1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
4 #include <linux/skmsg.h>
5 #include <linux/skbuff.h>
6 #include <linux/scatterlist.h>
12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
14 if (msg->sg.end > msg->sg.start &&
15 elem_first_coalesce < msg->sg.end)
18 if (msg->sg.end < msg->sg.start &&
19 (elem_first_coalesce > msg->sg.start ||
20 elem_first_coalesce < msg->sg.end))
26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
27 int elem_first_coalesce)
29 struct page_frag *pfrag = sk_page_frag(sk);
30 u32 osize = msg->sg.size;
35 struct scatterlist *sge;
39 if (!sk_page_frag_refill(sk, pfrag)) {
44 orig_offset = pfrag->offset;
45 use = min_t(int, len, pfrag->size - orig_offset);
46 if (!sk_wmem_schedule(sk, use)) {
52 sk_msg_iter_var_prev(i);
53 sge = &msg->sg.data[i];
55 if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
56 sg_page(sge) == pfrag->page &&
57 sge->offset + sge->length == orig_offset) {
60 if (sk_msg_full(msg)) {
65 sge = &msg->sg.data[msg->sg.end];
67 sg_set_page(sge, pfrag->page, use, orig_offset);
68 get_page(pfrag->page);
69 sk_msg_iter_next(msg, end);
72 sk_mem_charge(sk, use);
81 sk_msg_trim(sk, msg, osize);
84 EXPORT_SYMBOL_GPL(sk_msg_alloc);
86 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
89 int i = src->sg.start;
90 struct scatterlist *sge = sk_msg_elem(src, i);
91 struct scatterlist *sgd = NULL;
95 if (sge->length > off)
98 sk_msg_iter_var_next(i);
99 if (i == src->sg.end && off)
101 sge = sk_msg_elem(src, i);
105 sge_len = sge->length - off;
110 sgd = sk_msg_elem(dst, dst->sg.end - 1);
113 (sg_page(sge) == sg_page(sgd)) &&
114 (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
115 sgd->length += sge_len;
116 dst->sg.size += sge_len;
117 } else if (!sk_msg_full(dst)) {
118 sge_off = sge->offset + off;
119 sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
126 sk_mem_charge(sk, sge_len);
127 sk_msg_iter_var_next(i);
128 if (i == src->sg.end && len)
130 sge = sk_msg_elem(src, i);
135 EXPORT_SYMBOL_GPL(sk_msg_clone);
137 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
139 int i = msg->sg.start;
142 struct scatterlist *sge = sk_msg_elem(msg, i);
144 if (bytes < sge->length) {
145 sge->length -= bytes;
146 sge->offset += bytes;
147 sk_mem_uncharge(sk, bytes);
151 sk_mem_uncharge(sk, sge->length);
152 bytes -= sge->length;
155 sk_msg_iter_var_next(i);
156 } while (bytes && i != msg->sg.end);
159 EXPORT_SYMBOL_GPL(sk_msg_return_zero);
161 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
163 int i = msg->sg.start;
166 struct scatterlist *sge = &msg->sg.data[i];
167 int uncharge = (bytes < sge->length) ? bytes : sge->length;
169 sk_mem_uncharge(sk, uncharge);
171 sk_msg_iter_var_next(i);
172 } while (i != msg->sg.end);
174 EXPORT_SYMBOL_GPL(sk_msg_return);
176 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
179 struct scatterlist *sge = sk_msg_elem(msg, i);
180 u32 len = sge->length;
182 /* When the skb owns the memory we free it from consume_skb path. */
185 sk_mem_uncharge(sk, len);
186 put_page(sg_page(sge));
188 memset(sge, 0, sizeof(*sge));
192 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
195 struct scatterlist *sge = sk_msg_elem(msg, i);
198 while (msg->sg.size) {
199 msg->sg.size -= sge->length;
200 freed += sk_msg_free_elem(sk, msg, i, charge);
201 sk_msg_iter_var_next(i);
202 sk_msg_check_to_free(msg, i, msg->sg.size);
203 sge = sk_msg_elem(msg, i);
205 consume_skb(msg->skb);
210 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
212 return __sk_msg_free(sk, msg, msg->sg.start, false);
214 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
216 int sk_msg_free(struct sock *sk, struct sk_msg *msg)
218 return __sk_msg_free(sk, msg, msg->sg.start, true);
220 EXPORT_SYMBOL_GPL(sk_msg_free);
222 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
223 u32 bytes, bool charge)
225 struct scatterlist *sge;
226 u32 i = msg->sg.start;
229 sge = sk_msg_elem(msg, i);
232 if (bytes < sge->length) {
234 sk_mem_uncharge(sk, bytes);
235 sge->length -= bytes;
236 sge->offset += bytes;
237 msg->sg.size -= bytes;
241 msg->sg.size -= sge->length;
242 bytes -= sge->length;
243 sk_msg_free_elem(sk, msg, i, charge);
244 sk_msg_iter_var_next(i);
245 sk_msg_check_to_free(msg, i, bytes);
250 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
252 __sk_msg_free_partial(sk, msg, bytes, true);
254 EXPORT_SYMBOL_GPL(sk_msg_free_partial);
256 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
259 __sk_msg_free_partial(sk, msg, bytes, false);
262 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
264 int trim = msg->sg.size - len;
272 sk_msg_iter_var_prev(i);
274 while (msg->sg.data[i].length &&
275 trim >= msg->sg.data[i].length) {
276 trim -= msg->sg.data[i].length;
277 sk_msg_free_elem(sk, msg, i, true);
278 sk_msg_iter_var_prev(i);
283 msg->sg.data[i].length -= trim;
284 sk_mem_uncharge(sk, trim);
285 /* Adjust copybreak if it falls into the trimmed part of last buf */
286 if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
287 msg->sg.copybreak = msg->sg.data[i].length;
289 sk_msg_iter_var_next(i);
292 /* If we trim data a full sg elem before curr pointer update
293 * copybreak and current so that any future copy operations
294 * start at new copy location.
295 * However trimed data that has not yet been used in a copy op
296 * does not require an update.
299 msg->sg.curr = msg->sg.start;
300 msg->sg.copybreak = 0;
301 } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
302 sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
303 sk_msg_iter_var_prev(i);
305 msg->sg.copybreak = msg->sg.data[i].length;
308 EXPORT_SYMBOL_GPL(sk_msg_trim);
310 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
311 struct sk_msg *msg, u32 bytes)
313 int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
314 const int to_max_pages = MAX_MSG_FRAGS;
315 struct page *pages[MAX_MSG_FRAGS];
316 ssize_t orig, copied, use, offset;
321 maxpages = to_max_pages - num_elems;
327 copied = iov_iter_get_pages2(from, pages, bytes, maxpages,
335 msg->sg.size += copied;
338 use = min_t(int, copied, PAGE_SIZE - offset);
339 sg_set_page(&msg->sg.data[msg->sg.end],
340 pages[i], use, offset);
341 sg_unmark_end(&msg->sg.data[msg->sg.end]);
342 sk_mem_charge(sk, use);
346 sk_msg_iter_next(msg, end);
350 /* When zerocopy is mixed with sk_msg_*copy* operations we
351 * may have a copybreak set in this case clear and prefer
352 * zerocopy remainder when possible.
354 msg->sg.copybreak = 0;
355 msg->sg.curr = msg->sg.end;
358 /* Revert iov_iter updates, msg will need to use 'trim' later if it
359 * also needs to be cleared.
362 iov_iter_revert(from, msg->sg.size - orig);
365 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
367 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
368 struct sk_msg *msg, u32 bytes)
370 int ret = -ENOSPC, i = msg->sg.curr;
371 struct scatterlist *sge;
376 sge = sk_msg_elem(msg, i);
377 /* This is possible if a trim operation shrunk the buffer */
378 if (msg->sg.copybreak >= sge->length) {
379 msg->sg.copybreak = 0;
380 sk_msg_iter_var_next(i);
381 if (i == msg->sg.end)
383 sge = sk_msg_elem(msg, i);
386 buf_size = sge->length - msg->sg.copybreak;
387 copy = (buf_size > bytes) ? bytes : buf_size;
388 to = sg_virt(sge) + msg->sg.copybreak;
389 msg->sg.copybreak += copy;
390 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
391 ret = copy_from_iter_nocache(to, copy, from);
393 ret = copy_from_iter(to, copy, from);
401 msg->sg.copybreak = 0;
402 sk_msg_iter_var_next(i);
403 } while (i != msg->sg.end);
408 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
410 /* Receive sk_msg from psock->ingress_msg to @msg. */
411 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg,
414 struct iov_iter *iter = &msg->msg_iter;
415 int peek = flags & MSG_PEEK;
416 struct sk_msg *msg_rx;
419 msg_rx = sk_psock_peek_msg(psock);
420 while (copied != len) {
421 struct scatterlist *sge;
423 if (unlikely(!msg_rx))
426 i = msg_rx->sg.start;
431 sge = sk_msg_elem(msg_rx, i);
434 if (copied + copy > len)
436 copy = copy_page_to_iter(page, sge->offset, copy, iter);
438 return copied ? copied : -EFAULT;
445 sk_mem_uncharge(sk, copy);
446 msg_rx->sg.size -= copy;
449 sk_msg_iter_var_next(i);
454 /* Lets not optimize peek case if copy_page_to_iter
455 * didn't copy the entire length lets just break.
457 if (copy != sge->length)
459 sk_msg_iter_var_next(i);
464 } while ((i != msg_rx->sg.end) && !sg_is_last(sge));
466 if (unlikely(peek)) {
467 msg_rx = sk_psock_next_msg(psock, msg_rx);
473 msg_rx->sg.start = i;
474 if (!sge->length && (i == msg_rx->sg.end || sg_is_last(sge))) {
475 msg_rx = sk_psock_dequeue_msg(psock);
476 kfree_sk_msg(msg_rx);
478 msg_rx = sk_psock_peek_msg(psock);
483 EXPORT_SYMBOL_GPL(sk_msg_recvmsg);
485 bool sk_msg_is_readable(struct sock *sk)
487 struct sk_psock *psock;
491 psock = sk_psock(sk);
493 empty = list_empty(&psock->ingress_msg);
497 EXPORT_SYMBOL_GPL(sk_msg_is_readable);
499 static struct sk_msg *alloc_sk_msg(void)
503 msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_KERNEL);
506 sg_init_marker(msg->sg.data, NR_MSG_FRAG_IDS);
510 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
513 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
516 if (!sk_rmem_schedule(sk, skb, skb->truesize))
519 return alloc_sk_msg();
522 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
524 struct sk_psock *psock,
530 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
532 /* skb linearize may fail with ENOMEM, but lets simply try again
533 * later if this happens. Under memory pressure we don't want to
534 * drop the skb. We need to linearize the skb so that the mapping
535 * in skb_to_sgvec can not error.
537 if (skb_linearize(skb))
540 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
541 if (unlikely(num_sge < 0))
547 msg->sg.size = copied;
548 msg->sg.end = num_sge;
551 sk_psock_queue_msg(psock, msg);
552 sk_psock_data_ready(sk, psock);
556 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
559 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb,
562 struct sock *sk = psock->sk;
566 /* If we are receiving on the same sock skb->sk is already assigned,
567 * skip memory accounting and owner transition seeing it already set
570 if (unlikely(skb->sk == sk))
571 return sk_psock_skb_ingress_self(psock, skb, off, len);
572 msg = sk_psock_create_ingress_msg(sk, skb);
576 /* This will transition ownership of the data from the socket where
577 * the BPF program was run initiating the redirect to the socket
578 * we will eventually receive this data on. The data will be released
579 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
582 skb_set_owner_r(skb, sk);
583 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
589 /* Puts an skb on the ingress queue of the socket already assigned to the
590 * skb. In this case we do not need to check memory limits or skb_set_owner_r
591 * because the skb is already accounted for here.
593 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
596 struct sk_msg *msg = alloc_sk_msg();
597 struct sock *sk = psock->sk;
602 skb_set_owner_r(skb, sk);
603 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
609 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
610 u32 off, u32 len, bool ingress)
613 if (!sock_writeable(psock->sk))
615 return skb_send_sock(psock->sk, skb, off, len);
617 return sk_psock_skb_ingress(psock, skb, off, len);
620 static void sk_psock_skb_state(struct sk_psock *psock,
621 struct sk_psock_work_state *state,
625 spin_lock_bh(&psock->ingress_lock);
626 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
631 sock_drop(psock->sk, skb);
633 spin_unlock_bh(&psock->ingress_lock);
636 static void sk_psock_backlog(struct work_struct *work)
638 struct sk_psock *psock = container_of(work, struct sk_psock, work);
639 struct sk_psock_work_state *state = &psock->work_state;
640 struct sk_buff *skb = NULL;
645 mutex_lock(&psock->work_mutex);
646 if (unlikely(state->skb)) {
647 spin_lock_bh(&psock->ingress_lock);
652 spin_unlock_bh(&psock->ingress_lock);
657 while ((skb = skb_dequeue(&psock->ingress_skb))) {
660 if (skb_bpf_strparser(skb)) {
661 struct strp_msg *stm = strp_msg(skb);
667 ingress = skb_bpf_ingress(skb);
668 skb_bpf_redirect_clear(skb);
671 if (!sock_flag(psock->sk, SOCK_DEAD))
672 ret = sk_psock_handle_skb(psock, skb, off,
675 if (ret == -EAGAIN) {
676 sk_psock_skb_state(psock, state, skb,
680 /* Hard errors break pipe and stop xmit. */
681 sk_psock_report_error(psock, ret ? -ret : EPIPE);
682 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
683 sock_drop(psock->sk, skb);
694 mutex_unlock(&psock->work_mutex);
697 struct sk_psock *sk_psock_init(struct sock *sk, int node)
699 struct sk_psock *psock;
702 write_lock_bh(&sk->sk_callback_lock);
704 if (sk_is_inet(sk) && inet_csk_has_ulp(sk)) {
705 psock = ERR_PTR(-EINVAL);
709 if (sk->sk_user_data) {
710 psock = ERR_PTR(-EBUSY);
714 psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
716 psock = ERR_PTR(-ENOMEM);
720 prot = READ_ONCE(sk->sk_prot);
722 psock->eval = __SK_NONE;
723 psock->sk_proto = prot;
724 psock->saved_unhash = prot->unhash;
725 psock->saved_destroy = prot->destroy;
726 psock->saved_close = prot->close;
727 psock->saved_write_space = sk->sk_write_space;
729 INIT_LIST_HEAD(&psock->link);
730 spin_lock_init(&psock->link_lock);
732 INIT_WORK(&psock->work, sk_psock_backlog);
733 mutex_init(&psock->work_mutex);
734 INIT_LIST_HEAD(&psock->ingress_msg);
735 spin_lock_init(&psock->ingress_lock);
736 skb_queue_head_init(&psock->ingress_skb);
738 sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
739 refcount_set(&psock->refcnt, 1);
741 __rcu_assign_sk_user_data_with_flags(sk, psock,
742 SK_USER_DATA_NOCOPY |
747 write_unlock_bh(&sk->sk_callback_lock);
750 EXPORT_SYMBOL_GPL(sk_psock_init);
752 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
754 struct sk_psock_link *link;
756 spin_lock_bh(&psock->link_lock);
757 link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
760 list_del(&link->list);
761 spin_unlock_bh(&psock->link_lock);
765 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
767 struct sk_msg *msg, *tmp;
769 list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
770 list_del(&msg->list);
771 sk_msg_free(psock->sk, msg);
776 static void __sk_psock_zap_ingress(struct sk_psock *psock)
780 while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) {
781 skb_bpf_redirect_clear(skb);
782 sock_drop(psock->sk, skb);
784 kfree_skb(psock->work_state.skb);
785 /* We null the skb here to ensure that calls to sk_psock_backlog
786 * do not pick up the free'd skb.
788 psock->work_state.skb = NULL;
789 __sk_psock_purge_ingress_msg(psock);
792 static void sk_psock_link_destroy(struct sk_psock *psock)
794 struct sk_psock_link *link, *tmp;
796 list_for_each_entry_safe(link, tmp, &psock->link, list) {
797 list_del(&link->list);
798 sk_psock_free_link(link);
802 void sk_psock_stop(struct sk_psock *psock, bool wait)
804 spin_lock_bh(&psock->ingress_lock);
805 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
806 sk_psock_cork_free(psock);
807 __sk_psock_zap_ingress(psock);
808 spin_unlock_bh(&psock->ingress_lock);
811 cancel_work_sync(&psock->work);
814 static void sk_psock_done_strp(struct sk_psock *psock);
816 static void sk_psock_destroy(struct work_struct *work)
818 struct sk_psock *psock = container_of(to_rcu_work(work),
819 struct sk_psock, rwork);
820 /* No sk_callback_lock since already detached. */
822 sk_psock_done_strp(psock);
824 cancel_work_sync(&psock->work);
825 mutex_destroy(&psock->work_mutex);
827 psock_progs_drop(&psock->progs);
829 sk_psock_link_destroy(psock);
830 sk_psock_cork_free(psock);
833 sock_put(psock->sk_redir);
838 void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
840 write_lock_bh(&sk->sk_callback_lock);
841 sk_psock_restore_proto(sk, psock);
842 rcu_assign_sk_user_data(sk, NULL);
843 if (psock->progs.stream_parser)
844 sk_psock_stop_strp(sk, psock);
845 else if (psock->progs.stream_verdict || psock->progs.skb_verdict)
846 sk_psock_stop_verdict(sk, psock);
847 write_unlock_bh(&sk->sk_callback_lock);
849 sk_psock_stop(psock, false);
851 INIT_RCU_WORK(&psock->rwork, sk_psock_destroy);
852 queue_rcu_work(system_wq, &psock->rwork);
854 EXPORT_SYMBOL_GPL(sk_psock_drop);
856 static int sk_psock_map_verd(int verdict, bool redir)
860 return redir ? __SK_REDIRECT : __SK_PASS;
869 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
872 struct bpf_prog *prog;
876 prog = READ_ONCE(psock->progs.msg_parser);
877 if (unlikely(!prog)) {
882 sk_msg_compute_data_pointers(msg);
884 ret = bpf_prog_run_pin_on_cpu(prog, msg);
885 ret = sk_psock_map_verd(ret, msg->sk_redir);
886 psock->apply_bytes = msg->apply_bytes;
887 if (ret == __SK_REDIRECT) {
889 sock_put(psock->sk_redir);
890 psock->sk_redir = msg->sk_redir;
891 if (!psock->sk_redir) {
895 sock_hold(psock->sk_redir);
901 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
903 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb)
905 struct sk_psock *psock_other;
906 struct sock *sk_other;
908 sk_other = skb_bpf_redirect_fetch(skb);
909 /* This error is a buggy BPF program, it returned a redirect
910 * return code, but then didn't set a redirect interface.
912 if (unlikely(!sk_other)) {
913 skb_bpf_redirect_clear(skb);
914 sock_drop(from->sk, skb);
917 psock_other = sk_psock(sk_other);
918 /* This error indicates the socket is being torn down or had another
919 * error that caused the pipe to break. We can't send a packet on
920 * a socket that is in this state so we drop the skb.
922 if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) {
923 skb_bpf_redirect_clear(skb);
924 sock_drop(from->sk, skb);
927 spin_lock_bh(&psock_other->ingress_lock);
928 if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
929 spin_unlock_bh(&psock_other->ingress_lock);
930 skb_bpf_redirect_clear(skb);
931 sock_drop(from->sk, skb);
935 skb_queue_tail(&psock_other->ingress_skb, skb);
936 schedule_work(&psock_other->work);
937 spin_unlock_bh(&psock_other->ingress_lock);
941 static void sk_psock_tls_verdict_apply(struct sk_buff *skb,
942 struct sk_psock *from, int verdict)
946 sk_psock_skb_redirect(from, skb);
955 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
957 struct bpf_prog *prog;
961 prog = READ_ONCE(psock->progs.stream_verdict);
965 skb_bpf_redirect_clear(skb);
966 ret = bpf_prog_run_pin_on_cpu(prog, skb);
967 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
970 sk_psock_tls_verdict_apply(skb, psock, ret);
974 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
976 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb,
979 struct sock *sk_other;
986 sk_other = psock->sk;
987 if (sock_flag(sk_other, SOCK_DEAD) ||
988 !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
989 skb_bpf_redirect_clear(skb);
993 skb_bpf_set_ingress(skb);
995 /* If the queue is empty then we can submit directly
996 * into the msg queue. If its not empty we have to
997 * queue work otherwise we may get OOO data. Otherwise,
998 * if sk_psock_skb_ingress errors will be handled by
999 * retrying later from workqueue.
1001 if (skb_queue_empty(&psock->ingress_skb)) {
1004 if (skb_bpf_strparser(skb)) {
1005 struct strp_msg *stm = strp_msg(skb);
1008 len = stm->full_len;
1010 err = sk_psock_skb_ingress_self(psock, skb, off, len);
1013 spin_lock_bh(&psock->ingress_lock);
1014 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
1015 skb_queue_tail(&psock->ingress_skb, skb);
1016 schedule_work(&psock->work);
1019 spin_unlock_bh(&psock->ingress_lock);
1021 skb_bpf_redirect_clear(skb);
1027 err = sk_psock_skb_redirect(psock, skb);
1032 sock_drop(psock->sk, skb);
1038 static void sk_psock_write_space(struct sock *sk)
1040 struct sk_psock *psock;
1041 void (*write_space)(struct sock *sk) = NULL;
1044 psock = sk_psock(sk);
1045 if (likely(psock)) {
1046 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
1047 schedule_work(&psock->work);
1048 write_space = psock->saved_write_space;
1055 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
1056 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
1058 struct sk_psock *psock;
1059 struct bpf_prog *prog;
1060 int ret = __SK_DROP;
1065 psock = sk_psock(sk);
1066 if (unlikely(!psock)) {
1070 prog = READ_ONCE(psock->progs.stream_verdict);
1074 skb_bpf_redirect_clear(skb);
1075 ret = bpf_prog_run_pin_on_cpu(prog, skb);
1077 skb_bpf_set_strparser(skb);
1078 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1081 sk_psock_verdict_apply(psock, skb, ret);
1086 static int sk_psock_strp_read_done(struct strparser *strp, int err)
1091 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
1093 struct sk_psock *psock = container_of(strp, struct sk_psock, strp);
1094 struct bpf_prog *prog;
1098 prog = READ_ONCE(psock->progs.stream_parser);
1100 skb->sk = psock->sk;
1101 ret = bpf_prog_run_pin_on_cpu(prog, skb);
1108 /* Called with socket lock held. */
1109 static void sk_psock_strp_data_ready(struct sock *sk)
1111 struct sk_psock *psock;
1114 psock = sk_psock(sk);
1115 if (likely(psock)) {
1116 if (tls_sw_has_ctx_rx(sk)) {
1117 psock->saved_data_ready(sk);
1119 write_lock_bh(&sk->sk_callback_lock);
1120 strp_data_ready(&psock->strp);
1121 write_unlock_bh(&sk->sk_callback_lock);
1127 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
1129 static const struct strp_callbacks cb = {
1130 .rcv_msg = sk_psock_strp_read,
1131 .read_sock_done = sk_psock_strp_read_done,
1132 .parse_msg = sk_psock_strp_parse,
1135 return strp_init(&psock->strp, sk, &cb);
1138 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
1140 if (psock->saved_data_ready)
1143 psock->saved_data_ready = sk->sk_data_ready;
1144 sk->sk_data_ready = sk_psock_strp_data_ready;
1145 sk->sk_write_space = sk_psock_write_space;
1148 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
1150 psock_set_prog(&psock->progs.stream_parser, NULL);
1152 if (!psock->saved_data_ready)
1155 sk->sk_data_ready = psock->saved_data_ready;
1156 psock->saved_data_ready = NULL;
1157 strp_stop(&psock->strp);
1160 static void sk_psock_done_strp(struct sk_psock *psock)
1162 /* Parser has been stopped */
1163 if (psock->progs.stream_parser)
1164 strp_done(&psock->strp);
1167 static void sk_psock_done_strp(struct sk_psock *psock)
1170 #endif /* CONFIG_BPF_STREAM_PARSER */
1172 static int sk_psock_verdict_recv(struct sock *sk, struct sk_buff *skb)
1174 struct sk_psock *psock;
1175 struct bpf_prog *prog;
1176 int ret = __SK_DROP;
1182 psock = sk_psock(sk);
1183 if (unlikely(!psock)) {
1188 prog = READ_ONCE(psock->progs.stream_verdict);
1190 prog = READ_ONCE(psock->progs.skb_verdict);
1193 skb_bpf_redirect_clear(skb);
1194 ret = bpf_prog_run_pin_on_cpu(prog, skb);
1195 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1197 ret = sk_psock_verdict_apply(psock, skb, ret);
1205 static void sk_psock_verdict_data_ready(struct sock *sk)
1207 struct socket *sock = sk->sk_socket;
1209 if (unlikely(!sock || !sock->ops || !sock->ops->read_skb))
1211 sock->ops->read_skb(sk, sk_psock_verdict_recv);
1214 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
1216 if (psock->saved_data_ready)
1219 psock->saved_data_ready = sk->sk_data_ready;
1220 sk->sk_data_ready = sk_psock_verdict_data_ready;
1221 sk->sk_write_space = sk_psock_write_space;
1224 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
1226 psock_set_prog(&psock->progs.stream_verdict, NULL);
1227 psock_set_prog(&psock->progs.skb_verdict, NULL);
1229 if (!psock->saved_data_ready)
1232 sk->sk_data_ready = psock->saved_data_ready;
1233 psock->saved_data_ready = NULL;