1 // SPDX-License-Identifier: GPL-2.0-or-later
6 * deal of code from the sparc and intel versions.
10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/sched/topology.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/err.h>
28 #include <linux/device.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/profile.h>
33 #include <linux/processor.h>
34 #include <linux/random.h>
35 #include <linux/stackprotector.h>
36 #include <linux/pgtable.h>
37 #include <linux/clockchips.h>
38 #include <linux/kexec.h>
40 #include <asm/ptrace.h>
41 #include <linux/atomic.h>
43 #include <asm/hw_irq.h>
44 #include <asm/kvm_ppc.h>
45 #include <asm/dbell.h>
49 #include <asm/machdep.h>
50 #include <asm/cputhreads.h>
51 #include <asm/cputable.h>
53 #include <asm/vdso_datapage.h>
58 #include <asm/debug.h>
59 #include <asm/cpu_has_feature.h>
60 #include <asm/ftrace.h>
62 #include <asm/fadump.h>
64 #include <trace/events/ipi.h>
68 #define DBG(fmt...) udbg_printf(fmt)
73 #ifdef CONFIG_HOTPLUG_CPU
74 /* State of each CPU during hotplug phases */
75 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
78 struct task_struct *secondary_current;
80 bool coregroup_enabled;
81 bool thread_group_shares_l2;
82 bool thread_group_shares_l3;
84 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
85 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
86 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
87 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
88 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
91 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
93 EXPORT_SYMBOL_GPL(has_big_cores);
96 #ifdef CONFIG_SCHED_SMT
104 #define MAX_THREAD_LIST_SIZE 8
105 #define THREAD_GROUP_SHARE_L1 1
106 #define THREAD_GROUP_SHARE_L2_L3 2
107 struct thread_groups {
108 unsigned int property;
109 unsigned int nr_groups;
110 unsigned int threads_per_group;
111 unsigned int thread_list[MAX_THREAD_LIST_SIZE];
114 /* Maximum number of properties that groups of threads within a core can share */
115 #define MAX_THREAD_GROUP_PROPERTIES 2
117 struct thread_groups_list {
118 unsigned int nr_properties;
119 struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
122 static struct thread_groups_list tgl[NR_CPUS] __initdata;
124 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
125 * the set its siblings that share the L1-cache.
127 DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
130 * On some big-cores system, thread_group_l2_cache_map for each CPU
131 * corresponds to the set its siblings within the core that share the
134 DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
137 * On P10, thread_group_l3_cache_map for each CPU is equal to the
138 * thread_group_l2_cache_map
140 DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);
142 /* SMP operations for this machine */
143 struct smp_ops_t *smp_ops;
145 /* Can't be static due to PowerMac hackery */
146 volatile unsigned int cpu_callin_map[NR_CPUS];
148 int smt_enabled_at_boot = 1;
151 * Returns 1 if the specified cpu should be brought up during boot.
152 * Used to inhibit booting threads if they've been disabled or
153 * limited on the command line
155 int smp_generic_cpu_bootable(unsigned int nr)
157 /* Special case - we inhibit secondary thread startup
158 * during boot if the user requests it.
160 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
161 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
163 if (smt_enabled_at_boot
164 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
173 int smp_generic_kick_cpu(int nr)
175 if (nr < 0 || nr >= nr_cpu_ids)
179 * The processor is currently spinning, waiting for the
180 * cpu_start field to become non-zero After we set cpu_start,
181 * the processor will continue on to secondary_start
183 if (!paca_ptrs[nr]->cpu_start) {
184 paca_ptrs[nr]->cpu_start = 1;
189 #ifdef CONFIG_HOTPLUG_CPU
191 * Ok it's not there, so it might be soft-unplugged, let's
192 * try to bring it back
194 generic_set_cpu_up(nr);
196 smp_send_reschedule(nr);
197 #endif /* CONFIG_HOTPLUG_CPU */
201 #endif /* CONFIG_PPC64 */
203 static irqreturn_t call_function_action(int irq, void *data)
205 generic_smp_call_function_interrupt();
209 static irqreturn_t reschedule_action(int irq, void *data)
215 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
216 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
218 timer_broadcast_interrupt();
223 #ifdef CONFIG_NMI_IPI
224 static irqreturn_t nmi_ipi_action(int irq, void *data)
226 smp_handle_nmi_ipi(get_irq_regs());
231 static irq_handler_t smp_ipi_action[] = {
232 [PPC_MSG_CALL_FUNCTION] = call_function_action,
233 [PPC_MSG_RESCHEDULE] = reschedule_action,
234 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
235 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
237 #ifdef CONFIG_NMI_IPI
238 [PPC_MSG_NMI_IPI] = nmi_ipi_action,
243 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
244 * than going through the call function infrastructure, and strongly
245 * serialized, so it is more appropriate for debugging.
247 const char *smp_ipi_name[] = {
248 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
249 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
250 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
251 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
253 #ifdef CONFIG_NMI_IPI
254 [PPC_MSG_NMI_IPI] = "nmi ipi",
258 /* optional function to request ipi, for controllers with >= 4 ipis */
259 int smp_request_message_ipi(int virq, int msg)
263 if (msg < 0 || msg > PPC_MSG_NMI_IPI)
265 #ifndef CONFIG_NMI_IPI
266 if (msg == PPC_MSG_NMI_IPI)
270 err = request_irq(virq, smp_ipi_action[msg],
271 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
272 smp_ipi_name[msg], NULL);
273 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
274 virq, smp_ipi_name[msg], err);
279 #ifdef CONFIG_PPC_SMP_MUXED_IPI
280 struct cpu_messages {
281 long messages; /* current messages */
283 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
285 void smp_muxed_ipi_set_message(int cpu, int msg)
287 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
288 char *message = (char *)&info->messages;
291 * Order previous accesses before accesses in the IPI handler.
294 WRITE_ONCE(message[msg], 1);
297 void smp_muxed_ipi_message_pass(int cpu, int msg)
299 smp_muxed_ipi_set_message(cpu, msg);
302 * cause_ipi functions are required to include a full barrier
303 * before doing whatever causes the IPI.
305 smp_ops->cause_ipi(cpu);
308 #ifdef __BIG_ENDIAN__
309 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
311 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
314 irqreturn_t smp_ipi_demux(void)
316 mb(); /* order any irq clear */
318 return smp_ipi_demux_relaxed();
321 /* sync-free variant. Callers should ensure synchronization */
322 irqreturn_t smp_ipi_demux_relaxed(void)
324 struct cpu_messages *info;
327 info = this_cpu_ptr(&ipi_message);
329 all = xchg(&info->messages, 0);
330 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
332 * Must check for PPC_MSG_RM_HOST_ACTION messages
333 * before PPC_MSG_CALL_FUNCTION messages because when
334 * a VM is destroyed, we call kick_all_cpus_sync()
335 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
336 * messages have completed before we free any VCPUs.
338 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
339 kvmppc_xics_ipi_action();
341 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
342 generic_smp_call_function_interrupt();
343 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
345 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
346 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
347 timer_broadcast_interrupt();
349 #ifdef CONFIG_NMI_IPI
350 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
351 nmi_ipi_action(0, NULL);
353 } while (READ_ONCE(info->messages));
357 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
359 static inline void do_message_pass(int cpu, int msg)
361 if (smp_ops->message_pass)
362 smp_ops->message_pass(cpu, msg);
363 #ifdef CONFIG_PPC_SMP_MUXED_IPI
365 smp_muxed_ipi_message_pass(cpu, msg);
369 void arch_smp_send_reschedule(int cpu)
372 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
374 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);
376 void arch_send_call_function_single_ipi(int cpu)
378 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
381 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
385 for_each_cpu(cpu, mask)
386 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
389 #ifdef CONFIG_NMI_IPI
394 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
395 * a running system. They can be used for crash, debug, halt/reboot, etc.
397 * The IPI call waits with interrupts disabled until all targets enter the
398 * NMI handler, then returns. Subsequent IPIs can be issued before targets
399 * have returned from their handlers, so there is no guarantee about
400 * concurrency or re-entrancy.
402 * A new NMI can be issued before all targets exit the handler.
404 * The IPI call may time out without all targets entering the NMI handler.
405 * In that case, there is some logic to recover (and ignore subsequent
406 * NMI interrupts that may eventually be raised), but the platform interrupt
407 * handler may not be able to distinguish this from other exception causes,
408 * which may cause a crash.
411 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
412 static struct cpumask nmi_ipi_pending_mask;
413 static bool nmi_ipi_busy = false;
414 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
416 noinstr static void nmi_ipi_lock_start(unsigned long *flags)
418 raw_local_irq_save(*flags);
420 while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
421 raw_local_irq_restore(*flags);
422 spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0);
423 raw_local_irq_save(*flags);
428 noinstr static void nmi_ipi_lock(void)
430 while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
431 spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0);
434 noinstr static void nmi_ipi_unlock(void)
437 WARN_ON(raw_atomic_read(&__nmi_ipi_lock) != 1);
438 raw_atomic_set(&__nmi_ipi_lock, 0);
441 noinstr static void nmi_ipi_unlock_end(unsigned long *flags)
444 raw_local_irq_restore(*flags);
448 * Platform NMI handler calls this to ack
450 noinstr int smp_handle_nmi_ipi(struct pt_regs *regs)
452 void (*fn)(struct pt_regs *) = NULL;
454 int me = raw_smp_processor_id();
458 * Unexpected NMIs are possible here because the interrupt may not
459 * be able to distinguish NMI IPIs from other types of NMIs, or
460 * because the caller may have timed out.
462 nmi_ipi_lock_start(&flags);
463 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
464 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
465 fn = READ_ONCE(nmi_ipi_function);
469 nmi_ipi_unlock_end(&flags);
477 static void do_smp_send_nmi_ipi(int cpu, bool safe)
479 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
483 do_message_pass(cpu, PPC_MSG_NMI_IPI);
487 for_each_online_cpu(c) {
488 if (c == raw_smp_processor_id())
490 do_message_pass(c, PPC_MSG_NMI_IPI);
496 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
497 * - fn is the target callback function.
498 * - delay_us > 0 is the delay before giving up waiting for targets to
499 * begin executing the handler, == 0 specifies indefinite delay.
501 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
502 u64 delay_us, bool safe)
505 int me = raw_smp_processor_id();
509 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
511 if (unlikely(!smp_ops))
514 nmi_ipi_lock_start(&flags);
515 while (nmi_ipi_busy) {
516 nmi_ipi_unlock_end(&flags);
517 spin_until_cond(!nmi_ipi_busy);
518 nmi_ipi_lock_start(&flags);
521 nmi_ipi_function = fn;
523 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
527 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
528 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
530 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
535 /* Interrupts remain hard disabled */
537 do_smp_send_nmi_ipi(cpu, safe);
540 /* nmi_ipi_busy is set here, so unlock/lock is okay */
541 while (!cpumask_empty(&nmi_ipi_pending_mask)) {
552 if (!cpumask_empty(&nmi_ipi_pending_mask)) {
553 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
555 cpumask_clear(&nmi_ipi_pending_mask);
558 nmi_ipi_function = NULL;
559 nmi_ipi_busy = false;
561 nmi_ipi_unlock_end(&flags);
566 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
568 return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
571 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
573 return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
575 #endif /* CONFIG_NMI_IPI */
577 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
578 void tick_broadcast(const struct cpumask *mask)
582 for_each_cpu(cpu, mask)
583 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
587 #ifdef CONFIG_DEBUGGER
588 static void debugger_ipi_callback(struct pt_regs *regs)
593 void smp_send_debugger_break(void)
595 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
599 #ifdef CONFIG_KEXEC_CORE
600 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
604 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
605 if (kdump_in_progress() && crash_wake_offline) {
606 for_each_present_cpu(cpu) {
610 * crash_ipi_callback will wait for
611 * all cpus, including offline CPUs.
612 * We don't care about nmi_ipi_function.
613 * Offline cpus will jump straight into
614 * crash_ipi_callback, we can skip the
615 * entire NMI dance and waiting for
616 * cpus to clear pending mask, etc.
618 do_smp_send_nmi_ipi(cpu, false);
624 void crash_smp_send_stop(void)
626 static bool stopped = false;
629 * In case of fadump, register data for all CPUs is captured by f/w
630 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before
631 * this rtas call to avoid tricky post processing of those CPUs'
634 if (should_fadump_crash())
642 #ifdef CONFIG_KEXEC_CORE
643 if (kexec_crash_image) {
644 crash_kexec_prepare();
652 #ifdef CONFIG_NMI_IPI
653 static void nmi_stop_this_cpu(struct pt_regs *regs)
656 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
658 set_cpu_online(smp_processor_id(), false);
665 void smp_send_stop(void)
667 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
670 #else /* CONFIG_NMI_IPI */
672 static void stop_this_cpu(void *dummy)
677 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
678 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
679 * to know other CPUs are offline before it breaks locks to flush
680 * printk buffers, in case we panic()ed while holding the lock.
682 set_cpu_online(smp_processor_id(), false);
689 void smp_send_stop(void)
691 static bool stopped = false;
694 * Prevent waiting on csd lock from a previous smp_send_stop.
695 * This is racy, but in general callers try to do the right
696 * thing and only fire off one smp_send_stop (e.g., see
704 smp_call_function(stop_this_cpu, NULL, 0);
706 #endif /* CONFIG_NMI_IPI */
708 static struct task_struct *current_set[NR_CPUS];
710 static void smp_store_cpu_info(int id)
712 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
713 #ifdef CONFIG_PPC_E500
714 per_cpu(next_tlbcam_idx, id)
715 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
720 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
721 * rather than just passing around the cpumask we pass around a function that
722 * returns the that cpumask for the given CPU.
724 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
726 cpumask_set_cpu(i, get_cpumask(j));
727 cpumask_set_cpu(j, get_cpumask(i));
730 #ifdef CONFIG_HOTPLUG_CPU
731 static void set_cpus_unrelated(int i, int j,
732 struct cpumask *(*get_cpumask)(int))
734 cpumask_clear_cpu(i, get_cpumask(j));
735 cpumask_clear_cpu(j, get_cpumask(i));
740 * Extends set_cpus_related. Instead of setting one CPU at a time in
741 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
743 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
744 struct cpumask *(*dstmask)(int))
746 struct cpumask *mask;
750 for_each_cpu(k, srcmask(i))
751 cpumask_or(dstmask(k), dstmask(k), mask);
757 for_each_cpu(k, srcmask(j))
758 cpumask_or(dstmask(k), dstmask(k), mask);
762 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
763 * property for the CPU device node @dn and stores
764 * the parsed output in the thread_groups_list
767 * @dn: The device node of the CPU device.
768 * @tglp: Pointer to a thread group list structure into which the parsed
769 * output of "ibm,thread-groups" is stored.
771 * ibm,thread-groups[0..N-1] array defines which group of threads in
772 * the CPU-device node can be grouped together based on the property.
774 * This array can represent thread groupings for multiple properties.
776 * ibm,thread-groups[i + 0] tells us the property based on which the
777 * threads are being grouped together. If this value is 1, it implies
778 * that the threads in the same group share L1, translation cache. If
779 * the value is 2, it implies that the threads in the same group share
782 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
783 * property ibm,thread-groups[i]
785 * ibm,thread-groups[i+2] tells us the number of threads in each such
787 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
789 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
790 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
794 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
795 * This can be decomposed up into two consecutive arrays:
796 * a) [1,2,4,8,10,12,14,9,11,13,15]
797 * b) [2,2,4,8,10,12,14,9,11,13,15]
801 * a) provides information of Property "1" being shared by "2" groups,
802 * each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
803 * the first group is {8,10,12,14} and the
804 * "ibm,ppc-interrupt-server#s" of the second group is
805 * {9,11,13,15}. Property "1" is indicative of the thread in the
806 * group sharing L1 cache, translation cache and Instruction Data
809 * b) provides information of Property "2" being shared by "2" groups,
810 * each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
811 * the first group is {8,10,12,14} and the
812 * "ibm,ppc-interrupt-server#s" of the second group is
813 * {9,11,13,15}. Property "2" indicates that the threads in each
814 * group share the L2-cache.
816 * Returns 0 on success, -EINVAL if the property does not exist,
817 * -ENODATA if property does not have a value, and -EOVERFLOW if the
818 * property data isn't large enough.
820 static int parse_thread_groups(struct device_node *dn,
821 struct thread_groups_list *tglp)
823 unsigned int property_idx = 0;
824 u32 *thread_group_array;
825 size_t total_threads;
830 count = of_property_count_u32_elems(dn, "ibm,thread-groups");
831 thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
832 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
833 thread_group_array, count);
837 while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
839 struct thread_groups *tg = &tglp->property_tgs[property_idx++];
841 tg->property = thread_group_array[i];
842 tg->nr_groups = thread_group_array[i + 1];
843 tg->threads_per_group = thread_group_array[i + 2];
844 total_threads = tg->nr_groups * tg->threads_per_group;
846 thread_list = &thread_group_array[i + 3];
848 for (j = 0; j < total_threads; j++)
849 tg->thread_list[j] = thread_list[j];
850 i = i + 3 + total_threads;
853 tglp->nr_properties = property_idx;
856 kfree(thread_group_array);
861 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
862 * that @cpu belongs to.
864 * @cpu : The logical CPU whose thread group is being searched.
865 * @tg : The thread-group structure of the CPU node which @cpu belongs
868 * Returns the index to tg->thread_list that points to the start
869 * of the thread_group that @cpu belongs to.
871 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
874 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
876 int hw_cpu_id = get_hard_smp_processor_id(cpu);
879 for (i = 0; i < tg->nr_groups; i++) {
880 int group_start = i * tg->threads_per_group;
882 for (j = 0; j < tg->threads_per_group; j++) {
883 int idx = group_start + j;
885 if (tg->thread_list[idx] == hw_cpu_id)
893 static struct thread_groups *__init get_thread_groups(int cpu,
897 struct device_node *dn = of_get_cpu_node(cpu, NULL);
898 struct thread_groups_list *cpu_tgl = &tgl[cpu];
899 struct thread_groups *tg = NULL;
908 if (!cpu_tgl->nr_properties) {
909 *err = parse_thread_groups(dn, cpu_tgl);
914 for (i = 0; i < cpu_tgl->nr_properties; i++) {
915 if (cpu_tgl->property_tgs[i].property == group_property) {
916 tg = &cpu_tgl->property_tgs[i];
928 static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg,
929 int cpu, int cpu_group_start)
931 int first_thread = cpu_first_thread_sibling(cpu);
934 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
936 for (i = first_thread; i < first_thread + threads_per_core; i++) {
937 int i_group_start = get_cpu_thread_group_start(i, tg);
939 if (unlikely(i_group_start == -1)) {
944 if (i_group_start == cpu_group_start)
945 cpumask_set_cpu(i, *mask);
951 static int __init init_thread_group_cache_map(int cpu, int cache_property)
954 int cpu_group_start = -1, err = 0;
955 struct thread_groups *tg = NULL;
956 cpumask_var_t *mask = NULL;
958 if (cache_property != THREAD_GROUP_SHARE_L1 &&
959 cache_property != THREAD_GROUP_SHARE_L2_L3)
962 tg = get_thread_groups(cpu, cache_property, &err);
967 cpu_group_start = get_cpu_thread_group_start(cpu, tg);
969 if (unlikely(cpu_group_start == -1)) {
974 if (cache_property == THREAD_GROUP_SHARE_L1) {
975 mask = &per_cpu(thread_group_l1_cache_map, cpu);
976 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
978 else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
979 mask = &per_cpu(thread_group_l2_cache_map, cpu);
980 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
981 mask = &per_cpu(thread_group_l3_cache_map, cpu);
982 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
989 static bool shared_caches;
991 #ifdef CONFIG_SCHED_SMT
992 /* cpumask of CPUs with asymmetric SMT dependency */
993 static int powerpc_smt_flags(void)
995 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
997 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
998 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
999 flags |= SD_ASYM_PACKING;
1006 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1007 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1008 * since the migrated task remains cache hot. We want to take advantage of this
1009 * at the scheduler level so an extra topology level is required.
1011 static int powerpc_shared_cache_flags(void)
1013 return SD_SHARE_PKG_RESOURCES;
1017 * We can't just pass cpu_l2_cache_mask() directly because
1018 * returns a non-const pointer and the compiler barfs on that.
1020 static const struct cpumask *shared_cache_mask(int cpu)
1022 return per_cpu(cpu_l2_cache_map, cpu);
1025 #ifdef CONFIG_SCHED_SMT
1026 static const struct cpumask *smallcore_smt_mask(int cpu)
1028 return cpu_smallcore_mask(cpu);
1032 static struct cpumask *cpu_coregroup_mask(int cpu)
1034 return per_cpu(cpu_coregroup_map, cpu);
1037 static bool has_coregroup_support(void)
1039 return coregroup_enabled;
1042 static const struct cpumask *cpu_mc_mask(int cpu)
1044 return cpu_coregroup_mask(cpu);
1047 static struct sched_domain_topology_level powerpc_topology[] = {
1048 #ifdef CONFIG_SCHED_SMT
1049 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1051 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1052 { cpu_mc_mask, SD_INIT_NAME(MC) },
1053 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1057 static int __init init_big_cores(void)
1061 for_each_possible_cpu(cpu) {
1062 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
1067 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1072 has_big_cores = true;
1074 for_each_possible_cpu(cpu) {
1075 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);
1081 thread_group_shares_l2 = true;
1082 thread_group_shares_l3 = true;
1083 pr_debug("L2/L3 cache only shared by the threads in the small core\n");
1088 void __init smp_prepare_cpus(unsigned int max_cpus)
1092 DBG("smp_prepare_cpus\n");
1095 * setup_cpu may need to be called on the boot cpu. We haven't
1096 * spun any cpus up but lets be paranoid.
1098 BUG_ON(boot_cpuid != smp_processor_id());
1100 /* Fixup boot cpu */
1101 smp_store_cpu_info(boot_cpuid);
1102 cpu_callin_map[boot_cpuid] = 1;
1104 for_each_possible_cpu(cpu) {
1105 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1106 GFP_KERNEL, cpu_to_node(cpu));
1107 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1108 GFP_KERNEL, cpu_to_node(cpu));
1109 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1110 GFP_KERNEL, cpu_to_node(cpu));
1111 if (has_coregroup_support())
1112 zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1113 GFP_KERNEL, cpu_to_node(cpu));
1117 * numa_node_id() works after this.
1119 if (cpu_present(cpu)) {
1120 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1121 set_cpu_numa_mem(cpu,
1122 local_memory_node(numa_cpu_lookup_table[cpu]));
1127 /* Init the cpumasks so the boot CPU is related to itself */
1128 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
1129 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
1130 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
1132 if (has_coregroup_support())
1133 cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1136 if (has_big_cores) {
1137 cpumask_set_cpu(boot_cpuid,
1138 cpu_smallcore_mask(boot_cpuid));
1141 if (cpu_to_chip_id(boot_cpuid) != -1) {
1142 int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1145 * All threads of a core will all belong to the same core,
1146 * chip_id_lookup_table will have one entry per core.
1147 * Assumption: if boot_cpuid doesn't have a chip-id, then no
1148 * other CPUs, will also not have chip-id.
1150 chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
1151 if (chip_id_lookup_table)
1152 memset(chip_id_lookup_table, -1, sizeof(int) * idx);
1155 if (smp_ops && smp_ops->probe)
1159 void smp_prepare_boot_cpu(void)
1161 BUG_ON(smp_processor_id() != boot_cpuid);
1163 paca_ptrs[boot_cpuid]->__current = current;
1165 set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
1166 current_set[boot_cpuid] = current;
1169 #ifdef CONFIG_HOTPLUG_CPU
1171 int generic_cpu_disable(void)
1173 unsigned int cpu = smp_processor_id();
1175 if (cpu == boot_cpuid)
1178 set_cpu_online(cpu, false);
1180 vdso_data->processorCount--;
1182 /* Update affinity of all IRQs previously aimed at this CPU */
1183 irq_migrate_all_off_this_cpu();
1186 * Depending on the details of the interrupt controller, it's possible
1187 * that one of the interrupts we just migrated away from this CPU is
1188 * actually already pending on this CPU. If we leave it in that state
1189 * the interrupt will never be EOI'ed, and will never fire again. So
1190 * temporarily enable interrupts here, to allow any pending interrupt to
1191 * be received (and EOI'ed), before we take this CPU offline.
1195 local_irq_disable();
1200 void generic_cpu_die(unsigned int cpu)
1204 for (i = 0; i < 100; i++) {
1206 if (is_cpu_dead(cpu))
1210 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1213 void generic_set_cpu_dead(unsigned int cpu)
1215 per_cpu(cpu_state, cpu) = CPU_DEAD;
1219 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1220 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1221 * which makes the delay in generic_cpu_die() not happen.
1223 void generic_set_cpu_up(unsigned int cpu)
1225 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1228 int generic_check_cpu_restart(unsigned int cpu)
1230 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1233 int is_cpu_dead(unsigned int cpu)
1235 return per_cpu(cpu_state, cpu) == CPU_DEAD;
1238 static bool secondaries_inhibited(void)
1240 return kvm_hv_mode_active();
1243 #else /* HOTPLUG_CPU */
1245 #define secondaries_inhibited() 0
1249 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1252 paca_ptrs[cpu]->__current = idle;
1253 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1254 THREAD_SIZE - STACK_FRAME_MIN_SIZE;
1256 task_thread_info(idle)->cpu = cpu;
1257 secondary_current = current_set[cpu] = idle;
1260 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1262 const unsigned long boot_spin_ms = 5 * MSEC_PER_SEC;
1263 const bool booting = system_state < SYSTEM_RUNNING;
1264 const unsigned long hp_spin_ms = 1;
1265 unsigned long deadline;
1267 const unsigned long spin_wait_ms = booting ? boot_spin_ms : hp_spin_ms;
1270 * Don't allow secondary threads to come online if inhibited
1272 if (threads_per_core > 1 && secondaries_inhibited() &&
1273 cpu_thread_in_subcore(cpu))
1276 if (smp_ops == NULL ||
1277 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1280 cpu_idle_thread_init(cpu, tidle);
1283 * The platform might need to allocate resources prior to bringing
1286 if (smp_ops->prepare_cpu) {
1287 rc = smp_ops->prepare_cpu(cpu);
1292 /* Make sure callin-map entry is 0 (can be leftover a CPU
1295 cpu_callin_map[cpu] = 0;
1297 /* The information for processor bringup must
1298 * be written out to main store before we release
1304 DBG("smp: kicking cpu %d\n", cpu);
1305 rc = smp_ops->kick_cpu(cpu);
1307 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1312 * At boot time, simply spin on the callin word until the
1315 * At run time, spin for an optimistic amount of time to avoid
1316 * sleeping in the common case.
1318 deadline = jiffies + msecs_to_jiffies(spin_wait_ms);
1319 spin_until_cond(cpu_callin_map[cpu] || time_is_before_jiffies(deadline));
1321 if (!cpu_callin_map[cpu] && system_state >= SYSTEM_RUNNING) {
1322 const unsigned long sleep_interval_us = 10 * USEC_PER_MSEC;
1323 const unsigned long sleep_wait_ms = 100 * MSEC_PER_SEC;
1325 deadline = jiffies + msecs_to_jiffies(sleep_wait_ms);
1326 while (!cpu_callin_map[cpu] && time_is_after_jiffies(deadline))
1327 fsleep(sleep_interval_us);
1330 if (!cpu_callin_map[cpu]) {
1331 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1335 DBG("Processor %u found.\n", cpu);
1337 if (smp_ops->give_timebase)
1338 smp_ops->give_timebase();
1340 /* Wait until cpu puts itself in the online & active maps */
1341 spin_until_cond(cpu_online(cpu));
1346 /* Return the value of the reg property corresponding to the given
1349 int cpu_to_core_id(int cpu)
1351 struct device_node *np;
1354 np = of_get_cpu_node(cpu, NULL);
1358 id = of_get_cpu_hwid(np, 0);
1363 EXPORT_SYMBOL_GPL(cpu_to_core_id);
1365 /* Helper routines for cpu to core mapping */
1366 int cpu_core_index_of_thread(int cpu)
1368 return cpu >> threads_shift;
1370 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1372 int cpu_first_thread_of_core(int core)
1374 return core << threads_shift;
1376 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1378 /* Must be called when no change can occur to cpu_present_mask,
1379 * i.e. during cpu online or offline.
1381 static struct device_node *cpu_to_l2cache(int cpu)
1383 struct device_node *np;
1384 struct device_node *cache;
1386 if (!cpu_present(cpu))
1389 np = of_get_cpu_node(cpu, NULL);
1393 cache = of_find_next_cache_node(np);
1400 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
1402 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1403 struct device_node *l2_cache, *np;
1407 submask_fn = cpu_smallcore_mask;
1410 * If the threads in a thread-group share L2 cache, then the
1411 * L2-mask can be obtained from thread_group_l2_cache_map.
1413 if (thread_group_shares_l2) {
1414 cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1416 for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1418 set_cpus_related(i, cpu, cpu_l2_cache_mask);
1421 /* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1422 if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1423 !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1424 pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1431 l2_cache = cpu_to_l2cache(cpu);
1432 if (!l2_cache || !*mask) {
1433 /* Assume only core siblings share cache with this CPU */
1434 for_each_cpu(i, cpu_sibling_mask(cpu))
1435 set_cpus_related(cpu, i, cpu_l2_cache_mask);
1440 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1442 /* Update l2-cache mask with all the CPUs that are part of submask */
1443 or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1445 /* Skip all CPUs already part of current CPU l2-cache mask */
1446 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
1448 for_each_cpu(i, *mask) {
1450 * when updating the marks the current CPU has not been marked
1451 * online, but we need to update the cache masks
1453 np = cpu_to_l2cache(i);
1455 /* Skip all CPUs already part of current CPU l2-cache */
1456 if (np == l2_cache) {
1457 or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
1458 cpumask_andnot(*mask, *mask, submask_fn(i));
1460 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
1465 of_node_put(l2_cache);
1470 #ifdef CONFIG_HOTPLUG_CPU
1471 static void remove_cpu_from_masks(int cpu)
1473 struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
1476 unmap_cpu_from_node(cpu);
1479 mask_fn = cpu_l2_cache_mask;
1481 for_each_cpu(i, mask_fn(cpu)) {
1482 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1483 set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1485 set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1488 for_each_cpu(i, cpu_core_mask(cpu))
1489 set_cpus_unrelated(cpu, i, cpu_core_mask);
1491 if (has_coregroup_support()) {
1492 for_each_cpu(i, cpu_coregroup_mask(cpu))
1493 set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
1498 static inline void add_cpu_to_smallcore_masks(int cpu)
1505 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1507 for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
1509 set_cpus_related(i, cpu, cpu_smallcore_mask);
1513 static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
1515 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1516 int coregroup_id = cpu_to_coregroup_id(cpu);
1520 submask_fn = cpu_l2_cache_mask;
1523 /* Assume only siblings are part of this CPU's coregroup */
1524 for_each_cpu(i, submask_fn(cpu))
1525 set_cpus_related(cpu, i, cpu_coregroup_mask);
1530 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1532 /* Update coregroup mask with all the CPUs that are part of submask */
1533 or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1535 /* Skip all CPUs already part of coregroup mask */
1536 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
1538 for_each_cpu(i, *mask) {
1539 /* Skip all CPUs not part of this coregroup */
1540 if (coregroup_id == cpu_to_coregroup_id(i)) {
1541 or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
1542 cpumask_andnot(*mask, *mask, submask_fn(i));
1544 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
1549 static void add_cpu_to_masks(int cpu)
1551 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1552 int first_thread = cpu_first_thread_sibling(cpu);
1559 * This CPU will not be in the online mask yet so we need to manually
1560 * add it to it's own thread sibling mask.
1562 map_cpu_to_node(cpu, cpu_to_node(cpu));
1563 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1564 cpumask_set_cpu(cpu, cpu_core_mask(cpu));
1566 for (i = first_thread; i < first_thread + threads_per_core; i++)
1568 set_cpus_related(i, cpu, cpu_sibling_mask);
1570 add_cpu_to_smallcore_masks(cpu);
1572 /* In CPU-hotplug path, hence use GFP_ATOMIC */
1573 ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
1574 update_mask_by_l2(cpu, &mask);
1576 if (has_coregroup_support())
1577 update_coregroup_mask(cpu, &mask);
1579 if (chip_id_lookup_table && ret)
1580 chip_id = cpu_to_chip_id(cpu);
1583 submask_fn = cpu_l2_cache_mask;
1585 /* Update core_mask with all the CPUs that are part of submask */
1586 or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
1588 /* Skip all CPUs already part of current CPU core mask */
1589 cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
1591 /* If chip_id is -1; limit the cpu_core_mask to within DIE*/
1593 cpumask_and(mask, mask, cpu_cpu_mask(cpu));
1595 for_each_cpu(i, mask) {
1596 if (chip_id == cpu_to_chip_id(i)) {
1597 or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
1598 cpumask_andnot(mask, mask, submask_fn(i));
1600 cpumask_andnot(mask, mask, cpu_core_mask(i));
1604 free_cpumask_var(mask);
1607 /* Activate a secondary processor. */
1608 __no_stack_protector
1609 void start_secondary(void *unused)
1611 unsigned int cpu = raw_smp_processor_id();
1613 /* PPC64 calls setup_kup() in early_setup_secondary() */
1614 if (IS_ENABLED(CONFIG_PPC32))
1617 mmgrab_lazy_tlb(&init_mm);
1618 current->active_mm = &init_mm;
1620 smp_store_cpu_info(cpu);
1621 set_dec(tb_ticks_per_jiffy);
1622 rcu_cpu_starting(cpu);
1623 cpu_callin_map[cpu] = 1;
1625 if (smp_ops->setup_cpu)
1626 smp_ops->setup_cpu(cpu);
1627 if (smp_ops->take_timebase)
1628 smp_ops->take_timebase();
1630 secondary_cpu_time_init();
1633 if (system_state == SYSTEM_RUNNING)
1634 vdso_data->processorCount++;
1638 set_numa_node(numa_cpu_lookup_table[cpu]);
1639 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1641 /* Update topology CPU masks */
1642 add_cpu_to_masks(cpu);
1645 * Check for any shared caches. Note that this must be done on a
1646 * per-core basis because one core in the pair might be disabled.
1648 if (!shared_caches) {
1649 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1650 struct cpumask *mask = cpu_l2_cache_mask(cpu);
1653 sibling_mask = cpu_smallcore_mask;
1655 if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1656 shared_caches = true;
1660 notify_cpu_starting(cpu);
1661 set_cpu_online(cpu, true);
1663 boot_init_stack_canary();
1667 /* We can enable ftrace for secondary cpus now */
1668 this_cpu_enable_ftrace();
1670 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1675 static void __init fixup_topology(void)
1679 #ifdef CONFIG_SCHED_SMT
1680 if (has_big_cores) {
1681 pr_info("Big cores detected but using small core scheduling\n");
1682 powerpc_topology[smt_idx].mask = smallcore_smt_mask;
1686 if (!has_coregroup_support())
1687 powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask;
1690 * Try to consolidate topology levels here instead of
1691 * allowing scheduler to degenerate.
1692 * - Dont consolidate if masks are different.
1693 * - Dont consolidate if sd_flags exists and are different.
1695 for (i = 1; i <= die_idx; i++) {
1696 if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask)
1699 if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags &&
1700 powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags)
1703 if (!powerpc_topology[i - 1].sd_flags)
1704 powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags;
1706 powerpc_topology[i].mask = powerpc_topology[i + 1].mask;
1707 powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags;
1708 #ifdef CONFIG_SCHED_DEBUG
1709 powerpc_topology[i].name = powerpc_topology[i + 1].name;
1714 void __init smp_cpus_done(unsigned int max_cpus)
1717 * We are running pinned to the boot CPU, see rest_init().
1719 if (smp_ops && smp_ops->setup_cpu)
1720 smp_ops->setup_cpu(boot_cpuid);
1722 if (smp_ops && smp_ops->bringup_done)
1723 smp_ops->bringup_done();
1725 dump_numa_cpu_topology();
1728 set_sched_topology(powerpc_topology);
1731 #ifdef CONFIG_HOTPLUG_CPU
1732 int __cpu_disable(void)
1734 int cpu = smp_processor_id();
1737 if (!smp_ops->cpu_disable)
1740 this_cpu_disable_ftrace();
1742 err = smp_ops->cpu_disable();
1746 /* Update sibling maps */
1747 remove_cpu_from_masks(cpu);
1752 void __cpu_die(unsigned int cpu)
1754 if (smp_ops->cpu_die)
1755 smp_ops->cpu_die(cpu);
1758 void __noreturn arch_cpu_idle_dead(void)
1761 * Disable on the down path. This will be re-enabled by
1762 * start_secondary() via start_secondary_resume() below
1764 this_cpu_disable_ftrace();
1766 if (smp_ops->cpu_offline_self)
1767 smp_ops->cpu_offline_self();
1769 /* If we return, we re-enter start_secondary */
1770 start_secondary_resume();