1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/fs/binfmt_elf.c
5 * These are the functions used to load ELF format executables as used
6 * on SVr4 machines. Information on the format may be found in the book
7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
13 #include <linux/module.h>
14 #include <linux/kernel.h>
17 #include <linux/mman.h>
18 #include <linux/errno.h>
19 #include <linux/signal.h>
20 #include <linux/binfmts.h>
21 #include <linux/string.h>
22 #include <linux/file.h>
23 #include <linux/slab.h>
24 #include <linux/personality.h>
25 #include <linux/elfcore.h>
26 #include <linux/init.h>
27 #include <linux/highuid.h>
28 #include <linux/compiler.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/random.h>
34 #include <linux/elf.h>
35 #include <linux/elf-randomize.h>
36 #include <linux/utsname.h>
37 #include <linux/coredump.h>
38 #include <linux/sched.h>
39 #include <linux/sched/coredump.h>
40 #include <linux/sched/task_stack.h>
41 #include <linux/sched/cputime.h>
42 #include <linux/cred.h>
43 #include <linux/dax.h>
44 #include <linux/uaccess.h>
45 #include <asm/param.h>
49 #define user_long_t long
51 #ifndef user_siginfo_t
52 #define user_siginfo_t siginfo_t
55 /* That's for binfmt_elf_fdpic to deal with */
56 #ifndef elf_check_fdpic
57 #define elf_check_fdpic(ex) false
60 static int load_elf_binary(struct linux_binprm *bprm);
63 static int load_elf_library(struct file *);
65 #define load_elf_library NULL
69 * If we don't support core dumping, then supply a NULL so we
72 #ifdef CONFIG_ELF_CORE
73 static int elf_core_dump(struct coredump_params *cprm);
75 #define elf_core_dump NULL
78 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
79 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
81 #define ELF_MIN_ALIGN PAGE_SIZE
84 #ifndef ELF_CORE_EFLAGS
85 #define ELF_CORE_EFLAGS 0
88 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
89 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
90 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
92 static struct linux_binfmt elf_format = {
93 .module = THIS_MODULE,
94 .load_binary = load_elf_binary,
95 .load_shlib = load_elf_library,
96 .core_dump = elf_core_dump,
97 .min_coredump = ELF_EXEC_PAGESIZE,
100 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
102 static int set_brk(unsigned long start, unsigned long end, int prot)
104 start = ELF_PAGEALIGN(start);
105 end = ELF_PAGEALIGN(end);
108 * Map the last of the bss segment.
109 * If the header is requesting these pages to be
110 * executable, honour that (ppc32 needs this).
112 int error = vm_brk_flags(start, end - start,
113 prot & PROT_EXEC ? VM_EXEC : 0);
117 current->mm->start_brk = current->mm->brk = end;
121 /* We need to explicitly zero any fractional pages
122 after the data section (i.e. bss). This would
123 contain the junk from the file that should not
126 static int padzero(unsigned long elf_bss)
130 nbyte = ELF_PAGEOFFSET(elf_bss);
132 nbyte = ELF_MIN_ALIGN - nbyte;
133 if (clear_user((void __user *) elf_bss, nbyte))
139 /* Let's use some macros to make this stack manipulation a little clearer */
140 #ifdef CONFIG_STACK_GROWSUP
141 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
142 #define STACK_ROUND(sp, items) \
143 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
144 #define STACK_ALLOC(sp, len) ({ \
145 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
148 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
149 #define STACK_ROUND(sp, items) \
150 (((unsigned long) (sp - items)) &~ 15UL)
151 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
154 #ifndef ELF_BASE_PLATFORM
156 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
157 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
158 * will be copied to the user stack in the same manner as AT_PLATFORM.
160 #define ELF_BASE_PLATFORM NULL
164 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
165 unsigned long load_addr, unsigned long interp_load_addr)
167 unsigned long p = bprm->p;
168 int argc = bprm->argc;
169 int envc = bprm->envc;
170 elf_addr_t __user *sp;
171 elf_addr_t __user *u_platform;
172 elf_addr_t __user *u_base_platform;
173 elf_addr_t __user *u_rand_bytes;
174 const char *k_platform = ELF_PLATFORM;
175 const char *k_base_platform = ELF_BASE_PLATFORM;
176 unsigned char k_rand_bytes[16];
178 elf_addr_t *elf_info;
180 const struct cred *cred = current_cred();
181 struct vm_area_struct *vma;
184 * In some cases (e.g. Hyper-Threading), we want to avoid L1
185 * evictions by the processes running on the same package. One
186 * thing we can do is to shuffle the initial stack for them.
189 p = arch_align_stack(p);
192 * If this architecture has a platform capability string, copy it
193 * to userspace. In some cases (Sparc), this info is impossible
194 * for userspace to get any other way, in others (i386) it is
199 size_t len = strlen(k_platform) + 1;
201 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
202 if (__copy_to_user(u_platform, k_platform, len))
207 * If this architecture has a "base" platform capability
208 * string, copy it to userspace.
210 u_base_platform = NULL;
211 if (k_base_platform) {
212 size_t len = strlen(k_base_platform) + 1;
214 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
215 if (__copy_to_user(u_base_platform, k_base_platform, len))
220 * Generate 16 random bytes for userspace PRNG seeding.
222 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
223 u_rand_bytes = (elf_addr_t __user *)
224 STACK_ALLOC(p, sizeof(k_rand_bytes));
225 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
228 /* Create the ELF interpreter info */
229 elf_info = (elf_addr_t *)current->mm->saved_auxv;
230 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
231 #define NEW_AUX_ENT(id, val) \
233 elf_info[ei_index++] = id; \
234 elf_info[ei_index++] = val; \
239 * ARCH_DLINFO must come first so PPC can do its special alignment of
241 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
242 * ARCH_DLINFO changes
246 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
247 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
248 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
249 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
250 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
251 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
252 NEW_AUX_ENT(AT_BASE, interp_load_addr);
253 NEW_AUX_ENT(AT_FLAGS, 0);
254 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
255 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
256 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
257 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
258 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
259 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
260 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
262 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
264 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
266 NEW_AUX_ENT(AT_PLATFORM,
267 (elf_addr_t)(unsigned long)u_platform);
269 if (k_base_platform) {
270 NEW_AUX_ENT(AT_BASE_PLATFORM,
271 (elf_addr_t)(unsigned long)u_base_platform);
273 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
274 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
277 /* AT_NULL is zero; clear the rest too */
278 memset(&elf_info[ei_index], 0,
279 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
281 /* And advance past the AT_NULL entry. */
284 sp = STACK_ADD(p, ei_index);
286 items = (argc + 1) + (envc + 1) + 1;
287 bprm->p = STACK_ROUND(sp, items);
289 /* Point sp at the lowest address on the stack */
290 #ifdef CONFIG_STACK_GROWSUP
291 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
292 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
294 sp = (elf_addr_t __user *)bprm->p;
299 * Grow the stack manually; some architectures have a limit on how
300 * far ahead a user-space access may be in order to grow the stack.
302 vma = find_extend_vma(current->mm, bprm->p);
306 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
307 if (__put_user(argc, sp++))
310 /* Populate list of argv pointers back to argv strings. */
311 p = current->mm->arg_end = current->mm->arg_start;
314 if (__put_user((elf_addr_t)p, sp++))
316 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
317 if (!len || len > MAX_ARG_STRLEN)
321 if (__put_user(0, sp++))
323 current->mm->arg_end = p;
325 /* Populate list of envp pointers back to envp strings. */
326 current->mm->env_end = current->mm->env_start = p;
329 if (__put_user((elf_addr_t)p, sp++))
331 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
332 if (!len || len > MAX_ARG_STRLEN)
336 if (__put_user(0, sp++))
338 current->mm->env_end = p;
340 /* Put the elf_info on the stack in the right place. */
341 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
348 static unsigned long elf_map(struct file *filep, unsigned long addr,
349 const struct elf_phdr *eppnt, int prot, int type,
350 unsigned long total_size)
352 unsigned long map_addr;
353 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
354 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
355 addr = ELF_PAGESTART(addr);
356 size = ELF_PAGEALIGN(size);
358 /* mmap() will return -EINVAL if given a zero size, but a
359 * segment with zero filesize is perfectly valid */
364 * total_size is the size of the ELF (interpreter) image.
365 * The _first_ mmap needs to know the full size, otherwise
366 * randomization might put this image into an overlapping
367 * position with the ELF binary image. (since size < total_size)
368 * So we first map the 'big' image - and unmap the remainder at
369 * the end. (which unmap is needed for ELF images with holes.)
372 total_size = ELF_PAGEALIGN(total_size);
373 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
374 if (!BAD_ADDR(map_addr))
375 vm_munmap(map_addr+size, total_size-size);
377 map_addr = vm_mmap(filep, addr, size, prot, type, off);
379 if ((type & MAP_FIXED_NOREPLACE) &&
380 PTR_ERR((void *)map_addr) == -EEXIST)
381 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
382 task_pid_nr(current), current->comm, (void *)addr);
387 #endif /* !elf_map */
389 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr)
391 int i, first_idx = -1, last_idx = -1;
393 for (i = 0; i < nr; i++) {
394 if (cmds[i].p_type == PT_LOAD) {
403 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
404 ELF_PAGESTART(cmds[first_idx].p_vaddr);
408 * load_elf_phdrs() - load ELF program headers
409 * @elf_ex: ELF header of the binary whose program headers should be loaded
410 * @elf_file: the opened ELF binary file
412 * Loads ELF program headers from the binary file elf_file, which has the ELF
413 * header pointed to by elf_ex, into a newly allocated array. The caller is
414 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
416 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
417 struct file *elf_file)
419 struct elf_phdr *elf_phdata = NULL;
420 int retval, err = -1;
421 loff_t pos = elf_ex->e_phoff;
425 * If the size of this structure has changed, then punt, since
426 * we will be doing the wrong thing.
428 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
431 /* Sanity check the number of program headers... */
432 /* ...and their total size. */
433 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
434 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
437 elf_phdata = kmalloc(size, GFP_KERNEL);
441 /* Read in the program headers */
442 retval = kernel_read(elf_file, elf_phdata, size, &pos);
443 if (retval != size) {
444 err = (retval < 0) ? retval : -EIO;
458 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
461 * struct arch_elf_state - arch-specific ELF loading state
463 * This structure is used to preserve architecture specific data during
464 * the loading of an ELF file, throughout the checking of architecture
465 * specific ELF headers & through to the point where the ELF load is
466 * known to be proceeding (ie. SET_PERSONALITY).
468 * This implementation is a dummy for architectures which require no
471 struct arch_elf_state {
474 #define INIT_ARCH_ELF_STATE {}
477 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
478 * @ehdr: The main ELF header
479 * @phdr: The program header to check
480 * @elf: The open ELF file
481 * @is_interp: True if the phdr is from the interpreter of the ELF being
482 * loaded, else false.
483 * @state: Architecture-specific state preserved throughout the process
484 * of loading the ELF.
486 * Inspects the program header phdr to validate its correctness and/or
487 * suitability for the system. Called once per ELF program header in the
488 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
491 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
492 * with that return code.
494 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
495 struct elf_phdr *phdr,
496 struct file *elf, bool is_interp,
497 struct arch_elf_state *state)
499 /* Dummy implementation, always proceed */
504 * arch_check_elf() - check an ELF executable
505 * @ehdr: The main ELF header
506 * @has_interp: True if the ELF has an interpreter, else false.
507 * @interp_ehdr: The interpreter's ELF header
508 * @state: Architecture-specific state preserved throughout the process
509 * of loading the ELF.
511 * Provides a final opportunity for architecture code to reject the loading
512 * of the ELF & cause an exec syscall to return an error. This is called after
513 * all program headers to be checked by arch_elf_pt_proc have been.
515 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
516 * with that return code.
518 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
519 struct elfhdr *interp_ehdr,
520 struct arch_elf_state *state)
522 /* Dummy implementation, always proceed */
526 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
528 static inline int make_prot(u32 p_flags)
541 /* This is much more generalized than the library routine read function,
542 so we keep this separate. Technically the library read function
543 is only provided so that we can read a.out libraries that have
546 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
547 struct file *interpreter, unsigned long *interp_map_addr,
548 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
550 struct elf_phdr *eppnt;
551 unsigned long load_addr = 0;
552 int load_addr_set = 0;
553 unsigned long last_bss = 0, elf_bss = 0;
555 unsigned long error = ~0UL;
556 unsigned long total_size;
559 /* First of all, some simple consistency checks */
560 if (interp_elf_ex->e_type != ET_EXEC &&
561 interp_elf_ex->e_type != ET_DYN)
563 if (!elf_check_arch(interp_elf_ex) ||
564 elf_check_fdpic(interp_elf_ex))
566 if (!interpreter->f_op->mmap)
569 total_size = total_mapping_size(interp_elf_phdata,
570 interp_elf_ex->e_phnum);
576 eppnt = interp_elf_phdata;
577 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
578 if (eppnt->p_type == PT_LOAD) {
579 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
580 int elf_prot = make_prot(eppnt->p_flags);
581 unsigned long vaddr = 0;
582 unsigned long k, map_addr;
584 vaddr = eppnt->p_vaddr;
585 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
586 elf_type |= MAP_FIXED_NOREPLACE;
587 else if (no_base && interp_elf_ex->e_type == ET_DYN)
590 map_addr = elf_map(interpreter, load_addr + vaddr,
591 eppnt, elf_prot, elf_type, total_size);
593 if (!*interp_map_addr)
594 *interp_map_addr = map_addr;
596 if (BAD_ADDR(map_addr))
599 if (!load_addr_set &&
600 interp_elf_ex->e_type == ET_DYN) {
601 load_addr = map_addr - ELF_PAGESTART(vaddr);
606 * Check to see if the section's size will overflow the
607 * allowed task size. Note that p_filesz must always be
608 * <= p_memsize so it's only necessary to check p_memsz.
610 k = load_addr + eppnt->p_vaddr;
612 eppnt->p_filesz > eppnt->p_memsz ||
613 eppnt->p_memsz > TASK_SIZE ||
614 TASK_SIZE - eppnt->p_memsz < k) {
620 * Find the end of the file mapping for this phdr, and
621 * keep track of the largest address we see for this.
623 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
628 * Do the same thing for the memory mapping - between
629 * elf_bss and last_bss is the bss section.
631 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
640 * Now fill out the bss section: first pad the last page from
641 * the file up to the page boundary, and zero it from elf_bss
642 * up to the end of the page.
644 if (padzero(elf_bss)) {
649 * Next, align both the file and mem bss up to the page size,
650 * since this is where elf_bss was just zeroed up to, and where
651 * last_bss will end after the vm_brk_flags() below.
653 elf_bss = ELF_PAGEALIGN(elf_bss);
654 last_bss = ELF_PAGEALIGN(last_bss);
655 /* Finally, if there is still more bss to allocate, do it. */
656 if (last_bss > elf_bss) {
657 error = vm_brk_flags(elf_bss, last_bss - elf_bss,
658 bss_prot & PROT_EXEC ? VM_EXEC : 0);
669 * These are the functions used to load ELF style executables and shared
670 * libraries. There is no binary dependent code anywhere else.
673 static int load_elf_binary(struct linux_binprm *bprm)
675 struct file *interpreter = NULL; /* to shut gcc up */
676 unsigned long load_addr = 0, load_bias = 0;
677 int load_addr_set = 0;
679 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
680 unsigned long elf_bss, elf_brk;
683 unsigned long elf_entry;
684 unsigned long interp_load_addr = 0;
685 unsigned long start_code, end_code, start_data, end_data;
686 unsigned long reloc_func_desc __maybe_unused = 0;
687 int executable_stack = EXSTACK_DEFAULT;
689 struct elfhdr elf_ex;
690 struct elfhdr interp_elf_ex;
692 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
693 struct pt_regs *regs;
695 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
701 /* Get the exec-header */
702 loc->elf_ex = *((struct elfhdr *)bprm->buf);
705 /* First of all, some simple consistency checks */
706 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
709 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
711 if (!elf_check_arch(&loc->elf_ex))
713 if (elf_check_fdpic(&loc->elf_ex))
715 if (!bprm->file->f_op->mmap)
718 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
722 elf_ppnt = elf_phdata;
723 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
724 char *elf_interpreter;
727 if (elf_ppnt->p_type != PT_INTERP)
731 * This is the program interpreter used for shared libraries -
732 * for now assume that this is an a.out format binary.
735 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
739 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
740 if (!elf_interpreter)
743 pos = elf_ppnt->p_offset;
744 retval = kernel_read(bprm->file, elf_interpreter,
745 elf_ppnt->p_filesz, &pos);
746 if (retval != elf_ppnt->p_filesz) {
749 goto out_free_interp;
751 /* make sure path is NULL terminated */
753 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
754 goto out_free_interp;
756 interpreter = open_exec(elf_interpreter);
757 kfree(elf_interpreter);
758 retval = PTR_ERR(interpreter);
759 if (IS_ERR(interpreter))
763 * If the binary is not readable then enforce mm->dumpable = 0
764 * regardless of the interpreter's permissions.
766 would_dump(bprm, interpreter);
768 /* Get the exec headers */
770 retval = kernel_read(interpreter, &loc->interp_elf_ex,
771 sizeof(loc->interp_elf_ex), &pos);
772 if (retval != sizeof(loc->interp_elf_ex)) {
775 goto out_free_dentry;
781 kfree(elf_interpreter);
785 elf_ppnt = elf_phdata;
786 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
787 switch (elf_ppnt->p_type) {
789 if (elf_ppnt->p_flags & PF_X)
790 executable_stack = EXSTACK_ENABLE_X;
792 executable_stack = EXSTACK_DISABLE_X;
795 case PT_LOPROC ... PT_HIPROC:
796 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
800 goto out_free_dentry;
804 /* Some simple consistency checks for the interpreter */
807 /* Not an ELF interpreter */
808 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
809 goto out_free_dentry;
810 /* Verify the interpreter has a valid arch */
811 if (!elf_check_arch(&loc->interp_elf_ex) ||
812 elf_check_fdpic(&loc->interp_elf_ex))
813 goto out_free_dentry;
815 /* Load the interpreter program headers */
816 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
818 if (!interp_elf_phdata)
819 goto out_free_dentry;
821 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
822 elf_ppnt = interp_elf_phdata;
823 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
824 switch (elf_ppnt->p_type) {
825 case PT_LOPROC ... PT_HIPROC:
826 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
827 elf_ppnt, interpreter,
830 goto out_free_dentry;
836 * Allow arch code to reject the ELF at this point, whilst it's
837 * still possible to return an error to the code that invoked
840 retval = arch_check_elf(&loc->elf_ex,
841 !!interpreter, &loc->interp_elf_ex,
844 goto out_free_dentry;
846 /* Flush all traces of the currently running executable */
847 retval = flush_old_exec(bprm);
849 goto out_free_dentry;
851 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
852 may depend on the personality. */
853 SET_PERSONALITY2(loc->elf_ex, &arch_state);
854 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
855 current->personality |= READ_IMPLIES_EXEC;
857 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
858 current->flags |= PF_RANDOMIZE;
860 setup_new_exec(bprm);
861 install_exec_creds(bprm);
863 /* Do this so that we can load the interpreter, if need be. We will
864 change some of these later */
865 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
868 goto out_free_dentry;
878 /* Now we do a little grungy work by mmapping the ELF image into
879 the correct location in memory. */
880 for(i = 0, elf_ppnt = elf_phdata;
881 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
882 int elf_prot, elf_flags, elf_fixed = MAP_FIXED_NOREPLACE;
883 unsigned long k, vaddr;
884 unsigned long total_size = 0;
886 if (elf_ppnt->p_type != PT_LOAD)
889 if (unlikely (elf_brk > elf_bss)) {
892 /* There was a PT_LOAD segment with p_memsz > p_filesz
893 before this one. Map anonymous pages, if needed,
894 and clear the area. */
895 retval = set_brk(elf_bss + load_bias,
899 goto out_free_dentry;
900 nbyte = ELF_PAGEOFFSET(elf_bss);
902 nbyte = ELF_MIN_ALIGN - nbyte;
903 if (nbyte > elf_brk - elf_bss)
904 nbyte = elf_brk - elf_bss;
905 if (clear_user((void __user *)elf_bss +
908 * This bss-zeroing can fail if the ELF
909 * file specifies odd protections. So
910 * we don't check the return value
916 * Some binaries have overlapping elf segments and then
917 * we have to forcefully map over an existing mapping
918 * e.g. over this newly established brk mapping.
920 elf_fixed = MAP_FIXED;
923 elf_prot = make_prot(elf_ppnt->p_flags);
925 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
927 vaddr = elf_ppnt->p_vaddr;
929 * If we are loading ET_EXEC or we have already performed
930 * the ET_DYN load_addr calculations, proceed normally.
932 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
933 elf_flags |= elf_fixed;
934 } else if (loc->elf_ex.e_type == ET_DYN) {
936 * This logic is run once for the first LOAD Program
937 * Header for ET_DYN binaries to calculate the
938 * randomization (load_bias) for all the LOAD
939 * Program Headers, and to calculate the entire
940 * size of the ELF mapping (total_size). (Note that
941 * load_addr_set is set to true later once the
942 * initial mapping is performed.)
944 * There are effectively two types of ET_DYN
945 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
946 * and loaders (ET_DYN without INTERP, since they
947 * _are_ the ELF interpreter). The loaders must
948 * be loaded away from programs since the program
949 * may otherwise collide with the loader (especially
950 * for ET_EXEC which does not have a randomized
951 * position). For example to handle invocations of
952 * "./ld.so someprog" to test out a new version of
953 * the loader, the subsequent program that the
954 * loader loads must avoid the loader itself, so
955 * they cannot share the same load range. Sufficient
956 * room for the brk must be allocated with the
957 * loader as well, since brk must be available with
960 * Therefore, programs are loaded offset from
961 * ELF_ET_DYN_BASE and loaders are loaded into the
962 * independently randomized mmap region (0 load_bias
963 * without MAP_FIXED).
966 load_bias = ELF_ET_DYN_BASE;
967 if (current->flags & PF_RANDOMIZE)
968 load_bias += arch_mmap_rnd();
969 elf_flags |= elf_fixed;
974 * Since load_bias is used for all subsequent loading
975 * calculations, we must lower it by the first vaddr
976 * so that the remaining calculations based on the
977 * ELF vaddrs will be correctly offset. The result
978 * is then page aligned.
980 load_bias = ELF_PAGESTART(load_bias - vaddr);
982 total_size = total_mapping_size(elf_phdata,
983 loc->elf_ex.e_phnum);
986 goto out_free_dentry;
990 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
991 elf_prot, elf_flags, total_size);
992 if (BAD_ADDR(error)) {
993 retval = IS_ERR((void *)error) ?
994 PTR_ERR((void*)error) : -EINVAL;
995 goto out_free_dentry;
998 if (!load_addr_set) {
1000 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1001 if (loc->elf_ex.e_type == ET_DYN) {
1002 load_bias += error -
1003 ELF_PAGESTART(load_bias + vaddr);
1004 load_addr += load_bias;
1005 reloc_func_desc = load_bias;
1008 k = elf_ppnt->p_vaddr;
1015 * Check to see if the section's size will overflow the
1016 * allowed task size. Note that p_filesz must always be
1017 * <= p_memsz so it is only necessary to check p_memsz.
1019 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1020 elf_ppnt->p_memsz > TASK_SIZE ||
1021 TASK_SIZE - elf_ppnt->p_memsz < k) {
1022 /* set_brk can never work. Avoid overflows. */
1024 goto out_free_dentry;
1027 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1031 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1035 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1037 bss_prot = elf_prot;
1042 loc->elf_ex.e_entry += load_bias;
1043 elf_bss += load_bias;
1044 elf_brk += load_bias;
1045 start_code += load_bias;
1046 end_code += load_bias;
1047 start_data += load_bias;
1048 end_data += load_bias;
1050 /* Calling set_brk effectively mmaps the pages that we need
1051 * for the bss and break sections. We must do this before
1052 * mapping in the interpreter, to make sure it doesn't wind
1053 * up getting placed where the bss needs to go.
1055 retval = set_brk(elf_bss, elf_brk, bss_prot);
1057 goto out_free_dentry;
1058 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1059 retval = -EFAULT; /* Nobody gets to see this, but.. */
1060 goto out_free_dentry;
1064 unsigned long interp_map_addr = 0;
1066 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1069 load_bias, interp_elf_phdata);
1070 if (!IS_ERR((void *)elf_entry)) {
1072 * load_elf_interp() returns relocation
1075 interp_load_addr = elf_entry;
1076 elf_entry += loc->interp_elf_ex.e_entry;
1078 if (BAD_ADDR(elf_entry)) {
1079 retval = IS_ERR((void *)elf_entry) ?
1080 (int)elf_entry : -EINVAL;
1081 goto out_free_dentry;
1083 reloc_func_desc = interp_load_addr;
1085 allow_write_access(interpreter);
1088 elf_entry = loc->elf_ex.e_entry;
1089 if (BAD_ADDR(elf_entry)) {
1091 goto out_free_dentry;
1095 kfree(interp_elf_phdata);
1098 set_binfmt(&elf_format);
1100 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1101 retval = arch_setup_additional_pages(bprm, !!interpreter);
1104 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1106 retval = create_elf_tables(bprm, &loc->elf_ex,
1107 load_addr, interp_load_addr);
1110 current->mm->end_code = end_code;
1111 current->mm->start_code = start_code;
1112 current->mm->start_data = start_data;
1113 current->mm->end_data = end_data;
1114 current->mm->start_stack = bprm->p;
1116 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1118 * For architectures with ELF randomization, when executing
1119 * a loader directly (i.e. no interpreter listed in ELF
1120 * headers), move the brk area out of the mmap region
1121 * (since it grows up, and may collide early with the stack
1122 * growing down), and into the unused ELF_ET_DYN_BASE region.
1124 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1125 loc->elf_ex.e_type == ET_DYN && !interpreter)
1126 current->mm->brk = current->mm->start_brk =
1129 current->mm->brk = current->mm->start_brk =
1130 arch_randomize_brk(current->mm);
1131 #ifdef compat_brk_randomized
1132 current->brk_randomized = 1;
1136 if (current->personality & MMAP_PAGE_ZERO) {
1137 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1138 and some applications "depend" upon this behavior.
1139 Since we do not have the power to recompile these, we
1140 emulate the SVr4 behavior. Sigh. */
1141 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1142 MAP_FIXED | MAP_PRIVATE, 0);
1145 regs = current_pt_regs();
1146 #ifdef ELF_PLAT_INIT
1148 * The ABI may specify that certain registers be set up in special
1149 * ways (on i386 %edx is the address of a DT_FINI function, for
1150 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1151 * that the e_entry field is the address of the function descriptor
1152 * for the startup routine, rather than the address of the startup
1153 * routine itself. This macro performs whatever initialization to
1154 * the regs structure is required as well as any relocations to the
1155 * function descriptor entries when executing dynamically links apps.
1157 ELF_PLAT_INIT(regs, reloc_func_desc);
1160 finalize_exec(bprm);
1161 start_thread(regs, elf_entry, bprm->p);
1170 kfree(interp_elf_phdata);
1171 allow_write_access(interpreter);
1179 #ifdef CONFIG_USELIB
1180 /* This is really simpleminded and specialized - we are loading an
1181 a.out library that is given an ELF header. */
1182 static int load_elf_library(struct file *file)
1184 struct elf_phdr *elf_phdata;
1185 struct elf_phdr *eppnt;
1186 unsigned long elf_bss, bss, len;
1187 int retval, error, i, j;
1188 struct elfhdr elf_ex;
1192 retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1193 if (retval != sizeof(elf_ex))
1196 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1199 /* First of all, some simple consistency checks */
1200 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1201 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1203 if (elf_check_fdpic(&elf_ex))
1206 /* Now read in all of the header information */
1208 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1209 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1212 elf_phdata = kmalloc(j, GFP_KERNEL);
1218 pos = elf_ex.e_phoff;
1219 retval = kernel_read(file, eppnt, j, &pos);
1223 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1224 if ((eppnt + i)->p_type == PT_LOAD)
1229 while (eppnt->p_type != PT_LOAD)
1232 /* Now use mmap to map the library into memory. */
1233 error = vm_mmap(file,
1234 ELF_PAGESTART(eppnt->p_vaddr),
1236 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1237 PROT_READ | PROT_WRITE | PROT_EXEC,
1238 MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1240 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1241 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1244 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1245 if (padzero(elf_bss)) {
1250 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1251 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1253 error = vm_brk(len, bss - len);
1264 #endif /* #ifdef CONFIG_USELIB */
1266 #ifdef CONFIG_ELF_CORE
1270 * Modelled on fs/exec.c:aout_core_dump()
1275 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1276 * that are useful for post-mortem analysis are included in every core dump.
1277 * In that way we ensure that the core dump is fully interpretable later
1278 * without matching up the same kernel and hardware config to see what PC values
1279 * meant. These special mappings include - vDSO, vsyscall, and other
1280 * architecture specific mappings
1282 static bool always_dump_vma(struct vm_area_struct *vma)
1284 /* Any vsyscall mappings? */
1285 if (vma == get_gate_vma(vma->vm_mm))
1289 * Assume that all vmas with a .name op should always be dumped.
1290 * If this changes, a new vm_ops field can easily be added.
1292 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1296 * arch_vma_name() returns non-NULL for special architecture mappings,
1297 * such as vDSO sections.
1299 if (arch_vma_name(vma))
1306 * Decide what to dump of a segment, part, all or none.
1308 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1309 unsigned long mm_flags)
1311 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1313 /* always dump the vdso and vsyscall sections */
1314 if (always_dump_vma(vma))
1317 if (vma->vm_flags & VM_DONTDUMP)
1320 /* support for DAX */
1321 if (vma_is_dax(vma)) {
1322 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1324 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1329 /* Hugetlb memory check */
1330 if (vma->vm_flags & VM_HUGETLB) {
1331 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1333 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1338 /* Do not dump I/O mapped devices or special mappings */
1339 if (vma->vm_flags & VM_IO)
1342 /* By default, dump shared memory if mapped from an anonymous file. */
1343 if (vma->vm_flags & VM_SHARED) {
1344 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1345 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1350 /* Dump segments that have been written to. */
1351 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1353 if (vma->vm_file == NULL)
1356 if (FILTER(MAPPED_PRIVATE))
1360 * If this looks like the beginning of a DSO or executable mapping,
1361 * check for an ELF header. If we find one, dump the first page to
1362 * aid in determining what was mapped here.
1364 if (FILTER(ELF_HEADERS) &&
1365 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1366 u32 __user *header = (u32 __user *) vma->vm_start;
1368 mm_segment_t fs = get_fs();
1370 * Doing it this way gets the constant folded by GCC.
1374 char elfmag[SELFMAG];
1376 BUILD_BUG_ON(SELFMAG != sizeof word);
1377 magic.elfmag[EI_MAG0] = ELFMAG0;
1378 magic.elfmag[EI_MAG1] = ELFMAG1;
1379 magic.elfmag[EI_MAG2] = ELFMAG2;
1380 magic.elfmag[EI_MAG3] = ELFMAG3;
1382 * Switch to the user "segment" for get_user(),
1383 * then put back what elf_core_dump() had in place.
1386 if (unlikely(get_user(word, header)))
1389 if (word == magic.cmp)
1398 return vma->vm_end - vma->vm_start;
1401 /* An ELF note in memory */
1406 unsigned int datasz;
1410 static int notesize(struct memelfnote *en)
1414 sz = sizeof(struct elf_note);
1415 sz += roundup(strlen(en->name) + 1, 4);
1416 sz += roundup(en->datasz, 4);
1421 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1424 en.n_namesz = strlen(men->name) + 1;
1425 en.n_descsz = men->datasz;
1426 en.n_type = men->type;
1428 return dump_emit(cprm, &en, sizeof(en)) &&
1429 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1430 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1433 static void fill_elf_header(struct elfhdr *elf, int segs,
1434 u16 machine, u32 flags)
1436 memset(elf, 0, sizeof(*elf));
1438 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1439 elf->e_ident[EI_CLASS] = ELF_CLASS;
1440 elf->e_ident[EI_DATA] = ELF_DATA;
1441 elf->e_ident[EI_VERSION] = EV_CURRENT;
1442 elf->e_ident[EI_OSABI] = ELF_OSABI;
1444 elf->e_type = ET_CORE;
1445 elf->e_machine = machine;
1446 elf->e_version = EV_CURRENT;
1447 elf->e_phoff = sizeof(struct elfhdr);
1448 elf->e_flags = flags;
1449 elf->e_ehsize = sizeof(struct elfhdr);
1450 elf->e_phentsize = sizeof(struct elf_phdr);
1451 elf->e_phnum = segs;
1454 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1456 phdr->p_type = PT_NOTE;
1457 phdr->p_offset = offset;
1460 phdr->p_filesz = sz;
1466 static void fill_note(struct memelfnote *note, const char *name, int type,
1467 unsigned int sz, void *data)
1476 * fill up all the fields in prstatus from the given task struct, except
1477 * registers which need to be filled up separately.
1479 static void fill_prstatus(struct elf_prstatus *prstatus,
1480 struct task_struct *p, long signr)
1482 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1483 prstatus->pr_sigpend = p->pending.signal.sig[0];
1484 prstatus->pr_sighold = p->blocked.sig[0];
1486 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1488 prstatus->pr_pid = task_pid_vnr(p);
1489 prstatus->pr_pgrp = task_pgrp_vnr(p);
1490 prstatus->pr_sid = task_session_vnr(p);
1491 if (thread_group_leader(p)) {
1492 struct task_cputime cputime;
1495 * This is the record for the group leader. It shows the
1496 * group-wide total, not its individual thread total.
1498 thread_group_cputime(p, &cputime);
1499 prstatus->pr_utime = ns_to_timeval(cputime.utime);
1500 prstatus->pr_stime = ns_to_timeval(cputime.stime);
1504 task_cputime(p, &utime, &stime);
1505 prstatus->pr_utime = ns_to_timeval(utime);
1506 prstatus->pr_stime = ns_to_timeval(stime);
1509 prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1510 prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1513 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1514 struct mm_struct *mm)
1516 const struct cred *cred;
1517 unsigned int i, len;
1519 /* first copy the parameters from user space */
1520 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1522 len = mm->arg_end - mm->arg_start;
1523 if (len >= ELF_PRARGSZ)
1524 len = ELF_PRARGSZ-1;
1525 if (copy_from_user(&psinfo->pr_psargs,
1526 (const char __user *)mm->arg_start, len))
1528 for(i = 0; i < len; i++)
1529 if (psinfo->pr_psargs[i] == 0)
1530 psinfo->pr_psargs[i] = ' ';
1531 psinfo->pr_psargs[len] = 0;
1534 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1536 psinfo->pr_pid = task_pid_vnr(p);
1537 psinfo->pr_pgrp = task_pgrp_vnr(p);
1538 psinfo->pr_sid = task_session_vnr(p);
1540 i = p->state ? ffz(~p->state) + 1 : 0;
1541 psinfo->pr_state = i;
1542 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1543 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1544 psinfo->pr_nice = task_nice(p);
1545 psinfo->pr_flag = p->flags;
1547 cred = __task_cred(p);
1548 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1549 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1551 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1556 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1558 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1562 while (auxv[i - 2] != AT_NULL);
1563 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1566 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1567 const kernel_siginfo_t *siginfo)
1569 mm_segment_t old_fs = get_fs();
1571 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1573 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1576 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1578 * Format of NT_FILE note:
1580 * long count -- how many files are mapped
1581 * long page_size -- units for file_ofs
1582 * array of [COUNT] elements of
1586 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1588 static int fill_files_note(struct memelfnote *note)
1590 struct vm_area_struct *vma;
1591 unsigned count, size, names_ofs, remaining, n;
1593 user_long_t *start_end_ofs;
1594 char *name_base, *name_curpos;
1596 /* *Estimated* file count and total data size needed */
1597 count = current->mm->map_count;
1598 if (count > UINT_MAX / 64)
1602 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1604 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1606 size = round_up(size, PAGE_SIZE);
1607 data = kvmalloc(size, GFP_KERNEL);
1608 if (ZERO_OR_NULL_PTR(data))
1611 start_end_ofs = data + 2;
1612 name_base = name_curpos = ((char *)data) + names_ofs;
1613 remaining = size - names_ofs;
1615 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1617 const char *filename;
1619 file = vma->vm_file;
1622 filename = file_path(file, name_curpos, remaining);
1623 if (IS_ERR(filename)) {
1624 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1626 size = size * 5 / 4;
1632 /* file_path() fills at the end, move name down */
1633 /* n = strlen(filename) + 1: */
1634 n = (name_curpos + remaining) - filename;
1635 remaining = filename - name_curpos;
1636 memmove(name_curpos, filename, n);
1639 *start_end_ofs++ = vma->vm_start;
1640 *start_end_ofs++ = vma->vm_end;
1641 *start_end_ofs++ = vma->vm_pgoff;
1645 /* Now we know exact count of files, can store it */
1647 data[1] = PAGE_SIZE;
1649 * Count usually is less than current->mm->map_count,
1650 * we need to move filenames down.
1652 n = current->mm->map_count - count;
1654 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1655 memmove(name_base - shift_bytes, name_base,
1656 name_curpos - name_base);
1657 name_curpos -= shift_bytes;
1660 size = name_curpos - (char *)data;
1661 fill_note(note, "CORE", NT_FILE, size, data);
1665 #ifdef CORE_DUMP_USE_REGSET
1666 #include <linux/regset.h>
1668 struct elf_thread_core_info {
1669 struct elf_thread_core_info *next;
1670 struct task_struct *task;
1671 struct elf_prstatus prstatus;
1672 struct memelfnote notes[0];
1675 struct elf_note_info {
1676 struct elf_thread_core_info *thread;
1677 struct memelfnote psinfo;
1678 struct memelfnote signote;
1679 struct memelfnote auxv;
1680 struct memelfnote files;
1681 user_siginfo_t csigdata;
1687 * When a regset has a writeback hook, we call it on each thread before
1688 * dumping user memory. On register window machines, this makes sure the
1689 * user memory backing the register data is up to date before we read it.
1691 static void do_thread_regset_writeback(struct task_struct *task,
1692 const struct user_regset *regset)
1694 if (regset->writeback)
1695 regset->writeback(task, regset, 1);
1698 #ifndef PRSTATUS_SIZE
1699 #define PRSTATUS_SIZE(S, R) sizeof(S)
1702 #ifndef SET_PR_FPVALID
1703 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1706 static int fill_thread_core_info(struct elf_thread_core_info *t,
1707 const struct user_regset_view *view,
1708 long signr, size_t *total)
1711 unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1714 * NT_PRSTATUS is the one special case, because the regset data
1715 * goes into the pr_reg field inside the note contents, rather
1716 * than being the whole note contents. We fill the reset in here.
1717 * We assume that regset 0 is NT_PRSTATUS.
1719 fill_prstatus(&t->prstatus, t->task, signr);
1720 (void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1721 &t->prstatus.pr_reg, NULL);
1723 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1724 PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1725 *total += notesize(&t->notes[0]);
1727 do_thread_regset_writeback(t->task, &view->regsets[0]);
1730 * Each other regset might generate a note too. For each regset
1731 * that has no core_note_type or is inactive, we leave t->notes[i]
1732 * all zero and we'll know to skip writing it later.
1734 for (i = 1; i < view->n; ++i) {
1735 const struct user_regset *regset = &view->regsets[i];
1736 do_thread_regset_writeback(t->task, regset);
1737 if (regset->core_note_type && regset->get &&
1738 (!regset->active || regset->active(t->task, regset) > 0)) {
1740 size_t size = regset_size(t->task, regset);
1741 void *data = kmalloc(size, GFP_KERNEL);
1742 if (unlikely(!data))
1744 ret = regset->get(t->task, regset,
1745 0, size, data, NULL);
1749 if (regset->core_note_type != NT_PRFPREG)
1750 fill_note(&t->notes[i], "LINUX",
1751 regset->core_note_type,
1754 SET_PR_FPVALID(&t->prstatus,
1756 fill_note(&t->notes[i], "CORE",
1757 NT_PRFPREG, size, data);
1759 *total += notesize(&t->notes[i]);
1767 static int fill_note_info(struct elfhdr *elf, int phdrs,
1768 struct elf_note_info *info,
1769 const kernel_siginfo_t *siginfo, struct pt_regs *regs)
1771 struct task_struct *dump_task = current;
1772 const struct user_regset_view *view = task_user_regset_view(dump_task);
1773 struct elf_thread_core_info *t;
1774 struct elf_prpsinfo *psinfo;
1775 struct core_thread *ct;
1779 info->thread = NULL;
1781 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1782 if (psinfo == NULL) {
1783 info->psinfo.data = NULL; /* So we don't free this wrongly */
1787 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1790 * Figure out how many notes we're going to need for each thread.
1792 info->thread_notes = 0;
1793 for (i = 0; i < view->n; ++i)
1794 if (view->regsets[i].core_note_type != 0)
1795 ++info->thread_notes;
1798 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1799 * since it is our one special case.
1801 if (unlikely(info->thread_notes == 0) ||
1802 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1808 * Initialize the ELF file header.
1810 fill_elf_header(elf, phdrs,
1811 view->e_machine, view->e_flags);
1814 * Allocate a structure for each thread.
1816 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1817 t = kzalloc(offsetof(struct elf_thread_core_info,
1818 notes[info->thread_notes]),
1824 if (ct->task == dump_task || !info->thread) {
1825 t->next = info->thread;
1829 * Make sure to keep the original task at
1830 * the head of the list.
1832 t->next = info->thread->next;
1833 info->thread->next = t;
1838 * Now fill in each thread's information.
1840 for (t = info->thread; t != NULL; t = t->next)
1841 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1845 * Fill in the two process-wide notes.
1847 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1848 info->size += notesize(&info->psinfo);
1850 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1851 info->size += notesize(&info->signote);
1853 fill_auxv_note(&info->auxv, current->mm);
1854 info->size += notesize(&info->auxv);
1856 if (fill_files_note(&info->files) == 0)
1857 info->size += notesize(&info->files);
1862 static size_t get_note_info_size(struct elf_note_info *info)
1868 * Write all the notes for each thread. When writing the first thread, the
1869 * process-wide notes are interleaved after the first thread-specific note.
1871 static int write_note_info(struct elf_note_info *info,
1872 struct coredump_params *cprm)
1875 struct elf_thread_core_info *t = info->thread;
1880 if (!writenote(&t->notes[0], cprm))
1883 if (first && !writenote(&info->psinfo, cprm))
1885 if (first && !writenote(&info->signote, cprm))
1887 if (first && !writenote(&info->auxv, cprm))
1889 if (first && info->files.data &&
1890 !writenote(&info->files, cprm))
1893 for (i = 1; i < info->thread_notes; ++i)
1894 if (t->notes[i].data &&
1895 !writenote(&t->notes[i], cprm))
1905 static void free_note_info(struct elf_note_info *info)
1907 struct elf_thread_core_info *threads = info->thread;
1910 struct elf_thread_core_info *t = threads;
1912 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1913 for (i = 1; i < info->thread_notes; ++i)
1914 kfree(t->notes[i].data);
1917 kfree(info->psinfo.data);
1918 kvfree(info->files.data);
1923 /* Here is the structure in which status of each thread is captured. */
1924 struct elf_thread_status
1926 struct list_head list;
1927 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1928 elf_fpregset_t fpu; /* NT_PRFPREG */
1929 struct task_struct *thread;
1930 #ifdef ELF_CORE_COPY_XFPREGS
1931 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1933 struct memelfnote notes[3];
1938 * In order to add the specific thread information for the elf file format,
1939 * we need to keep a linked list of every threads pr_status and then create
1940 * a single section for them in the final core file.
1942 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1945 struct task_struct *p = t->thread;
1948 fill_prstatus(&t->prstatus, p, signr);
1949 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1951 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1954 sz += notesize(&t->notes[0]);
1956 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1958 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1961 sz += notesize(&t->notes[1]);
1964 #ifdef ELF_CORE_COPY_XFPREGS
1965 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1966 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1967 sizeof(t->xfpu), &t->xfpu);
1969 sz += notesize(&t->notes[2]);
1975 struct elf_note_info {
1976 struct memelfnote *notes;
1977 struct memelfnote *notes_files;
1978 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1979 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1980 struct list_head thread_list;
1981 elf_fpregset_t *fpu;
1982 #ifdef ELF_CORE_COPY_XFPREGS
1983 elf_fpxregset_t *xfpu;
1985 user_siginfo_t csigdata;
1986 int thread_status_size;
1990 static int elf_note_info_init(struct elf_note_info *info)
1992 memset(info, 0, sizeof(*info));
1993 INIT_LIST_HEAD(&info->thread_list);
1995 /* Allocate space for ELF notes */
1996 info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
1999 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2002 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2003 if (!info->prstatus)
2005 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2008 #ifdef ELF_CORE_COPY_XFPREGS
2009 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2016 static int fill_note_info(struct elfhdr *elf, int phdrs,
2017 struct elf_note_info *info,
2018 const kernel_siginfo_t *siginfo, struct pt_regs *regs)
2020 struct core_thread *ct;
2021 struct elf_thread_status *ets;
2023 if (!elf_note_info_init(info))
2026 for (ct = current->mm->core_state->dumper.next;
2027 ct; ct = ct->next) {
2028 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2032 ets->thread = ct->task;
2033 list_add(&ets->list, &info->thread_list);
2036 list_for_each_entry(ets, &info->thread_list, list) {
2039 sz = elf_dump_thread_status(siginfo->si_signo, ets);
2040 info->thread_status_size += sz;
2042 /* now collect the dump for the current */
2043 memset(info->prstatus, 0, sizeof(*info->prstatus));
2044 fill_prstatus(info->prstatus, current, siginfo->si_signo);
2045 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2048 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2051 * Set up the notes in similar form to SVR4 core dumps made
2052 * with info from their /proc.
2055 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2056 sizeof(*info->prstatus), info->prstatus);
2057 fill_psinfo(info->psinfo, current->group_leader, current->mm);
2058 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2059 sizeof(*info->psinfo), info->psinfo);
2061 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2062 fill_auxv_note(info->notes + 3, current->mm);
2065 if (fill_files_note(info->notes + info->numnote) == 0) {
2066 info->notes_files = info->notes + info->numnote;
2070 /* Try to dump the FPU. */
2071 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2073 if (info->prstatus->pr_fpvalid)
2074 fill_note(info->notes + info->numnote++,
2075 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2076 #ifdef ELF_CORE_COPY_XFPREGS
2077 if (elf_core_copy_task_xfpregs(current, info->xfpu))
2078 fill_note(info->notes + info->numnote++,
2079 "LINUX", ELF_CORE_XFPREG_TYPE,
2080 sizeof(*info->xfpu), info->xfpu);
2086 static size_t get_note_info_size(struct elf_note_info *info)
2091 for (i = 0; i < info->numnote; i++)
2092 sz += notesize(info->notes + i);
2094 sz += info->thread_status_size;
2099 static int write_note_info(struct elf_note_info *info,
2100 struct coredump_params *cprm)
2102 struct elf_thread_status *ets;
2105 for (i = 0; i < info->numnote; i++)
2106 if (!writenote(info->notes + i, cprm))
2109 /* write out the thread status notes section */
2110 list_for_each_entry(ets, &info->thread_list, list) {
2111 for (i = 0; i < ets->num_notes; i++)
2112 if (!writenote(&ets->notes[i], cprm))
2119 static void free_note_info(struct elf_note_info *info)
2121 while (!list_empty(&info->thread_list)) {
2122 struct list_head *tmp = info->thread_list.next;
2124 kfree(list_entry(tmp, struct elf_thread_status, list));
2127 /* Free data possibly allocated by fill_files_note(): */
2128 if (info->notes_files)
2129 kvfree(info->notes_files->data);
2131 kfree(info->prstatus);
2132 kfree(info->psinfo);
2135 #ifdef ELF_CORE_COPY_XFPREGS
2142 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2143 struct vm_area_struct *gate_vma)
2145 struct vm_area_struct *ret = tsk->mm->mmap;
2152 * Helper function for iterating across a vma list. It ensures that the caller
2153 * will visit `gate_vma' prior to terminating the search.
2155 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2156 struct vm_area_struct *gate_vma)
2158 struct vm_area_struct *ret;
2160 ret = this_vma->vm_next;
2163 if (this_vma == gate_vma)
2168 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2169 elf_addr_t e_shoff, int segs)
2171 elf->e_shoff = e_shoff;
2172 elf->e_shentsize = sizeof(*shdr4extnum);
2174 elf->e_shstrndx = SHN_UNDEF;
2176 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2178 shdr4extnum->sh_type = SHT_NULL;
2179 shdr4extnum->sh_size = elf->e_shnum;
2180 shdr4extnum->sh_link = elf->e_shstrndx;
2181 shdr4extnum->sh_info = segs;
2187 * This is a two-pass process; first we find the offsets of the bits,
2188 * and then they are actually written out. If we run out of core limit
2191 static int elf_core_dump(struct coredump_params *cprm)
2196 size_t vma_data_size = 0;
2197 struct vm_area_struct *vma, *gate_vma;
2198 struct elfhdr *elf = NULL;
2199 loff_t offset = 0, dataoff;
2200 struct elf_note_info info = { };
2201 struct elf_phdr *phdr4note = NULL;
2202 struct elf_shdr *shdr4extnum = NULL;
2205 elf_addr_t *vma_filesz = NULL;
2208 * We no longer stop all VM operations.
2210 * This is because those proceses that could possibly change map_count
2211 * or the mmap / vma pages are now blocked in do_exit on current
2212 * finishing this core dump.
2214 * Only ptrace can touch these memory addresses, but it doesn't change
2215 * the map_count or the pages allocated. So no possibility of crashing
2216 * exists while dumping the mm->vm_next areas to the core file.
2219 /* alloc memory for large data structures: too large to be on stack */
2220 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2224 * The number of segs are recored into ELF header as 16bit value.
2225 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2227 segs = current->mm->map_count;
2228 segs += elf_core_extra_phdrs();
2230 gate_vma = get_gate_vma(current->mm);
2231 if (gate_vma != NULL)
2234 /* for notes section */
2237 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2238 * this, kernel supports extended numbering. Have a look at
2239 * include/linux/elf.h for further information. */
2240 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2243 * Collect all the non-memory information about the process for the
2244 * notes. This also sets up the file header.
2246 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2254 offset += sizeof(*elf); /* Elf header */
2255 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2257 /* Write notes phdr entry */
2259 size_t sz = get_note_info_size(&info);
2261 sz += elf_coredump_extra_notes_size();
2263 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2267 fill_elf_note_phdr(phdr4note, sz, offset);
2271 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2273 if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2275 vma_filesz = kvmalloc(array_size(sizeof(*vma_filesz), (segs - 1)),
2277 if (ZERO_OR_NULL_PTR(vma_filesz))
2280 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2281 vma = next_vma(vma, gate_vma)) {
2282 unsigned long dump_size;
2284 dump_size = vma_dump_size(vma, cprm->mm_flags);
2285 vma_filesz[i++] = dump_size;
2286 vma_data_size += dump_size;
2289 offset += vma_data_size;
2290 offset += elf_core_extra_data_size();
2293 if (e_phnum == PN_XNUM) {
2294 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2297 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2302 if (!dump_emit(cprm, elf, sizeof(*elf)))
2305 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2308 /* Write program headers for segments dump */
2309 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2310 vma = next_vma(vma, gate_vma)) {
2311 struct elf_phdr phdr;
2313 phdr.p_type = PT_LOAD;
2314 phdr.p_offset = offset;
2315 phdr.p_vaddr = vma->vm_start;
2317 phdr.p_filesz = vma_filesz[i++];
2318 phdr.p_memsz = vma->vm_end - vma->vm_start;
2319 offset += phdr.p_filesz;
2320 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2321 if (vma->vm_flags & VM_WRITE)
2322 phdr.p_flags |= PF_W;
2323 if (vma->vm_flags & VM_EXEC)
2324 phdr.p_flags |= PF_X;
2325 phdr.p_align = ELF_EXEC_PAGESIZE;
2327 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2331 if (!elf_core_write_extra_phdrs(cprm, offset))
2334 /* write out the notes section */
2335 if (!write_note_info(&info, cprm))
2338 if (elf_coredump_extra_notes_write(cprm))
2342 if (!dump_skip(cprm, dataoff - cprm->pos))
2345 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2346 vma = next_vma(vma, gate_vma)) {
2350 end = vma->vm_start + vma_filesz[i++];
2352 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2356 page = get_dump_page(addr);
2358 void *kaddr = kmap(page);
2359 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2363 stop = !dump_skip(cprm, PAGE_SIZE);
2368 dump_truncate(cprm);
2370 if (!elf_core_write_extra_data(cprm))
2373 if (e_phnum == PN_XNUM) {
2374 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2382 free_note_info(&info);
2391 #endif /* CONFIG_ELF_CORE */
2393 static int __init init_elf_binfmt(void)
2395 register_binfmt(&elf_format);
2399 static void __exit exit_elf_binfmt(void)
2401 /* Remove the COFF and ELF loaders. */
2402 unregister_binfmt(&elf_format);
2405 core_initcall(init_elf_binfmt);
2406 module_exit(exit_elf_binfmt);
2407 MODULE_LICENSE("GPL");