1 // SPDX-License-Identifier: GPL-2.0
3 * Shared Memory Communications over RDMA (SMC-R) and RoCE
5 * Work Requests exploiting Infiniband API
7 * Work requests (WR) of type ib_post_send or ib_post_recv respectively
8 * are submitted to either RC SQ or RC RQ respectively
9 * (reliably connected send/receive queue)
10 * and become work queue entries (WQEs).
11 * While an SQ WR/WQE is pending, we track it until transmission completion.
12 * Through a send or receive completion queue (CQ) respectively,
13 * we get completion queue entries (CQEs) [aka work completions (WCs)].
14 * Since the CQ callback is called from IRQ context, we split work by using
15 * bottom halves implemented by tasklets.
17 * SMC uses this to exchange LLC (link layer control)
18 * and CDC (connection data control) messages.
20 * Copyright IBM Corp. 2016
25 #include <linux/atomic.h>
26 #include <linux/hashtable.h>
27 #include <linux/wait.h>
28 #include <rdma/ib_verbs.h>
29 #include <asm/div64.h>
34 #define SMC_WR_MAX_POLL_CQE 10 /* max. # of compl. queue elements in 1 poll */
36 #define SMC_WR_RX_HASH_BITS 4
37 static DEFINE_HASHTABLE(smc_wr_rx_hash, SMC_WR_RX_HASH_BITS);
38 static DEFINE_SPINLOCK(smc_wr_rx_hash_lock);
40 struct smc_wr_tx_pend { /* control data for a pending send request */
41 u64 wr_id; /* work request id sent */
42 smc_wr_tx_handler handler;
43 enum ib_wc_status wc_status; /* CQE status */
44 struct smc_link *link;
46 struct smc_wr_tx_pend_priv priv;
49 /******************************** send queue *********************************/
51 /*------------------------------- completion --------------------------------*/
53 static inline int smc_wr_tx_find_pending_index(struct smc_link *link, u64 wr_id)
57 for (i = 0; i < link->wr_tx_cnt; i++) {
58 if (link->wr_tx_pends[i].wr_id == wr_id)
61 return link->wr_tx_cnt;
64 static inline void smc_wr_tx_process_cqe(struct ib_wc *wc)
66 struct smc_wr_tx_pend pnd_snd;
67 struct smc_link *link;
71 link = wc->qp->qp_context;
73 if (wc->opcode == IB_WC_REG_MR) {
75 link->wr_reg_state = FAILED;
77 link->wr_reg_state = CONFIRMED;
78 wake_up(&link->wr_reg_wait);
82 pnd_snd_idx = smc_wr_tx_find_pending_index(link, wc->wr_id);
83 if (pnd_snd_idx == link->wr_tx_cnt)
85 link->wr_tx_pends[pnd_snd_idx].wc_status = wc->status;
86 memcpy(&pnd_snd, &link->wr_tx_pends[pnd_snd_idx], sizeof(pnd_snd));
87 /* clear the full struct smc_wr_tx_pend including .priv */
88 memset(&link->wr_tx_pends[pnd_snd_idx], 0,
89 sizeof(link->wr_tx_pends[pnd_snd_idx]));
90 memset(&link->wr_tx_bufs[pnd_snd_idx], 0,
91 sizeof(link->wr_tx_bufs[pnd_snd_idx]));
92 if (!test_and_clear_bit(pnd_snd_idx, link->wr_tx_mask))
95 struct smc_link_group *lgr;
97 for_each_set_bit(i, link->wr_tx_mask, link->wr_tx_cnt) {
98 /* clear full struct smc_wr_tx_pend including .priv */
99 memset(&link->wr_tx_pends[i], 0,
100 sizeof(link->wr_tx_pends[i]));
101 memset(&link->wr_tx_bufs[i], 0,
102 sizeof(link->wr_tx_bufs[i]));
103 clear_bit(i, link->wr_tx_mask);
105 /* terminate connections of this link group abnormally */
106 lgr = container_of(link, struct smc_link_group,
107 lnk[SMC_SINGLE_LINK]);
108 smc_lgr_terminate(lgr);
111 pnd_snd.handler(&pnd_snd.priv, link, wc->status);
112 wake_up(&link->wr_tx_wait);
115 static void smc_wr_tx_tasklet_fn(unsigned long data)
117 struct smc_ib_device *dev = (struct smc_ib_device *)data;
118 struct ib_wc wc[SMC_WR_MAX_POLL_CQE];
125 rc = ib_poll_cq(dev->roce_cq_send, SMC_WR_MAX_POLL_CQE, wc);
127 ib_req_notify_cq(dev->roce_cq_send,
129 IB_CQ_REPORT_MISSED_EVENTS);
133 for (i = 0; i < rc; i++)
134 smc_wr_tx_process_cqe(&wc[i]);
140 void smc_wr_tx_cq_handler(struct ib_cq *ib_cq, void *cq_context)
142 struct smc_ib_device *dev = (struct smc_ib_device *)cq_context;
144 tasklet_schedule(&dev->send_tasklet);
147 /*---------------------------- request submission ---------------------------*/
149 static inline int smc_wr_tx_get_free_slot_index(struct smc_link *link, u32 *idx)
151 *idx = link->wr_tx_cnt;
152 for_each_clear_bit(*idx, link->wr_tx_mask, link->wr_tx_cnt) {
153 if (!test_and_set_bit(*idx, link->wr_tx_mask))
156 *idx = link->wr_tx_cnt;
161 * smc_wr_tx_get_free_slot() - returns buffer for message assembly,
162 * and sets info for pending transmit tracking
163 * @link: Pointer to smc_link used to later send the message.
164 * @handler: Send completion handler function pointer.
165 * @wr_buf: Out value returns pointer to message buffer.
166 * @wr_pend_priv: Out value returns pointer serving as handler context.
168 * Return: 0 on success, or -errno on error.
170 int smc_wr_tx_get_free_slot(struct smc_link *link,
171 smc_wr_tx_handler handler,
172 struct smc_wr_buf **wr_buf,
173 struct smc_wr_tx_pend_priv **wr_pend_priv)
175 struct smc_wr_tx_pend *wr_pend;
176 struct ib_send_wr *wr_ib;
182 *wr_pend_priv = NULL;
184 rc = smc_wr_tx_get_free_slot_index(link, &idx);
188 rc = wait_event_interruptible_timeout(
190 (smc_wr_tx_get_free_slot_index(link, &idx) != -EBUSY),
191 SMC_WR_TX_WAIT_FREE_SLOT_TIME);
193 /* timeout - terminate connections */
194 struct smc_link_group *lgr;
196 lgr = container_of(link, struct smc_link_group,
197 lnk[SMC_SINGLE_LINK]);
198 smc_lgr_terminate(lgr);
201 if (rc == -ERESTARTSYS)
203 if (idx == link->wr_tx_cnt)
206 wr_id = smc_wr_tx_get_next_wr_id(link);
207 wr_pend = &link->wr_tx_pends[idx];
208 wr_pend->wr_id = wr_id;
209 wr_pend->handler = handler;
210 wr_pend->link = link;
212 wr_ib = &link->wr_tx_ibs[idx];
213 wr_ib->wr_id = wr_id;
214 *wr_buf = &link->wr_tx_bufs[idx];
215 *wr_pend_priv = &wr_pend->priv;
219 int smc_wr_tx_put_slot(struct smc_link *link,
220 struct smc_wr_tx_pend_priv *wr_pend_priv)
222 struct smc_wr_tx_pend *pend;
224 pend = container_of(wr_pend_priv, struct smc_wr_tx_pend, priv);
225 if (pend->idx < link->wr_tx_cnt) {
226 /* clear the full struct smc_wr_tx_pend including .priv */
227 memset(&link->wr_tx_pends[pend->idx], 0,
228 sizeof(link->wr_tx_pends[pend->idx]));
229 memset(&link->wr_tx_bufs[pend->idx], 0,
230 sizeof(link->wr_tx_bufs[pend->idx]));
231 test_and_clear_bit(pend->idx, link->wr_tx_mask);
238 /* Send prepared WR slot via ib_post_send.
239 * @priv: pointer to smc_wr_tx_pend_priv identifying prepared message buffer
241 int smc_wr_tx_send(struct smc_link *link, struct smc_wr_tx_pend_priv *priv)
243 struct ib_send_wr *failed_wr = NULL;
244 struct smc_wr_tx_pend *pend;
247 ib_req_notify_cq(link->smcibdev->roce_cq_send,
248 IB_CQ_NEXT_COMP | IB_CQ_REPORT_MISSED_EVENTS);
249 pend = container_of(priv, struct smc_wr_tx_pend, priv);
250 rc = ib_post_send(link->roce_qp, &link->wr_tx_ibs[pend->idx],
253 smc_wr_tx_put_slot(link, priv);
257 /* Register a memory region and wait for result. */
258 int smc_wr_reg_send(struct smc_link *link, struct ib_mr *mr)
260 struct ib_send_wr *failed_wr = NULL;
263 ib_req_notify_cq(link->smcibdev->roce_cq_send,
264 IB_CQ_NEXT_COMP | IB_CQ_REPORT_MISSED_EVENTS);
265 link->wr_reg_state = POSTED;
266 link->wr_reg.wr.wr_id = (u64)(uintptr_t)mr;
267 link->wr_reg.mr = mr;
268 link->wr_reg.key = mr->rkey;
269 failed_wr = &link->wr_reg.wr;
270 rc = ib_post_send(link->roce_qp, &link->wr_reg.wr, &failed_wr);
271 WARN_ON(failed_wr != &link->wr_reg.wr);
275 rc = wait_event_interruptible_timeout(link->wr_reg_wait,
276 (link->wr_reg_state != POSTED),
277 SMC_WR_REG_MR_WAIT_TIME);
279 /* timeout - terminate connections */
280 struct smc_link_group *lgr;
282 lgr = container_of(link, struct smc_link_group,
283 lnk[SMC_SINGLE_LINK]);
284 smc_lgr_terminate(lgr);
287 if (rc == -ERESTARTSYS)
289 switch (link->wr_reg_state) {
303 void smc_wr_tx_dismiss_slots(struct smc_link *link, u8 wr_rx_hdr_type,
304 smc_wr_tx_filter filter,
305 smc_wr_tx_dismisser dismisser,
308 struct smc_wr_tx_pend_priv *tx_pend;
309 struct smc_wr_rx_hdr *wr_rx;
312 for_each_set_bit(i, link->wr_tx_mask, link->wr_tx_cnt) {
313 wr_rx = (struct smc_wr_rx_hdr *)&link->wr_rx_bufs[i];
314 if (wr_rx->type != wr_rx_hdr_type)
316 tx_pend = &link->wr_tx_pends[i].priv;
317 if (filter(tx_pend, data))
322 bool smc_wr_tx_has_pending(struct smc_link *link, u8 wr_rx_hdr_type,
323 smc_wr_tx_filter filter, unsigned long data)
325 struct smc_wr_tx_pend_priv *tx_pend;
326 struct smc_wr_rx_hdr *wr_rx;
329 for_each_set_bit(i, link->wr_tx_mask, link->wr_tx_cnt) {
330 wr_rx = (struct smc_wr_rx_hdr *)&link->wr_rx_bufs[i];
331 if (wr_rx->type != wr_rx_hdr_type)
333 tx_pend = &link->wr_tx_pends[i].priv;
334 if (filter(tx_pend, data))
340 /****************************** receive queue ********************************/
342 int smc_wr_rx_register_handler(struct smc_wr_rx_handler *handler)
344 struct smc_wr_rx_handler *h_iter;
347 spin_lock(&smc_wr_rx_hash_lock);
348 hash_for_each_possible(smc_wr_rx_hash, h_iter, list, handler->type) {
349 if (h_iter->type == handler->type) {
354 hash_add(smc_wr_rx_hash, &handler->list, handler->type);
356 spin_unlock(&smc_wr_rx_hash_lock);
360 /* Demultiplex a received work request based on the message type to its handler.
361 * Relies on smc_wr_rx_hash having been completely filled before any IB WRs,
362 * and not being modified any more afterwards so we don't need to lock it.
364 static inline void smc_wr_rx_demultiplex(struct ib_wc *wc)
366 struct smc_link *link = (struct smc_link *)wc->qp->qp_context;
367 struct smc_wr_rx_handler *handler;
368 struct smc_wr_rx_hdr *wr_rx;
372 if (wc->byte_len < sizeof(*wr_rx))
373 return; /* short message */
374 temp_wr_id = wc->wr_id;
375 index = do_div(temp_wr_id, link->wr_rx_cnt);
376 wr_rx = (struct smc_wr_rx_hdr *)&link->wr_rx_bufs[index];
377 hash_for_each_possible(smc_wr_rx_hash, handler, list, wr_rx->type) {
378 if (handler->type == wr_rx->type)
379 handler->handler(wc, wr_rx);
383 static inline void smc_wr_rx_process_cqes(struct ib_wc wc[], int num)
385 struct smc_link *link;
388 for (i = 0; i < num; i++) {
389 link = wc[i].qp->qp_context;
390 if (wc[i].status == IB_WC_SUCCESS) {
391 smc_wr_rx_demultiplex(&wc[i]);
392 smc_wr_rx_post(link); /* refill WR RX */
394 struct smc_link_group *lgr;
396 /* handle status errors */
397 switch (wc[i].status) {
398 case IB_WC_RETRY_EXC_ERR:
399 case IB_WC_RNR_RETRY_EXC_ERR:
400 case IB_WC_WR_FLUSH_ERR:
401 /* terminate connections of this link group
404 lgr = container_of(link, struct smc_link_group,
405 lnk[SMC_SINGLE_LINK]);
406 smc_lgr_terminate(lgr);
409 smc_wr_rx_post(link); /* refill WR RX */
416 static void smc_wr_rx_tasklet_fn(unsigned long data)
418 struct smc_ib_device *dev = (struct smc_ib_device *)data;
419 struct ib_wc wc[SMC_WR_MAX_POLL_CQE];
426 memset(&wc, 0, sizeof(wc));
427 rc = ib_poll_cq(dev->roce_cq_recv, SMC_WR_MAX_POLL_CQE, wc);
429 ib_req_notify_cq(dev->roce_cq_recv,
431 | IB_CQ_REPORT_MISSED_EVENTS);
435 smc_wr_rx_process_cqes(&wc[0], rc);
441 void smc_wr_rx_cq_handler(struct ib_cq *ib_cq, void *cq_context)
443 struct smc_ib_device *dev = (struct smc_ib_device *)cq_context;
445 tasklet_schedule(&dev->recv_tasklet);
448 int smc_wr_rx_post_init(struct smc_link *link)
453 for (i = 0; i < link->wr_rx_cnt; i++)
454 rc = smc_wr_rx_post(link);
458 /***************************** init, exit, misc ******************************/
460 void smc_wr_remember_qp_attr(struct smc_link *lnk)
462 struct ib_qp_attr *attr = &lnk->qp_attr;
463 struct ib_qp_init_attr init_attr;
465 memset(attr, 0, sizeof(*attr));
466 memset(&init_attr, 0, sizeof(init_attr));
467 ib_query_qp(lnk->roce_qp, attr,
480 IB_QP_MIN_RNR_TIMER |
482 IB_QP_PATH_MIG_STATE |
487 lnk->wr_tx_cnt = min_t(size_t, SMC_WR_BUF_CNT,
488 lnk->qp_attr.cap.max_send_wr);
489 lnk->wr_rx_cnt = min_t(size_t, SMC_WR_BUF_CNT * 3,
490 lnk->qp_attr.cap.max_recv_wr);
493 static void smc_wr_init_sge(struct smc_link *lnk)
497 for (i = 0; i < lnk->wr_tx_cnt; i++) {
498 lnk->wr_tx_sges[i].addr =
499 lnk->wr_tx_dma_addr + i * SMC_WR_BUF_SIZE;
500 lnk->wr_tx_sges[i].length = SMC_WR_TX_SIZE;
501 lnk->wr_tx_sges[i].lkey = lnk->roce_pd->local_dma_lkey;
502 lnk->wr_tx_ibs[i].next = NULL;
503 lnk->wr_tx_ibs[i].sg_list = &lnk->wr_tx_sges[i];
504 lnk->wr_tx_ibs[i].num_sge = 1;
505 lnk->wr_tx_ibs[i].opcode = IB_WR_SEND;
506 lnk->wr_tx_ibs[i].send_flags =
507 IB_SEND_SIGNALED | IB_SEND_SOLICITED;
509 for (i = 0; i < lnk->wr_rx_cnt; i++) {
510 lnk->wr_rx_sges[i].addr =
511 lnk->wr_rx_dma_addr + i * SMC_WR_BUF_SIZE;
512 lnk->wr_rx_sges[i].length = SMC_WR_BUF_SIZE;
513 lnk->wr_rx_sges[i].lkey = lnk->roce_pd->local_dma_lkey;
514 lnk->wr_rx_ibs[i].next = NULL;
515 lnk->wr_rx_ibs[i].sg_list = &lnk->wr_rx_sges[i];
516 lnk->wr_rx_ibs[i].num_sge = 1;
518 lnk->wr_reg.wr.next = NULL;
519 lnk->wr_reg.wr.num_sge = 0;
520 lnk->wr_reg.wr.send_flags = IB_SEND_SIGNALED;
521 lnk->wr_reg.wr.opcode = IB_WR_REG_MR;
522 lnk->wr_reg.access = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE;
525 void smc_wr_free_link(struct smc_link *lnk)
527 struct ib_device *ibdev;
529 memset(lnk->wr_tx_mask, 0,
530 BITS_TO_LONGS(SMC_WR_BUF_CNT) * sizeof(*lnk->wr_tx_mask));
534 ibdev = lnk->smcibdev->ibdev;
536 if (lnk->wr_rx_dma_addr) {
537 ib_dma_unmap_single(ibdev, lnk->wr_rx_dma_addr,
538 SMC_WR_BUF_SIZE * lnk->wr_rx_cnt,
540 lnk->wr_rx_dma_addr = 0;
542 if (lnk->wr_tx_dma_addr) {
543 ib_dma_unmap_single(ibdev, lnk->wr_tx_dma_addr,
544 SMC_WR_BUF_SIZE * lnk->wr_tx_cnt,
546 lnk->wr_tx_dma_addr = 0;
550 void smc_wr_free_link_mem(struct smc_link *lnk)
552 kfree(lnk->wr_tx_pends);
553 lnk->wr_tx_pends = NULL;
554 kfree(lnk->wr_tx_mask);
555 lnk->wr_tx_mask = NULL;
556 kfree(lnk->wr_tx_sges);
557 lnk->wr_tx_sges = NULL;
558 kfree(lnk->wr_rx_sges);
559 lnk->wr_rx_sges = NULL;
560 kfree(lnk->wr_rx_ibs);
561 lnk->wr_rx_ibs = NULL;
562 kfree(lnk->wr_tx_ibs);
563 lnk->wr_tx_ibs = NULL;
564 kfree(lnk->wr_tx_bufs);
565 lnk->wr_tx_bufs = NULL;
566 kfree(lnk->wr_rx_bufs);
567 lnk->wr_rx_bufs = NULL;
570 int smc_wr_alloc_link_mem(struct smc_link *link)
572 /* allocate link related memory */
573 link->wr_tx_bufs = kcalloc(SMC_WR_BUF_CNT, SMC_WR_BUF_SIZE, GFP_KERNEL);
574 if (!link->wr_tx_bufs)
576 link->wr_rx_bufs = kcalloc(SMC_WR_BUF_CNT * 3, SMC_WR_BUF_SIZE,
578 if (!link->wr_rx_bufs)
579 goto no_mem_wr_tx_bufs;
580 link->wr_tx_ibs = kcalloc(SMC_WR_BUF_CNT, sizeof(link->wr_tx_ibs[0]),
582 if (!link->wr_tx_ibs)
583 goto no_mem_wr_rx_bufs;
584 link->wr_rx_ibs = kcalloc(SMC_WR_BUF_CNT * 3,
585 sizeof(link->wr_rx_ibs[0]),
587 if (!link->wr_rx_ibs)
588 goto no_mem_wr_tx_ibs;
589 link->wr_tx_sges = kcalloc(SMC_WR_BUF_CNT, sizeof(link->wr_tx_sges[0]),
591 if (!link->wr_tx_sges)
592 goto no_mem_wr_rx_ibs;
593 link->wr_rx_sges = kcalloc(SMC_WR_BUF_CNT * 3,
594 sizeof(link->wr_rx_sges[0]),
596 if (!link->wr_rx_sges)
597 goto no_mem_wr_tx_sges;
598 link->wr_tx_mask = kzalloc(
599 BITS_TO_LONGS(SMC_WR_BUF_CNT) * sizeof(*link->wr_tx_mask),
601 if (!link->wr_tx_mask)
602 goto no_mem_wr_rx_sges;
603 link->wr_tx_pends = kcalloc(SMC_WR_BUF_CNT,
604 sizeof(link->wr_tx_pends[0]),
606 if (!link->wr_tx_pends)
607 goto no_mem_wr_tx_mask;
611 kfree(link->wr_tx_mask);
613 kfree(link->wr_rx_sges);
615 kfree(link->wr_tx_sges);
617 kfree(link->wr_rx_ibs);
619 kfree(link->wr_tx_ibs);
621 kfree(link->wr_rx_bufs);
623 kfree(link->wr_tx_bufs);
628 void smc_wr_remove_dev(struct smc_ib_device *smcibdev)
630 tasklet_kill(&smcibdev->recv_tasklet);
631 tasklet_kill(&smcibdev->send_tasklet);
634 void smc_wr_add_dev(struct smc_ib_device *smcibdev)
636 tasklet_init(&smcibdev->recv_tasklet, smc_wr_rx_tasklet_fn,
637 (unsigned long)smcibdev);
638 tasklet_init(&smcibdev->send_tasklet, smc_wr_tx_tasklet_fn,
639 (unsigned long)smcibdev);
642 int smc_wr_create_link(struct smc_link *lnk)
644 struct ib_device *ibdev = lnk->smcibdev->ibdev;
647 smc_wr_tx_set_wr_id(&lnk->wr_tx_id, 0);
649 lnk->wr_rx_dma_addr = ib_dma_map_single(
650 ibdev, lnk->wr_rx_bufs, SMC_WR_BUF_SIZE * lnk->wr_rx_cnt,
652 if (ib_dma_mapping_error(ibdev, lnk->wr_rx_dma_addr)) {
653 lnk->wr_rx_dma_addr = 0;
657 lnk->wr_tx_dma_addr = ib_dma_map_single(
658 ibdev, lnk->wr_tx_bufs, SMC_WR_BUF_SIZE * lnk->wr_tx_cnt,
660 if (ib_dma_mapping_error(ibdev, lnk->wr_tx_dma_addr)) {
664 smc_wr_init_sge(lnk);
665 memset(lnk->wr_tx_mask, 0,
666 BITS_TO_LONGS(SMC_WR_BUF_CNT) * sizeof(*lnk->wr_tx_mask));
667 init_waitqueue_head(&lnk->wr_tx_wait);
668 init_waitqueue_head(&lnk->wr_reg_wait);
672 ib_dma_unmap_single(ibdev, lnk->wr_rx_dma_addr,
673 SMC_WR_BUF_SIZE * lnk->wr_rx_cnt,
675 lnk->wr_rx_dma_addr = 0;