2 * Copyright © 2015-2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
29 * DOC: i915 Perf Overview
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
51 * DOC: i915 Perf History and Comparison with Core Perf
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
106 * - The perf based OA PMU driver broke some significant design assumptions:
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
198 #include "gem/i915_gem_context.h"
199 #include "gt/intel_engine_pm.h"
200 #include "gt/intel_engine_user.h"
201 #include "gt/intel_gt.h"
202 #include "gt/intel_lrc_reg.h"
203 #include "gt/intel_ring.h"
205 #include "i915_drv.h"
206 #include "i915_perf.h"
207 #include "oa/i915_oa_hsw.h"
208 #include "oa/i915_oa_bdw.h"
209 #include "oa/i915_oa_chv.h"
210 #include "oa/i915_oa_sklgt2.h"
211 #include "oa/i915_oa_sklgt3.h"
212 #include "oa/i915_oa_sklgt4.h"
213 #include "oa/i915_oa_bxt.h"
214 #include "oa/i915_oa_kblgt2.h"
215 #include "oa/i915_oa_kblgt3.h"
216 #include "oa/i915_oa_glk.h"
217 #include "oa/i915_oa_cflgt2.h"
218 #include "oa/i915_oa_cflgt3.h"
219 #include "oa/i915_oa_cnl.h"
220 #include "oa/i915_oa_icl.h"
221 #include "oa/i915_oa_tgl.h"
223 /* HW requires this to be a power of two, between 128k and 16M, though driver
224 * is currently generally designed assuming the largest 16M size is used such
225 * that the overflow cases are unlikely in normal operation.
227 #define OA_BUFFER_SIZE SZ_16M
229 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
232 * DOC: OA Tail Pointer Race
234 * There's a HW race condition between OA unit tail pointer register updates and
235 * writes to memory whereby the tail pointer can sometimes get ahead of what's
236 * been written out to the OA buffer so far (in terms of what's visible to the
239 * Although this can be observed explicitly while copying reports to userspace
240 * by checking for a zeroed report-id field in tail reports, we want to account
241 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
244 * In effect we define a tail pointer for reading that lags the real tail
245 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
246 * time for the corresponding reports to become visible to the CPU.
248 * To manage this we actually track two tail pointers:
249 * 1) An 'aging' tail with an associated timestamp that is tracked until we
250 * can trust the corresponding data is visible to the CPU; at which point
251 * it is considered 'aged'.
252 * 2) An 'aged' tail that can be used for read()ing.
254 * The two separate pointers let us decouple read()s from tail pointer aging.
256 * The tail pointers are checked and updated at a limited rate within a hrtimer
257 * callback (the same callback that is used for delivering EPOLLIN events)
259 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
260 * indicates that an updated tail pointer is needed.
262 * Most of the implementation details for this workaround are in
263 * oa_buffer_check_unlocked() and _append_oa_reports()
265 * Note for posterity: previously the driver used to define an effective tail
266 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
267 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
268 * This was flawed considering that the OA unit may also automatically generate
269 * non-periodic reports (such as on context switch) or the OA unit may be
270 * enabled without any periodic sampling.
272 #define OA_TAIL_MARGIN_NSEC 100000ULL
273 #define INVALID_TAIL_PTR 0xffffffff
275 /* frequency for checking whether the OA unit has written new reports to the
276 * circular OA buffer...
278 #define POLL_FREQUENCY 200
279 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
281 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
282 static u32 i915_perf_stream_paranoid = true;
284 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
285 * of the 64bit timestamp bits to trigger reports from) but there's currently
286 * no known use case for sampling as infrequently as once per 47 thousand years.
288 * Since the timestamps included in OA reports are only 32bits it seems
289 * reasonable to limit the OA exponent where it's still possible to account for
290 * overflow in OA report timestamps.
292 #define OA_EXPONENT_MAX 31
294 #define INVALID_CTX_ID 0xffffffff
296 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
297 #define OAREPORT_REASON_MASK 0x3f
298 #define OAREPORT_REASON_MASK_EXTENDED 0x7f
299 #define OAREPORT_REASON_SHIFT 19
300 #define OAREPORT_REASON_TIMER (1<<0)
301 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
302 #define OAREPORT_REASON_CLK_RATIO (1<<5)
305 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
307 * The highest sampling frequency we can theoretically program the OA unit
308 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
310 * Initialized just before we register the sysctl parameter.
312 static int oa_sample_rate_hard_limit;
314 /* Theoretically we can program the OA unit to sample every 160ns but don't
315 * allow that by default unless root...
317 * The default threshold of 100000Hz is based on perf's similar
318 * kernel.perf_event_max_sample_rate sysctl parameter.
320 static u32 i915_oa_max_sample_rate = 100000;
322 /* XXX: beware if future OA HW adds new report formats that the current
323 * code assumes all reports have a power-of-two size and ~(size - 1) can
324 * be used as a mask to align the OA tail pointer.
326 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
327 [I915_OA_FORMAT_A13] = { 0, 64 },
328 [I915_OA_FORMAT_A29] = { 1, 128 },
329 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
330 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
331 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
332 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
333 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
334 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
337 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
338 [I915_OA_FORMAT_A12] = { 0, 64 },
339 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
340 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
341 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
344 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
345 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
348 #define SAMPLE_OA_REPORT (1<<0)
351 * struct perf_open_properties - for validated properties given to open a stream
352 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
353 * @single_context: Whether a single or all gpu contexts should be monitored
354 * @hold_preemption: Whether the preemption is disabled for the filtered
356 * @ctx_handle: A gem ctx handle for use with @single_context
357 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
358 * @oa_format: An OA unit HW report format
359 * @oa_periodic: Whether to enable periodic OA unit sampling
360 * @oa_period_exponent: The OA unit sampling period is derived from this
361 * @engine: The engine (typically rcs0) being monitored by the OA unit
363 * As read_properties_unlocked() enumerates and validates the properties given
364 * to open a stream of metrics the configuration is built up in the structure
365 * which starts out zero initialized.
367 struct perf_open_properties {
370 u64 single_context:1;
371 u64 hold_preemption:1;
374 /* OA sampling state */
378 int oa_period_exponent;
380 struct intel_engine_cs *engine;
383 struct i915_oa_config_bo {
384 struct llist_node node;
386 struct i915_oa_config *oa_config;
387 struct i915_vma *vma;
390 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
392 void i915_oa_config_release(struct kref *ref)
394 struct i915_oa_config *oa_config =
395 container_of(ref, typeof(*oa_config), ref);
397 kfree(oa_config->flex_regs);
398 kfree(oa_config->b_counter_regs);
399 kfree(oa_config->mux_regs);
401 kfree_rcu(oa_config, rcu);
404 struct i915_oa_config *
405 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
407 struct i915_oa_config *oa_config;
410 if (metrics_set == 1)
411 oa_config = &perf->test_config;
413 oa_config = idr_find(&perf->metrics_idr, metrics_set);
415 oa_config = i915_oa_config_get(oa_config);
421 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
423 i915_oa_config_put(oa_bo->oa_config);
424 i915_vma_put(oa_bo->vma);
428 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
430 struct intel_uncore *uncore = stream->uncore;
432 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
433 GEN12_OAG_OATAILPTR_MASK;
436 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
438 struct intel_uncore *uncore = stream->uncore;
440 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
443 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
445 struct intel_uncore *uncore = stream->uncore;
446 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
448 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
452 * oa_buffer_check_unlocked - check for data and update tail ptr state
453 * @stream: i915 stream instance
455 * This is either called via fops (for blocking reads in user ctx) or the poll
456 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
457 * if there is data available for userspace to read.
459 * This function is central to providing a workaround for the OA unit tail
460 * pointer having a race with respect to what data is visible to the CPU.
461 * It is responsible for reading tail pointers from the hardware and giving
462 * the pointers time to 'age' before they are made available for reading.
463 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
465 * Besides returning true when there is data available to read() this function
466 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
467 * and .aged_tail_idx state used for reading.
469 * Note: It's safe to read OA config state here unlocked, assuming that this is
470 * only called while the stream is enabled, while the global OA configuration
473 * Returns: %true if the OA buffer contains data, else %false
475 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
477 int report_size = stream->oa_buffer.format_size;
479 unsigned int aged_idx;
480 u32 head, hw_tail, aged_tail, aging_tail;
483 /* We have to consider the (unlikely) possibility that read() errors
484 * could result in an OA buffer reset which might reset the head,
485 * tails[] and aged_tail state.
487 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
489 /* NB: The head we observe here might effectively be a little out of
490 * date (between head and tails[aged_idx].offset if there is currently
491 * a read() in progress.
493 head = stream->oa_buffer.head;
495 aged_idx = stream->oa_buffer.aged_tail_idx;
496 aged_tail = stream->oa_buffer.tails[aged_idx].offset;
497 aging_tail = stream->oa_buffer.tails[!aged_idx].offset;
499 hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
501 /* The tail pointer increases in 64 byte increments,
502 * not in report_size steps...
504 hw_tail &= ~(report_size - 1);
506 now = ktime_get_mono_fast_ns();
508 /* Update the aged tail
510 * Flip the tail pointer available for read()s once the aging tail is
511 * old enough to trust that the corresponding data will be visible to
514 * Do this before updating the aging pointer in case we may be able to
515 * immediately start aging a new pointer too (if new data has become
516 * available) without needing to wait for a later hrtimer callback.
518 if (aging_tail != INVALID_TAIL_PTR &&
519 ((now - stream->oa_buffer.aging_timestamp) >
520 OA_TAIL_MARGIN_NSEC)) {
523 stream->oa_buffer.aged_tail_idx = aged_idx;
525 aged_tail = aging_tail;
527 /* Mark that we need a new pointer to start aging... */
528 stream->oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
529 aging_tail = INVALID_TAIL_PTR;
532 /* Update the aging tail
534 * We throttle aging tail updates until we have a new tail that
535 * represents >= one report more data than is already available for
536 * reading. This ensures there will be enough data for a successful
537 * read once this new pointer has aged and ensures we will give the new
538 * pointer time to age.
540 if (aging_tail == INVALID_TAIL_PTR &&
541 (aged_tail == INVALID_TAIL_PTR ||
542 OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
543 struct i915_vma *vma = stream->oa_buffer.vma;
544 u32 gtt_offset = i915_ggtt_offset(vma);
546 /* Be paranoid and do a bounds check on the pointer read back
547 * from hardware, just in case some spurious hardware condition
548 * could put the tail out of bounds...
550 if (hw_tail >= gtt_offset &&
551 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
552 stream->oa_buffer.tails[!aged_idx].offset =
553 aging_tail = hw_tail;
554 stream->oa_buffer.aging_timestamp = now;
556 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %x\n",
561 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
563 return aged_tail == INVALID_TAIL_PTR ?
564 false : OA_TAKEN(aged_tail, head) >= report_size;
568 * append_oa_status - Appends a status record to a userspace read() buffer.
569 * @stream: An i915-perf stream opened for OA metrics
570 * @buf: destination buffer given by userspace
571 * @count: the number of bytes userspace wants to read
572 * @offset: (inout): the current position for writing into @buf
573 * @type: The kind of status to report to userspace
575 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
576 * into the userspace read() buffer.
578 * The @buf @offset will only be updated on success.
580 * Returns: 0 on success, negative error code on failure.
582 static int append_oa_status(struct i915_perf_stream *stream,
586 enum drm_i915_perf_record_type type)
588 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
590 if ((count - *offset) < header.size)
593 if (copy_to_user(buf + *offset, &header, sizeof(header)))
596 (*offset) += header.size;
602 * append_oa_sample - Copies single OA report into userspace read() buffer.
603 * @stream: An i915-perf stream opened for OA metrics
604 * @buf: destination buffer given by userspace
605 * @count: the number of bytes userspace wants to read
606 * @offset: (inout): the current position for writing into @buf
607 * @report: A single OA report to (optionally) include as part of the sample
609 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
610 * properties when opening a stream, tracked as `stream->sample_flags`. This
611 * function copies the requested components of a single sample to the given
614 * The @buf @offset will only be updated on success.
616 * Returns: 0 on success, negative error code on failure.
618 static int append_oa_sample(struct i915_perf_stream *stream,
624 int report_size = stream->oa_buffer.format_size;
625 struct drm_i915_perf_record_header header;
626 u32 sample_flags = stream->sample_flags;
628 header.type = DRM_I915_PERF_RECORD_SAMPLE;
630 header.size = stream->sample_size;
632 if ((count - *offset) < header.size)
636 if (copy_to_user(buf, &header, sizeof(header)))
638 buf += sizeof(header);
640 if (sample_flags & SAMPLE_OA_REPORT) {
641 if (copy_to_user(buf, report, report_size))
645 (*offset) += header.size;
651 * Copies all buffered OA reports into userspace read() buffer.
652 * @stream: An i915-perf stream opened for OA metrics
653 * @buf: destination buffer given by userspace
654 * @count: the number of bytes userspace wants to read
655 * @offset: (inout): the current position for writing into @buf
657 * Notably any error condition resulting in a short read (-%ENOSPC or
658 * -%EFAULT) will be returned even though one or more records may
659 * have been successfully copied. In this case it's up to the caller
660 * to decide if the error should be squashed before returning to
663 * Note: reports are consumed from the head, and appended to the
664 * tail, so the tail chases the head?... If you think that's mad
665 * and back-to-front you're not alone, but this follows the
666 * Gen PRM naming convention.
668 * Returns: 0 on success, negative error code on failure.
670 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
675 struct intel_uncore *uncore = stream->uncore;
676 int report_size = stream->oa_buffer.format_size;
677 u8 *oa_buf_base = stream->oa_buffer.vaddr;
678 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
679 u32 mask = (OA_BUFFER_SIZE - 1);
680 size_t start_offset = *offset;
682 unsigned int aged_tail_idx;
687 if (WARN_ON(!stream->enabled))
690 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
692 head = stream->oa_buffer.head;
693 aged_tail_idx = stream->oa_buffer.aged_tail_idx;
694 tail = stream->oa_buffer.tails[aged_tail_idx].offset;
696 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
699 * An invalid tail pointer here means we're still waiting for the poll
700 * hrtimer callback to give us a pointer
702 if (tail == INVALID_TAIL_PTR)
706 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
707 * while indexing relative to oa_buf_base.
713 * An out of bounds or misaligned head or tail pointer implies a driver
714 * bug since we validate + align the tail pointers we read from the
715 * hardware and we are in full control of the head pointer which should
716 * only be incremented by multiples of the report size (notably also
717 * all a power of two).
719 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
720 tail > OA_BUFFER_SIZE || tail % report_size,
721 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
727 (taken = OA_TAKEN(tail, head));
728 head = (head + report_size) & mask) {
729 u8 *report = oa_buf_base + head;
730 u32 *report32 = (void *)report;
735 * All the report sizes factor neatly into the buffer
736 * size so we never expect to see a report split
737 * between the beginning and end of the buffer.
739 * Given the initial alignment check a misalignment
740 * here would imply a driver bug that would result
743 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
744 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
749 * The reason field includes flags identifying what
750 * triggered this specific report (mostly timer
751 * triggered or e.g. due to a context switch).
753 * This field is never expected to be zero so we can
754 * check that the report isn't invalid before copying
757 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
758 (IS_GEN(stream->perf->i915, 12) ?
759 OAREPORT_REASON_MASK_EXTENDED :
760 OAREPORT_REASON_MASK));
762 if (__ratelimit(&stream->perf->spurious_report_rs))
763 DRM_NOTE("Skipping spurious, invalid OA report\n");
767 ctx_id = report32[2] & stream->specific_ctx_id_mask;
770 * Squash whatever is in the CTX_ID field if it's marked as
771 * invalid to be sure we avoid false-positive, single-context
774 * Note: that we don't clear the valid_ctx_bit so userspace can
775 * understand that the ID has been squashed by the kernel.
777 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
778 INTEL_GEN(stream->perf->i915) <= 11)
779 ctx_id = report32[2] = INVALID_CTX_ID;
782 * NB: For Gen 8 the OA unit no longer supports clock gating
783 * off for a specific context and the kernel can't securely
784 * stop the counters from updating as system-wide / global
787 * Automatic reports now include a context ID so reports can be
788 * filtered on the cpu but it's not worth trying to
789 * automatically subtract/hide counter progress for other
790 * contexts while filtering since we can't stop userspace
791 * issuing MI_REPORT_PERF_COUNT commands which would still
792 * provide a side-band view of the real values.
794 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
795 * to normalize counters for a single filtered context then it
796 * needs be forwarded bookend context-switch reports so that it
797 * can track switches in between MI_REPORT_PERF_COUNT commands
798 * and can itself subtract/ignore the progress of counters
799 * associated with other contexts. Note that the hardware
800 * automatically triggers reports when switching to a new
801 * context which are tagged with the ID of the newly active
802 * context. To avoid the complexity (and likely fragility) of
803 * reading ahead while parsing reports to try and minimize
804 * forwarding redundant context switch reports (i.e. between
805 * other, unrelated contexts) we simply elect to forward them
808 * We don't rely solely on the reason field to identify context
809 * switches since it's not-uncommon for periodic samples to
810 * identify a switch before any 'context switch' report.
812 if (!stream->perf->exclusive_stream->ctx ||
813 stream->specific_ctx_id == ctx_id ||
814 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
815 reason & OAREPORT_REASON_CTX_SWITCH) {
818 * While filtering for a single context we avoid
819 * leaking the IDs of other contexts.
821 if (stream->perf->exclusive_stream->ctx &&
822 stream->specific_ctx_id != ctx_id) {
823 report32[2] = INVALID_CTX_ID;
826 ret = append_oa_sample(stream, buf, count, offset,
831 stream->oa_buffer.last_ctx_id = ctx_id;
835 * The above reason field sanity check is based on
836 * the assumption that the OA buffer is initially
837 * zeroed and we reset the field after copying so the
838 * check is still meaningful once old reports start
844 if (start_offset != *offset) {
845 i915_reg_t oaheadptr;
847 oaheadptr = IS_GEN(stream->perf->i915, 12) ?
848 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
850 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
853 * We removed the gtt_offset for the copy loop above, indexing
854 * relative to oa_buf_base so put back here...
857 intel_uncore_write(uncore, oaheadptr,
858 head & GEN12_OAG_OAHEADPTR_MASK);
859 stream->oa_buffer.head = head;
861 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
868 * gen8_oa_read - copy status records then buffered OA reports
869 * @stream: An i915-perf stream opened for OA metrics
870 * @buf: destination buffer given by userspace
871 * @count: the number of bytes userspace wants to read
872 * @offset: (inout): the current position for writing into @buf
874 * Checks OA unit status registers and if necessary appends corresponding
875 * status records for userspace (such as for a buffer full condition) and then
876 * initiate appending any buffered OA reports.
878 * Updates @offset according to the number of bytes successfully copied into
879 * the userspace buffer.
881 * NB: some data may be successfully copied to the userspace buffer
882 * even if an error is returned, and this is reflected in the
885 * Returns: zero on success or a negative error code
887 static int gen8_oa_read(struct i915_perf_stream *stream,
892 struct intel_uncore *uncore = stream->uncore;
894 i915_reg_t oastatus_reg;
897 if (WARN_ON(!stream->oa_buffer.vaddr))
900 oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
901 GEN12_OAG_OASTATUS : GEN8_OASTATUS;
903 oastatus = intel_uncore_read(uncore, oastatus_reg);
906 * We treat OABUFFER_OVERFLOW as a significant error:
908 * Although theoretically we could handle this more gracefully
909 * sometimes, some Gens don't correctly suppress certain
910 * automatically triggered reports in this condition and so we
911 * have to assume that old reports are now being trampled
914 * Considering how we don't currently give userspace control
915 * over the OA buffer size and always configure a large 16MB
916 * buffer, then a buffer overflow does anyway likely indicate
917 * that something has gone quite badly wrong.
919 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
920 ret = append_oa_status(stream, buf, count, offset,
921 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
925 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
926 stream->period_exponent);
928 stream->perf->ops.oa_disable(stream);
929 stream->perf->ops.oa_enable(stream);
932 * Note: .oa_enable() is expected to re-init the oabuffer and
933 * reset GEN8_OASTATUS for us
935 oastatus = intel_uncore_read(uncore, oastatus_reg);
938 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
939 ret = append_oa_status(stream, buf, count, offset,
940 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
943 intel_uncore_write(uncore, oastatus_reg,
944 oastatus & ~GEN8_OASTATUS_REPORT_LOST);
947 return gen8_append_oa_reports(stream, buf, count, offset);
951 * Copies all buffered OA reports into userspace read() buffer.
952 * @stream: An i915-perf stream opened for OA metrics
953 * @buf: destination buffer given by userspace
954 * @count: the number of bytes userspace wants to read
955 * @offset: (inout): the current position for writing into @buf
957 * Notably any error condition resulting in a short read (-%ENOSPC or
958 * -%EFAULT) will be returned even though one or more records may
959 * have been successfully copied. In this case it's up to the caller
960 * to decide if the error should be squashed before returning to
963 * Note: reports are consumed from the head, and appended to the
964 * tail, so the tail chases the head?... If you think that's mad
965 * and back-to-front you're not alone, but this follows the
966 * Gen PRM naming convention.
968 * Returns: 0 on success, negative error code on failure.
970 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
975 struct intel_uncore *uncore = stream->uncore;
976 int report_size = stream->oa_buffer.format_size;
977 u8 *oa_buf_base = stream->oa_buffer.vaddr;
978 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
979 u32 mask = (OA_BUFFER_SIZE - 1);
980 size_t start_offset = *offset;
982 unsigned int aged_tail_idx;
987 if (WARN_ON(!stream->enabled))
990 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
992 head = stream->oa_buffer.head;
993 aged_tail_idx = stream->oa_buffer.aged_tail_idx;
994 tail = stream->oa_buffer.tails[aged_tail_idx].offset;
996 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
998 /* An invalid tail pointer here means we're still waiting for the poll
999 * hrtimer callback to give us a pointer
1001 if (tail == INVALID_TAIL_PTR)
1004 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
1005 * while indexing relative to oa_buf_base.
1010 /* An out of bounds or misaligned head or tail pointer implies a driver
1011 * bug since we validate + align the tail pointers we read from the
1012 * hardware and we are in full control of the head pointer which should
1013 * only be incremented by multiples of the report size (notably also
1014 * all a power of two).
1016 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
1017 tail > OA_BUFFER_SIZE || tail % report_size,
1018 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1024 (taken = OA_TAKEN(tail, head));
1025 head = (head + report_size) & mask) {
1026 u8 *report = oa_buf_base + head;
1027 u32 *report32 = (void *)report;
1029 /* All the report sizes factor neatly into the buffer
1030 * size so we never expect to see a report split
1031 * between the beginning and end of the buffer.
1033 * Given the initial alignment check a misalignment
1034 * here would imply a driver bug that would result
1037 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1038 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1042 /* The report-ID field for periodic samples includes
1043 * some undocumented flags related to what triggered
1044 * the report and is never expected to be zero so we
1045 * can check that the report isn't invalid before
1046 * copying it to userspace...
1048 if (report32[0] == 0) {
1049 if (__ratelimit(&stream->perf->spurious_report_rs))
1050 DRM_NOTE("Skipping spurious, invalid OA report\n");
1054 ret = append_oa_sample(stream, buf, count, offset, report);
1058 /* The above report-id field sanity check is based on
1059 * the assumption that the OA buffer is initially
1060 * zeroed and we reset the field after copying so the
1061 * check is still meaningful once old reports start
1062 * being overwritten.
1067 if (start_offset != *offset) {
1068 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1070 /* We removed the gtt_offset for the copy loop above, indexing
1071 * relative to oa_buf_base so put back here...
1075 intel_uncore_write(uncore, GEN7_OASTATUS2,
1076 (head & GEN7_OASTATUS2_HEAD_MASK) |
1077 GEN7_OASTATUS2_MEM_SELECT_GGTT);
1078 stream->oa_buffer.head = head;
1080 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1087 * gen7_oa_read - copy status records then buffered OA reports
1088 * @stream: An i915-perf stream opened for OA metrics
1089 * @buf: destination buffer given by userspace
1090 * @count: the number of bytes userspace wants to read
1091 * @offset: (inout): the current position for writing into @buf
1093 * Checks Gen 7 specific OA unit status registers and if necessary appends
1094 * corresponding status records for userspace (such as for a buffer full
1095 * condition) and then initiate appending any buffered OA reports.
1097 * Updates @offset according to the number of bytes successfully copied into
1098 * the userspace buffer.
1100 * Returns: zero on success or a negative error code
1102 static int gen7_oa_read(struct i915_perf_stream *stream,
1107 struct intel_uncore *uncore = stream->uncore;
1111 if (WARN_ON(!stream->oa_buffer.vaddr))
1114 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1116 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1117 * bits while the OA unit is enabled (while the tail pointer
1118 * may be updated asynchronously) so we ignore status bits
1119 * that have already been reported to userspace.
1121 oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1123 /* We treat OABUFFER_OVERFLOW as a significant error:
1125 * - The status can be interpreted to mean that the buffer is
1126 * currently full (with a higher precedence than OA_TAKEN()
1127 * which will start to report a near-empty buffer after an
1128 * overflow) but it's awkward that we can't clear the status
1129 * on Haswell, so without a reset we won't be able to catch
1132 * - Since it also implies the HW has started overwriting old
1133 * reports it may also affect our sanity checks for invalid
1134 * reports when copying to userspace that assume new reports
1135 * are being written to cleared memory.
1137 * - In the future we may want to introduce a flight recorder
1138 * mode where the driver will automatically maintain a safe
1139 * guard band between head/tail, avoiding this overflow
1140 * condition, but we avoid the added driver complexity for
1143 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1144 ret = append_oa_status(stream, buf, count, offset,
1145 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1149 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1150 stream->period_exponent);
1152 stream->perf->ops.oa_disable(stream);
1153 stream->perf->ops.oa_enable(stream);
1155 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1158 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1159 ret = append_oa_status(stream, buf, count, offset,
1160 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1163 stream->perf->gen7_latched_oastatus1 |=
1164 GEN7_OASTATUS1_REPORT_LOST;
1167 return gen7_append_oa_reports(stream, buf, count, offset);
1171 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1172 * @stream: An i915-perf stream opened for OA metrics
1174 * Called when userspace tries to read() from a blocking stream FD opened
1175 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1176 * OA buffer and wakes us.
1178 * Note: it's acceptable to have this return with some false positives
1179 * since any subsequent read handling will return -EAGAIN if there isn't
1180 * really data ready for userspace yet.
1182 * Returns: zero on success or a negative error code
1184 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1186 /* We would wait indefinitely if periodic sampling is not enabled */
1187 if (!stream->periodic)
1190 return wait_event_interruptible(stream->poll_wq,
1191 oa_buffer_check_unlocked(stream));
1195 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1196 * @stream: An i915-perf stream opened for OA metrics
1197 * @file: An i915 perf stream file
1198 * @wait: poll() state table
1200 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1201 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1202 * when it sees data ready to read in the circular OA buffer.
1204 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1208 poll_wait(file, &stream->poll_wq, wait);
1212 * i915_oa_read - just calls through to &i915_oa_ops->read
1213 * @stream: An i915-perf stream opened for OA metrics
1214 * @buf: destination buffer given by userspace
1215 * @count: the number of bytes userspace wants to read
1216 * @offset: (inout): the current position for writing into @buf
1218 * Updates @offset according to the number of bytes successfully copied into
1219 * the userspace buffer.
1221 * Returns: zero on success or a negative error code
1223 static int i915_oa_read(struct i915_perf_stream *stream,
1228 return stream->perf->ops.read(stream, buf, count, offset);
1231 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1233 struct i915_gem_engines_iter it;
1234 struct i915_gem_context *ctx = stream->ctx;
1235 struct intel_context *ce;
1238 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1239 if (ce->engine != stream->engine) /* first match! */
1243 * As the ID is the gtt offset of the context's vma we
1244 * pin the vma to ensure the ID remains fixed.
1246 err = intel_context_pin(ce);
1248 stream->pinned_ctx = ce;
1252 i915_gem_context_unlock_engines(ctx);
1254 return stream->pinned_ctx;
1258 * oa_get_render_ctx_id - determine and hold ctx hw id
1259 * @stream: An i915-perf stream opened for OA metrics
1261 * Determine the render context hw id, and ensure it remains fixed for the
1262 * lifetime of the stream. This ensures that we don't have to worry about
1263 * updating the context ID in OACONTROL on the fly.
1265 * Returns: zero on success or a negative error code
1267 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1269 struct intel_context *ce;
1271 ce = oa_pin_context(stream);
1275 switch (INTEL_GEN(ce->engine->i915)) {
1278 * On Haswell we don't do any post processing of the reports
1279 * and don't need to use the mask.
1281 stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1282 stream->specific_ctx_id_mask = 0;
1289 if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1290 stream->specific_ctx_id_mask =
1291 (1U << GEN8_CTX_ID_WIDTH) - 1;
1292 stream->specific_ctx_id = stream->specific_ctx_id_mask;
1295 * When using GuC, the context descriptor we write in
1296 * i915 is read by GuC and rewritten before it's
1297 * actually written into the hardware. The LRCA is
1298 * what is put into the context id field of the
1299 * context descriptor by GuC. Because it's aligned to
1300 * a page, the lower 12bits are always at 0 and
1301 * dropped by GuC. They won't be part of the context
1302 * ID in the OA reports, so squash those lower bits.
1304 stream->specific_ctx_id =
1305 lower_32_bits(ce->lrc_desc) >> 12;
1308 * GuC uses the top bit to signal proxy submission, so
1311 stream->specific_ctx_id_mask =
1312 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1318 stream->specific_ctx_id_mask =
1319 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1320 stream->specific_ctx_id = stream->specific_ctx_id_mask;
1325 MISSING_CASE(INTEL_GEN(ce->engine->i915));
1328 ce->tag = stream->specific_ctx_id_mask;
1330 DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1331 stream->specific_ctx_id,
1332 stream->specific_ctx_id_mask);
1338 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1339 * @stream: An i915-perf stream opened for OA metrics
1341 * In case anything needed doing to ensure the context HW ID would remain valid
1342 * for the lifetime of the stream, then that can be undone here.
1344 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1346 struct intel_context *ce;
1348 ce = fetch_and_zero(&stream->pinned_ctx);
1350 ce->tag = 0; /* recomputed on next submission after parking */
1351 intel_context_unpin(ce);
1354 stream->specific_ctx_id = INVALID_CTX_ID;
1355 stream->specific_ctx_id_mask = 0;
1359 free_oa_buffer(struct i915_perf_stream *stream)
1361 i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1362 I915_VMA_RELEASE_MAP);
1364 stream->oa_buffer.vaddr = NULL;
1368 free_oa_configs(struct i915_perf_stream *stream)
1370 struct i915_oa_config_bo *oa_bo, *tmp;
1372 i915_oa_config_put(stream->oa_config);
1373 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1374 free_oa_config_bo(oa_bo);
1378 free_noa_wait(struct i915_perf_stream *stream)
1380 i915_vma_unpin_and_release(&stream->noa_wait, 0);
1383 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1385 struct i915_perf *perf = stream->perf;
1387 BUG_ON(stream != perf->exclusive_stream);
1390 * Unset exclusive_stream first, it will be checked while disabling
1391 * the metric set on gen8+.
1393 perf->exclusive_stream = NULL;
1394 perf->ops.disable_metric_set(stream);
1396 free_oa_buffer(stream);
1398 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1399 intel_engine_pm_put(stream->engine);
1402 oa_put_render_ctx_id(stream);
1404 free_oa_configs(stream);
1405 free_noa_wait(stream);
1407 if (perf->spurious_report_rs.missed) {
1408 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1409 perf->spurious_report_rs.missed);
1413 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1415 struct intel_uncore *uncore = stream->uncore;
1416 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1417 unsigned long flags;
1419 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1421 /* Pre-DevBDW: OABUFFER must be set with counters off,
1422 * before OASTATUS1, but after OASTATUS2
1424 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1425 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1426 stream->oa_buffer.head = gtt_offset;
1428 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1430 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1431 gtt_offset | OABUFFER_SIZE_16M);
1433 /* Mark that we need updated tail pointers to read from... */
1434 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1435 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1437 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1439 /* On Haswell we have to track which OASTATUS1 flags we've
1440 * already seen since they can't be cleared while periodic
1441 * sampling is enabled.
1443 stream->perf->gen7_latched_oastatus1 = 0;
1445 /* NB: although the OA buffer will initially be allocated
1446 * zeroed via shmfs (and so this memset is redundant when
1447 * first allocating), we may re-init the OA buffer, either
1448 * when re-enabling a stream or in error/reset paths.
1450 * The reason we clear the buffer for each re-init is for the
1451 * sanity check in gen7_append_oa_reports() that looks at the
1452 * report-id field to make sure it's non-zero which relies on
1453 * the assumption that new reports are being written to zeroed
1456 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1458 stream->pollin = false;
1461 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1463 struct intel_uncore *uncore = stream->uncore;
1464 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1465 unsigned long flags;
1467 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1469 intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1470 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1471 stream->oa_buffer.head = gtt_offset;
1473 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1478 * "This MMIO must be set before the OATAILPTR
1479 * register and after the OAHEADPTR register. This is
1480 * to enable proper functionality of the overflow
1483 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1484 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1485 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1487 /* Mark that we need updated tail pointers to read from... */
1488 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1489 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1492 * Reset state used to recognise context switches, affecting which
1493 * reports we will forward to userspace while filtering for a single
1496 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1498 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1501 * NB: although the OA buffer will initially be allocated
1502 * zeroed via shmfs (and so this memset is redundant when
1503 * first allocating), we may re-init the OA buffer, either
1504 * when re-enabling a stream or in error/reset paths.
1506 * The reason we clear the buffer for each re-init is for the
1507 * sanity check in gen8_append_oa_reports() that looks at the
1508 * reason field to make sure it's non-zero which relies on
1509 * the assumption that new reports are being written to zeroed
1512 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1514 stream->pollin = false;
1517 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1519 struct intel_uncore *uncore = stream->uncore;
1520 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1521 unsigned long flags;
1523 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1525 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1526 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1527 gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1528 stream->oa_buffer.head = gtt_offset;
1533 * "This MMIO must be set before the OATAILPTR
1534 * register and after the OAHEADPTR register. This is
1535 * to enable proper functionality of the overflow
1538 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1539 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1540 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1541 gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1543 /* Mark that we need updated tail pointers to read from... */
1544 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1545 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1548 * Reset state used to recognise context switches, affecting which
1549 * reports we will forward to userspace while filtering for a single
1552 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1554 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1557 * NB: although the OA buffer will initially be allocated
1558 * zeroed via shmfs (and so this memset is redundant when
1559 * first allocating), we may re-init the OA buffer, either
1560 * when re-enabling a stream or in error/reset paths.
1562 * The reason we clear the buffer for each re-init is for the
1563 * sanity check in gen8_append_oa_reports() that looks at the
1564 * reason field to make sure it's non-zero which relies on
1565 * the assumption that new reports are being written to zeroed
1568 memset(stream->oa_buffer.vaddr, 0,
1569 stream->oa_buffer.vma->size);
1571 stream->pollin = false;
1574 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1576 struct drm_i915_gem_object *bo;
1577 struct i915_vma *vma;
1580 if (WARN_ON(stream->oa_buffer.vma))
1583 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1584 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1586 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1588 DRM_ERROR("Failed to allocate OA buffer\n");
1592 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1594 /* PreHSW required 512K alignment, HSW requires 16M */
1595 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1600 stream->oa_buffer.vma = vma;
1602 stream->oa_buffer.vaddr =
1603 i915_gem_object_pin_map(bo, I915_MAP_WB);
1604 if (IS_ERR(stream->oa_buffer.vaddr)) {
1605 ret = PTR_ERR(stream->oa_buffer.vaddr);
1612 __i915_vma_unpin(vma);
1615 i915_gem_object_put(bo);
1617 stream->oa_buffer.vaddr = NULL;
1618 stream->oa_buffer.vma = NULL;
1623 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1624 bool save, i915_reg_t reg, u32 offset,
1630 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1631 if (INTEL_GEN(stream->perf->i915) >= 8)
1634 for (d = 0; d < dword_count; d++) {
1636 *cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1637 *cs++ = intel_gt_scratch_offset(stream->engine->gt,
1645 static int alloc_noa_wait(struct i915_perf_stream *stream)
1647 struct drm_i915_private *i915 = stream->perf->i915;
1648 struct drm_i915_gem_object *bo;
1649 struct i915_vma *vma;
1650 const u64 delay_ticks = 0xffffffffffffffff -
1652 atomic64_read(&stream->perf->noa_programming_delay) *
1653 RUNTIME_INFO(i915)->cs_timestamp_frequency_khz,
1655 const u32 base = stream->engine->mmio_base;
1656 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1657 u32 *batch, *ts0, *cs, *jump;
1668 bo = i915_gem_object_create_internal(i915, 4096);
1670 DRM_ERROR("Failed to allocate NOA wait batchbuffer\n");
1675 * We pin in GGTT because we jump into this buffer now because
1676 * multiple OA config BOs will have a jump to this address and it
1677 * needs to be fixed during the lifetime of the i915/perf stream.
1679 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
1685 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1686 if (IS_ERR(batch)) {
1687 ret = PTR_ERR(batch);
1691 /* Save registers. */
1692 for (i = 0; i < N_CS_GPR; i++)
1693 cs = save_restore_register(
1694 stream, cs, true /* save */, CS_GPR(i),
1695 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1696 cs = save_restore_register(
1697 stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1698 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1700 /* First timestamp snapshot location. */
1704 * Initial snapshot of the timestamp register to implement the wait.
1705 * We work with 32b values, so clear out the top 32b bits of the
1706 * register because the ALU works 64bits.
1708 *cs++ = MI_LOAD_REGISTER_IMM(1);
1709 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1711 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1712 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1713 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1716 * This is the location we're going to jump back into until the
1717 * required amount of time has passed.
1722 * Take another snapshot of the timestamp register. Take care to clear
1723 * up the top 32bits of CS_GPR(1) as we're using it for other
1726 *cs++ = MI_LOAD_REGISTER_IMM(1);
1727 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1729 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1730 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1731 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1734 * Do a diff between the 2 timestamps and store the result back into
1738 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1739 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1740 *cs++ = MI_MATH_SUB;
1741 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1742 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1745 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1746 * timestamp have rolled over the 32bits) into the predicate register
1747 * to be used for the predicated jump.
1749 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1750 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1751 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1753 /* Restart from the beginning if we had timestamps roll over. */
1754 *cs++ = (INTEL_GEN(i915) < 8 ?
1755 MI_BATCH_BUFFER_START :
1756 MI_BATCH_BUFFER_START_GEN8) |
1758 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1762 * Now add the diff between to previous timestamps and add it to :
1763 * (((1 * << 64) - 1) - delay_ns)
1765 * When the Carry Flag contains 1 this means the elapsed time is
1766 * longer than the expected delay, and we can exit the wait loop.
1768 *cs++ = MI_LOAD_REGISTER_IMM(2);
1769 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1770 *cs++ = lower_32_bits(delay_ticks);
1771 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1772 *cs++ = upper_32_bits(delay_ticks);
1775 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1776 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1777 *cs++ = MI_MATH_ADD;
1778 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1781 * Transfer the result into the predicate register to be used for the
1784 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1785 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1786 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1788 /* Predicate the jump. */
1789 *cs++ = (INTEL_GEN(i915) < 8 ?
1790 MI_BATCH_BUFFER_START :
1791 MI_BATCH_BUFFER_START_GEN8) |
1793 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1796 /* Restore registers. */
1797 for (i = 0; i < N_CS_GPR; i++)
1798 cs = save_restore_register(
1799 stream, cs, false /* restore */, CS_GPR(i),
1800 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1801 cs = save_restore_register(
1802 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1803 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1805 /* And return to the ring. */
1806 *cs++ = MI_BATCH_BUFFER_END;
1808 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1810 i915_gem_object_flush_map(bo);
1811 i915_gem_object_unpin_map(bo);
1813 stream->noa_wait = vma;
1817 i915_vma_unpin_and_release(&vma, 0);
1819 i915_gem_object_put(bo);
1823 static u32 *write_cs_mi_lri(u32 *cs,
1824 const struct i915_oa_reg *reg_data,
1829 for (i = 0; i < n_regs; i++) {
1830 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1831 u32 n_lri = min_t(u32,
1833 MI_LOAD_REGISTER_IMM_MAX_REGS);
1835 *cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1837 *cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1838 *cs++ = reg_data[i].value;
1844 static int num_lri_dwords(int num_regs)
1849 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1850 count += num_regs * 2;
1856 static struct i915_oa_config_bo *
1857 alloc_oa_config_buffer(struct i915_perf_stream *stream,
1858 struct i915_oa_config *oa_config)
1860 struct drm_i915_gem_object *obj;
1861 struct i915_oa_config_bo *oa_bo;
1862 size_t config_length = 0;
1866 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1868 return ERR_PTR(-ENOMEM);
1870 config_length += num_lri_dwords(oa_config->mux_regs_len);
1871 config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1872 config_length += num_lri_dwords(oa_config->flex_regs_len);
1873 config_length += 3; /* MI_BATCH_BUFFER_START */
1874 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1876 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1882 cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1888 cs = write_cs_mi_lri(cs,
1889 oa_config->mux_regs,
1890 oa_config->mux_regs_len);
1891 cs = write_cs_mi_lri(cs,
1892 oa_config->b_counter_regs,
1893 oa_config->b_counter_regs_len);
1894 cs = write_cs_mi_lri(cs,
1895 oa_config->flex_regs,
1896 oa_config->flex_regs_len);
1898 /* Jump into the active wait. */
1899 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
1900 MI_BATCH_BUFFER_START :
1901 MI_BATCH_BUFFER_START_GEN8);
1902 *cs++ = i915_ggtt_offset(stream->noa_wait);
1905 i915_gem_object_flush_map(obj);
1906 i915_gem_object_unpin_map(obj);
1908 oa_bo->vma = i915_vma_instance(obj,
1909 &stream->engine->gt->ggtt->vm,
1911 if (IS_ERR(oa_bo->vma)) {
1912 err = PTR_ERR(oa_bo->vma);
1916 oa_bo->oa_config = i915_oa_config_get(oa_config);
1917 llist_add(&oa_bo->node, &stream->oa_config_bos);
1922 i915_gem_object_put(obj);
1925 return ERR_PTR(err);
1928 static struct i915_vma *
1929 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1931 struct i915_oa_config_bo *oa_bo;
1934 * Look for the buffer in the already allocated BOs attached
1937 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1938 if (oa_bo->oa_config == oa_config &&
1939 memcmp(oa_bo->oa_config->uuid,
1941 sizeof(oa_config->uuid)) == 0)
1945 oa_bo = alloc_oa_config_buffer(stream, oa_config);
1947 return ERR_CAST(oa_bo);
1950 return i915_vma_get(oa_bo->vma);
1953 static int emit_oa_config(struct i915_perf_stream *stream,
1954 struct i915_oa_config *oa_config,
1955 struct intel_context *ce)
1957 struct i915_request *rq;
1958 struct i915_vma *vma;
1961 vma = get_oa_vma(stream, oa_config);
1963 return PTR_ERR(vma);
1965 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1969 rq = i915_request_create(ce);
1976 err = i915_request_await_object(rq, vma->obj, 0);
1978 err = i915_vma_move_to_active(vma, rq, 0);
1979 i915_vma_unlock(vma);
1981 goto err_add_request;
1983 err = rq->engine->emit_bb_start(rq,
1985 I915_DISPATCH_SECURE);
1987 i915_request_add(rq);
1989 i915_vma_unpin(vma);
1995 static struct intel_context *oa_context(struct i915_perf_stream *stream)
1997 return stream->pinned_ctx ?: stream->engine->kernel_context;
2000 static int hsw_enable_metric_set(struct i915_perf_stream *stream)
2002 struct intel_uncore *uncore = stream->uncore;
2007 * OA unit is using “crclk” for its functionality. When trunk
2008 * level clock gating takes place, OA clock would be gated,
2009 * unable to count the events from non-render clock domain.
2010 * Render clock gating must be disabled when OA is enabled to
2011 * count the events from non-render domain. Unit level clock
2012 * gating for RCS should also be disabled.
2014 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2015 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2016 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2017 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2019 return emit_oa_config(stream, stream->oa_config, oa_context(stream));
2022 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2024 struct intel_uncore *uncore = stream->uncore;
2026 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2027 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2028 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2029 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2031 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2034 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2037 u32 mmio = i915_mmio_reg_offset(reg);
2041 * This arbitrary default will select the 'EU FPU0 Pipeline
2042 * Active' event. In the future it's anticipated that there
2043 * will be an explicit 'No Event' we can select, but not yet...
2048 for (i = 0; i < oa_config->flex_regs_len; i++) {
2049 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2050 return oa_config->flex_regs[i].value;
2056 * NB: It must always remain pointer safe to run this even if the OA unit
2057 * has been disabled.
2059 * It's fine to put out-of-date values into these per-context registers
2060 * in the case that the OA unit has been disabled.
2063 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2064 const struct i915_perf_stream *stream)
2066 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2067 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2068 /* The MMIO offsets for Flex EU registers aren't contiguous */
2069 i915_reg_t flex_regs[] = {
2078 u32 *reg_state = ce->lrc_reg_state;
2081 if (IS_GEN(stream->perf->i915, 12)) {
2082 u32 format = stream->oa_buffer.format;
2084 reg_state[ctx_oactxctrl + 1] =
2085 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2086 (stream->oa_config ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0);
2088 reg_state[ctx_oactxctrl + 1] =
2089 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2090 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2091 GEN8_OA_COUNTER_RESUME;
2094 for (i = 0; !!ctx_flexeu0 && i < ARRAY_SIZE(flex_regs); i++)
2095 reg_state[ctx_flexeu0 + i * 2 + 1] =
2096 oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2098 reg_state[CTX_R_PWR_CLK_STATE] =
2099 intel_sseu_make_rpcs(ce->engine->i915, &ce->sseu);
2109 gen8_store_flex(struct i915_request *rq,
2110 struct intel_context *ce,
2111 const struct flex *flex, unsigned int count)
2116 cs = intel_ring_begin(rq, 4 * count);
2120 offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
2122 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2123 *cs++ = offset + flex->offset * sizeof(u32);
2125 *cs++ = flex->value;
2126 } while (flex++, --count);
2128 intel_ring_advance(rq, cs);
2134 gen8_load_flex(struct i915_request *rq,
2135 struct intel_context *ce,
2136 const struct flex *flex, unsigned int count)
2140 GEM_BUG_ON(!count || count > 63);
2142 cs = intel_ring_begin(rq, 2 * count + 2);
2146 *cs++ = MI_LOAD_REGISTER_IMM(count);
2148 *cs++ = i915_mmio_reg_offset(flex->reg);
2149 *cs++ = flex->value;
2150 } while (flex++, --count);
2153 intel_ring_advance(rq, cs);
2158 static int gen8_modify_context(struct intel_context *ce,
2159 const struct flex *flex, unsigned int count)
2161 struct i915_request *rq;
2164 lockdep_assert_held(&ce->pin_mutex);
2166 rq = i915_request_create(ce->engine->kernel_context);
2170 /* Serialise with the remote context */
2171 err = intel_context_prepare_remote_request(ce, rq);
2173 err = gen8_store_flex(rq, ce, flex, count);
2175 i915_request_add(rq);
2179 static int gen8_modify_self(struct intel_context *ce,
2180 const struct flex *flex, unsigned int count)
2182 struct i915_request *rq;
2185 rq = i915_request_create(ce);
2189 err = gen8_load_flex(rq, ce, flex, count);
2191 i915_request_add(rq);
2195 static int gen8_configure_context(struct i915_gem_context *ctx,
2196 struct flex *flex, unsigned int count)
2198 struct i915_gem_engines_iter it;
2199 struct intel_context *ce;
2202 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2203 GEM_BUG_ON(ce == ce->engine->kernel_context);
2205 if (ce->engine->class != RENDER_CLASS)
2208 err = intel_context_lock_pinned(ce);
2212 flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu);
2214 /* Otherwise OA settings will be set upon first use */
2215 if (intel_context_is_pinned(ce))
2216 err = gen8_modify_context(ce, flex, count);
2218 intel_context_unlock_pinned(ce);
2222 i915_gem_context_unlock_engines(ctx);
2227 static int gen12_emit_oar_config(struct intel_context *ce, bool enable)
2229 struct i915_request *rq;
2233 rq = i915_request_create(ce);
2237 cs = intel_ring_begin(rq, 4);
2243 *cs++ = MI_LOAD_REGISTER_IMM(1);
2244 *cs++ = i915_mmio_reg_offset(RING_CONTEXT_CONTROL(ce->engine->mmio_base));
2245 *cs++ = _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2246 enable ? GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 0);
2249 intel_ring_advance(rq, cs);
2252 i915_request_add(rq);
2258 * Manages updating the per-context aspects of the OA stream
2259 * configuration across all contexts.
2261 * The awkward consideration here is that OACTXCONTROL controls the
2262 * exponent for periodic sampling which is primarily used for system
2263 * wide profiling where we'd like a consistent sampling period even in
2264 * the face of context switches.
2266 * Our approach of updating the register state context (as opposed to
2267 * say using a workaround batch buffer) ensures that the hardware
2268 * won't automatically reload an out-of-date timer exponent even
2269 * transiently before a WA BB could be parsed.
2271 * This function needs to:
2272 * - Ensure the currently running context's per-context OA state is
2274 * - Ensure that all existing contexts will have the correct per-context
2275 * OA state if they are scheduled for use.
2276 * - Ensure any new contexts will be initialized with the correct
2277 * per-context OA state.
2279 * Note: it's only the RCS/Render context that has any OA state.
2281 static int lrc_configure_all_contexts(struct i915_perf_stream *stream,
2282 const struct i915_oa_config *oa_config)
2284 struct drm_i915_private *i915 = stream->perf->i915;
2285 /* The MMIO offsets for Flex EU registers aren't contiguous */
2286 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2287 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2288 struct flex regs[] = {
2290 GEN8_R_PWR_CLK_STATE,
2291 CTX_R_PWR_CLK_STATE,
2295 GEN12_OAR_OACONTROL : GEN8_OACTXCONTROL,
2296 stream->perf->ctx_oactxctrl_offset + 1,
2298 { EU_PERF_CNTL0, ctx_flexeuN(0) },
2299 { EU_PERF_CNTL1, ctx_flexeuN(1) },
2300 { EU_PERF_CNTL2, ctx_flexeuN(2) },
2301 { EU_PERF_CNTL3, ctx_flexeuN(3) },
2302 { EU_PERF_CNTL4, ctx_flexeuN(4) },
2303 { EU_PERF_CNTL5, ctx_flexeuN(5) },
2304 { EU_PERF_CNTL6, ctx_flexeuN(6) },
2307 struct intel_engine_cs *engine;
2308 struct i915_gem_context *ctx, *cn;
2309 size_t array_size = IS_GEN(i915, 12) ? 2 : ARRAY_SIZE(regs);
2312 if (IS_GEN(i915, 12)) {
2313 u32 format = stream->oa_buffer.format;
2316 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2317 (oa_config ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0);
2320 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2321 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2322 GEN8_OA_COUNTER_RESUME;
2325 for (i = 2; !!ctx_flexeu0 && i < array_size; i++)
2326 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2328 lockdep_assert_held(&stream->perf->lock);
2331 * The OA register config is setup through the context image. This image
2332 * might be written to by the GPU on context switch (in particular on
2333 * lite-restore). This means we can't safely update a context's image,
2334 * if this context is scheduled/submitted to run on the GPU.
2336 * We could emit the OA register config through the batch buffer but
2337 * this might leave small interval of time where the OA unit is
2338 * configured at an invalid sampling period.
2340 * Note that since we emit all requests from a single ring, there
2341 * is still an implicit global barrier here that may cause a high
2342 * priority context to wait for an otherwise independent low priority
2343 * context. Contexts idle at the time of reconfiguration are not
2344 * trapped behind the barrier.
2346 spin_lock(&i915->gem.contexts.lock);
2347 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2348 if (ctx == i915->kernel_context)
2351 if (!kref_get_unless_zero(&ctx->ref))
2354 spin_unlock(&i915->gem.contexts.lock);
2356 err = gen8_configure_context(ctx, regs, array_size);
2358 i915_gem_context_put(ctx);
2362 spin_lock(&i915->gem.contexts.lock);
2363 list_safe_reset_next(ctx, cn, link);
2364 i915_gem_context_put(ctx);
2366 spin_unlock(&i915->gem.contexts.lock);
2369 * After updating all other contexts, we need to modify ourselves.
2370 * If we don't modify the kernel_context, we do not get events while
2373 for_each_uabi_engine(engine, i915) {
2374 struct intel_context *ce = engine->kernel_context;
2376 if (engine->class != RENDER_CLASS)
2379 regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu);
2381 err = gen8_modify_self(ce, regs, array_size);
2389 static int gen8_enable_metric_set(struct i915_perf_stream *stream)
2391 struct intel_uncore *uncore = stream->uncore;
2392 struct i915_oa_config *oa_config = stream->oa_config;
2396 * We disable slice/unslice clock ratio change reports on SKL since
2397 * they are too noisy. The HW generates a lot of redundant reports
2398 * where the ratio hasn't really changed causing a lot of redundant
2399 * work to processes and increasing the chances we'll hit buffer
2402 * Although we don't currently use the 'disable overrun' OABUFFER
2403 * feature it's worth noting that clock ratio reports have to be
2404 * disabled before considering to use that feature since the HW doesn't
2405 * correctly block these reports.
2407 * Currently none of the high-level metrics we have depend on knowing
2408 * this ratio to normalize.
2410 * Note: This register is not power context saved and restored, but
2411 * that's OK considering that we disable RC6 while the OA unit is
2414 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2415 * be read back from automatically triggered reports, as part of the
2418 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2419 intel_uncore_write(uncore, GEN8_OA_DEBUG,
2420 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2421 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2425 * Update all contexts prior writing the mux configurations as we need
2426 * to make sure all slices/subslices are ON before writing to NOA
2429 ret = lrc_configure_all_contexts(stream, oa_config);
2433 return emit_oa_config(stream, oa_config, oa_context(stream));
2436 static int gen12_enable_metric_set(struct i915_perf_stream *stream)
2438 struct intel_uncore *uncore = stream->uncore;
2439 struct i915_oa_config *oa_config = stream->oa_config;
2440 bool periodic = stream->periodic;
2441 u32 period_exponent = stream->period_exponent;
2444 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2445 /* Disable clk ratio reports, like previous Gens. */
2446 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2447 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2449 * If the user didn't require OA reports, instruct the
2450 * hardware not to emit ctx switch reports.
2452 !(stream->sample_flags & SAMPLE_OA_REPORT) ?
2453 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS) :
2454 _MASKED_BIT_DISABLE(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS));
2456 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2457 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2458 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2459 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2463 * Update all contexts prior writing the mux configurations as we need
2464 * to make sure all slices/subslices are ON before writing to NOA
2467 ret = lrc_configure_all_contexts(stream, oa_config);
2472 * For Gen12, performance counters are context
2473 * saved/restored. Only enable it for the context that
2477 ret = gen12_emit_oar_config(stream->pinned_ctx,
2483 return emit_oa_config(stream, oa_config, oa_context(stream));
2486 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2488 struct intel_uncore *uncore = stream->uncore;
2490 /* Reset all contexts' slices/subslices configurations. */
2491 lrc_configure_all_contexts(stream, NULL);
2493 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2496 static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2498 struct intel_uncore *uncore = stream->uncore;
2500 /* Reset all contexts' slices/subslices configurations. */
2501 lrc_configure_all_contexts(stream, NULL);
2503 /* Make sure we disable noa to save power. */
2504 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2507 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2509 struct intel_uncore *uncore = stream->uncore;
2511 /* Reset all contexts' slices/subslices configurations. */
2512 lrc_configure_all_contexts(stream, NULL);
2514 /* disable the context save/restore or OAR counters */
2516 gen12_emit_oar_config(stream->pinned_ctx, false);
2518 /* Make sure we disable noa to save power. */
2519 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2522 static void gen7_oa_enable(struct i915_perf_stream *stream)
2524 struct intel_uncore *uncore = stream->uncore;
2525 struct i915_gem_context *ctx = stream->ctx;
2526 u32 ctx_id = stream->specific_ctx_id;
2527 bool periodic = stream->periodic;
2528 u32 period_exponent = stream->period_exponent;
2529 u32 report_format = stream->oa_buffer.format;
2532 * Reset buf pointers so we don't forward reports from before now.
2534 * Think carefully if considering trying to avoid this, since it
2535 * also ensures status flags and the buffer itself are cleared
2536 * in error paths, and we have checks for invalid reports based
2537 * on the assumption that certain fields are written to zeroed
2538 * memory which this helps maintains.
2540 gen7_init_oa_buffer(stream);
2542 intel_uncore_write(uncore, GEN7_OACONTROL,
2543 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2545 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2546 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2547 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2548 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2549 GEN7_OACONTROL_ENABLE);
2552 static void gen8_oa_enable(struct i915_perf_stream *stream)
2554 struct intel_uncore *uncore = stream->uncore;
2555 u32 report_format = stream->oa_buffer.format;
2558 * Reset buf pointers so we don't forward reports from before now.
2560 * Think carefully if considering trying to avoid this, since it
2561 * also ensures status flags and the buffer itself are cleared
2562 * in error paths, and we have checks for invalid reports based
2563 * on the assumption that certain fields are written to zeroed
2564 * memory which this helps maintains.
2566 gen8_init_oa_buffer(stream);
2569 * Note: we don't rely on the hardware to perform single context
2570 * filtering and instead filter on the cpu based on the context-id
2573 intel_uncore_write(uncore, GEN8_OACONTROL,
2574 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2575 GEN8_OA_COUNTER_ENABLE);
2578 static void gen12_oa_enable(struct i915_perf_stream *stream)
2580 struct intel_uncore *uncore = stream->uncore;
2581 u32 report_format = stream->oa_buffer.format;
2584 * If we don't want OA reports from the OA buffer, then we don't even
2585 * need to program the OAG unit.
2587 if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2590 gen12_init_oa_buffer(stream);
2592 intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2593 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2594 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2598 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2599 * @stream: An i915 perf stream opened for OA metrics
2601 * [Re]enables hardware periodic sampling according to the period configured
2602 * when opening the stream. This also starts a hrtimer that will periodically
2603 * check for data in the circular OA buffer for notifying userspace (e.g.
2604 * during a read() or poll()).
2606 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2608 stream->perf->ops.oa_enable(stream);
2610 if (stream->periodic)
2611 hrtimer_start(&stream->poll_check_timer,
2612 ns_to_ktime(POLL_PERIOD),
2613 HRTIMER_MODE_REL_PINNED);
2616 static void gen7_oa_disable(struct i915_perf_stream *stream)
2618 struct intel_uncore *uncore = stream->uncore;
2620 intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2621 if (intel_wait_for_register(uncore,
2622 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2624 DRM_ERROR("wait for OA to be disabled timed out\n");
2627 static void gen8_oa_disable(struct i915_perf_stream *stream)
2629 struct intel_uncore *uncore = stream->uncore;
2631 intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2632 if (intel_wait_for_register(uncore,
2633 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2635 DRM_ERROR("wait for OA to be disabled timed out\n");
2638 static void gen12_oa_disable(struct i915_perf_stream *stream)
2640 struct intel_uncore *uncore = stream->uncore;
2642 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2643 if (intel_wait_for_register(uncore,
2644 GEN12_OAG_OACONTROL,
2645 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2647 DRM_ERROR("wait for OA to be disabled timed out\n");
2651 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2652 * @stream: An i915 perf stream opened for OA metrics
2654 * Stops the OA unit from periodically writing counter reports into the
2655 * circular OA buffer. This also stops the hrtimer that periodically checks for
2656 * data in the circular OA buffer, for notifying userspace.
2658 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2660 stream->perf->ops.oa_disable(stream);
2662 if (stream->periodic)
2663 hrtimer_cancel(&stream->poll_check_timer);
2666 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2667 .destroy = i915_oa_stream_destroy,
2668 .enable = i915_oa_stream_enable,
2669 .disable = i915_oa_stream_disable,
2670 .wait_unlocked = i915_oa_wait_unlocked,
2671 .poll_wait = i915_oa_poll_wait,
2672 .read = i915_oa_read,
2676 * i915_oa_stream_init - validate combined props for OA stream and init
2677 * @stream: An i915 perf stream
2678 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2679 * @props: The property state that configures stream (individually validated)
2681 * While read_properties_unlocked() validates properties in isolation it
2682 * doesn't ensure that the combination necessarily makes sense.
2684 * At this point it has been determined that userspace wants a stream of
2685 * OA metrics, but still we need to further validate the combined
2686 * properties are OK.
2688 * If the configuration makes sense then we can allocate memory for
2689 * a circular OA buffer and apply the requested metric set configuration.
2691 * Returns: zero on success or a negative error code.
2693 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2694 struct drm_i915_perf_open_param *param,
2695 struct perf_open_properties *props)
2697 struct i915_perf *perf = stream->perf;
2701 if (!props->engine) {
2702 DRM_DEBUG("OA engine not specified\n");
2707 * If the sysfs metrics/ directory wasn't registered for some
2708 * reason then don't let userspace try their luck with config
2711 if (!perf->metrics_kobj) {
2712 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2716 if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
2717 DRM_DEBUG("Only OA report sampling supported\n");
2721 if (!perf->ops.enable_metric_set) {
2722 DRM_DEBUG("OA unit not supported\n");
2727 * To avoid the complexity of having to accurately filter
2728 * counter reports and marshal to the appropriate client
2729 * we currently only allow exclusive access
2731 if (perf->exclusive_stream) {
2732 DRM_DEBUG("OA unit already in use\n");
2736 if (!props->oa_format) {
2737 DRM_DEBUG("OA report format not specified\n");
2741 stream->engine = props->engine;
2742 stream->uncore = stream->engine->gt->uncore;
2744 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2746 format_size = perf->oa_formats[props->oa_format].size;
2748 stream->sample_flags |= SAMPLE_OA_REPORT;
2749 stream->sample_size += format_size;
2751 stream->oa_buffer.format_size = format_size;
2752 if (WARN_ON(stream->oa_buffer.format_size == 0))
2755 stream->hold_preemption = props->hold_preemption;
2757 stream->oa_buffer.format =
2758 perf->oa_formats[props->oa_format].format;
2760 stream->periodic = props->oa_periodic;
2761 if (stream->periodic)
2762 stream->period_exponent = props->oa_period_exponent;
2765 ret = oa_get_render_ctx_id(stream);
2767 DRM_DEBUG("Invalid context id to filter with\n");
2772 ret = alloc_noa_wait(stream);
2774 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2775 goto err_noa_wait_alloc;
2778 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2779 if (!stream->oa_config) {
2780 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2785 /* PRM - observability performance counters:
2787 * OACONTROL, performance counter enable, note:
2789 * "When this bit is set, in order to have coherent counts,
2790 * RC6 power state and trunk clock gating must be disabled.
2791 * This can be achieved by programming MMIO registers as
2792 * 0xA094=0 and 0xA090[31]=1"
2794 * In our case we are expecting that taking pm + FORCEWAKE
2795 * references will effectively disable RC6.
2797 intel_engine_pm_get(stream->engine);
2798 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2800 ret = alloc_oa_buffer(stream);
2802 goto err_oa_buf_alloc;
2804 stream->ops = &i915_oa_stream_ops;
2805 perf->exclusive_stream = stream;
2807 ret = perf->ops.enable_metric_set(stream);
2809 DRM_DEBUG("Unable to enable metric set\n");
2813 DRM_DEBUG("opening stream oa config uuid=%s\n",
2814 stream->oa_config->uuid);
2816 hrtimer_init(&stream->poll_check_timer,
2817 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2818 stream->poll_check_timer.function = oa_poll_check_timer_cb;
2819 init_waitqueue_head(&stream->poll_wq);
2820 spin_lock_init(&stream->oa_buffer.ptr_lock);
2825 perf->exclusive_stream = NULL;
2826 perf->ops.disable_metric_set(stream);
2828 free_oa_buffer(stream);
2831 free_oa_configs(stream);
2833 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2834 intel_engine_pm_put(stream->engine);
2837 free_noa_wait(stream);
2841 oa_put_render_ctx_id(stream);
2846 void i915_oa_init_reg_state(const struct intel_context *ce,
2847 const struct intel_engine_cs *engine)
2849 struct i915_perf_stream *stream;
2851 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2853 if (engine->class != RENDER_CLASS)
2856 stream = engine->i915->perf.exclusive_stream;
2858 gen8_update_reg_state_unlocked(ce, stream);
2862 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2863 * @stream: An i915 perf stream
2864 * @file: An i915 perf stream file
2865 * @buf: destination buffer given by userspace
2866 * @count: the number of bytes userspace wants to read
2867 * @ppos: (inout) file seek position (unused)
2869 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2870 * ensure that if we've successfully copied any data then reporting that takes
2871 * precedence over any internal error status, so the data isn't lost.
2873 * For example ret will be -ENOSPC whenever there is more buffered data than
2874 * can be copied to userspace, but that's only interesting if we weren't able
2875 * to copy some data because it implies the userspace buffer is too small to
2876 * receive a single record (and we never split records).
2878 * Another case with ret == -EFAULT is more of a grey area since it would seem
2879 * like bad form for userspace to ask us to overrun its buffer, but the user
2882 * http://yarchive.net/comp/linux/partial_reads_writes.html
2884 * Returns: The number of bytes copied or a negative error code on failure.
2886 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2892 /* Note we keep the offset (aka bytes read) separate from any
2893 * error status so that the final check for whether we return
2894 * the bytes read with a higher precedence than any error (see
2895 * comment below) doesn't need to be handled/duplicated in
2896 * stream->ops->read() implementations.
2899 int ret = stream->ops->read(stream, buf, count, &offset);
2901 return offset ?: (ret ?: -EAGAIN);
2905 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2906 * @file: An i915 perf stream file
2907 * @buf: destination buffer given by userspace
2908 * @count: the number of bytes userspace wants to read
2909 * @ppos: (inout) file seek position (unused)
2911 * The entry point for handling a read() on a stream file descriptor from
2912 * userspace. Most of the work is left to the i915_perf_read_locked() and
2913 * &i915_perf_stream_ops->read but to save having stream implementations (of
2914 * which we might have multiple later) we handle blocking read here.
2916 * We can also consistently treat trying to read from a disabled stream
2917 * as an IO error so implementations can assume the stream is enabled
2920 * Returns: The number of bytes copied or a negative error code on failure.
2922 static ssize_t i915_perf_read(struct file *file,
2927 struct i915_perf_stream *stream = file->private_data;
2928 struct i915_perf *perf = stream->perf;
2931 /* To ensure it's handled consistently we simply treat all reads of a
2932 * disabled stream as an error. In particular it might otherwise lead
2933 * to a deadlock for blocking file descriptors...
2935 if (!stream->enabled)
2938 if (!(file->f_flags & O_NONBLOCK)) {
2939 /* There's the small chance of false positives from
2940 * stream->ops->wait_unlocked.
2942 * E.g. with single context filtering since we only wait until
2943 * oabuffer has >= 1 report we don't immediately know whether
2944 * any reports really belong to the current context
2947 ret = stream->ops->wait_unlocked(stream);
2951 mutex_lock(&perf->lock);
2952 ret = i915_perf_read_locked(stream, file,
2954 mutex_unlock(&perf->lock);
2955 } while (ret == -EAGAIN);
2957 mutex_lock(&perf->lock);
2958 ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2959 mutex_unlock(&perf->lock);
2962 /* We allow the poll checking to sometimes report false positive EPOLLIN
2963 * events where we might actually report EAGAIN on read() if there's
2964 * not really any data available. In this situation though we don't
2965 * want to enter a busy loop between poll() reporting a EPOLLIN event
2966 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2967 * effectively ensures we back off until the next hrtimer callback
2968 * before reporting another EPOLLIN event.
2970 if (ret >= 0 || ret == -EAGAIN) {
2971 /* Maybe make ->pollin per-stream state if we support multiple
2972 * concurrent streams in the future.
2974 stream->pollin = false;
2980 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2982 struct i915_perf_stream *stream =
2983 container_of(hrtimer, typeof(*stream), poll_check_timer);
2985 if (oa_buffer_check_unlocked(stream)) {
2986 stream->pollin = true;
2987 wake_up(&stream->poll_wq);
2990 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2992 return HRTIMER_RESTART;
2996 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2997 * @stream: An i915 perf stream
2998 * @file: An i915 perf stream file
2999 * @wait: poll() state table
3001 * For handling userspace polling on an i915 perf stream, this calls through to
3002 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3003 * will be woken for new stream data.
3005 * Note: The &perf->lock mutex has been taken to serialize
3006 * with any non-file-operation driver hooks.
3008 * Returns: any poll events that are ready without sleeping
3010 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3014 __poll_t events = 0;
3016 stream->ops->poll_wait(stream, file, wait);
3018 /* Note: we don't explicitly check whether there's something to read
3019 * here since this path may be very hot depending on what else
3020 * userspace is polling, or on the timeout in use. We rely solely on
3021 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3031 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3032 * @file: An i915 perf stream file
3033 * @wait: poll() state table
3035 * For handling userspace polling on an i915 perf stream, this ensures
3036 * poll_wait() gets called with a wait queue that will be woken for new stream
3039 * Note: Implementation deferred to i915_perf_poll_locked()
3041 * Returns: any poll events that are ready without sleeping
3043 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3045 struct i915_perf_stream *stream = file->private_data;
3046 struct i915_perf *perf = stream->perf;
3049 mutex_lock(&perf->lock);
3050 ret = i915_perf_poll_locked(stream, file, wait);
3051 mutex_unlock(&perf->lock);
3057 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3058 * @stream: A disabled i915 perf stream
3060 * [Re]enables the associated capture of data for this stream.
3062 * If a stream was previously enabled then there's currently no intention
3063 * to provide userspace any guarantee about the preservation of previously
3066 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3068 if (stream->enabled)
3071 /* Allow stream->ops->enable() to refer to this */
3072 stream->enabled = true;
3074 if (stream->ops->enable)
3075 stream->ops->enable(stream);
3077 if (stream->hold_preemption)
3078 i915_gem_context_set_nopreempt(stream->ctx);
3082 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3083 * @stream: An enabled i915 perf stream
3085 * Disables the associated capture of data for this stream.
3087 * The intention is that disabling an re-enabling a stream will ideally be
3088 * cheaper than destroying and re-opening a stream with the same configuration,
3089 * though there are no formal guarantees about what state or buffered data
3090 * must be retained between disabling and re-enabling a stream.
3092 * Note: while a stream is disabled it's considered an error for userspace
3093 * to attempt to read from the stream (-EIO).
3095 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3097 if (!stream->enabled)
3100 /* Allow stream->ops->disable() to refer to this */
3101 stream->enabled = false;
3103 if (stream->hold_preemption)
3104 i915_gem_context_clear_nopreempt(stream->ctx);
3106 if (stream->ops->disable)
3107 stream->ops->disable(stream);
3110 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3111 unsigned long metrics_set)
3113 struct i915_oa_config *config;
3114 long ret = stream->oa_config->id;
3116 config = i915_perf_get_oa_config(stream->perf, metrics_set);
3120 if (config != stream->oa_config) {
3124 * If OA is bound to a specific context, emit the
3125 * reconfiguration inline from that context. The update
3126 * will then be ordered with respect to submission on that
3129 * When set globally, we use a low priority kernel context,
3130 * so it will effectively take effect when idle.
3132 err = emit_oa_config(stream, config, oa_context(stream));
3134 config = xchg(&stream->oa_config, config);
3139 i915_oa_config_put(config);
3145 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3146 * @stream: An i915 perf stream
3147 * @cmd: the ioctl request
3148 * @arg: the ioctl data
3150 * Note: The &perf->lock mutex has been taken to serialize
3151 * with any non-file-operation driver hooks.
3153 * Returns: zero on success or a negative error code. Returns -EINVAL for
3154 * an unknown ioctl request.
3156 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3161 case I915_PERF_IOCTL_ENABLE:
3162 i915_perf_enable_locked(stream);
3164 case I915_PERF_IOCTL_DISABLE:
3165 i915_perf_disable_locked(stream);
3167 case I915_PERF_IOCTL_CONFIG:
3168 return i915_perf_config_locked(stream, arg);
3175 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3176 * @file: An i915 perf stream file
3177 * @cmd: the ioctl request
3178 * @arg: the ioctl data
3180 * Implementation deferred to i915_perf_ioctl_locked().
3182 * Returns: zero on success or a negative error code. Returns -EINVAL for
3183 * an unknown ioctl request.
3185 static long i915_perf_ioctl(struct file *file,
3189 struct i915_perf_stream *stream = file->private_data;
3190 struct i915_perf *perf = stream->perf;
3193 mutex_lock(&perf->lock);
3194 ret = i915_perf_ioctl_locked(stream, cmd, arg);
3195 mutex_unlock(&perf->lock);
3201 * i915_perf_destroy_locked - destroy an i915 perf stream
3202 * @stream: An i915 perf stream
3204 * Frees all resources associated with the given i915 perf @stream, disabling
3205 * any associated data capture in the process.
3207 * Note: The &perf->lock mutex has been taken to serialize
3208 * with any non-file-operation driver hooks.
3210 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3212 if (stream->enabled)
3213 i915_perf_disable_locked(stream);
3215 if (stream->ops->destroy)
3216 stream->ops->destroy(stream);
3219 i915_gem_context_put(stream->ctx);
3225 * i915_perf_release - handles userspace close() of a stream file
3226 * @inode: anonymous inode associated with file
3227 * @file: An i915 perf stream file
3229 * Cleans up any resources associated with an open i915 perf stream file.
3231 * NB: close() can't really fail from the userspace point of view.
3233 * Returns: zero on success or a negative error code.
3235 static int i915_perf_release(struct inode *inode, struct file *file)
3237 struct i915_perf_stream *stream = file->private_data;
3238 struct i915_perf *perf = stream->perf;
3240 mutex_lock(&perf->lock);
3241 i915_perf_destroy_locked(stream);
3242 mutex_unlock(&perf->lock);
3244 /* Release the reference the perf stream kept on the driver. */
3245 drm_dev_put(&perf->i915->drm);
3251 static const struct file_operations fops = {
3252 .owner = THIS_MODULE,
3253 .llseek = no_llseek,
3254 .release = i915_perf_release,
3255 .poll = i915_perf_poll,
3256 .read = i915_perf_read,
3257 .unlocked_ioctl = i915_perf_ioctl,
3258 /* Our ioctl have no arguments, so it's safe to use the same function
3259 * to handle 32bits compatibility.
3261 .compat_ioctl = i915_perf_ioctl,
3266 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3267 * @perf: i915 perf instance
3268 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3269 * @props: individually validated u64 property value pairs
3272 * See i915_perf_ioctl_open() for interface details.
3274 * Implements further stream config validation and stream initialization on
3275 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3276 * taken to serialize with any non-file-operation driver hooks.
3278 * Note: at this point the @props have only been validated in isolation and
3279 * it's still necessary to validate that the combination of properties makes
3282 * In the case where userspace is interested in OA unit metrics then further
3283 * config validation and stream initialization details will be handled by
3284 * i915_oa_stream_init(). The code here should only validate config state that
3285 * will be relevant to all stream types / backends.
3287 * Returns: zero on success or a negative error code.
3290 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3291 struct drm_i915_perf_open_param *param,
3292 struct perf_open_properties *props,
3293 struct drm_file *file)
3295 struct i915_gem_context *specific_ctx = NULL;
3296 struct i915_perf_stream *stream = NULL;
3297 unsigned long f_flags = 0;
3298 bool privileged_op = true;
3302 if (props->single_context) {
3303 u32 ctx_handle = props->ctx_handle;
3304 struct drm_i915_file_private *file_priv = file->driver_priv;
3306 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3307 if (!specific_ctx) {
3308 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3316 * On Haswell the OA unit supports clock gating off for a specific
3317 * context and in this mode there's no visibility of metrics for the
3318 * rest of the system, which we consider acceptable for a
3319 * non-privileged client.
3321 * For Gen8->11 the OA unit no longer supports clock gating off for a
3322 * specific context and the kernel can't securely stop the counters
3323 * from updating as system-wide / global values. Even though we can
3324 * filter reports based on the included context ID we can't block
3325 * clients from seeing the raw / global counter values via
3326 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3327 * enable the OA unit by default.
3329 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3330 * per context basis. So we can relax requirements there if the user
3331 * doesn't request global stream access (i.e. query based sampling
3332 * using MI_RECORD_PERF_COUNT.
3334 if (IS_HASWELL(perf->i915) && specific_ctx)
3335 privileged_op = false;
3336 else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3337 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3338 privileged_op = false;
3340 if (props->hold_preemption) {
3341 if (!props->single_context) {
3342 DRM_DEBUG("preemption disable with no context\n");
3346 privileged_op = true;
3349 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3350 * we check a dev.i915.perf_stream_paranoid sysctl option
3351 * to determine if it's ok to access system wide OA counters
3352 * without CAP_SYS_ADMIN privileges.
3354 if (privileged_op &&
3355 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3356 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3361 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3367 stream->perf = perf;
3368 stream->ctx = specific_ctx;
3370 ret = i915_oa_stream_init(stream, param, props);
3374 /* we avoid simply assigning stream->sample_flags = props->sample_flags
3375 * to have _stream_init check the combination of sample flags more
3376 * thoroughly, but still this is the expected result at this point.
3378 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3383 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3384 f_flags |= O_CLOEXEC;
3385 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3386 f_flags |= O_NONBLOCK;
3388 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3389 if (stream_fd < 0) {
3394 if (!(param->flags & I915_PERF_FLAG_DISABLED))
3395 i915_perf_enable_locked(stream);
3397 /* Take a reference on the driver that will be kept with stream_fd
3398 * until its release.
3400 drm_dev_get(&perf->i915->drm);
3405 if (stream->ops->destroy)
3406 stream->ops->destroy(stream);
3411 i915_gem_context_put(specific_ctx);
3416 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3418 return div64_u64(1000000000ULL * (2ULL << exponent),
3419 1000ULL * RUNTIME_INFO(perf->i915)->cs_timestamp_frequency_khz);
3423 * read_properties_unlocked - validate + copy userspace stream open properties
3424 * @perf: i915 perf instance
3425 * @uprops: The array of u64 key value pairs given by userspace
3426 * @n_props: The number of key value pairs expected in @uprops
3427 * @props: The stream configuration built up while validating properties
3429 * Note this function only validates properties in isolation it doesn't
3430 * validate that the combination of properties makes sense or that all
3431 * properties necessary for a particular kind of stream have been set.
3433 * Note that there currently aren't any ordering requirements for properties so
3434 * we shouldn't validate or assume anything about ordering here. This doesn't
3435 * rule out defining new properties with ordering requirements in the future.
3437 static int read_properties_unlocked(struct i915_perf *perf,
3440 struct perf_open_properties *props)
3442 u64 __user *uprop = uprops;
3445 memset(props, 0, sizeof(struct perf_open_properties));
3448 DRM_DEBUG("No i915 perf properties given\n");
3452 /* At the moment we only support using i915-perf on the RCS. */
3453 props->engine = intel_engine_lookup_user(perf->i915,
3454 I915_ENGINE_CLASS_RENDER,
3456 if (!props->engine) {
3457 DRM_DEBUG("No RENDER-capable engines\n");
3461 /* Considering that ID = 0 is reserved and assuming that we don't
3462 * (currently) expect any configurations to ever specify duplicate
3463 * values for a particular property ID then the last _PROP_MAX value is
3464 * one greater than the maximum number of properties we expect to get
3467 if (n_props >= DRM_I915_PERF_PROP_MAX) {
3468 DRM_DEBUG("More i915 perf properties specified than exist\n");
3472 for (i = 0; i < n_props; i++) {
3473 u64 oa_period, oa_freq_hz;
3477 ret = get_user(id, uprop);
3481 ret = get_user(value, uprop + 1);
3485 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3486 DRM_DEBUG("Unknown i915 perf property ID\n");
3490 switch ((enum drm_i915_perf_property_id)id) {
3491 case DRM_I915_PERF_PROP_CTX_HANDLE:
3492 props->single_context = 1;
3493 props->ctx_handle = value;
3495 case DRM_I915_PERF_PROP_SAMPLE_OA:
3497 props->sample_flags |= SAMPLE_OA_REPORT;
3499 case DRM_I915_PERF_PROP_OA_METRICS_SET:
3501 DRM_DEBUG("Unknown OA metric set ID\n");
3504 props->metrics_set = value;
3506 case DRM_I915_PERF_PROP_OA_FORMAT:
3507 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3508 DRM_DEBUG("Out-of-range OA report format %llu\n",
3512 if (!perf->oa_formats[value].size) {
3513 DRM_DEBUG("Unsupported OA report format %llu\n",
3517 props->oa_format = value;
3519 case DRM_I915_PERF_PROP_OA_EXPONENT:
3520 if (value > OA_EXPONENT_MAX) {
3521 DRM_DEBUG("OA timer exponent too high (> %u)\n",
3526 /* Theoretically we can program the OA unit to sample
3527 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3528 * for BXT. We don't allow such high sampling
3529 * frequencies by default unless root.
3532 BUILD_BUG_ON(sizeof(oa_period) != 8);
3533 oa_period = oa_exponent_to_ns(perf, value);
3535 /* This check is primarily to ensure that oa_period <=
3536 * UINT32_MAX (before passing to do_div which only
3537 * accepts a u32 denominator), but we can also skip
3538 * checking anything < 1Hz which implicitly can't be
3539 * limited via an integer oa_max_sample_rate.
3541 if (oa_period <= NSEC_PER_SEC) {
3542 u64 tmp = NSEC_PER_SEC;
3543 do_div(tmp, oa_period);
3548 if (oa_freq_hz > i915_oa_max_sample_rate &&
3549 !capable(CAP_SYS_ADMIN)) {
3550 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
3551 i915_oa_max_sample_rate);
3555 props->oa_periodic = true;
3556 props->oa_period_exponent = value;
3558 case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3559 props->hold_preemption = !!value;
3561 case DRM_I915_PERF_PROP_MAX:
3573 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3575 * @data: ioctl data copied from userspace (unvalidated)
3578 * Validates the stream open parameters given by userspace including flags
3579 * and an array of u64 key, value pair properties.
3581 * Very little is assumed up front about the nature of the stream being
3582 * opened (for instance we don't assume it's for periodic OA unit metrics). An
3583 * i915-perf stream is expected to be a suitable interface for other forms of
3584 * buffered data written by the GPU besides periodic OA metrics.
3586 * Note we copy the properties from userspace outside of the i915 perf
3587 * mutex to avoid an awkward lockdep with mmap_sem.
3589 * Most of the implementation details are handled by
3590 * i915_perf_open_ioctl_locked() after taking the &perf->lock
3591 * mutex for serializing with any non-file-operation driver hooks.
3593 * Return: A newly opened i915 Perf stream file descriptor or negative
3594 * error code on failure.
3596 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3597 struct drm_file *file)
3599 struct i915_perf *perf = &to_i915(dev)->perf;
3600 struct drm_i915_perf_open_param *param = data;
3601 struct perf_open_properties props;
3602 u32 known_open_flags;
3606 DRM_DEBUG("i915 perf interface not available for this system\n");
3610 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3611 I915_PERF_FLAG_FD_NONBLOCK |
3612 I915_PERF_FLAG_DISABLED;
3613 if (param->flags & ~known_open_flags) {
3614 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3618 ret = read_properties_unlocked(perf,
3619 u64_to_user_ptr(param->properties_ptr),
3620 param->num_properties,
3625 mutex_lock(&perf->lock);
3626 ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3627 mutex_unlock(&perf->lock);
3633 * i915_perf_register - exposes i915-perf to userspace
3634 * @i915: i915 device instance
3636 * In particular OA metric sets are advertised under a sysfs metrics/
3637 * directory allowing userspace to enumerate valid IDs that can be
3638 * used to open an i915-perf stream.
3640 void i915_perf_register(struct drm_i915_private *i915)
3642 struct i915_perf *perf = &i915->perf;
3648 /* To be sure we're synchronized with an attempted
3649 * i915_perf_open_ioctl(); considering that we register after
3650 * being exposed to userspace.
3652 mutex_lock(&perf->lock);
3654 perf->metrics_kobj =
3655 kobject_create_and_add("metrics",
3656 &i915->drm.primary->kdev->kobj);
3657 if (!perf->metrics_kobj)
3660 sysfs_attr_init(&perf->test_config.sysfs_metric_id.attr);
3662 if (IS_TIGERLAKE(i915)) {
3663 i915_perf_load_test_config_tgl(i915);
3664 } else if (INTEL_GEN(i915) >= 11) {
3665 i915_perf_load_test_config_icl(i915);
3666 } else if (IS_CANNONLAKE(i915)) {
3667 i915_perf_load_test_config_cnl(i915);
3668 } else if (IS_COFFEELAKE(i915)) {
3669 if (IS_CFL_GT2(i915))
3670 i915_perf_load_test_config_cflgt2(i915);
3671 if (IS_CFL_GT3(i915))
3672 i915_perf_load_test_config_cflgt3(i915);
3673 } else if (IS_GEMINILAKE(i915)) {
3674 i915_perf_load_test_config_glk(i915);
3675 } else if (IS_KABYLAKE(i915)) {
3676 if (IS_KBL_GT2(i915))
3677 i915_perf_load_test_config_kblgt2(i915);
3678 else if (IS_KBL_GT3(i915))
3679 i915_perf_load_test_config_kblgt3(i915);
3680 } else if (IS_BROXTON(i915)) {
3681 i915_perf_load_test_config_bxt(i915);
3682 } else if (IS_SKYLAKE(i915)) {
3683 if (IS_SKL_GT2(i915))
3684 i915_perf_load_test_config_sklgt2(i915);
3685 else if (IS_SKL_GT3(i915))
3686 i915_perf_load_test_config_sklgt3(i915);
3687 else if (IS_SKL_GT4(i915))
3688 i915_perf_load_test_config_sklgt4(i915);
3689 } else if (IS_CHERRYVIEW(i915)) {
3690 i915_perf_load_test_config_chv(i915);
3691 } else if (IS_BROADWELL(i915)) {
3692 i915_perf_load_test_config_bdw(i915);
3693 } else if (IS_HASWELL(i915)) {
3694 i915_perf_load_test_config_hsw(i915);
3697 if (perf->test_config.id == 0)
3700 ret = sysfs_create_group(perf->metrics_kobj,
3701 &perf->test_config.sysfs_metric);
3705 perf->test_config.perf = perf;
3706 kref_init(&perf->test_config.ref);
3711 kobject_put(perf->metrics_kobj);
3712 perf->metrics_kobj = NULL;
3715 mutex_unlock(&perf->lock);
3719 * i915_perf_unregister - hide i915-perf from userspace
3720 * @i915: i915 device instance
3722 * i915-perf state cleanup is split up into an 'unregister' and
3723 * 'deinit' phase where the interface is first hidden from
3724 * userspace by i915_perf_unregister() before cleaning up
3725 * remaining state in i915_perf_fini().
3727 void i915_perf_unregister(struct drm_i915_private *i915)
3729 struct i915_perf *perf = &i915->perf;
3731 if (!perf->metrics_kobj)
3734 sysfs_remove_group(perf->metrics_kobj,
3735 &perf->test_config.sysfs_metric);
3737 kobject_put(perf->metrics_kobj);
3738 perf->metrics_kobj = NULL;
3741 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3743 static const i915_reg_t flex_eu_regs[] = {
3754 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3755 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3761 #define ADDR_IN_RANGE(addr, start, end) \
3762 ((addr) >= (start) && \
3765 #define REG_IN_RANGE(addr, start, end) \
3766 ((addr) >= i915_mmio_reg_offset(start) && \
3767 (addr) <= i915_mmio_reg_offset(end))
3769 #define REG_EQUAL(addr, mmio) \
3770 ((addr) == i915_mmio_reg_offset(mmio))
3772 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3774 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3775 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3776 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3779 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3781 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3782 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3783 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3784 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3787 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3789 return gen7_is_valid_mux_addr(perf, addr) ||
3790 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3791 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3794 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3796 return gen8_is_valid_mux_addr(perf, addr) ||
3797 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3798 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3801 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3803 return gen7_is_valid_mux_addr(perf, addr) ||
3804 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3805 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3806 REG_EQUAL(addr, HSW_MBVID2_MISR0);
3809 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3811 return gen7_is_valid_mux_addr(perf, addr) ||
3812 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3815 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3817 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3818 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3819 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3820 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3821 REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3822 REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3823 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3826 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3828 return REG_EQUAL(addr, NOA_WRITE) ||
3829 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3830 REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3831 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3832 REG_EQUAL(addr, RPM_CONFIG0) ||
3833 REG_EQUAL(addr, RPM_CONFIG1) ||
3834 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3837 static u32 mask_reg_value(u32 reg, u32 val)
3839 /* HALF_SLICE_CHICKEN2 is programmed with a the
3840 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3841 * programmed by userspace doesn't change this.
3843 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3844 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3846 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3847 * indicated by its name and a bunch of selection fields used by OA
3850 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3851 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3856 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3857 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3861 struct i915_oa_reg *oa_regs;
3868 if (!access_ok(regs, n_regs * sizeof(u32) * 2))
3869 return ERR_PTR(-EFAULT);
3871 /* No is_valid function means we're not allowing any register to be programmed. */
3872 GEM_BUG_ON(!is_valid);
3874 return ERR_PTR(-EINVAL);
3876 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3878 return ERR_PTR(-ENOMEM);
3880 for (i = 0; i < n_regs; i++) {
3883 err = get_user(addr, regs);
3887 if (!is_valid(perf, addr)) {
3888 DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3893 err = get_user(value, regs + 1);
3897 oa_regs[i].addr = _MMIO(addr);
3898 oa_regs[i].value = mask_reg_value(addr, value);
3907 return ERR_PTR(err);
3910 static ssize_t show_dynamic_id(struct device *dev,
3911 struct device_attribute *attr,
3914 struct i915_oa_config *oa_config =
3915 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3917 return sprintf(buf, "%d\n", oa_config->id);
3920 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3921 struct i915_oa_config *oa_config)
3923 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3924 oa_config->sysfs_metric_id.attr.name = "id";
3925 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3926 oa_config->sysfs_metric_id.show = show_dynamic_id;
3927 oa_config->sysfs_metric_id.store = NULL;
3929 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3930 oa_config->attrs[1] = NULL;
3932 oa_config->sysfs_metric.name = oa_config->uuid;
3933 oa_config->sysfs_metric.attrs = oa_config->attrs;
3935 return sysfs_create_group(perf->metrics_kobj,
3936 &oa_config->sysfs_metric);
3940 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3942 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3943 * userspace (unvalidated)
3946 * Validates the submitted OA register to be saved into a new OA config that
3947 * can then be used for programming the OA unit and its NOA network.
3949 * Returns: A new allocated config number to be used with the perf open ioctl
3950 * or a negative error code on failure.
3952 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3953 struct drm_file *file)
3955 struct i915_perf *perf = &to_i915(dev)->perf;
3956 struct drm_i915_perf_oa_config *args = data;
3957 struct i915_oa_config *oa_config, *tmp;
3958 static struct i915_oa_reg *regs;
3962 DRM_DEBUG("i915 perf interface not available for this system\n");
3966 if (!perf->metrics_kobj) {
3967 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3971 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3972 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3976 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3977 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3978 (!args->flex_regs_ptr || !args->n_flex_regs)) {
3979 DRM_DEBUG("No OA registers given\n");
3983 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3985 DRM_DEBUG("Failed to allocate memory for the OA config\n");
3989 oa_config->perf = perf;
3990 kref_init(&oa_config->ref);
3992 if (!uuid_is_valid(args->uuid)) {
3993 DRM_DEBUG("Invalid uuid format for OA config\n");
3998 /* Last character in oa_config->uuid will be 0 because oa_config is
4001 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4003 oa_config->mux_regs_len = args->n_mux_regs;
4004 regs = alloc_oa_regs(perf,
4005 perf->ops.is_valid_mux_reg,
4006 u64_to_user_ptr(args->mux_regs_ptr),
4010 DRM_DEBUG("Failed to create OA config for mux_regs\n");
4011 err = PTR_ERR(regs);
4014 oa_config->mux_regs = regs;
4016 oa_config->b_counter_regs_len = args->n_boolean_regs;
4017 regs = alloc_oa_regs(perf,
4018 perf->ops.is_valid_b_counter_reg,
4019 u64_to_user_ptr(args->boolean_regs_ptr),
4020 args->n_boolean_regs);
4023 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4024 err = PTR_ERR(regs);
4027 oa_config->b_counter_regs = regs;
4029 if (INTEL_GEN(perf->i915) < 8) {
4030 if (args->n_flex_regs != 0) {
4035 oa_config->flex_regs_len = args->n_flex_regs;
4036 regs = alloc_oa_regs(perf,
4037 perf->ops.is_valid_flex_reg,
4038 u64_to_user_ptr(args->flex_regs_ptr),
4042 DRM_DEBUG("Failed to create OA config for flex_regs\n");
4043 err = PTR_ERR(regs);
4046 oa_config->flex_regs = regs;
4049 err = mutex_lock_interruptible(&perf->metrics_lock);
4053 /* We shouldn't have too many configs, so this iteration shouldn't be
4056 idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4057 if (!strcmp(tmp->uuid, oa_config->uuid)) {
4058 DRM_DEBUG("OA config already exists with this uuid\n");
4064 err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4066 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4070 /* Config id 0 is invalid, id 1 for kernel stored test config. */
4071 oa_config->id = idr_alloc(&perf->metrics_idr,
4074 if (oa_config->id < 0) {
4075 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4076 err = oa_config->id;
4080 mutex_unlock(&perf->metrics_lock);
4082 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4084 return oa_config->id;
4087 mutex_unlock(&perf->metrics_lock);
4089 i915_oa_config_put(oa_config);
4090 DRM_DEBUG("Failed to add new OA config\n");
4095 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4097 * @data: ioctl data (pointer to u64 integer) copied from userspace
4100 * Configs can be removed while being used, the will stop appearing in sysfs
4101 * and their content will be freed when the stream using the config is closed.
4103 * Returns: 0 on success or a negative error code on failure.
4105 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4106 struct drm_file *file)
4108 struct i915_perf *perf = &to_i915(dev)->perf;
4110 struct i915_oa_config *oa_config;
4114 DRM_DEBUG("i915 perf interface not available for this system\n");
4118 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
4119 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4123 ret = mutex_lock_interruptible(&perf->metrics_lock);
4127 oa_config = idr_find(&perf->metrics_idr, *arg);
4129 DRM_DEBUG("Failed to remove unknown OA config\n");
4134 GEM_BUG_ON(*arg != oa_config->id);
4136 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4138 idr_remove(&perf->metrics_idr, *arg);
4140 mutex_unlock(&perf->metrics_lock);
4142 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4144 i915_oa_config_put(oa_config);
4149 mutex_unlock(&perf->metrics_lock);
4153 static struct ctl_table oa_table[] = {
4155 .procname = "perf_stream_paranoid",
4156 .data = &i915_perf_stream_paranoid,
4157 .maxlen = sizeof(i915_perf_stream_paranoid),
4159 .proc_handler = proc_dointvec_minmax,
4160 .extra1 = SYSCTL_ZERO,
4161 .extra2 = SYSCTL_ONE,
4164 .procname = "oa_max_sample_rate",
4165 .data = &i915_oa_max_sample_rate,
4166 .maxlen = sizeof(i915_oa_max_sample_rate),
4168 .proc_handler = proc_dointvec_minmax,
4169 .extra1 = SYSCTL_ZERO,
4170 .extra2 = &oa_sample_rate_hard_limit,
4175 static struct ctl_table i915_root[] = {
4185 static struct ctl_table dev_root[] = {
4196 * i915_perf_init - initialize i915-perf state on module load
4197 * @i915: i915 device instance
4199 * Initializes i915-perf state without exposing anything to userspace.
4201 * Note: i915-perf initialization is split into an 'init' and 'register'
4202 * phase with the i915_perf_register() exposing state to userspace.
4204 void i915_perf_init(struct drm_i915_private *i915)
4206 struct i915_perf *perf = &i915->perf;
4208 /* XXX const struct i915_perf_ops! */
4210 if (IS_HASWELL(i915)) {
4211 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4212 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4213 perf->ops.is_valid_flex_reg = NULL;
4214 perf->ops.enable_metric_set = hsw_enable_metric_set;
4215 perf->ops.disable_metric_set = hsw_disable_metric_set;
4216 perf->ops.oa_enable = gen7_oa_enable;
4217 perf->ops.oa_disable = gen7_oa_disable;
4218 perf->ops.read = gen7_oa_read;
4219 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4221 perf->oa_formats = hsw_oa_formats;
4222 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4223 /* Note: that although we could theoretically also support the
4224 * legacy ringbuffer mode on BDW (and earlier iterations of
4225 * this driver, before upstreaming did this) it didn't seem
4226 * worth the complexity to maintain now that BDW+ enable
4227 * execlist mode by default.
4229 perf->ops.read = gen8_oa_read;
4231 if (IS_GEN_RANGE(i915, 8, 9)) {
4232 perf->oa_formats = gen8_plus_oa_formats;
4234 perf->ops.is_valid_b_counter_reg =
4235 gen7_is_valid_b_counter_addr;
4236 perf->ops.is_valid_mux_reg =
4237 gen8_is_valid_mux_addr;
4238 perf->ops.is_valid_flex_reg =
4239 gen8_is_valid_flex_addr;
4241 if (IS_CHERRYVIEW(i915)) {
4242 perf->ops.is_valid_mux_reg =
4243 chv_is_valid_mux_addr;
4246 perf->ops.oa_enable = gen8_oa_enable;
4247 perf->ops.oa_disable = gen8_oa_disable;
4248 perf->ops.enable_metric_set = gen8_enable_metric_set;
4249 perf->ops.disable_metric_set = gen8_disable_metric_set;
4250 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4252 if (IS_GEN(i915, 8)) {
4253 perf->ctx_oactxctrl_offset = 0x120;
4254 perf->ctx_flexeu0_offset = 0x2ce;
4256 perf->gen8_valid_ctx_bit = BIT(25);
4258 perf->ctx_oactxctrl_offset = 0x128;
4259 perf->ctx_flexeu0_offset = 0x3de;
4261 perf->gen8_valid_ctx_bit = BIT(16);
4263 } else if (IS_GEN_RANGE(i915, 10, 11)) {
4264 perf->oa_formats = gen8_plus_oa_formats;
4266 perf->ops.is_valid_b_counter_reg =
4267 gen7_is_valid_b_counter_addr;
4268 perf->ops.is_valid_mux_reg =
4269 gen10_is_valid_mux_addr;
4270 perf->ops.is_valid_flex_reg =
4271 gen8_is_valid_flex_addr;
4273 perf->ops.oa_enable = gen8_oa_enable;
4274 perf->ops.oa_disable = gen8_oa_disable;
4275 perf->ops.enable_metric_set = gen8_enable_metric_set;
4276 perf->ops.disable_metric_set = gen10_disable_metric_set;
4277 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4279 if (IS_GEN(i915, 10)) {
4280 perf->ctx_oactxctrl_offset = 0x128;
4281 perf->ctx_flexeu0_offset = 0x3de;
4283 perf->ctx_oactxctrl_offset = 0x124;
4284 perf->ctx_flexeu0_offset = 0x78e;
4286 perf->gen8_valid_ctx_bit = BIT(16);
4287 } else if (IS_GEN(i915, 12)) {
4288 perf->oa_formats = gen12_oa_formats;
4290 perf->ops.is_valid_b_counter_reg =
4291 gen12_is_valid_b_counter_addr;
4292 perf->ops.is_valid_mux_reg =
4293 gen12_is_valid_mux_addr;
4294 perf->ops.is_valid_flex_reg =
4295 gen8_is_valid_flex_addr;
4297 perf->ops.oa_enable = gen12_oa_enable;
4298 perf->ops.oa_disable = gen12_oa_disable;
4299 perf->ops.enable_metric_set = gen12_enable_metric_set;
4300 perf->ops.disable_metric_set = gen12_disable_metric_set;
4301 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4303 perf->ctx_flexeu0_offset = 0;
4304 perf->ctx_oactxctrl_offset = 0x144;
4308 if (perf->ops.enable_metric_set) {
4309 mutex_init(&perf->lock);
4311 oa_sample_rate_hard_limit = 1000 *
4312 (RUNTIME_INFO(i915)->cs_timestamp_frequency_khz / 2);
4313 perf->sysctl_header = register_sysctl_table(dev_root);
4315 mutex_init(&perf->metrics_lock);
4316 idr_init(&perf->metrics_idr);
4318 /* We set up some ratelimit state to potentially throttle any
4319 * _NOTES about spurious, invalid OA reports which we don't
4320 * forward to userspace.
4322 * We print a _NOTE about any throttling when closing the
4323 * stream instead of waiting until driver _fini which no one
4326 * Using the same limiting factors as printk_ratelimit()
4328 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4329 /* Since we use a DRM_NOTE for spurious reports it would be
4330 * inconsistent to let __ratelimit() automatically print a
4331 * warning for throttling.
4333 ratelimit_set_flags(&perf->spurious_report_rs,
4334 RATELIMIT_MSG_ON_RELEASE);
4336 atomic64_set(&perf->noa_programming_delay,
4337 500 * 1000 /* 500us */);
4343 static int destroy_config(int id, void *p, void *data)
4345 i915_oa_config_put(p);
4350 * i915_perf_fini - Counter part to i915_perf_init()
4351 * @i915: i915 device instance
4353 void i915_perf_fini(struct drm_i915_private *i915)
4355 struct i915_perf *perf = &i915->perf;
4360 idr_for_each(&perf->metrics_idr, destroy_config, perf);
4361 idr_destroy(&perf->metrics_idr);
4363 unregister_sysctl_table(perf->sysctl_header);
4365 memset(&perf->ops, 0, sizeof(perf->ops));
4370 * i915_perf_ioctl_version - Version of the i915-perf subsystem
4372 * This version number is used by userspace to detect available features.
4374 int i915_perf_ioctl_version(void)
4377 * 1: Initial version
4378 * I915_PERF_IOCTL_ENABLE
4379 * I915_PERF_IOCTL_DISABLE
4381 * 2: Added runtime modification of OA config.
4382 * I915_PERF_IOCTL_CONFIG
4384 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4385 * preemption on a particular context so that performance data is
4386 * accessible from a delta of MI_RPC reports without looking at the
4392 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4393 #include "selftests/i915_perf.c"