: allocation priority
662 * Make a copy of both an &sk_buff and its data. This is used when the
663 * caller wishes to modify the data and needs a private copy of the
664 * data to alter. Returns %NULL on failure or the pointer to the buffer
665 * on success. The returned buffer has a reference count of 1.
667 * As by-product this function converts non-linear &sk_buff to linear
668 * one, so that &sk_buff becomes completely private and caller is allowed
669 * to modify all the data of returned buffer. This means that this
670 * function is not recommended for use in circumstances when only
671 * header is going to be modified. Use pskb_copy() instead.
674 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
676 int headerlen = skb_headroom(skb);
677 unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
678 struct sk_buff *n = alloc_skb(size, gfp_mask);
683 /* Set the data pointer */
684 skb_reserve(n, headerlen);
685 /* Set the tail pointer and length */
686 skb_put(n, skb->len);
688 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
691 copy_skb_header(n, skb);
694 EXPORT_SYMBOL(skb_copy);
697 * pskb_copy - create copy of an sk_buff with private head.
698 * @skb: buffer to copy
699 * @gfp_mask: allocation priority
701 * Make a copy of both an &sk_buff and part of its data, located
702 * in header. Fragmented data remain shared. This is used when
703 * the caller wishes to modify only header of &sk_buff and needs
704 * private copy of the header to alter. Returns %NULL on failure
705 * or the pointer to the buffer on success.
706 * The returned buffer has a reference count of 1.
709 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
711 unsigned int size = skb_end_pointer(skb) - skb->head;
712 struct sk_buff *n = alloc_skb(size, gfp_mask);
717 /* Set the data pointer */
718 skb_reserve(n, skb_headroom(skb));
719 /* Set the tail pointer and length */
720 skb_put(n, skb_headlen(skb));
722 skb_copy_from_linear_data(skb, n->data, n->len);
724 n->truesize += skb->data_len;
725 n->data_len = skb->data_len;
728 if (skb_shinfo(skb)->nr_frags) {
731 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
732 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
733 get_page(skb_shinfo(n)->frags[i].page);
735 skb_shinfo(n)->nr_frags = i;
738 if (skb_has_frag_list(skb)) {
739 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
740 skb_clone_fraglist(n);
743 copy_skb_header(n, skb);
747 EXPORT_SYMBOL(pskb_copy);
750 * pskb_expand_head - reallocate header of &sk_buff
751 * @skb: buffer to reallocate
752 * @nhead: room to add at head
753 * @ntail: room to add at tail
754 * @gfp_mask: allocation priority
756 * Expands (or creates identical copy, if &nhead and &ntail are zero)
757 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
758 * reference count of 1. Returns zero in the case of success or error,
759 * if expansion failed. In the last case, &sk_buff is not changed.
761 * All the pointers pointing into skb header may change and must be
762 * reloaded after call to this function.
765 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
770 int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
779 size = SKB_DATA_ALIGN(size);
781 /* Check if we can avoid taking references on fragments if we own
782 * the last reference on skb->head. (see skb_release_data())
787 int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
789 fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
793 size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
794 memmove(skb->head + size, skb_shinfo(skb),
795 offsetof(struct skb_shared_info,
796 frags[skb_shinfo(skb)->nr_frags]));
797 memmove(skb->head + nhead, skb->head,
798 skb_tail_pointer(skb) - skb->head);
803 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
807 /* Copy only real data... and, alas, header. This should be
808 * optimized for the cases when header is void.
810 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
812 memcpy((struct skb_shared_info *)(data + size),
814 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
819 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
820 get_page(skb_shinfo(skb)->frags[i].page);
822 if (skb_has_frag_list(skb))
823 skb_clone_fraglist(skb);
825 skb_release_data(skb);
827 off = (data + nhead) - skb->head;
832 #ifdef NET_SKBUFF_DATA_USES_OFFSET
836 skb->end = skb->head + size;
838 /* {transport,network,mac}_header and tail are relative to skb->head */
840 skb->transport_header += off;
841 skb->network_header += off;
842 if (skb_mac_header_was_set(skb))
843 skb->mac_header += off;
844 /* Only adjust this if it actually is csum_start rather than csum */
845 if (skb->ip_summed == CHECKSUM_PARTIAL)
846 skb->csum_start += nhead;
850 atomic_set(&skb_shinfo(skb)->dataref, 1);
856 EXPORT_SYMBOL(pskb_expand_head);
858 /* Make private copy of skb with writable head and some headroom */
860 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
862 struct sk_buff *skb2;
863 int delta = headroom - skb_headroom(skb);
866 skb2 = pskb_copy(skb, GFP_ATOMIC);
868 skb2 = skb_clone(skb, GFP_ATOMIC);
869 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
877 EXPORT_SYMBOL(skb_realloc_headroom);
880 * skb_copy_expand - copy and expand sk_buff
881 * @skb: buffer to copy
882 * @newheadroom: new free bytes at head
883 * @newtailroom: new free bytes at tail
884 * @gfp_mask: allocation priority
886 * Make a copy of both an &sk_buff and its data and while doing so
887 * allocate additional space.
889 * This is used when the caller wishes to modify the data and needs a
890 * private copy of the data to alter as well as more space for new fields.
891 * Returns %NULL on failure or the pointer to the buffer
892 * on success. The returned buffer has a reference count of 1.
894 * You must pass %GFP_ATOMIC as the allocation priority if this function
895 * is called from an interrupt.
897 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
898 int newheadroom, int newtailroom,
902 * Allocate the copy buffer
904 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
906 int oldheadroom = skb_headroom(skb);
907 int head_copy_len, head_copy_off;
913 skb_reserve(n, newheadroom);
915 /* Set the tail pointer and length */
916 skb_put(n, skb->len);
918 head_copy_len = oldheadroom;
920 if (newheadroom <= head_copy_len)
921 head_copy_len = newheadroom;
923 head_copy_off = newheadroom - head_copy_len;
925 /* Copy the linear header and data. */
926 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
927 skb->len + head_copy_len))
930 copy_skb_header(n, skb);
932 off = newheadroom - oldheadroom;
933 if (n->ip_summed == CHECKSUM_PARTIAL)
934 n->csum_start += off;
935 #ifdef NET_SKBUFF_DATA_USES_OFFSET
936 n->transport_header += off;
937 n->network_header += off;
938 if (skb_mac_header_was_set(skb))
939 n->mac_header += off;
944 EXPORT_SYMBOL(skb_copy_expand);
947 * skb_pad - zero pad the tail of an skb
948 * @skb: buffer to pad
951 * Ensure that a buffer is followed by a padding area that is zero
952 * filled. Used by network drivers which may DMA or transfer data
953 * beyond the buffer end onto the wire.
955 * May return error in out of memory cases. The skb is freed on error.
958 int skb_pad(struct sk_buff *skb, int pad)
963 /* If the skbuff is non linear tailroom is always zero.. */
964 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
965 memset(skb->data+skb->len, 0, pad);
969 ntail = skb->data_len + pad - (skb->end - skb->tail);
970 if (likely(skb_cloned(skb) || ntail > 0)) {
971 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
976 /* FIXME: The use of this function with non-linear skb's really needs
979 err = skb_linearize(skb);
983 memset(skb->data + skb->len, 0, pad);
990 EXPORT_SYMBOL(skb_pad);
993 * skb_put - add data to a buffer
994 * @skb: buffer to use
995 * @len: amount of data to add
997 * This function extends the used data area of the buffer. If this would
998 * exceed the total buffer size the kernel will panic. A pointer to the
999 * first byte of the extra data is returned.
1001 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1003 unsigned char *tmp = skb_tail_pointer(skb);
1004 SKB_LINEAR_ASSERT(skb);
1007 if (unlikely(skb->tail > skb->end))
1008 skb_over_panic(skb, len, __builtin_return_address(0));
1011 EXPORT_SYMBOL(skb_put);
1014 * skb_push - add data to the start of a buffer
1015 * @skb: buffer to use
1016 * @len: amount of data to add
1018 * This function extends the used data area of the buffer at the buffer
1019 * start. If this would exceed the total buffer headroom the kernel will
1020 * panic. A pointer to the first byte of the extra data is returned.
1022 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1026 if (unlikely(skb->data<skb->head))
1027 skb_under_panic(skb, len, __builtin_return_address(0));
1030 EXPORT_SYMBOL(skb_push);
1033 * skb_pull - remove data from the start of a buffer
1034 * @skb: buffer to use
1035 * @len: amount of data to remove
1037 * This function removes data from the start of a buffer, returning
1038 * the memory to the headroom. A pointer to the next data in the buffer
1039 * is returned. Once the data has been pulled future pushes will overwrite
1042 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1044 return skb_pull_inline(skb, len);
1046 EXPORT_SYMBOL(skb_pull);
1049 * skb_trim - remove end from a buffer
1050 * @skb: buffer to alter
1053 * Cut the length of a buffer down by removing data from the tail. If
1054 * the buffer is already under the length specified it is not modified.
1055 * The skb must be linear.
1057 void skb_trim(struct sk_buff *skb, unsigned int len)
1060 __skb_trim(skb, len);
1062 EXPORT_SYMBOL(skb_trim);
1064 /* Trims skb to length len. It can change skb pointers.
1067 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1069 struct sk_buff **fragp;
1070 struct sk_buff *frag;
1071 int offset = skb_headlen(skb);
1072 int nfrags = skb_shinfo(skb)->nr_frags;
1076 if (skb_cloned(skb) &&
1077 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1084 for (; i < nfrags; i++) {
1085 int end = offset + skb_shinfo(skb)->frags[i].size;
1092 skb_shinfo(skb)->frags[i++].size = len - offset;
1095 skb_shinfo(skb)->nr_frags = i;
1097 for (; i < nfrags; i++)
1098 put_page(skb_shinfo(skb)->frags[i].page);
1100 if (skb_has_frag_list(skb))
1101 skb_drop_fraglist(skb);
1105 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1106 fragp = &frag->next) {
1107 int end = offset + frag->len;
1109 if (skb_shared(frag)) {
1110 struct sk_buff *nfrag;
1112 nfrag = skb_clone(frag, GFP_ATOMIC);
1113 if (unlikely(!nfrag))
1116 nfrag->next = frag->next;
1128 unlikely((err = pskb_trim(frag, len - offset))))
1132 skb_drop_list(&frag->next);
1137 if (len > skb_headlen(skb)) {
1138 skb->data_len -= skb->len - len;
1143 skb_set_tail_pointer(skb, len);
1148 EXPORT_SYMBOL(___pskb_trim);
1151 * __pskb_pull_tail - advance tail of skb header
1152 * @skb: buffer to reallocate
1153 * @delta: number of bytes to advance tail
1155 * The function makes a sense only on a fragmented &sk_buff,
1156 * it expands header moving its tail forward and copying necessary
1157 * data from fragmented part.
1159 * &sk_buff MUST have reference count of 1.
1161 * Returns %NULL (and &sk_buff does not change) if pull failed
1162 * or value of new tail of skb in the case of success.
1164 * All the pointers pointing into skb header may change and must be
1165 * reloaded after call to this function.
1168 /* Moves tail of skb head forward, copying data from fragmented part,
1169 * when it is necessary.
1170 * 1. It may fail due to malloc failure.
1171 * 2. It may change skb pointers.
1173 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1175 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1177 /* If skb has not enough free space at tail, get new one
1178 * plus 128 bytes for future expansions. If we have enough
1179 * room at tail, reallocate without expansion only if skb is cloned.
1181 int i, k, eat = (skb->tail + delta) - skb->end;
1183 if (eat > 0 || skb_cloned(skb)) {
1184 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1189 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1192 /* Optimization: no fragments, no reasons to preestimate
1193 * size of pulled pages. Superb.
1195 if (!skb_has_frag_list(skb))
1198 /* Estimate size of pulled pages. */
1200 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1201 if (skb_shinfo(skb)->frags[i].size >= eat)
1203 eat -= skb_shinfo(skb)->frags[i].size;
1206 /* If we need update frag list, we are in troubles.
1207 * Certainly, it possible to add an offset to skb data,
1208 * but taking into account that pulling is expected to
1209 * be very rare operation, it is worth to fight against
1210 * further bloating skb head and crucify ourselves here instead.
1211 * Pure masohism, indeed. 8)8)
1214 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1215 struct sk_buff *clone = NULL;
1216 struct sk_buff *insp = NULL;
1221 if (list->len <= eat) {
1222 /* Eaten as whole. */
1227 /* Eaten partially. */
1229 if (skb_shared(list)) {
1230 /* Sucks! We need to fork list. :-( */
1231 clone = skb_clone(list, GFP_ATOMIC);
1237 /* This may be pulled without
1241 if (!pskb_pull(list, eat)) {
1249 /* Free pulled out fragments. */
1250 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1251 skb_shinfo(skb)->frag_list = list->next;
1254 /* And insert new clone at head. */
1257 skb_shinfo(skb)->frag_list = clone;
1260 /* Success! Now we may commit changes to skb data. */
1265 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1266 if (skb_shinfo(skb)->frags[i].size <= eat) {
1267 put_page(skb_shinfo(skb)->frags[i].page);
1268 eat -= skb_shinfo(skb)->frags[i].size;
1270 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1272 skb_shinfo(skb)->frags[k].page_offset += eat;
1273 skb_shinfo(skb)->frags[k].size -= eat;
1279 skb_shinfo(skb)->nr_frags = k;
1282 skb->data_len -= delta;
1284 return skb_tail_pointer(skb);
1286 EXPORT_SYMBOL(__pskb_pull_tail);
1288 /* Copy some data bits from skb to kernel buffer. */
1290 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1292 int start = skb_headlen(skb);
1293 struct sk_buff *frag_iter;
1296 if (offset > (int)skb->len - len)
1300 if ((copy = start - offset) > 0) {
1303 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1304 if ((len -= copy) == 0)
1310 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1313 WARN_ON(start > offset + len);
1315 end = start + skb_shinfo(skb)->frags[i].size;
1316 if ((copy = end - offset) > 0) {
1322 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1324 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1325 offset - start, copy);
1326 kunmap_skb_frag(vaddr);
1328 if ((len -= copy) == 0)
1336 skb_walk_frags(skb, frag_iter) {
1339 WARN_ON(start > offset + len);
1341 end = start + frag_iter->len;
1342 if ((copy = end - offset) > 0) {
1345 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1347 if ((len -= copy) == 0)
1360 EXPORT_SYMBOL(skb_copy_bits);
1363 * Callback from splice_to_pipe(), if we need to release some pages
1364 * at the end of the spd in case we error'ed out in filling the pipe.
1366 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1368 put_page(spd->pages[i]);
1371 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1372 unsigned int *offset,
1373 struct sk_buff *skb, struct sock *sk)
1375 struct page *p = sk->sk_sndmsg_page;
1380 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1384 off = sk->sk_sndmsg_off = 0;
1385 /* hold one ref to this page until it's full */
1389 off = sk->sk_sndmsg_off;
1390 mlen = PAGE_SIZE - off;
1391 if (mlen < 64 && mlen < *len) {
1396 *len = min_t(unsigned int, *len, mlen);
1399 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1400 sk->sk_sndmsg_off += *len;
1408 * Fill page/offset/length into spd, if it can hold more pages.
1410 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1411 struct pipe_inode_info *pipe, struct page *page,
1412 unsigned int *len, unsigned int offset,
1413 struct sk_buff *skb, int linear,
1416 if (unlikely(spd->nr_pages == pipe->buffers))
1420 page = linear_to_page(page, len, &offset, skb, sk);
1426 spd->pages[spd->nr_pages] = page;
1427 spd->partial[spd->nr_pages].len = *len;
1428 spd->partial[spd->nr_pages].offset = offset;
1434 static inline void __segment_seek(struct page **page, unsigned int *poff,
1435 unsigned int *plen, unsigned int off)
1440 n = *poff / PAGE_SIZE;
1442 *page = nth_page(*page, n);
1444 *poff = *poff % PAGE_SIZE;
1448 static inline int __splice_segment(struct page *page, unsigned int poff,
1449 unsigned int plen, unsigned int *off,
1450 unsigned int *len, struct sk_buff *skb,
1451 struct splice_pipe_desc *spd, int linear,
1453 struct pipe_inode_info *pipe)
1458 /* skip this segment if already processed */
1464 /* ignore any bits we already processed */
1466 __segment_seek(&page, &poff, &plen, *off);
1471 unsigned int flen = min(*len, plen);
1473 /* the linear region may spread across several pages */
1474 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1476 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1479 __segment_seek(&page, &poff, &plen, flen);
1482 } while (*len && plen);
1488 * Map linear and fragment data from the skb to spd. It reports failure if the
1489 * pipe is full or if we already spliced the requested length.
1491 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1492 unsigned int *offset, unsigned int *len,
1493 struct splice_pipe_desc *spd, struct sock *sk)
1498 * map the linear part
1500 if (__splice_segment(virt_to_page(skb->data),
1501 (unsigned long) skb->data & (PAGE_SIZE - 1),
1503 offset, len, skb, spd, 1, sk, pipe))
1507 * then map the fragments
1509 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1510 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1512 if (__splice_segment(f->page, f->page_offset, f->size,
1513 offset, len, skb, spd, 0, sk, pipe))
1521 * Map data from the skb to a pipe. Should handle both the linear part,
1522 * the fragments, and the frag list. It does NOT handle frag lists within
1523 * the frag list, if such a thing exists. We'd probably need to recurse to
1524 * handle that cleanly.
1526 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1527 struct pipe_inode_info *pipe, unsigned int tlen,
1530 struct partial_page partial[PIPE_DEF_BUFFERS];
1531 struct page *pages[PIPE_DEF_BUFFERS];
1532 struct splice_pipe_desc spd = {
1536 .ops = &sock_pipe_buf_ops,
1537 .spd_release = sock_spd_release,
1539 struct sk_buff *frag_iter;
1540 struct sock *sk = skb->sk;
1543 if (splice_grow_spd(pipe, &spd))
1547 * __skb_splice_bits() only fails if the output has no room left,
1548 * so no point in going over the frag_list for the error case.
1550 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1556 * now see if we have a frag_list to map
1558 skb_walk_frags(skb, frag_iter) {
1561 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1568 * Drop the socket lock, otherwise we have reverse
1569 * locking dependencies between sk_lock and i_mutex
1570 * here as compared to sendfile(). We enter here
1571 * with the socket lock held, and splice_to_pipe() will
1572 * grab the pipe inode lock. For sendfile() emulation,
1573 * we call into ->sendpage() with the i_mutex lock held
1574 * and networking will grab the socket lock.
1577 ret = splice_to_pipe(pipe, &spd);
1581 splice_shrink_spd(pipe, &spd);
1586 * skb_store_bits - store bits from kernel buffer to skb
1587 * @skb: destination buffer
1588 * @offset: offset in destination
1589 * @from: source buffer
1590 * @len: number of bytes to copy
1592 * Copy the specified number of bytes from the source buffer to the
1593 * destination skb. This function handles all the messy bits of
1594 * traversing fragment lists and such.
1597 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1599 int start = skb_headlen(skb);
1600 struct sk_buff *frag_iter;
1603 if (offset > (int)skb->len - len)
1606 if ((copy = start - offset) > 0) {
1609 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1610 if ((len -= copy) == 0)
1616 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1617 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1620 WARN_ON(start > offset + len);
1622 end = start + frag->size;
1623 if ((copy = end - offset) > 0) {
1629 vaddr = kmap_skb_frag(frag);
1630 memcpy(vaddr + frag->page_offset + offset - start,
1632 kunmap_skb_frag(vaddr);
1634 if ((len -= copy) == 0)
1642 skb_walk_frags(skb, frag_iter) {
1645 WARN_ON(start > offset + len);
1647 end = start + frag_iter->len;
1648 if ((copy = end - offset) > 0) {
1651 if (skb_store_bits(frag_iter, offset - start,
1654 if ((len -= copy) == 0)
1667 EXPORT_SYMBOL(skb_store_bits);
1669 /* Checksum skb data. */
1671 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1672 int len, __wsum csum)
1674 int start = skb_headlen(skb);
1675 int i, copy = start - offset;
1676 struct sk_buff *frag_iter;
1679 /* Checksum header. */
1683 csum = csum_partial(skb->data + offset, copy, csum);
1684 if ((len -= copy) == 0)
1690 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1693 WARN_ON(start > offset + len);
1695 end = start + skb_shinfo(skb)->frags[i].size;
1696 if ((copy = end - offset) > 0) {
1699 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1703 vaddr = kmap_skb_frag(frag);
1704 csum2 = csum_partial(vaddr + frag->page_offset +
1705 offset - start, copy, 0);
1706 kunmap_skb_frag(vaddr);
1707 csum = csum_block_add(csum, csum2, pos);
1716 skb_walk_frags(skb, frag_iter) {
1719 WARN_ON(start > offset + len);
1721 end = start + frag_iter->len;
1722 if ((copy = end - offset) > 0) {
1726 csum2 = skb_checksum(frag_iter, offset - start,
1728 csum = csum_block_add(csum, csum2, pos);
1729 if ((len -= copy) == 0)
1740 EXPORT_SYMBOL(skb_checksum);
1742 /* Both of above in one bottle. */
1744 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1745 u8 *to, int len, __wsum csum)
1747 int start = skb_headlen(skb);
1748 int i, copy = start - offset;
1749 struct sk_buff *frag_iter;
1756 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1758 if ((len -= copy) == 0)
1765 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1768 WARN_ON(start > offset + len);
1770 end = start + skb_shinfo(skb)->frags[i].size;
1771 if ((copy = end - offset) > 0) {
1774 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1778 vaddr = kmap_skb_frag(frag);
1779 csum2 = csum_partial_copy_nocheck(vaddr +
1783 kunmap_skb_frag(vaddr);
1784 csum = csum_block_add(csum, csum2, pos);
1794 skb_walk_frags(skb, frag_iter) {
1798 WARN_ON(start > offset + len);
1800 end = start + frag_iter->len;
1801 if ((copy = end - offset) > 0) {
1804 csum2 = skb_copy_and_csum_bits(frag_iter,
1807 csum = csum_block_add(csum, csum2, pos);
1808 if ((len -= copy) == 0)
1819 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1821 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1826 if (skb->ip_summed == CHECKSUM_PARTIAL)
1827 csstart = skb_checksum_start_offset(skb);
1829 csstart = skb_headlen(skb);
1831 BUG_ON(csstart > skb_headlen(skb));
1833 skb_copy_from_linear_data(skb, to, csstart);
1836 if (csstart != skb->len)
1837 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1838 skb->len - csstart, 0);
1840 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1841 long csstuff = csstart + skb->csum_offset;
1843 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1846 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1849 * skb_dequeue - remove from the head of the queue
1850 * @list: list to dequeue from
1852 * Remove the head of the list. The list lock is taken so the function
1853 * may be used safely with other locking list functions. The head item is
1854 * returned or %NULL if the list is empty.
1857 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1859 unsigned long flags;
1860 struct sk_buff *result;
1862 spin_lock_irqsave(&list->lock, flags);
1863 result = __skb_dequeue(list);
1864 spin_unlock_irqrestore(&list->lock, flags);
1867 EXPORT_SYMBOL(skb_dequeue);
1870 * skb_dequeue_tail - remove from the tail of the queue
1871 * @list: list to dequeue from
1873 * Remove the tail of the list. The list lock is taken so the function
1874 * may be used safely with other locking list functions. The tail item is
1875 * returned or %NULL if the list is empty.
1877 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1879 unsigned long flags;
1880 struct sk_buff *result;
1882 spin_lock_irqsave(&list->lock, flags);
1883 result = __skb_dequeue_tail(list);
1884 spin_unlock_irqrestore(&list->lock, flags);
1887 EXPORT_SYMBOL(skb_dequeue_tail);
1890 * skb_queue_purge - empty a list
1891 * @list: list to empty
1893 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1894 * the list and one reference dropped. This function takes the list
1895 * lock and is atomic with respect to other list locking functions.
1897 void skb_queue_purge(struct sk_buff_head *list)
1899 struct sk_buff *skb;
1900 while ((skb = skb_dequeue(list)) != NULL)
1903 EXPORT_SYMBOL(skb_queue_purge);
1906 * skb_queue_head - queue a buffer at the list head
1907 * @list: list to use
1908 * @newsk: buffer to queue
1910 * Queue a buffer at the start of the list. This function takes the
1911 * list lock and can be used safely with other locking &sk_buff functions
1914 * A buffer cannot be placed on two lists at the same time.
1916 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1918 unsigned long flags;
1920 spin_lock_irqsave(&list->lock, flags);
1921 __skb_queue_head(list, newsk);
1922 spin_unlock_irqrestore(&list->lock, flags);
1924 EXPORT_SYMBOL(skb_queue_head);
1927 * skb_queue_tail - queue a buffer at the list tail
1928 * @list: list to use
1929 * @newsk: buffer to queue
1931 * Queue a buffer at the tail of the list. This function takes the
1932 * list lock and can be used safely with other locking &sk_buff functions
1935 * A buffer cannot be placed on two lists at the same time.
1937 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1939 unsigned long flags;
1941 spin_lock_irqsave(&list->lock, flags);
1942 __skb_queue_tail(list, newsk);
1943 spin_unlock_irqrestore(&list->lock, flags);
1945 EXPORT_SYMBOL(skb_queue_tail);
1948 * skb_unlink - remove a buffer from a list
1949 * @skb: buffer to remove
1950 * @list: list to use
1952 * Remove a packet from a list. The list locks are taken and this
1953 * function is atomic with respect to other list locked calls
1955 * You must know what list the SKB is on.
1957 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1959 unsigned long flags;
1961 spin_lock_irqsave(&list->lock, flags);
1962 __skb_unlink(skb, list);
1963 spin_unlock_irqrestore(&list->lock, flags);
1965 EXPORT_SYMBOL(skb_unlink);
1968 * skb_append - append a buffer
1969 * @old: buffer to insert after
1970 * @newsk: buffer to insert
1971 * @list: list to use
1973 * Place a packet after a given packet in a list. The list locks are taken
1974 * and this function is atomic with respect to other list locked calls.
1975 * A buffer cannot be placed on two lists at the same time.
1977 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1979 unsigned long flags;
1981 spin_lock_irqsave(&list->lock, flags);
1982 __skb_queue_after(list, old, newsk);
1983 spin_unlock_irqrestore(&list->lock, flags);
1985 EXPORT_SYMBOL(skb_append);
1988 * skb_insert - insert a buffer
1989 * @old: buffer to insert before
1990 * @newsk: buffer to insert
1991 * @list: list to use
1993 * Place a packet before a given packet in a list. The list locks are
1994 * taken and this function is atomic with respect to other list locked
1997 * A buffer cannot be placed on two lists at the same time.
1999 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2001 unsigned long flags;
2003 spin_lock_irqsave(&list->lock, flags);
2004 __skb_insert(newsk, old->prev, old, list);
2005 spin_unlock_irqrestore(&list->lock, flags);
2007 EXPORT_SYMBOL(skb_insert);
2009 static inline void skb_split_inside_header(struct sk_buff *skb,
2010 struct sk_buff* skb1,
2011 const u32 len, const int pos)
2015 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2017 /* And move data appendix as is. */
2018 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2019 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2021 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2022 skb_shinfo(skb)->nr_frags = 0;
2023 skb1->data_len = skb->data_len;
2024 skb1->len += skb1->data_len;
2027 skb_set_tail_pointer(skb, len);
2030 static inline void skb_split_no_header(struct sk_buff *skb,
2031 struct sk_buff* skb1,
2032 const u32 len, int pos)
2035 const int nfrags = skb_shinfo(skb)->nr_frags;
2037 skb_shinfo(skb)->nr_frags = 0;
2038 skb1->len = skb1->data_len = skb->len - len;
2040 skb->data_len = len - pos;
2042 for (i = 0; i < nfrags; i++) {
2043 int size = skb_shinfo(skb)->frags[i].size;
2045 if (pos + size > len) {
2046 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2050 * We have two variants in this case:
2051 * 1. Move all the frag to the second
2052 * part, if it is possible. F.e.
2053 * this approach is mandatory for TUX,
2054 * where splitting is expensive.
2055 * 2. Split is accurately. We make this.
2057 get_page(skb_shinfo(skb)->frags[i].page);
2058 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2059 skb_shinfo(skb1)->frags[0].size -= len - pos;
2060 skb_shinfo(skb)->frags[i].size = len - pos;
2061 skb_shinfo(skb)->nr_frags++;
2065 skb_shinfo(skb)->nr_frags++;
2068 skb_shinfo(skb1)->nr_frags = k;
2072 * skb_split - Split fragmented skb to two parts at length len.
2073 * @skb: the buffer to split
2074 * @skb1: the buffer to receive the second part
2075 * @len: new length for skb
2077 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2079 int pos = skb_headlen(skb);
2081 if (len < pos) /* Split line is inside header. */
2082 skb_split_inside_header(skb, skb1, len, pos);
2083 else /* Second chunk has no header, nothing to copy. */
2084 skb_split_no_header(skb, skb1, len, pos);
2086 EXPORT_SYMBOL(skb_split);
2088 /* Shifting from/to a cloned skb is a no-go.
2090 * Caller cannot keep skb_shinfo related pointers past calling here!
2092 static int skb_prepare_for_shift(struct sk_buff *skb)
2094 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2098 * skb_shift - Shifts paged data partially from skb to another
2099 * @tgt: buffer into which tail data gets added
2100 * @skb: buffer from which the paged data comes from
2101 * @shiftlen: shift up to this many bytes
2103 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2104 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2105 * It's up to caller to free skb if everything was shifted.
2107 * If @tgt runs out of frags, the whole operation is aborted.
2109 * Skb cannot include anything else but paged data while tgt is allowed
2110 * to have non-paged data as well.
2112 * TODO: full sized shift could be optimized but that would need
2113 * specialized skb free'er to handle frags without up-to-date nr_frags.
2115 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2117 int from, to, merge, todo;
2118 struct skb_frag_struct *fragfrom, *fragto;
2120 BUG_ON(shiftlen > skb->len);
2121 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2125 to = skb_shinfo(tgt)->nr_frags;
2126 fragfrom = &skb_shinfo(skb)->frags[from];
2128 /* Actual merge is delayed until the point when we know we can
2129 * commit all, so that we don't have to undo partial changes
2132 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2137 todo -= fragfrom->size;
2139 if (skb_prepare_for_shift(skb) ||
2140 skb_prepare_for_shift(tgt))
2143 /* All previous frag pointers might be stale! */
2144 fragfrom = &skb_shinfo(skb)->frags[from];
2145 fragto = &skb_shinfo(tgt)->frags[merge];
2147 fragto->size += shiftlen;
2148 fragfrom->size -= shiftlen;
2149 fragfrom->page_offset += shiftlen;
2157 /* Skip full, not-fitting skb to avoid expensive operations */
2158 if ((shiftlen == skb->len) &&
2159 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2162 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2165 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2166 if (to == MAX_SKB_FRAGS)
2169 fragfrom = &skb_shinfo(skb)->frags[from];
2170 fragto = &skb_shinfo(tgt)->frags[to];
2172 if (todo >= fragfrom->size) {
2173 *fragto = *fragfrom;
2174 todo -= fragfrom->size;
2179 get_page(fragfrom->page);
2180 fragto->page = fragfrom->page;
2181 fragto->page_offset = fragfrom->page_offset;
2182 fragto->size = todo;
2184 fragfrom->page_offset += todo;
2185 fragfrom->size -= todo;
2193 /* Ready to "commit" this state change to tgt */
2194 skb_shinfo(tgt)->nr_frags = to;
2197 fragfrom = &skb_shinfo(skb)->frags[0];
2198 fragto = &skb_shinfo(tgt)->frags[merge];
2200 fragto->size += fragfrom->size;
2201 put_page(fragfrom->page);
2204 /* Reposition in the original skb */
2206 while (from < skb_shinfo(skb)->nr_frags)
2207 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2208 skb_shinfo(skb)->nr_frags = to;
2210 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2213 /* Most likely the tgt won't ever need its checksum anymore, skb on
2214 * the other hand might need it if it needs to be resent
2216 tgt->ip_summed = CHECKSUM_PARTIAL;
2217 skb->ip_summed = CHECKSUM_PARTIAL;
2219 /* Yak, is it really working this way? Some helper please? */
2220 skb->len -= shiftlen;
2221 skb->data_len -= shiftlen;
2222 skb->truesize -= shiftlen;
2223 tgt->len += shiftlen;
2224 tgt->data_len += shiftlen;
2225 tgt->truesize += shiftlen;
2231 * skb_prepare_seq_read - Prepare a sequential read of skb data
2232 * @skb: the buffer to read
2233 * @from: lower offset of data to be read
2234 * @to: upper offset of data to be read
2235 * @st: state variable
2237 * Initializes the specified state variable. Must be called before
2238 * invoking skb_seq_read() for the first time.
2240 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2241 unsigned int to, struct skb_seq_state *st)
2243 st->lower_offset = from;
2244 st->upper_offset = to;
2245 st->root_skb = st->cur_skb = skb;
2246 st->frag_idx = st->stepped_offset = 0;
2247 st->frag_data = NULL;
2249 EXPORT_SYMBOL(skb_prepare_seq_read);
2252 * skb_seq_read - Sequentially read skb data
2253 * @consumed: number of bytes consumed by the caller so far
2254 * @data: destination pointer for data to be returned
2255 * @st: state variable
2257 * Reads a block of skb data at &consumed relative to the
2258 * lower offset specified to skb_prepare_seq_read(). Assigns
2259 * the head of the data block to &data and returns the length
2260 * of the block or 0 if the end of the skb data or the upper
2261 * offset has been reached.
2263 * The caller is not required to consume all of the data
2264 * returned, i.e. &consumed is typically set to the number
2265 * of bytes already consumed and the next call to
2266 * skb_seq_read() will return the remaining part of the block.
2268 * Note 1: The size of each block of data returned can be arbitary,
2269 * this limitation is the cost for zerocopy seqeuental
2270 * reads of potentially non linear data.
2272 * Note 2: Fragment lists within fragments are not implemented
2273 * at the moment, state->root_skb could be replaced with
2274 * a stack for this purpose.
2276 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2277 struct skb_seq_state *st)
2279 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2282 if (unlikely(abs_offset >= st->upper_offset))
2286 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2288 if (abs_offset < block_limit && !st->frag_data) {
2289 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2290 return block_limit - abs_offset;
2293 if (st->frag_idx == 0 && !st->frag_data)
2294 st->stepped_offset += skb_headlen(st->cur_skb);
2296 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2297 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2298 block_limit = frag->size + st->stepped_offset;
2300 if (abs_offset < block_limit) {
2302 st->frag_data = kmap_skb_frag(frag);
2304 *data = (u8 *) st->frag_data + frag->page_offset +
2305 (abs_offset - st->stepped_offset);
2307 return block_limit - abs_offset;
2310 if (st->frag_data) {
2311 kunmap_skb_frag(st->frag_data);
2312 st->frag_data = NULL;
2316 st->stepped_offset += frag->size;
2319 if (st->frag_data) {
2320 kunmap_skb_frag(st->frag_data);
2321 st->frag_data = NULL;
2324 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2325 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2328 } else if (st->cur_skb->next) {
2329 st->cur_skb = st->cur_skb->next;
2336 EXPORT_SYMBOL(skb_seq_read);
2339 * skb_abort_seq_read - Abort a sequential read of skb data
2340 * @st: state variable
2342 * Must be called if skb_seq_read() was not called until it
2345 void skb_abort_seq_read(struct skb_seq_state *st)
2348 kunmap_skb_frag(st->frag_data);
2350 EXPORT_SYMBOL(skb_abort_seq_read);
2352 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2354 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2355 struct ts_config *conf,
2356 struct ts_state *state)
2358 return skb_seq_read(offset, text, TS_SKB_CB(state));
2361 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2363 skb_abort_seq_read(TS_SKB_CB(state));
2367 * skb_find_text - Find a text pattern in skb data
2368 * @skb: the buffer to look in
2369 * @from: search offset
2371 * @config: textsearch configuration
2372 * @state: uninitialized textsearch state variable
2374 * Finds a pattern in the skb data according to the specified
2375 * textsearch configuration. Use textsearch_next() to retrieve
2376 * subsequent occurrences of the pattern. Returns the offset
2377 * to the first occurrence or UINT_MAX if no match was found.
2379 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2380 unsigned int to, struct ts_config *config,
2381 struct ts_state *state)
2385 config->get_next_block = skb_ts_get_next_block;
2386 config->finish = skb_ts_finish;
2388 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2390 ret = textsearch_find(config, state);
2391 return (ret <= to - from ? ret : UINT_MAX);
2393 EXPORT_SYMBOL(skb_find_text);
2396 * skb_append_datato_frags: - append the user data to a skb
2397 * @sk: sock structure
2398 * @skb: skb structure to be appened with user data.
2399 * @getfrag: call back function to be used for getting the user data
2400 * @from: pointer to user message iov
2401 * @length: length of the iov message
2403 * Description: This procedure append the user data in the fragment part
2404 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2406 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2407 int (*getfrag)(void *from, char *to, int offset,
2408 int len, int odd, struct sk_buff *skb),
2409 void *from, int length)
2412 skb_frag_t *frag = NULL;
2413 struct page *page = NULL;
2419 /* Return error if we don't have space for new frag */
2420 frg_cnt = skb_shinfo(skb)->nr_frags;
2421 if (frg_cnt >= MAX_SKB_FRAGS)
2424 /* allocate a new page for next frag */
2425 page = alloc_pages(sk->sk_allocation, 0);
2427 /* If alloc_page fails just return failure and caller will
2428 * free previous allocated pages by doing kfree_skb()
2433 /* initialize the next frag */
2434 sk->sk_sndmsg_page = page;
2435 sk->sk_sndmsg_off = 0;
2436 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2437 skb->truesize += PAGE_SIZE;
2438 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2440 /* get the new initialized frag */
2441 frg_cnt = skb_shinfo(skb)->nr_frags;
2442 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2444 /* copy the user data to page */
2445 left = PAGE_SIZE - frag->page_offset;
2446 copy = (length > left)? left : length;
2448 ret = getfrag(from, (page_address(frag->page) +
2449 frag->page_offset + frag->size),
2450 offset, copy, 0, skb);
2454 /* copy was successful so update the size parameters */
2455 sk->sk_sndmsg_off += copy;
2458 skb->data_len += copy;
2462 } while (length > 0);
2466 EXPORT_SYMBOL(skb_append_datato_frags);
2469 * skb_pull_rcsum - pull skb and update receive checksum
2470 * @skb: buffer to update
2471 * @len: length of data pulled
2473 * This function performs an skb_pull on the packet and updates
2474 * the CHECKSUM_COMPLETE checksum. It should be used on
2475 * receive path processing instead of skb_pull unless you know
2476 * that the checksum difference is zero (e.g., a valid IP header)
2477 * or you are setting ip_summed to CHECKSUM_NONE.
2479 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2481 BUG_ON(len > skb->len);
2483 BUG_ON(skb->len < skb->data_len);
2484 skb_postpull_rcsum(skb, skb->data, len);
2485 return skb->data += len;
2487 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2490 * skb_segment - Perform protocol segmentation on skb.
2491 * @skb: buffer to segment
2492 * @features: features for the output path (see dev->features)
2494 * This function performs segmentation on the given skb. It returns
2495 * a pointer to the first in a list of new skbs for the segments.
2496 * In case of error it returns ERR_PTR(err).
2498 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2500 struct sk_buff *segs = NULL;
2501 struct sk_buff *tail = NULL;
2502 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2503 unsigned int mss = skb_shinfo(skb)->gso_size;
2504 unsigned int doffset = skb->data - skb_mac_header(skb);
2505 unsigned int offset = doffset;
2506 unsigned int headroom;
2508 int sg = features & NETIF_F_SG;
2509 int nfrags = skb_shinfo(skb)->nr_frags;
2514 __skb_push(skb, doffset);
2515 headroom = skb_headroom(skb);
2516 pos = skb_headlen(skb);
2519 struct sk_buff *nskb;
2524 len = skb->len - offset;
2528 hsize = skb_headlen(skb) - offset;
2531 if (hsize > len || !sg)
2534 if (!hsize && i >= nfrags) {
2535 BUG_ON(fskb->len != len);
2538 nskb = skb_clone(fskb, GFP_ATOMIC);
2541 if (unlikely(!nskb))
2544 hsize = skb_end_pointer(nskb) - nskb->head;
2545 if (skb_cow_head(nskb, doffset + headroom)) {
2550 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2552 skb_release_head_state(nskb);
2553 __skb_push(nskb, doffset);
2555 nskb = alloc_skb(hsize + doffset + headroom,
2558 if (unlikely(!nskb))
2561 skb_reserve(nskb, headroom);
2562 __skb_put(nskb, doffset);
2571 __copy_skb_header(nskb, skb);
2572 nskb->mac_len = skb->mac_len;
2574 /* nskb and skb might have different headroom */
2575 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2576 nskb->csum_start += skb_headroom(nskb) - headroom;
2578 skb_reset_mac_header(nskb);
2579 skb_set_network_header(nskb, skb->mac_len);
2580 nskb->transport_header = (nskb->network_header +
2581 skb_network_header_len(skb));
2582 skb_copy_from_linear_data(skb, nskb->data, doffset);
2584 if (fskb != skb_shinfo(skb)->frag_list)
2588 nskb->ip_summed = CHECKSUM_NONE;
2589 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2595 frag = skb_shinfo(nskb)->frags;
2597 skb_copy_from_linear_data_offset(skb, offset,
2598 skb_put(nskb, hsize), hsize);
2600 while (pos < offset + len && i < nfrags) {
2601 *frag = skb_shinfo(skb)->frags[i];
2602 get_page(frag->page);
2606 frag->page_offset += offset - pos;
2607 frag->size -= offset - pos;
2610 skb_shinfo(nskb)->nr_frags++;
2612 if (pos + size <= offset + len) {
2616 frag->size -= pos + size - (offset + len);
2623 if (pos < offset + len) {
2624 struct sk_buff *fskb2 = fskb;
2626 BUG_ON(pos + fskb->len != offset + len);
2632 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2638 SKB_FRAG_ASSERT(nskb);
2639 skb_shinfo(nskb)->frag_list = fskb2;
2643 nskb->data_len = len - hsize;
2644 nskb->len += nskb->data_len;
2645 nskb->truesize += nskb->data_len;
2646 } while ((offset += len) < skb->len);
2651 while ((skb = segs)) {
2655 return ERR_PTR(err);
2657 EXPORT_SYMBOL_GPL(skb_segment);
2659 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2661 struct sk_buff *p = *head;
2662 struct sk_buff *nskb;
2663 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2664 struct skb_shared_info *pinfo = skb_shinfo(p);
2665 unsigned int headroom;
2666 unsigned int len = skb_gro_len(skb);
2667 unsigned int offset = skb_gro_offset(skb);
2668 unsigned int headlen = skb_headlen(skb);
2670 if (p->len + len >= 65536)
2673 if (pinfo->frag_list)
2675 else if (headlen <= offset) {
2678 int i = skbinfo->nr_frags;
2679 int nr_frags = pinfo->nr_frags + i;
2683 if (nr_frags > MAX_SKB_FRAGS)
2686 pinfo->nr_frags = nr_frags;
2687 skbinfo->nr_frags = 0;
2689 frag = pinfo->frags + nr_frags;
2690 frag2 = skbinfo->frags + i;
2695 frag->page_offset += offset;
2696 frag->size -= offset;
2698 skb->truesize -= skb->data_len;
2699 skb->len -= skb->data_len;
2702 NAPI_GRO_CB(skb)->free = 1;
2704 } else if (skb_gro_len(p) != pinfo->gso_size)
2707 headroom = skb_headroom(p);
2708 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2709 if (unlikely(!nskb))
2712 __copy_skb_header(nskb, p);
2713 nskb->mac_len = p->mac_len;
2715 skb_reserve(nskb, headroom);
2716 __skb_put(nskb, skb_gro_offset(p));
2718 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2719 skb_set_network_header(nskb, skb_network_offset(p));
2720 skb_set_transport_header(nskb, skb_transport_offset(p));
2722 __skb_pull(p, skb_gro_offset(p));
2723 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2724 p->data - skb_mac_header(p));
2726 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2727 skb_shinfo(nskb)->frag_list = p;
2728 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2729 pinfo->gso_size = 0;
2730 skb_header_release(p);
2733 nskb->data_len += p->len;
2734 nskb->truesize += p->len;
2735 nskb->len += p->len;
2738 nskb->next = p->next;
2744 if (offset > headlen) {
2745 skbinfo->frags[0].page_offset += offset - headlen;
2746 skbinfo->frags[0].size -= offset - headlen;
2750 __skb_pull(skb, offset);
2752 p->prev->next = skb;
2754 skb_header_release(skb);
2757 NAPI_GRO_CB(p)->count++;
2762 NAPI_GRO_CB(skb)->same_flow = 1;
2765 EXPORT_SYMBOL_GPL(skb_gro_receive);
2767 void __init skb_init(void)
2769 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2770 sizeof(struct sk_buff),
2772 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2774 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2775 (2*sizeof(struct sk_buff)) +
2778 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2783 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2784 * @skb: Socket buffer containing the buffers to be mapped
2785 * @sg: The scatter-gather list to map into
2786 * @offset: The offset into the buffer's contents to start mapping
2787 * @len: Length of buffer space to be mapped
2789 * Fill the specified scatter-gather list with mappings/pointers into a
2790 * region of the buffer space attached to a socket buffer.
2793 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2795 int start = skb_headlen(skb);
2796 int i, copy = start - offset;
2797 struct sk_buff *frag_iter;
2803 sg_set_buf(sg, skb->data + offset, copy);
2805 if ((len -= copy) == 0)
2810 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2813 WARN_ON(start > offset + len);
2815 end = start + skb_shinfo(skb)->frags[i].size;
2816 if ((copy = end - offset) > 0) {
2817 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2821 sg_set_page(&sg[elt], frag->page, copy,
2822 frag->page_offset+offset-start);
2831 skb_walk_frags(skb, frag_iter) {
2834 WARN_ON(start > offset + len);
2836 end = start + frag_iter->len;
2837 if ((copy = end - offset) > 0) {
2840 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2842 if ((len -= copy) == 0)
2852 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2854 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2856 sg_mark_end(&sg[nsg - 1]);
2860 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2863 * skb_cow_data - Check that a socket buffer's data buffers are writable
2864 * @skb: The socket buffer to check.
2865 * @tailbits: Amount of trailing space to be added
2866 * @trailer: Returned pointer to the skb where the @tailbits space begins
2868 * Make sure that the data buffers attached to a socket buffer are
2869 * writable. If they are not, private copies are made of the data buffers
2870 * and the socket buffer is set to use these instead.
2872 * If @tailbits is given, make sure that there is space to write @tailbits
2873 * bytes of data beyond current end of socket buffer. @trailer will be
2874 * set to point to the skb in which this space begins.
2876 * The number of scatterlist elements required to completely map the
2877 * COW'd and extended socket buffer will be returned.
2879 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2883 struct sk_buff *skb1, **skb_p;
2885 /* If skb is cloned or its head is paged, reallocate
2886 * head pulling out all the pages (pages are considered not writable
2887 * at the moment even if they are anonymous).
2889 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2890 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2893 /* Easy case. Most of packets will go this way. */
2894 if (!skb_has_frag_list(skb)) {
2895 /* A little of trouble, not enough of space for trailer.
2896 * This should not happen, when stack is tuned to generate
2897 * good frames. OK, on miss we reallocate and reserve even more
2898 * space, 128 bytes is fair. */
2900 if (skb_tailroom(skb) < tailbits &&
2901 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2909 /* Misery. We are in troubles, going to mincer fragments... */
2912 skb_p = &skb_shinfo(skb)->frag_list;
2915 while ((skb1 = *skb_p) != NULL) {
2918 /* The fragment is partially pulled by someone,
2919 * this can happen on input. Copy it and everything
2922 if (skb_shared(skb1))
2925 /* If the skb is the last, worry about trailer. */
2927 if (skb1->next == NULL && tailbits) {
2928 if (skb_shinfo(skb1)->nr_frags ||
2929 skb_has_frag_list(skb1) ||
2930 skb_tailroom(skb1) < tailbits)
2931 ntail = tailbits + 128;
2937 skb_shinfo(skb1)->nr_frags ||
2938 skb_has_frag_list(skb1)) {
2939 struct sk_buff *skb2;
2941 /* Fuck, we are miserable poor guys... */
2943 skb2 = skb_copy(skb1, GFP_ATOMIC);
2945 skb2 = skb_copy_expand(skb1,
2949 if (unlikely(skb2 == NULL))
2953 skb_set_owner_w(skb2, skb1->sk);
2955 /* Looking around. Are we still alive?
2956 * OK, link new skb, drop old one */
2958 skb2->next = skb1->next;
2965 skb_p = &skb1->next;
2970 EXPORT_SYMBOL_GPL(skb_cow_data);
2972 static void sock_rmem_free(struct sk_buff *skb)
2974 struct sock *sk = skb->sk;
2976 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
2980 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
2982 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
2984 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
2985 (unsigned)sk->sk_rcvbuf)
2990 skb->destructor = sock_rmem_free;
2991 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2993 skb_queue_tail(&sk->sk_error_queue, skb);
2994 if (!sock_flag(sk, SOCK_DEAD))
2995 sk->sk_data_ready(sk, skb->len);
2998 EXPORT_SYMBOL(sock_queue_err_skb);
3000 void skb_tstamp_tx(struct sk_buff *orig_skb,
3001 struct skb_shared_hwtstamps *hwtstamps)
3003 struct sock *sk = orig_skb->sk;
3004 struct sock_exterr_skb *serr;
3005 struct sk_buff *skb;
3011 skb = skb_clone(orig_skb, GFP_ATOMIC);
3016 *skb_hwtstamps(skb) =
3020 * no hardware time stamps available,
3021 * so keep the shared tx_flags and only
3022 * store software time stamp
3024 skb->tstamp = ktime_get_real();
3027 serr = SKB_EXT_ERR(skb);
3028 memset(serr, 0, sizeof(*serr));
3029 serr->ee.ee_errno = ENOMSG;
3030 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3032 err = sock_queue_err_skb(sk, skb);
3037 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3041 * skb_partial_csum_set - set up and verify partial csum values for packet
3042 * @skb: the skb to set
3043 * @start: the number of bytes after skb->data to start checksumming.
3044 * @off: the offset from start to place the checksum.
3046 * For untrusted partially-checksummed packets, we need to make sure the values
3047 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3049 * This function checks and sets those values and skb->ip_summed: if this
3050 * returns false you should drop the packet.
3052 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3054 if (unlikely(start > skb_headlen(skb)) ||
3055 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3056 if (net_ratelimit())
3058 "bad partial csum: csum=%u/%u len=%u\n",
3059 start, off, skb_headlen(skb));
3062 skb->ip_summed = CHECKSUM_PARTIAL;
3063 skb->csum_start = skb_headroom(skb) + start;
3064 skb->csum_offset = off;
3067 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3069 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3071 if (net_ratelimit())
3072 pr_warning("%s: received packets cannot be forwarded"
3073 " while LRO is enabled\n", skb->dev->name);
3075 EXPORT_SYMBOL(__skb_warn_lro_forwarding);