2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
144 #include "net-sysfs.h"
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly; /* Taps */
156 static struct list_head offload_base __read_mostly;
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169 * Writers must hold the rtnl semaphore while they loop through the
170 * dev_base_head list, and hold dev_base_lock for writing when they do the
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191 static seqcount_t devnet_rename_seq;
193 static inline void dev_base_seq_inc(struct net *net)
195 while (++net->dev_base_seq == 0);
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 static inline void rps_lock(struct softnet_data *sd)
213 spin_lock(&sd->input_pkt_queue.lock);
217 static inline void rps_unlock(struct softnet_data *sd)
220 spin_unlock(&sd->input_pkt_queue.lock);
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
227 struct net *net = dev_net(dev);
231 write_lock_bh(&dev_base_lock);
232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
236 write_unlock_bh(&dev_base_lock);
238 dev_base_seq_inc(net);
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
244 static void unlist_netdevice(struct net_device *dev)
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
255 dev_base_seq_inc(dev_net(dev));
262 static RAW_NOTIFIER_HEAD(netdev_chain);
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
272 #ifdef CONFIG_LOCKDEP
274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275 * according to dev->type
277 static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
354 /*******************************************************************************
356 Protocol management and registration routines
358 *******************************************************************************/
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 if (pt->type == htons(ETH_P_ALL))
379 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
381 return pt->dev ? &pt->dev->ptype_specific :
382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
398 void dev_add_pack(struct packet_type *pt)
400 struct list_head *head = ptype_head(pt);
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
406 EXPORT_SYMBOL(dev_add_pack);
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
421 void __dev_remove_pack(struct packet_type *pt)
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
426 spin_lock(&ptype_lock);
428 list_for_each_entry(pt1, head, list) {
430 list_del_rcu(&pt->list);
435 pr_warn("dev_remove_pack: %p not found\n", pt);
437 spin_unlock(&ptype_lock);
439 EXPORT_SYMBOL(__dev_remove_pack);
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
450 * This call sleeps to guarantee that no CPU is looking at the packet
453 void dev_remove_pack(struct packet_type *pt)
455 __dev_remove_pack(pt);
459 EXPORT_SYMBOL(dev_remove_pack);
463 * dev_add_offload - register offload handlers
464 * @po: protocol offload declaration
466 * Add protocol offload handlers to the networking stack. The passed
467 * &proto_offload is linked into kernel lists and may not be freed until
468 * it has been removed from the kernel lists.
470 * This call does not sleep therefore it can not
471 * guarantee all CPU's that are in middle of receiving packets
472 * will see the new offload handlers (until the next received packet).
474 void dev_add_offload(struct packet_offload *po)
476 struct packet_offload *elem;
478 spin_lock(&offload_lock);
479 list_for_each_entry(elem, &offload_base, list) {
480 if (po->priority < elem->priority)
483 list_add_rcu(&po->list, elem->list.prev);
484 spin_unlock(&offload_lock);
486 EXPORT_SYMBOL(dev_add_offload);
489 * __dev_remove_offload - remove offload handler
490 * @po: packet offload declaration
492 * Remove a protocol offload handler that was previously added to the
493 * kernel offload handlers by dev_add_offload(). The passed &offload_type
494 * is removed from the kernel lists and can be freed or reused once this
497 * The packet type might still be in use by receivers
498 * and must not be freed until after all the CPU's have gone
499 * through a quiescent state.
501 static void __dev_remove_offload(struct packet_offload *po)
503 struct list_head *head = &offload_base;
504 struct packet_offload *po1;
506 spin_lock(&offload_lock);
508 list_for_each_entry(po1, head, list) {
510 list_del_rcu(&po->list);
515 pr_warn("dev_remove_offload: %p not found\n", po);
517 spin_unlock(&offload_lock);
521 * dev_remove_offload - remove packet offload handler
522 * @po: packet offload declaration
524 * Remove a packet offload handler that was previously added to the kernel
525 * offload handlers by dev_add_offload(). The passed &offload_type is
526 * removed from the kernel lists and can be freed or reused once this
529 * This call sleeps to guarantee that no CPU is looking at the packet
532 void dev_remove_offload(struct packet_offload *po)
534 __dev_remove_offload(po);
538 EXPORT_SYMBOL(dev_remove_offload);
540 /******************************************************************************
542 Device Boot-time Settings Routines
544 *******************************************************************************/
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
550 * netdev_boot_setup_add - add new setup entry
551 * @name: name of the device
552 * @map: configured settings for the device
554 * Adds new setup entry to the dev_boot_setup list. The function
555 * returns 0 on error and 1 on success. This is a generic routine to
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 struct netdev_boot_setup *s;
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 memset(s[i].name, 0, sizeof(s[i].name));
567 strlcpy(s[i].name, name, IFNAMSIZ);
568 memcpy(&s[i].map, map, sizeof(s[i].map));
573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
577 * netdev_boot_setup_check - check boot time settings
578 * @dev: the netdevice
580 * Check boot time settings for the device.
581 * The found settings are set for the device to be used
582 * later in the device probing.
583 * Returns 0 if no settings found, 1 if they are.
585 int netdev_boot_setup_check(struct net_device *dev)
587 struct netdev_boot_setup *s = dev_boot_setup;
590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592 !strcmp(dev->name, s[i].name)) {
593 dev->irq = s[i].map.irq;
594 dev->base_addr = s[i].map.base_addr;
595 dev->mem_start = s[i].map.mem_start;
596 dev->mem_end = s[i].map.mem_end;
602 EXPORT_SYMBOL(netdev_boot_setup_check);
606 * netdev_boot_base - get address from boot time settings
607 * @prefix: prefix for network device
608 * @unit: id for network device
610 * Check boot time settings for the base address of device.
611 * The found settings are set for the device to be used
612 * later in the device probing.
613 * Returns 0 if no settings found.
615 unsigned long netdev_boot_base(const char *prefix, int unit)
617 const struct netdev_boot_setup *s = dev_boot_setup;
621 sprintf(name, "%s%d", prefix, unit);
624 * If device already registered then return base of 1
625 * to indicate not to probe for this interface
627 if (__dev_get_by_name(&init_net, name))
630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 if (!strcmp(name, s[i].name))
632 return s[i].map.base_addr;
637 * Saves at boot time configured settings for any netdevice.
639 int __init netdev_boot_setup(char *str)
644 str = get_options(str, ARRAY_SIZE(ints), ints);
649 memset(&map, 0, sizeof(map));
653 map.base_addr = ints[2];
655 map.mem_start = ints[3];
657 map.mem_end = ints[4];
659 /* Add new entry to the list */
660 return netdev_boot_setup_add(str, &map);
663 __setup("netdev=", netdev_boot_setup);
665 /*******************************************************************************
667 Device Interface Subroutines
669 *******************************************************************************/
672 * dev_get_iflink - get 'iflink' value of a interface
673 * @dev: targeted interface
675 * Indicates the ifindex the interface is linked to.
676 * Physical interfaces have the same 'ifindex' and 'iflink' values.
679 int dev_get_iflink(const struct net_device *dev)
681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 return dev->netdev_ops->ndo_get_iflink(dev);
686 EXPORT_SYMBOL(dev_get_iflink);
689 * dev_fill_metadata_dst - Retrieve tunnel egress information.
690 * @dev: targeted interface
693 * For better visibility of tunnel traffic OVS needs to retrieve
694 * egress tunnel information for a packet. Following API allows
695 * user to get this info.
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 struct ip_tunnel_info *info;
701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
704 info = skb_tunnel_info_unclone(skb);
707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
715 * __dev_get_by_name - find a device by its name
716 * @net: the applicable net namespace
717 * @name: name to find
719 * Find an interface by name. Must be called under RTNL semaphore
720 * or @dev_base_lock. If the name is found a pointer to the device
721 * is returned. If the name is not found then %NULL is returned. The
722 * reference counters are not incremented so the caller must be
723 * careful with locks.
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 struct net_device *dev;
729 struct hlist_head *head = dev_name_hash(net, name);
731 hlist_for_each_entry(dev, head, name_hlist)
732 if (!strncmp(dev->name, name, IFNAMSIZ))
737 EXPORT_SYMBOL(__dev_get_by_name);
740 * dev_get_by_name_rcu - find a device by its name
741 * @net: the applicable net namespace
742 * @name: name to find
744 * Find an interface by name.
745 * If the name is found a pointer to the device is returned.
746 * If the name is not found then %NULL is returned.
747 * The reference counters are not incremented so the caller must be
748 * careful with locks. The caller must hold RCU lock.
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 struct net_device *dev;
754 struct hlist_head *head = dev_name_hash(net, name);
756 hlist_for_each_entry_rcu(dev, head, name_hlist)
757 if (!strncmp(dev->name, name, IFNAMSIZ))
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
765 * dev_get_by_name - find a device by its name
766 * @net: the applicable net namespace
767 * @name: name to find
769 * Find an interface by name. This can be called from any
770 * context and does its own locking. The returned handle has
771 * the usage count incremented and the caller must use dev_put() to
772 * release it when it is no longer needed. %NULL is returned if no
773 * matching device is found.
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 struct net_device *dev;
781 dev = dev_get_by_name_rcu(net, name);
787 EXPORT_SYMBOL(dev_get_by_name);
790 * __dev_get_by_index - find a device by its ifindex
791 * @net: the applicable net namespace
792 * @ifindex: index of device
794 * Search for an interface by index. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not
796 * had its reference counter increased so the caller must be careful
797 * about locking. The caller must hold either the RTNL semaphore
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 struct net_device *dev;
804 struct hlist_head *head = dev_index_hash(net, ifindex);
806 hlist_for_each_entry(dev, head, index_hlist)
807 if (dev->ifindex == ifindex)
812 EXPORT_SYMBOL(__dev_get_by_index);
815 * dev_get_by_index_rcu - find a device by its ifindex
816 * @net: the applicable net namespace
817 * @ifindex: index of device
819 * Search for an interface by index. Returns %NULL if the device
820 * is not found or a pointer to the device. The device has not
821 * had its reference counter increased so the caller must be careful
822 * about locking. The caller must hold RCU lock.
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 struct net_device *dev;
828 struct hlist_head *head = dev_index_hash(net, ifindex);
830 hlist_for_each_entry_rcu(dev, head, index_hlist)
831 if (dev->ifindex == ifindex)
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
840 * dev_get_by_index - find a device by its ifindex
841 * @net: the applicable net namespace
842 * @ifindex: index of device
844 * Search for an interface by index. Returns NULL if the device
845 * is not found or a pointer to the device. The device returned has
846 * had a reference added and the pointer is safe until the user calls
847 * dev_put to indicate they have finished with it.
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 struct net_device *dev;
855 dev = dev_get_by_index_rcu(net, ifindex);
861 EXPORT_SYMBOL(dev_get_by_index);
864 * netdev_get_name - get a netdevice name, knowing its ifindex.
865 * @net: network namespace
866 * @name: a pointer to the buffer where the name will be stored.
867 * @ifindex: the ifindex of the interface to get the name from.
869 * The use of raw_seqcount_begin() and cond_resched() before
870 * retrying is required as we want to give the writers a chance
871 * to complete when CONFIG_PREEMPT is not set.
873 int netdev_get_name(struct net *net, char *name, int ifindex)
875 struct net_device *dev;
879 seq = raw_seqcount_begin(&devnet_rename_seq);
881 dev = dev_get_by_index_rcu(net, ifindex);
887 strcpy(name, dev->name);
889 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
898 * dev_getbyhwaddr_rcu - find a device by its hardware address
899 * @net: the applicable net namespace
900 * @type: media type of device
901 * @ha: hardware address
903 * Search for an interface by MAC address. Returns NULL if the device
904 * is not found or a pointer to the device.
905 * The caller must hold RCU or RTNL.
906 * The returned device has not had its ref count increased
907 * and the caller must therefore be careful about locking
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
914 struct net_device *dev;
916 for_each_netdev_rcu(net, dev)
917 if (dev->type == type &&
918 !memcmp(dev->dev_addr, ha, dev->addr_len))
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 struct net_device *dev;
930 for_each_netdev(net, dev)
931 if (dev->type == type)
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 struct net_device *dev, *ret = NULL;
943 for_each_netdev_rcu(net, dev)
944 if (dev->type == type) {
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
955 * __dev_get_by_flags - find any device with given flags
956 * @net: the applicable net namespace
957 * @if_flags: IFF_* values
958 * @mask: bitmask of bits in if_flags to check
960 * Search for any interface with the given flags. Returns NULL if a device
961 * is not found or a pointer to the device. Must be called inside
962 * rtnl_lock(), and result refcount is unchanged.
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968 struct net_device *dev, *ret;
973 for_each_netdev(net, dev) {
974 if (((dev->flags ^ if_flags) & mask) == 0) {
981 EXPORT_SYMBOL(__dev_get_by_flags);
984 * dev_valid_name - check if name is okay for network device
987 * Network device names need to be valid file names to
988 * to allow sysfs to work. We also disallow any kind of
991 bool dev_valid_name(const char *name)
995 if (strlen(name) >= IFNAMSIZ)
997 if (!strcmp(name, ".") || !strcmp(name, ".."))
1001 if (*name == '/' || *name == ':' || isspace(*name))
1007 EXPORT_SYMBOL(dev_valid_name);
1010 * __dev_alloc_name - allocate a name for a device
1011 * @net: network namespace to allocate the device name in
1012 * @name: name format string
1013 * @buf: scratch buffer and result name string
1015 * Passed a format string - eg "lt%d" it will try and find a suitable
1016 * id. It scans list of devices to build up a free map, then chooses
1017 * the first empty slot. The caller must hold the dev_base or rtnl lock
1018 * while allocating the name and adding the device in order to avoid
1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021 * Returns the number of the unit assigned or a negative errno code.
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1028 const int max_netdevices = 8*PAGE_SIZE;
1029 unsigned long *inuse;
1030 struct net_device *d;
1032 p = strnchr(name, IFNAMSIZ-1, '%');
1035 * Verify the string as this thing may have come from
1036 * the user. There must be either one "%d" and no other "%"
1039 if (p[1] != 'd' || strchr(p + 2, '%'))
1042 /* Use one page as a bit array of possible slots */
1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1047 for_each_netdev(net, d) {
1048 if (!sscanf(d->name, name, &i))
1050 if (i < 0 || i >= max_netdevices)
1053 /* avoid cases where sscanf is not exact inverse of printf */
1054 snprintf(buf, IFNAMSIZ, name, i);
1055 if (!strncmp(buf, d->name, IFNAMSIZ))
1059 i = find_first_zero_bit(inuse, max_netdevices);
1060 free_page((unsigned long) inuse);
1064 snprintf(buf, IFNAMSIZ, name, i);
1065 if (!__dev_get_by_name(net, buf))
1068 /* It is possible to run out of possible slots
1069 * when the name is long and there isn't enough space left
1070 * for the digits, or if all bits are used.
1076 * dev_alloc_name - allocate a name for a device
1078 * @name: name format string
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1095 BUG_ON(!dev_net(dev));
1097 ret = __dev_alloc_name(net, name, buf);
1099 strlcpy(dev->name, buf, IFNAMSIZ);
1102 EXPORT_SYMBOL(dev_alloc_name);
1104 static int dev_alloc_name_ns(struct net *net,
1105 struct net_device *dev,
1111 ret = __dev_alloc_name(net, name, buf);
1113 strlcpy(dev->name, buf, IFNAMSIZ);
1117 static int dev_get_valid_name(struct net *net,
1118 struct net_device *dev,
1123 if (!dev_valid_name(name))
1126 if (strchr(name, '%'))
1127 return dev_alloc_name_ns(net, dev, name);
1128 else if (__dev_get_by_name(net, name))
1130 else if (dev->name != name)
1131 strlcpy(dev->name, name, IFNAMSIZ);
1137 * dev_change_name - change name of a device
1139 * @newname: name (or format string) must be at least IFNAMSIZ
1141 * Change name of a device, can pass format strings "eth%d".
1144 int dev_change_name(struct net_device *dev, const char *newname)
1146 unsigned char old_assign_type;
1147 char oldname[IFNAMSIZ];
1153 BUG_ON(!dev_net(dev));
1156 if (dev->flags & IFF_UP)
1159 write_seqcount_begin(&devnet_rename_seq);
1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162 write_seqcount_end(&devnet_rename_seq);
1166 memcpy(oldname, dev->name, IFNAMSIZ);
1168 err = dev_get_valid_name(net, dev, newname);
1170 write_seqcount_end(&devnet_rename_seq);
1174 if (oldname[0] && !strchr(oldname, '%'))
1175 netdev_info(dev, "renamed from %s\n", oldname);
1177 old_assign_type = dev->name_assign_type;
1178 dev->name_assign_type = NET_NAME_RENAMED;
1181 ret = device_rename(&dev->dev, dev->name);
1183 memcpy(dev->name, oldname, IFNAMSIZ);
1184 dev->name_assign_type = old_assign_type;
1185 write_seqcount_end(&devnet_rename_seq);
1189 write_seqcount_end(&devnet_rename_seq);
1191 netdev_adjacent_rename_links(dev, oldname);
1193 write_lock_bh(&dev_base_lock);
1194 hlist_del_rcu(&dev->name_hlist);
1195 write_unlock_bh(&dev_base_lock);
1199 write_lock_bh(&dev_base_lock);
1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201 write_unlock_bh(&dev_base_lock);
1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204 ret = notifier_to_errno(ret);
1207 /* err >= 0 after dev_alloc_name() or stores the first errno */
1210 write_seqcount_begin(&devnet_rename_seq);
1211 memcpy(dev->name, oldname, IFNAMSIZ);
1212 memcpy(oldname, newname, IFNAMSIZ);
1213 dev->name_assign_type = old_assign_type;
1214 old_assign_type = NET_NAME_RENAMED;
1217 pr_err("%s: name change rollback failed: %d\n",
1226 * dev_set_alias - change ifalias of a device
1228 * @alias: name up to IFALIASZ
1229 * @len: limit of bytes to copy from info
1231 * Set ifalias for a device,
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1239 if (len >= IFALIASZ)
1243 kfree(dev->ifalias);
1244 dev->ifalias = NULL;
1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1251 dev->ifalias = new_ifalias;
1253 strlcpy(dev->ifalias, alias, len+1);
1259 * netdev_features_change - device changes features
1260 * @dev: device to cause notification
1262 * Called to indicate a device has changed features.
1264 void netdev_features_change(struct net_device *dev)
1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 EXPORT_SYMBOL(netdev_features_change);
1271 * netdev_state_change - device changes state
1272 * @dev: device to cause notification
1274 * Called to indicate a device has changed state. This function calls
1275 * the notifier chains for netdev_chain and sends a NEWLINK message
1276 * to the routing socket.
1278 void netdev_state_change(struct net_device *dev)
1280 if (dev->flags & IFF_UP) {
1281 struct netdev_notifier_change_info change_info;
1283 change_info.flags_changed = 0;
1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1289 EXPORT_SYMBOL(netdev_state_change);
1292 * netdev_notify_peers - notify network peers about existence of @dev
1293 * @dev: network device
1295 * Generate traffic such that interested network peers are aware of
1296 * @dev, such as by generating a gratuitous ARP. This may be used when
1297 * a device wants to inform the rest of the network about some sort of
1298 * reconfiguration such as a failover event or virtual machine
1301 void netdev_notify_peers(struct net_device *dev)
1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1307 EXPORT_SYMBOL(netdev_notify_peers);
1309 static int __dev_open(struct net_device *dev)
1311 const struct net_device_ops *ops = dev->netdev_ops;
1316 if (!netif_device_present(dev))
1319 /* Block netpoll from trying to do any rx path servicing.
1320 * If we don't do this there is a chance ndo_poll_controller
1321 * or ndo_poll may be running while we open the device
1323 netpoll_poll_disable(dev);
1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 ret = notifier_to_errno(ret);
1330 set_bit(__LINK_STATE_START, &dev->state);
1332 if (ops->ndo_validate_addr)
1333 ret = ops->ndo_validate_addr(dev);
1335 if (!ret && ops->ndo_open)
1336 ret = ops->ndo_open(dev);
1338 netpoll_poll_enable(dev);
1341 clear_bit(__LINK_STATE_START, &dev->state);
1343 dev->flags |= IFF_UP;
1344 dev_set_rx_mode(dev);
1346 add_device_randomness(dev->dev_addr, dev->addr_len);
1353 * dev_open - prepare an interface for use.
1354 * @dev: device to open
1356 * Takes a device from down to up state. The device's private open
1357 * function is invoked and then the multicast lists are loaded. Finally
1358 * the device is moved into the up state and a %NETDEV_UP message is
1359 * sent to the netdev notifier chain.
1361 * Calling this function on an active interface is a nop. On a failure
1362 * a negative errno code is returned.
1364 int dev_open(struct net_device *dev)
1368 if (dev->flags & IFF_UP)
1371 ret = __dev_open(dev);
1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376 call_netdevice_notifiers(NETDEV_UP, dev);
1380 EXPORT_SYMBOL(dev_open);
1382 static int __dev_close_many(struct list_head *head)
1384 struct net_device *dev;
1389 list_for_each_entry(dev, head, close_list) {
1390 /* Temporarily disable netpoll until the interface is down */
1391 netpoll_poll_disable(dev);
1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395 clear_bit(__LINK_STATE_START, &dev->state);
1397 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398 * can be even on different cpu. So just clear netif_running().
1400 * dev->stop() will invoke napi_disable() on all of it's
1401 * napi_struct instances on this device.
1403 smp_mb__after_atomic(); /* Commit netif_running(). */
1406 dev_deactivate_many(head);
1408 list_for_each_entry(dev, head, close_list) {
1409 const struct net_device_ops *ops = dev->netdev_ops;
1412 * Call the device specific close. This cannot fail.
1413 * Only if device is UP
1415 * We allow it to be called even after a DETACH hot-plug
1421 dev->flags &= ~IFF_UP;
1422 netpoll_poll_enable(dev);
1428 static int __dev_close(struct net_device *dev)
1433 list_add(&dev->close_list, &single);
1434 retval = __dev_close_many(&single);
1440 int dev_close_many(struct list_head *head, bool unlink)
1442 struct net_device *dev, *tmp;
1444 /* Remove the devices that don't need to be closed */
1445 list_for_each_entry_safe(dev, tmp, head, close_list)
1446 if (!(dev->flags & IFF_UP))
1447 list_del_init(&dev->close_list);
1449 __dev_close_many(head);
1451 list_for_each_entry_safe(dev, tmp, head, close_list) {
1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453 call_netdevice_notifiers(NETDEV_DOWN, dev);
1455 list_del_init(&dev->close_list);
1460 EXPORT_SYMBOL(dev_close_many);
1463 * dev_close - shutdown an interface.
1464 * @dev: device to shutdown
1466 * This function moves an active device into down state. A
1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1471 int dev_close(struct net_device *dev)
1473 if (dev->flags & IFF_UP) {
1476 list_add(&dev->close_list, &single);
1477 dev_close_many(&single, true);
1482 EXPORT_SYMBOL(dev_close);
1486 * dev_disable_lro - disable Large Receive Offload on a device
1489 * Disable Large Receive Offload (LRO) on a net device. Must be
1490 * called under RTNL. This is needed if received packets may be
1491 * forwarded to another interface.
1493 void dev_disable_lro(struct net_device *dev)
1495 struct net_device *lower_dev;
1496 struct list_head *iter;
1498 dev->wanted_features &= ~NETIF_F_LRO;
1499 netdev_update_features(dev);
1501 if (unlikely(dev->features & NETIF_F_LRO))
1502 netdev_WARN(dev, "failed to disable LRO!\n");
1504 netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 dev_disable_lro(lower_dev);
1507 EXPORT_SYMBOL(dev_disable_lro);
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 struct net_device *dev)
1512 struct netdev_notifier_info info;
1514 netdev_notifier_info_init(&info, dev);
1515 return nb->notifier_call(nb, val, &info);
1518 static int dev_boot_phase = 1;
1521 * register_netdevice_notifier - register a network notifier block
1524 * Register a notifier to be called when network device events occur.
1525 * The notifier passed is linked into the kernel structures and must
1526 * not be reused until it has been unregistered. A negative errno code
1527 * is returned on a failure.
1529 * When registered all registration and up events are replayed
1530 * to the new notifier to allow device to have a race free
1531 * view of the network device list.
1534 int register_netdevice_notifier(struct notifier_block *nb)
1536 struct net_device *dev;
1537 struct net_device *last;
1542 err = raw_notifier_chain_register(&netdev_chain, nb);
1548 for_each_netdev(net, dev) {
1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550 err = notifier_to_errno(err);
1554 if (!(dev->flags & IFF_UP))
1557 call_netdevice_notifier(nb, NETDEV_UP, dev);
1568 for_each_netdev(net, dev) {
1572 if (dev->flags & IFF_UP) {
1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1582 raw_notifier_chain_unregister(&netdev_chain, nb);
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1588 * unregister_netdevice_notifier - unregister a network notifier block
1591 * Unregister a notifier previously registered by
1592 * register_netdevice_notifier(). The notifier is unlinked into the
1593 * kernel structures and may then be reused. A negative errno code
1594 * is returned on a failure.
1596 * After unregistering unregister and down device events are synthesized
1597 * for all devices on the device list to the removed notifier to remove
1598 * the need for special case cleanup code.
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 struct net_device *dev;
1608 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1613 for_each_netdev(net, dev) {
1614 if (dev->flags & IFF_UP) {
1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1629 * call_netdevice_notifiers_info - call all network notifier blocks
1630 * @val: value passed unmodified to notifier function
1631 * @dev: net_device pointer passed unmodified to notifier function
1632 * @info: notifier information data
1634 * Call all network notifier blocks. Parameters and return value
1635 * are as for raw_notifier_call_chain().
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639 struct net_device *dev,
1640 struct netdev_notifier_info *info)
1643 netdev_notifier_info_init(info, dev);
1644 return raw_notifier_call_chain(&netdev_chain, val, info);
1648 * call_netdevice_notifiers - call all network notifier blocks
1649 * @val: value passed unmodified to notifier function
1650 * @dev: net_device pointer passed unmodified to notifier function
1652 * Call all network notifier blocks. Parameters and return value
1653 * are as for raw_notifier_call_chain().
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 struct netdev_notifier_info info;
1660 return call_netdevice_notifiers_info(val, dev, &info);
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1667 void net_inc_ingress_queue(void)
1669 static_key_slow_inc(&ingress_needed);
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673 void net_dec_ingress_queue(void)
1675 static_key_slow_dec(&ingress_needed);
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1683 void net_inc_egress_queue(void)
1685 static_key_slow_inc(&egress_needed);
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689 void net_dec_egress_queue(void)
1691 static_key_slow_dec(&egress_needed);
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 /* We are not allowed to call static_key_slow_dec() from irq context
1699 * If net_disable_timestamp() is called from irq context, defer the
1700 * static_key_slow_dec() calls.
1702 static atomic_t netstamp_needed_deferred;
1705 void net_enable_timestamp(void)
1707 #ifdef HAVE_JUMP_LABEL
1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1712 static_key_slow_dec(&netstamp_needed);
1716 static_key_slow_inc(&netstamp_needed);
1718 EXPORT_SYMBOL(net_enable_timestamp);
1720 void net_disable_timestamp(void)
1722 #ifdef HAVE_JUMP_LABEL
1723 if (in_interrupt()) {
1724 atomic_inc(&netstamp_needed_deferred);
1728 static_key_slow_dec(&netstamp_needed);
1730 EXPORT_SYMBOL(net_disable_timestamp);
1732 static inline void net_timestamp_set(struct sk_buff *skb)
1735 if (static_key_false(&netstamp_needed))
1736 __net_timestamp(skb);
1739 #define net_timestamp_check(COND, SKB) \
1740 if (static_key_false(&netstamp_needed)) { \
1741 if ((COND) && !(SKB)->tstamp) \
1742 __net_timestamp(SKB); \
1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1749 if (!(dev->flags & IFF_UP))
1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 if (skb->len <= len)
1756 /* if TSO is enabled, we don't care about the length as the packet
1757 * could be forwarded without being segmented before
1759 if (skb_is_gso(skb))
1764 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 int ret = ____dev_forward_skb(dev, skb);
1771 skb->protocol = eth_type_trans(skb, dev);
1772 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1777 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1780 * dev_forward_skb - loopback an skb to another netif
1782 * @dev: destination network device
1783 * @skb: buffer to forward
1786 * NET_RX_SUCCESS (no congestion)
1787 * NET_RX_DROP (packet was dropped, but freed)
1789 * dev_forward_skb can be used for injecting an skb from the
1790 * start_xmit function of one device into the receive queue
1791 * of another device.
1793 * The receiving device may be in another namespace, so
1794 * we have to clear all information in the skb that could
1795 * impact namespace isolation.
1797 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1799 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1801 EXPORT_SYMBOL_GPL(dev_forward_skb);
1803 static inline int deliver_skb(struct sk_buff *skb,
1804 struct packet_type *pt_prev,
1805 struct net_device *orig_dev)
1807 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1809 atomic_inc(&skb->users);
1810 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1813 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1814 struct packet_type **pt,
1815 struct net_device *orig_dev,
1817 struct list_head *ptype_list)
1819 struct packet_type *ptype, *pt_prev = *pt;
1821 list_for_each_entry_rcu(ptype, ptype_list, list) {
1822 if (ptype->type != type)
1825 deliver_skb(skb, pt_prev, orig_dev);
1831 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1833 if (!ptype->af_packet_priv || !skb->sk)
1836 if (ptype->id_match)
1837 return ptype->id_match(ptype, skb->sk);
1838 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845 * Support routine. Sends outgoing frames to any network
1846 * taps currently in use.
1849 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1851 struct packet_type *ptype;
1852 struct sk_buff *skb2 = NULL;
1853 struct packet_type *pt_prev = NULL;
1854 struct list_head *ptype_list = &ptype_all;
1858 list_for_each_entry_rcu(ptype, ptype_list, list) {
1859 /* Never send packets back to the socket
1862 if (skb_loop_sk(ptype, skb))
1866 deliver_skb(skb2, pt_prev, skb->dev);
1871 /* need to clone skb, done only once */
1872 skb2 = skb_clone(skb, GFP_ATOMIC);
1876 net_timestamp_set(skb2);
1878 /* skb->nh should be correctly
1879 * set by sender, so that the second statement is
1880 * just protection against buggy protocols.
1882 skb_reset_mac_header(skb2);
1884 if (skb_network_header(skb2) < skb2->data ||
1885 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1886 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1887 ntohs(skb2->protocol),
1889 skb_reset_network_header(skb2);
1892 skb2->transport_header = skb2->network_header;
1893 skb2->pkt_type = PACKET_OUTGOING;
1897 if (ptype_list == &ptype_all) {
1898 ptype_list = &dev->ptype_all;
1903 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1906 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1909 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1910 * @dev: Network device
1911 * @txq: number of queues available
1913 * If real_num_tx_queues is changed the tc mappings may no longer be
1914 * valid. To resolve this verify the tc mapping remains valid and if
1915 * not NULL the mapping. With no priorities mapping to this
1916 * offset/count pair it will no longer be used. In the worst case TC0
1917 * is invalid nothing can be done so disable priority mappings. If is
1918 * expected that drivers will fix this mapping if they can before
1919 * calling netif_set_real_num_tx_queues.
1921 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1924 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1926 /* If TC0 is invalidated disable TC mapping */
1927 if (tc->offset + tc->count > txq) {
1928 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1933 /* Invalidated prio to tc mappings set to TC0 */
1934 for (i = 1; i < TC_BITMASK + 1; i++) {
1935 int q = netdev_get_prio_tc_map(dev, i);
1937 tc = &dev->tc_to_txq[q];
1938 if (tc->offset + tc->count > txq) {
1939 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1941 netdev_set_prio_tc_map(dev, i, 0);
1946 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1949 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1952 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1953 if ((txq - tc->offset) < tc->count)
1964 static DEFINE_MUTEX(xps_map_mutex);
1965 #define xmap_dereference(P) \
1966 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1968 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1971 struct xps_map *map = NULL;
1975 map = xmap_dereference(dev_maps->cpu_map[tci]);
1979 for (pos = map->len; pos--;) {
1980 if (map->queues[pos] != index)
1984 map->queues[pos] = map->queues[--map->len];
1988 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1989 kfree_rcu(map, rcu);
1996 static bool remove_xps_queue_cpu(struct net_device *dev,
1997 struct xps_dev_maps *dev_maps,
1998 int cpu, u16 offset, u16 count)
2000 int num_tc = dev->num_tc ? : 1;
2001 bool active = false;
2004 for (tci = cpu * num_tc; num_tc--; tci++) {
2007 for (i = count, j = offset; i--; j++) {
2008 if (!remove_xps_queue(dev_maps, cpu, j))
2018 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2021 struct xps_dev_maps *dev_maps;
2023 bool active = false;
2025 mutex_lock(&xps_map_mutex);
2026 dev_maps = xmap_dereference(dev->xps_maps);
2031 for_each_possible_cpu(cpu)
2032 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2036 RCU_INIT_POINTER(dev->xps_maps, NULL);
2037 kfree_rcu(dev_maps, rcu);
2040 for (i = offset + (count - 1); count--; i--)
2041 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2045 mutex_unlock(&xps_map_mutex);
2048 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2050 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2053 static struct xps_map *expand_xps_map(struct xps_map *map,
2056 struct xps_map *new_map;
2057 int alloc_len = XPS_MIN_MAP_ALLOC;
2060 for (pos = 0; map && pos < map->len; pos++) {
2061 if (map->queues[pos] != index)
2066 /* Need to add queue to this CPU's existing map */
2068 if (pos < map->alloc_len)
2071 alloc_len = map->alloc_len * 2;
2074 /* Need to allocate new map to store queue on this CPU's map */
2075 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2080 for (i = 0; i < pos; i++)
2081 new_map->queues[i] = map->queues[i];
2082 new_map->alloc_len = alloc_len;
2088 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2091 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2092 int i, cpu, tci, numa_node_id = -2;
2093 int maps_sz, num_tc = 1, tc = 0;
2094 struct xps_map *map, *new_map;
2095 bool active = false;
2098 num_tc = dev->num_tc;
2099 tc = netdev_txq_to_tc(dev, index);
2104 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2105 if (maps_sz < L1_CACHE_BYTES)
2106 maps_sz = L1_CACHE_BYTES;
2108 mutex_lock(&xps_map_mutex);
2110 dev_maps = xmap_dereference(dev->xps_maps);
2112 /* allocate memory for queue storage */
2113 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2115 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2116 if (!new_dev_maps) {
2117 mutex_unlock(&xps_map_mutex);
2121 tci = cpu * num_tc + tc;
2122 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2125 map = expand_xps_map(map, cpu, index);
2129 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2133 goto out_no_new_maps;
2135 for_each_possible_cpu(cpu) {
2136 /* copy maps belonging to foreign traffic classes */
2137 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2138 /* fill in the new device map from the old device map */
2139 map = xmap_dereference(dev_maps->cpu_map[tci]);
2140 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2143 /* We need to explicitly update tci as prevous loop
2144 * could break out early if dev_maps is NULL.
2146 tci = cpu * num_tc + tc;
2148 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2149 /* add queue to CPU maps */
2152 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2153 while ((pos < map->len) && (map->queues[pos] != index))
2156 if (pos == map->len)
2157 map->queues[map->len++] = index;
2159 if (numa_node_id == -2)
2160 numa_node_id = cpu_to_node(cpu);
2161 else if (numa_node_id != cpu_to_node(cpu))
2164 } else if (dev_maps) {
2165 /* fill in the new device map from the old device map */
2166 map = xmap_dereference(dev_maps->cpu_map[tci]);
2167 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2170 /* copy maps belonging to foreign traffic classes */
2171 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2172 /* fill in the new device map from the old device map */
2173 map = xmap_dereference(dev_maps->cpu_map[tci]);
2174 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2178 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2180 /* Cleanup old maps */
2182 goto out_no_old_maps;
2184 for_each_possible_cpu(cpu) {
2185 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2186 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2187 map = xmap_dereference(dev_maps->cpu_map[tci]);
2188 if (map && map != new_map)
2189 kfree_rcu(map, rcu);
2193 kfree_rcu(dev_maps, rcu);
2196 dev_maps = new_dev_maps;
2200 /* update Tx queue numa node */
2201 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2202 (numa_node_id >= 0) ? numa_node_id :
2208 /* removes queue from unused CPUs */
2209 for_each_possible_cpu(cpu) {
2210 for (i = tc, tci = cpu * num_tc; i--; tci++)
2211 active |= remove_xps_queue(dev_maps, tci, index);
2212 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2213 active |= remove_xps_queue(dev_maps, tci, index);
2214 for (i = num_tc - tc, tci++; --i; tci++)
2215 active |= remove_xps_queue(dev_maps, tci, index);
2218 /* free map if not active */
2220 RCU_INIT_POINTER(dev->xps_maps, NULL);
2221 kfree_rcu(dev_maps, rcu);
2225 mutex_unlock(&xps_map_mutex);
2229 /* remove any maps that we added */
2230 for_each_possible_cpu(cpu) {
2231 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2232 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2234 xmap_dereference(dev_maps->cpu_map[tci]) :
2236 if (new_map && new_map != map)
2241 mutex_unlock(&xps_map_mutex);
2243 kfree(new_dev_maps);
2246 EXPORT_SYMBOL(netif_set_xps_queue);
2249 void netdev_reset_tc(struct net_device *dev)
2252 netif_reset_xps_queues_gt(dev, 0);
2255 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2256 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2258 EXPORT_SYMBOL(netdev_reset_tc);
2260 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2262 if (tc >= dev->num_tc)
2266 netif_reset_xps_queues(dev, offset, count);
2268 dev->tc_to_txq[tc].count = count;
2269 dev->tc_to_txq[tc].offset = offset;
2272 EXPORT_SYMBOL(netdev_set_tc_queue);
2274 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2276 if (num_tc > TC_MAX_QUEUE)
2280 netif_reset_xps_queues_gt(dev, 0);
2282 dev->num_tc = num_tc;
2285 EXPORT_SYMBOL(netdev_set_num_tc);
2288 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2289 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2291 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2295 if (txq < 1 || txq > dev->num_tx_queues)
2298 if (dev->reg_state == NETREG_REGISTERED ||
2299 dev->reg_state == NETREG_UNREGISTERING) {
2302 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2308 netif_setup_tc(dev, txq);
2310 if (txq < dev->real_num_tx_queues) {
2311 qdisc_reset_all_tx_gt(dev, txq);
2313 netif_reset_xps_queues_gt(dev, txq);
2318 dev->real_num_tx_queues = txq;
2321 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2325 * netif_set_real_num_rx_queues - set actual number of RX queues used
2326 * @dev: Network device
2327 * @rxq: Actual number of RX queues
2329 * This must be called either with the rtnl_lock held or before
2330 * registration of the net device. Returns 0 on success, or a
2331 * negative error code. If called before registration, it always
2334 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2338 if (rxq < 1 || rxq > dev->num_rx_queues)
2341 if (dev->reg_state == NETREG_REGISTERED) {
2344 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2350 dev->real_num_rx_queues = rxq;
2353 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2357 * netif_get_num_default_rss_queues - default number of RSS queues
2359 * This routine should set an upper limit on the number of RSS queues
2360 * used by default by multiqueue devices.
2362 int netif_get_num_default_rss_queues(void)
2364 return is_kdump_kernel() ?
2365 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2367 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2369 static void __netif_reschedule(struct Qdisc *q)
2371 struct softnet_data *sd;
2372 unsigned long flags;
2374 local_irq_save(flags);
2375 sd = this_cpu_ptr(&softnet_data);
2376 q->next_sched = NULL;
2377 *sd->output_queue_tailp = q;
2378 sd->output_queue_tailp = &q->next_sched;
2379 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2380 local_irq_restore(flags);
2383 void __netif_schedule(struct Qdisc *q)
2385 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2386 __netif_reschedule(q);
2388 EXPORT_SYMBOL(__netif_schedule);
2390 struct dev_kfree_skb_cb {
2391 enum skb_free_reason reason;
2394 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2396 return (struct dev_kfree_skb_cb *)skb->cb;
2399 void netif_schedule_queue(struct netdev_queue *txq)
2402 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2403 struct Qdisc *q = rcu_dereference(txq->qdisc);
2405 __netif_schedule(q);
2409 EXPORT_SYMBOL(netif_schedule_queue);
2412 * netif_wake_subqueue - allow sending packets on subqueue
2413 * @dev: network device
2414 * @queue_index: sub queue index
2416 * Resume individual transmit queue of a device with multiple transmit queues.
2418 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2420 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2422 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2426 q = rcu_dereference(txq->qdisc);
2427 __netif_schedule(q);
2431 EXPORT_SYMBOL(netif_wake_subqueue);
2433 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2435 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2439 q = rcu_dereference(dev_queue->qdisc);
2440 __netif_schedule(q);
2444 EXPORT_SYMBOL(netif_tx_wake_queue);
2446 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2448 unsigned long flags;
2450 if (likely(atomic_read(&skb->users) == 1)) {
2452 atomic_set(&skb->users, 0);
2453 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2456 get_kfree_skb_cb(skb)->reason = reason;
2457 local_irq_save(flags);
2458 skb->next = __this_cpu_read(softnet_data.completion_queue);
2459 __this_cpu_write(softnet_data.completion_queue, skb);
2460 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2461 local_irq_restore(flags);
2463 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2465 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2467 if (in_irq() || irqs_disabled())
2468 __dev_kfree_skb_irq(skb, reason);
2472 EXPORT_SYMBOL(__dev_kfree_skb_any);
2476 * netif_device_detach - mark device as removed
2477 * @dev: network device
2479 * Mark device as removed from system and therefore no longer available.
2481 void netif_device_detach(struct net_device *dev)
2483 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2484 netif_running(dev)) {
2485 netif_tx_stop_all_queues(dev);
2488 EXPORT_SYMBOL(netif_device_detach);
2491 * netif_device_attach - mark device as attached
2492 * @dev: network device
2494 * Mark device as attached from system and restart if needed.
2496 void netif_device_attach(struct net_device *dev)
2498 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2499 netif_running(dev)) {
2500 netif_tx_wake_all_queues(dev);
2501 __netdev_watchdog_up(dev);
2504 EXPORT_SYMBOL(netif_device_attach);
2507 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2508 * to be used as a distribution range.
2510 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2511 unsigned int num_tx_queues)
2515 u16 qcount = num_tx_queues;
2517 if (skb_rx_queue_recorded(skb)) {
2518 hash = skb_get_rx_queue(skb);
2519 while (unlikely(hash >= num_tx_queues))
2520 hash -= num_tx_queues;
2525 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2526 qoffset = dev->tc_to_txq[tc].offset;
2527 qcount = dev->tc_to_txq[tc].count;
2530 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2532 EXPORT_SYMBOL(__skb_tx_hash);
2534 static void skb_warn_bad_offload(const struct sk_buff *skb)
2536 static const netdev_features_t null_features;
2537 struct net_device *dev = skb->dev;
2538 const char *name = "";
2540 if (!net_ratelimit())
2544 if (dev->dev.parent)
2545 name = dev_driver_string(dev->dev.parent);
2547 name = netdev_name(dev);
2549 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2550 "gso_type=%d ip_summed=%d\n",
2551 name, dev ? &dev->features : &null_features,
2552 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2553 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2554 skb_shinfo(skb)->gso_type, skb->ip_summed);
2558 * Invalidate hardware checksum when packet is to be mangled, and
2559 * complete checksum manually on outgoing path.
2561 int skb_checksum_help(struct sk_buff *skb)
2564 int ret = 0, offset;
2566 if (skb->ip_summed == CHECKSUM_COMPLETE)
2567 goto out_set_summed;
2569 if (unlikely(skb_shinfo(skb)->gso_size)) {
2570 skb_warn_bad_offload(skb);
2574 /* Before computing a checksum, we should make sure no frag could
2575 * be modified by an external entity : checksum could be wrong.
2577 if (skb_has_shared_frag(skb)) {
2578 ret = __skb_linearize(skb);
2583 offset = skb_checksum_start_offset(skb);
2584 BUG_ON(offset >= skb_headlen(skb));
2585 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2587 offset += skb->csum_offset;
2588 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2590 if (skb_cloned(skb) &&
2591 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2592 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2597 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2599 skb->ip_summed = CHECKSUM_NONE;
2603 EXPORT_SYMBOL(skb_checksum_help);
2605 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2607 __be16 type = skb->protocol;
2609 /* Tunnel gso handlers can set protocol to ethernet. */
2610 if (type == htons(ETH_P_TEB)) {
2613 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2616 eth = (struct ethhdr *)skb_mac_header(skb);
2617 type = eth->h_proto;
2620 return __vlan_get_protocol(skb, type, depth);
2624 * skb_mac_gso_segment - mac layer segmentation handler.
2625 * @skb: buffer to segment
2626 * @features: features for the output path (see dev->features)
2628 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2629 netdev_features_t features)
2631 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2632 struct packet_offload *ptype;
2633 int vlan_depth = skb->mac_len;
2634 __be16 type = skb_network_protocol(skb, &vlan_depth);
2636 if (unlikely(!type))
2637 return ERR_PTR(-EINVAL);
2639 __skb_pull(skb, vlan_depth);
2642 list_for_each_entry_rcu(ptype, &offload_base, list) {
2643 if (ptype->type == type && ptype->callbacks.gso_segment) {
2644 segs = ptype->callbacks.gso_segment(skb, features);
2650 __skb_push(skb, skb->data - skb_mac_header(skb));
2654 EXPORT_SYMBOL(skb_mac_gso_segment);
2657 /* openvswitch calls this on rx path, so we need a different check.
2659 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2662 return skb->ip_summed != CHECKSUM_PARTIAL;
2664 return skb->ip_summed == CHECKSUM_NONE;
2668 * __skb_gso_segment - Perform segmentation on skb.
2669 * @skb: buffer to segment
2670 * @features: features for the output path (see dev->features)
2671 * @tx_path: whether it is called in TX path
2673 * This function segments the given skb and returns a list of segments.
2675 * It may return NULL if the skb requires no segmentation. This is
2676 * only possible when GSO is used for verifying header integrity.
2678 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2680 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2681 netdev_features_t features, bool tx_path)
2683 if (unlikely(skb_needs_check(skb, tx_path))) {
2686 skb_warn_bad_offload(skb);
2688 err = skb_cow_head(skb, 0);
2690 return ERR_PTR(err);
2693 /* Only report GSO partial support if it will enable us to
2694 * support segmentation on this frame without needing additional
2697 if (features & NETIF_F_GSO_PARTIAL) {
2698 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2699 struct net_device *dev = skb->dev;
2701 partial_features |= dev->features & dev->gso_partial_features;
2702 if (!skb_gso_ok(skb, features | partial_features))
2703 features &= ~NETIF_F_GSO_PARTIAL;
2706 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2707 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2709 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2710 SKB_GSO_CB(skb)->encap_level = 0;
2712 skb_reset_mac_header(skb);
2713 skb_reset_mac_len(skb);
2715 return skb_mac_gso_segment(skb, features);
2717 EXPORT_SYMBOL(__skb_gso_segment);
2719 /* Take action when hardware reception checksum errors are detected. */
2721 void netdev_rx_csum_fault(struct net_device *dev)
2723 if (net_ratelimit()) {
2724 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2728 EXPORT_SYMBOL(netdev_rx_csum_fault);
2731 /* Actually, we should eliminate this check as soon as we know, that:
2732 * 1. IOMMU is present and allows to map all the memory.
2733 * 2. No high memory really exists on this machine.
2736 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2738 #ifdef CONFIG_HIGHMEM
2740 if (!(dev->features & NETIF_F_HIGHDMA)) {
2741 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2742 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2743 if (PageHighMem(skb_frag_page(frag)))
2748 if (PCI_DMA_BUS_IS_PHYS) {
2749 struct device *pdev = dev->dev.parent;
2753 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2754 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2756 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2764 /* If MPLS offload request, verify we are testing hardware MPLS features
2765 * instead of standard features for the netdev.
2767 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2768 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2769 netdev_features_t features,
2772 if (eth_p_mpls(type))
2773 features &= skb->dev->mpls_features;
2778 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2779 netdev_features_t features,
2786 static netdev_features_t harmonize_features(struct sk_buff *skb,
2787 netdev_features_t features)
2792 type = skb_network_protocol(skb, &tmp);
2793 features = net_mpls_features(skb, features, type);
2795 if (skb->ip_summed != CHECKSUM_NONE &&
2796 !can_checksum_protocol(features, type)) {
2797 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2798 } else if (illegal_highdma(skb->dev, skb)) {
2799 features &= ~NETIF_F_SG;
2805 netdev_features_t passthru_features_check(struct sk_buff *skb,
2806 struct net_device *dev,
2807 netdev_features_t features)
2811 EXPORT_SYMBOL(passthru_features_check);
2813 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2814 struct net_device *dev,
2815 netdev_features_t features)
2817 return vlan_features_check(skb, features);
2820 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2821 struct net_device *dev,
2822 netdev_features_t features)
2824 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2826 if (gso_segs > dev->gso_max_segs)
2827 return features & ~NETIF_F_GSO_MASK;
2829 /* Support for GSO partial features requires software
2830 * intervention before we can actually process the packets
2831 * so we need to strip support for any partial features now
2832 * and we can pull them back in after we have partially
2833 * segmented the frame.
2835 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2836 features &= ~dev->gso_partial_features;
2838 /* Make sure to clear the IPv4 ID mangling feature if the
2839 * IPv4 header has the potential to be fragmented.
2841 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2842 struct iphdr *iph = skb->encapsulation ?
2843 inner_ip_hdr(skb) : ip_hdr(skb);
2845 if (!(iph->frag_off & htons(IP_DF)))
2846 features &= ~NETIF_F_TSO_MANGLEID;
2852 netdev_features_t netif_skb_features(struct sk_buff *skb)
2854 struct net_device *dev = skb->dev;
2855 netdev_features_t features = dev->features;
2857 if (skb_is_gso(skb))
2858 features = gso_features_check(skb, dev, features);
2860 /* If encapsulation offload request, verify we are testing
2861 * hardware encapsulation features instead of standard
2862 * features for the netdev
2864 if (skb->encapsulation)
2865 features &= dev->hw_enc_features;
2867 if (skb_vlan_tagged(skb))
2868 features = netdev_intersect_features(features,
2869 dev->vlan_features |
2870 NETIF_F_HW_VLAN_CTAG_TX |
2871 NETIF_F_HW_VLAN_STAG_TX);
2873 if (dev->netdev_ops->ndo_features_check)
2874 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2877 features &= dflt_features_check(skb, dev, features);
2879 return harmonize_features(skb, features);
2881 EXPORT_SYMBOL(netif_skb_features);
2883 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2884 struct netdev_queue *txq, bool more)
2889 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2890 dev_queue_xmit_nit(skb, dev);
2893 trace_net_dev_start_xmit(skb, dev);
2894 rc = netdev_start_xmit(skb, dev, txq, more);
2895 trace_net_dev_xmit(skb, rc, dev, len);
2900 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2901 struct netdev_queue *txq, int *ret)
2903 struct sk_buff *skb = first;
2904 int rc = NETDEV_TX_OK;
2907 struct sk_buff *next = skb->next;
2910 rc = xmit_one(skb, dev, txq, next != NULL);
2911 if (unlikely(!dev_xmit_complete(rc))) {
2917 if (netif_xmit_stopped(txq) && skb) {
2918 rc = NETDEV_TX_BUSY;
2928 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2929 netdev_features_t features)
2931 if (skb_vlan_tag_present(skb) &&
2932 !vlan_hw_offload_capable(features, skb->vlan_proto))
2933 skb = __vlan_hwaccel_push_inside(skb);
2937 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2939 netdev_features_t features;
2941 features = netif_skb_features(skb);
2942 skb = validate_xmit_vlan(skb, features);
2946 if (netif_needs_gso(skb, features)) {
2947 struct sk_buff *segs;
2949 segs = skb_gso_segment(skb, features);
2957 if (skb_needs_linearize(skb, features) &&
2958 __skb_linearize(skb))
2961 /* If packet is not checksummed and device does not
2962 * support checksumming for this protocol, complete
2963 * checksumming here.
2965 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2966 if (skb->encapsulation)
2967 skb_set_inner_transport_header(skb,
2968 skb_checksum_start_offset(skb));
2970 skb_set_transport_header(skb,
2971 skb_checksum_start_offset(skb));
2972 if (!(features & NETIF_F_CSUM_MASK) &&
2973 skb_checksum_help(skb))
2983 atomic_long_inc(&dev->tx_dropped);
2987 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2989 struct sk_buff *next, *head = NULL, *tail;
2991 for (; skb != NULL; skb = next) {
2995 /* in case skb wont be segmented, point to itself */
2998 skb = validate_xmit_skb(skb, dev);
3006 /* If skb was segmented, skb->prev points to
3007 * the last segment. If not, it still contains skb.
3013 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3015 static void qdisc_pkt_len_init(struct sk_buff *skb)
3017 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3019 qdisc_skb_cb(skb)->pkt_len = skb->len;
3021 /* To get more precise estimation of bytes sent on wire,
3022 * we add to pkt_len the headers size of all segments
3024 if (shinfo->gso_size) {
3025 unsigned int hdr_len;
3026 u16 gso_segs = shinfo->gso_segs;
3028 /* mac layer + network layer */
3029 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3031 /* + transport layer */
3032 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3033 hdr_len += tcp_hdrlen(skb);
3035 hdr_len += sizeof(struct udphdr);
3037 if (shinfo->gso_type & SKB_GSO_DODGY)
3038 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3041 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3045 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3046 struct net_device *dev,
3047 struct netdev_queue *txq)
3049 spinlock_t *root_lock = qdisc_lock(q);
3050 struct sk_buff *to_free = NULL;
3054 qdisc_calculate_pkt_len(skb, q);
3056 * Heuristic to force contended enqueues to serialize on a
3057 * separate lock before trying to get qdisc main lock.
3058 * This permits qdisc->running owner to get the lock more
3059 * often and dequeue packets faster.
3061 contended = qdisc_is_running(q);
3062 if (unlikely(contended))
3063 spin_lock(&q->busylock);
3065 spin_lock(root_lock);
3066 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3067 __qdisc_drop(skb, &to_free);
3069 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3070 qdisc_run_begin(q)) {
3072 * This is a work-conserving queue; there are no old skbs
3073 * waiting to be sent out; and the qdisc is not running -
3074 * xmit the skb directly.
3077 qdisc_bstats_update(q, skb);
3079 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3080 if (unlikely(contended)) {
3081 spin_unlock(&q->busylock);
3088 rc = NET_XMIT_SUCCESS;
3090 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3091 if (qdisc_run_begin(q)) {
3092 if (unlikely(contended)) {
3093 spin_unlock(&q->busylock);
3099 spin_unlock(root_lock);
3100 if (unlikely(to_free))
3101 kfree_skb_list(to_free);
3102 if (unlikely(contended))
3103 spin_unlock(&q->busylock);
3107 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3108 static void skb_update_prio(struct sk_buff *skb)
3110 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3112 if (!skb->priority && skb->sk && map) {
3113 unsigned int prioidx =
3114 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3116 if (prioidx < map->priomap_len)
3117 skb->priority = map->priomap[prioidx];
3121 #define skb_update_prio(skb)
3124 DEFINE_PER_CPU(int, xmit_recursion);
3125 EXPORT_SYMBOL(xmit_recursion);
3128 * dev_loopback_xmit - loop back @skb
3129 * @net: network namespace this loopback is happening in
3130 * @sk: sk needed to be a netfilter okfn
3131 * @skb: buffer to transmit
3133 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3135 skb_reset_mac_header(skb);
3136 __skb_pull(skb, skb_network_offset(skb));
3137 skb->pkt_type = PACKET_LOOPBACK;
3138 skb->ip_summed = CHECKSUM_UNNECESSARY;
3139 WARN_ON(!skb_dst(skb));
3144 EXPORT_SYMBOL(dev_loopback_xmit);
3146 #ifdef CONFIG_NET_EGRESS
3147 static struct sk_buff *
3148 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3150 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3151 struct tcf_result cl_res;
3156 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3157 * earlier by the caller.
3159 qdisc_bstats_cpu_update(cl->q, skb);
3161 switch (tc_classify(skb, cl, &cl_res, false)) {
3163 case TC_ACT_RECLASSIFY:
3164 skb->tc_index = TC_H_MIN(cl_res.classid);
3167 qdisc_qstats_cpu_drop(cl->q);
3168 *ret = NET_XMIT_DROP;
3173 *ret = NET_XMIT_SUCCESS;
3176 case TC_ACT_REDIRECT:
3177 /* No need to push/pop skb's mac_header here on egress! */
3178 skb_do_redirect(skb);
3179 *ret = NET_XMIT_SUCCESS;
3187 #endif /* CONFIG_NET_EGRESS */
3189 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3192 struct xps_dev_maps *dev_maps;
3193 struct xps_map *map;
3194 int queue_index = -1;
3197 dev_maps = rcu_dereference(dev->xps_maps);
3199 unsigned int tci = skb->sender_cpu - 1;
3203 tci += netdev_get_prio_tc_map(dev, skb->priority);
3206 map = rcu_dereference(dev_maps->cpu_map[tci]);
3209 queue_index = map->queues[0];
3211 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3213 if (unlikely(queue_index >= dev->real_num_tx_queues))
3225 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3227 struct sock *sk = skb->sk;
3228 int queue_index = sk_tx_queue_get(sk);
3230 if (queue_index < 0 || skb->ooo_okay ||
3231 queue_index >= dev->real_num_tx_queues) {
3232 int new_index = get_xps_queue(dev, skb);
3234 new_index = skb_tx_hash(dev, skb);
3236 if (queue_index != new_index && sk &&
3238 rcu_access_pointer(sk->sk_dst_cache))
3239 sk_tx_queue_set(sk, new_index);
3241 queue_index = new_index;
3247 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3248 struct sk_buff *skb,
3251 int queue_index = 0;
3254 u32 sender_cpu = skb->sender_cpu - 1;
3256 if (sender_cpu >= (u32)NR_CPUS)
3257 skb->sender_cpu = raw_smp_processor_id() + 1;
3260 if (dev->real_num_tx_queues != 1) {
3261 const struct net_device_ops *ops = dev->netdev_ops;
3262 if (ops->ndo_select_queue)
3263 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3266 queue_index = __netdev_pick_tx(dev, skb);
3269 queue_index = netdev_cap_txqueue(dev, queue_index);
3272 skb_set_queue_mapping(skb, queue_index);
3273 return netdev_get_tx_queue(dev, queue_index);
3277 * __dev_queue_xmit - transmit a buffer
3278 * @skb: buffer to transmit
3279 * @accel_priv: private data used for L2 forwarding offload
3281 * Queue a buffer for transmission to a network device. The caller must
3282 * have set the device and priority and built the buffer before calling
3283 * this function. The function can be called from an interrupt.
3285 * A negative errno code is returned on a failure. A success does not
3286 * guarantee the frame will be transmitted as it may be dropped due
3287 * to congestion or traffic shaping.
3289 * -----------------------------------------------------------------------------------
3290 * I notice this method can also return errors from the queue disciplines,
3291 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3294 * Regardless of the return value, the skb is consumed, so it is currently
3295 * difficult to retry a send to this method. (You can bump the ref count
3296 * before sending to hold a reference for retry if you are careful.)
3298 * When calling this method, interrupts MUST be enabled. This is because
3299 * the BH enable code must have IRQs enabled so that it will not deadlock.
3302 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3304 struct net_device *dev = skb->dev;
3305 struct netdev_queue *txq;
3309 skb_reset_mac_header(skb);
3311 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3312 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3314 /* Disable soft irqs for various locks below. Also
3315 * stops preemption for RCU.
3319 skb_update_prio(skb);
3321 qdisc_pkt_len_init(skb);
3322 #ifdef CONFIG_NET_CLS_ACT
3323 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3324 # ifdef CONFIG_NET_EGRESS
3325 if (static_key_false(&egress_needed)) {
3326 skb = sch_handle_egress(skb, &rc, dev);
3332 /* If device/qdisc don't need skb->dst, release it right now while
3333 * its hot in this cpu cache.
3335 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3340 txq = netdev_pick_tx(dev, skb, accel_priv);
3341 q = rcu_dereference_bh(txq->qdisc);
3343 trace_net_dev_queue(skb);
3345 rc = __dev_xmit_skb(skb, q, dev, txq);
3349 /* The device has no queue. Common case for software devices:
3350 loopback, all the sorts of tunnels...
3352 Really, it is unlikely that netif_tx_lock protection is necessary
3353 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3355 However, it is possible, that they rely on protection
3358 Check this and shot the lock. It is not prone from deadlocks.
3359 Either shot noqueue qdisc, it is even simpler 8)
3361 if (dev->flags & IFF_UP) {
3362 int cpu = smp_processor_id(); /* ok because BHs are off */
3364 if (txq->xmit_lock_owner != cpu) {
3365 if (unlikely(__this_cpu_read(xmit_recursion) >
3366 XMIT_RECURSION_LIMIT))
3367 goto recursion_alert;
3369 skb = validate_xmit_skb(skb, dev);
3373 HARD_TX_LOCK(dev, txq, cpu);
3375 if (!netif_xmit_stopped(txq)) {
3376 __this_cpu_inc(xmit_recursion);
3377 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3378 __this_cpu_dec(xmit_recursion);
3379 if (dev_xmit_complete(rc)) {
3380 HARD_TX_UNLOCK(dev, txq);
3384 HARD_TX_UNLOCK(dev, txq);
3385 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3388 /* Recursion is detected! It is possible,
3392 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3398 rcu_read_unlock_bh();
3400 atomic_long_inc(&dev->tx_dropped);
3401 kfree_skb_list(skb);
3404 rcu_read_unlock_bh();
3408 int dev_queue_xmit(struct sk_buff *skb)
3410 return __dev_queue_xmit(skb, NULL);
3412 EXPORT_SYMBOL(dev_queue_xmit);
3414 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3416 return __dev_queue_xmit(skb, accel_priv);
3418 EXPORT_SYMBOL(dev_queue_xmit_accel);
3421 /*=======================================================================
3423 =======================================================================*/
3425 int netdev_max_backlog __read_mostly = 1000;
3426 EXPORT_SYMBOL(netdev_max_backlog);
3428 int netdev_tstamp_prequeue __read_mostly = 1;
3429 int netdev_budget __read_mostly = 300;
3430 int weight_p __read_mostly = 64; /* old backlog weight */
3432 /* Called with irq disabled */
3433 static inline void ____napi_schedule(struct softnet_data *sd,
3434 struct napi_struct *napi)
3436 list_add_tail(&napi->poll_list, &sd->poll_list);
3437 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3442 /* One global table that all flow-based protocols share. */
3443 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3444 EXPORT_SYMBOL(rps_sock_flow_table);
3445 u32 rps_cpu_mask __read_mostly;
3446 EXPORT_SYMBOL(rps_cpu_mask);
3448 struct static_key rps_needed __read_mostly;
3449 EXPORT_SYMBOL(rps_needed);
3450 struct static_key rfs_needed __read_mostly;
3451 EXPORT_SYMBOL(rfs_needed);
3453 static struct rps_dev_flow *
3454 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3455 struct rps_dev_flow *rflow, u16 next_cpu)
3457 if (next_cpu < nr_cpu_ids) {
3458 #ifdef CONFIG_RFS_ACCEL
3459 struct netdev_rx_queue *rxqueue;
3460 struct rps_dev_flow_table *flow_table;
3461 struct rps_dev_flow *old_rflow;
3466 /* Should we steer this flow to a different hardware queue? */
3467 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3468 !(dev->features & NETIF_F_NTUPLE))
3470 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3471 if (rxq_index == skb_get_rx_queue(skb))
3474 rxqueue = dev->_rx + rxq_index;
3475 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3478 flow_id = skb_get_hash(skb) & flow_table->mask;
3479 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3480 rxq_index, flow_id);
3484 rflow = &flow_table->flows[flow_id];
3486 if (old_rflow->filter == rflow->filter)
3487 old_rflow->filter = RPS_NO_FILTER;
3491 per_cpu(softnet_data, next_cpu).input_queue_head;
3494 rflow->cpu = next_cpu;
3499 * get_rps_cpu is called from netif_receive_skb and returns the target
3500 * CPU from the RPS map of the receiving queue for a given skb.
3501 * rcu_read_lock must be held on entry.
3503 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3504 struct rps_dev_flow **rflowp)
3506 const struct rps_sock_flow_table *sock_flow_table;
3507 struct netdev_rx_queue *rxqueue = dev->_rx;
3508 struct rps_dev_flow_table *flow_table;
3509 struct rps_map *map;
3514 if (skb_rx_queue_recorded(skb)) {
3515 u16 index = skb_get_rx_queue(skb);
3517 if (unlikely(index >= dev->real_num_rx_queues)) {
3518 WARN_ONCE(dev->real_num_rx_queues > 1,
3519 "%s received packet on queue %u, but number "
3520 "of RX queues is %u\n",
3521 dev->name, index, dev->real_num_rx_queues);
3527 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3529 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3530 map = rcu_dereference(rxqueue->rps_map);
3531 if (!flow_table && !map)
3534 skb_reset_network_header(skb);
3535 hash = skb_get_hash(skb);
3539 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3540 if (flow_table && sock_flow_table) {
3541 struct rps_dev_flow *rflow;
3545 /* First check into global flow table if there is a match */
3546 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3547 if ((ident ^ hash) & ~rps_cpu_mask)
3550 next_cpu = ident & rps_cpu_mask;
3552 /* OK, now we know there is a match,
3553 * we can look at the local (per receive queue) flow table
3555 rflow = &flow_table->flows[hash & flow_table->mask];
3559 * If the desired CPU (where last recvmsg was done) is
3560 * different from current CPU (one in the rx-queue flow
3561 * table entry), switch if one of the following holds:
3562 * - Current CPU is unset (>= nr_cpu_ids).
3563 * - Current CPU is offline.
3564 * - The current CPU's queue tail has advanced beyond the
3565 * last packet that was enqueued using this table entry.
3566 * This guarantees that all previous packets for the flow
3567 * have been dequeued, thus preserving in order delivery.
3569 if (unlikely(tcpu != next_cpu) &&
3570 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3571 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3572 rflow->last_qtail)) >= 0)) {
3574 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3577 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3587 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3588 if (cpu_online(tcpu)) {
3598 #ifdef CONFIG_RFS_ACCEL
3601 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3602 * @dev: Device on which the filter was set
3603 * @rxq_index: RX queue index
3604 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3605 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3607 * Drivers that implement ndo_rx_flow_steer() should periodically call
3608 * this function for each installed filter and remove the filters for
3609 * which it returns %true.
3611 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3612 u32 flow_id, u16 filter_id)
3614 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3615 struct rps_dev_flow_table *flow_table;
3616 struct rps_dev_flow *rflow;
3621 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3622 if (flow_table && flow_id <= flow_table->mask) {
3623 rflow = &flow_table->flows[flow_id];
3624 cpu = ACCESS_ONCE(rflow->cpu);
3625 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3626 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3627 rflow->last_qtail) <
3628 (int)(10 * flow_table->mask)))
3634 EXPORT_SYMBOL(rps_may_expire_flow);
3636 #endif /* CONFIG_RFS_ACCEL */
3638 /* Called from hardirq (IPI) context */
3639 static void rps_trigger_softirq(void *data)
3641 struct softnet_data *sd = data;
3643 ____napi_schedule(sd, &sd->backlog);
3647 #endif /* CONFIG_RPS */
3650 * Check if this softnet_data structure is another cpu one
3651 * If yes, queue it to our IPI list and return 1
3654 static int rps_ipi_queued(struct softnet_data *sd)
3657 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3660 sd->rps_ipi_next = mysd->rps_ipi_list;
3661 mysd->rps_ipi_list = sd;
3663 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3666 #endif /* CONFIG_RPS */
3670 #ifdef CONFIG_NET_FLOW_LIMIT
3671 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3674 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3676 #ifdef CONFIG_NET_FLOW_LIMIT
3677 struct sd_flow_limit *fl;
3678 struct softnet_data *sd;
3679 unsigned int old_flow, new_flow;
3681 if (qlen < (netdev_max_backlog >> 1))
3684 sd = this_cpu_ptr(&softnet_data);
3687 fl = rcu_dereference(sd->flow_limit);
3689 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3690 old_flow = fl->history[fl->history_head];
3691 fl->history[fl->history_head] = new_flow;
3694 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3696 if (likely(fl->buckets[old_flow]))
3697 fl->buckets[old_flow]--;
3699 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3711 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3712 * queue (may be a remote CPU queue).
3714 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3715 unsigned int *qtail)
3717 struct softnet_data *sd;
3718 unsigned long flags;
3721 sd = &per_cpu(softnet_data, cpu);
3723 local_irq_save(flags);
3726 if (!netif_running(skb->dev))
3728 qlen = skb_queue_len(&sd->input_pkt_queue);
3729 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3732 __skb_queue_tail(&sd->input_pkt_queue, skb);
3733 input_queue_tail_incr_save(sd, qtail);
3735 local_irq_restore(flags);
3736 return NET_RX_SUCCESS;
3739 /* Schedule NAPI for backlog device
3740 * We can use non atomic operation since we own the queue lock
3742 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3743 if (!rps_ipi_queued(sd))
3744 ____napi_schedule(sd, &sd->backlog);
3753 local_irq_restore(flags);
3755 atomic_long_inc(&skb->dev->rx_dropped);
3760 static int netif_rx_internal(struct sk_buff *skb)
3764 net_timestamp_check(netdev_tstamp_prequeue, skb);
3766 trace_netif_rx(skb);
3768 if (static_key_false(&rps_needed)) {
3769 struct rps_dev_flow voidflow, *rflow = &voidflow;
3775 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3777 cpu = smp_processor_id();
3779 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3787 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3794 * netif_rx - post buffer to the network code
3795 * @skb: buffer to post
3797 * This function receives a packet from a device driver and queues it for
3798 * the upper (protocol) levels to process. It always succeeds. The buffer
3799 * may be dropped during processing for congestion control or by the
3803 * NET_RX_SUCCESS (no congestion)
3804 * NET_RX_DROP (packet was dropped)
3808 int netif_rx(struct sk_buff *skb)
3810 trace_netif_rx_entry(skb);
3812 return netif_rx_internal(skb);
3814 EXPORT_SYMBOL(netif_rx);
3816 int netif_rx_ni(struct sk_buff *skb)
3820 trace_netif_rx_ni_entry(skb);
3823 err = netif_rx_internal(skb);
3824 if (local_softirq_pending())
3830 EXPORT_SYMBOL(netif_rx_ni);
3832 static __latent_entropy void net_tx_action(struct softirq_action *h)
3834 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3836 if (sd->completion_queue) {
3837 struct sk_buff *clist;
3839 local_irq_disable();
3840 clist = sd->completion_queue;
3841 sd->completion_queue = NULL;
3845 struct sk_buff *skb = clist;
3846 clist = clist->next;
3848 WARN_ON(atomic_read(&skb->users));
3849 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3850 trace_consume_skb(skb);
3852 trace_kfree_skb(skb, net_tx_action);
3854 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3857 __kfree_skb_defer(skb);
3860 __kfree_skb_flush();
3863 if (sd->output_queue) {
3866 local_irq_disable();
3867 head = sd->output_queue;
3868 sd->output_queue = NULL;
3869 sd->output_queue_tailp = &sd->output_queue;
3873 struct Qdisc *q = head;
3874 spinlock_t *root_lock;
3876 head = head->next_sched;
3878 root_lock = qdisc_lock(q);
3879 spin_lock(root_lock);
3880 /* We need to make sure head->next_sched is read
3881 * before clearing __QDISC_STATE_SCHED
3883 smp_mb__before_atomic();
3884 clear_bit(__QDISC_STATE_SCHED, &q->state);
3886 spin_unlock(root_lock);
3891 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3892 /* This hook is defined here for ATM LANE */
3893 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3894 unsigned char *addr) __read_mostly;
3895 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3898 static inline struct sk_buff *
3899 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3900 struct net_device *orig_dev)
3902 #ifdef CONFIG_NET_CLS_ACT
3903 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3904 struct tcf_result cl_res;
3906 /* If there's at least one ingress present somewhere (so
3907 * we get here via enabled static key), remaining devices
3908 * that are not configured with an ingress qdisc will bail
3914 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3918 qdisc_skb_cb(skb)->pkt_len = skb->len;
3919 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3920 qdisc_bstats_cpu_update(cl->q, skb);
3922 switch (tc_classify(skb, cl, &cl_res, false)) {
3924 case TC_ACT_RECLASSIFY:
3925 skb->tc_index = TC_H_MIN(cl_res.classid);
3928 qdisc_qstats_cpu_drop(cl->q);
3935 case TC_ACT_REDIRECT:
3936 /* skb_mac_header check was done by cls/act_bpf, so
3937 * we can safely push the L2 header back before
3938 * redirecting to another netdev
3940 __skb_push(skb, skb->mac_len);
3941 skb_do_redirect(skb);
3946 #endif /* CONFIG_NET_CLS_ACT */
3951 * netdev_is_rx_handler_busy - check if receive handler is registered
3952 * @dev: device to check
3954 * Check if a receive handler is already registered for a given device.
3955 * Return true if there one.
3957 * The caller must hold the rtnl_mutex.
3959 bool netdev_is_rx_handler_busy(struct net_device *dev)
3962 return dev && rtnl_dereference(dev->rx_handler);
3964 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3967 * netdev_rx_handler_register - register receive handler
3968 * @dev: device to register a handler for
3969 * @rx_handler: receive handler to register
3970 * @rx_handler_data: data pointer that is used by rx handler
3972 * Register a receive handler for a device. This handler will then be
3973 * called from __netif_receive_skb. A negative errno code is returned
3976 * The caller must hold the rtnl_mutex.
3978 * For a general description of rx_handler, see enum rx_handler_result.
3980 int netdev_rx_handler_register(struct net_device *dev,
3981 rx_handler_func_t *rx_handler,
3982 void *rx_handler_data)
3986 if (dev->rx_handler)
3989 /* Note: rx_handler_data must be set before rx_handler */
3990 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3991 rcu_assign_pointer(dev->rx_handler, rx_handler);
3995 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3998 * netdev_rx_handler_unregister - unregister receive handler
3999 * @dev: device to unregister a handler from
4001 * Unregister a receive handler from a device.
4003 * The caller must hold the rtnl_mutex.
4005 void netdev_rx_handler_unregister(struct net_device *dev)
4009 RCU_INIT_POINTER(dev->rx_handler, NULL);
4010 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4011 * section has a guarantee to see a non NULL rx_handler_data
4015 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4017 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4020 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4021 * the special handling of PFMEMALLOC skbs.
4023 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4025 switch (skb->protocol) {
4026 case htons(ETH_P_ARP):
4027 case htons(ETH_P_IP):
4028 case htons(ETH_P_IPV6):
4029 case htons(ETH_P_8021Q):
4030 case htons(ETH_P_8021AD):
4037 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4038 int *ret, struct net_device *orig_dev)
4040 #ifdef CONFIG_NETFILTER_INGRESS
4041 if (nf_hook_ingress_active(skb)) {
4045 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4050 ingress_retval = nf_hook_ingress(skb);
4052 return ingress_retval;
4054 #endif /* CONFIG_NETFILTER_INGRESS */
4058 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4060 struct packet_type *ptype, *pt_prev;
4061 rx_handler_func_t *rx_handler;
4062 struct net_device *orig_dev;
4063 bool deliver_exact = false;
4064 int ret = NET_RX_DROP;
4067 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4069 trace_netif_receive_skb(skb);
4071 orig_dev = skb->dev;
4073 skb_reset_network_header(skb);
4074 if (!skb_transport_header_was_set(skb))
4075 skb_reset_transport_header(skb);
4076 skb_reset_mac_len(skb);
4081 skb->skb_iif = skb->dev->ifindex;
4083 __this_cpu_inc(softnet_data.processed);
4085 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4086 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4087 skb = skb_vlan_untag(skb);
4092 #ifdef CONFIG_NET_CLS_ACT
4093 if (skb->tc_verd & TC_NCLS) {
4094 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4102 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4104 ret = deliver_skb(skb, pt_prev, orig_dev);
4108 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4110 ret = deliver_skb(skb, pt_prev, orig_dev);
4115 #ifdef CONFIG_NET_INGRESS
4116 if (static_key_false(&ingress_needed)) {
4117 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4121 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4125 #ifdef CONFIG_NET_CLS_ACT
4129 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4132 if (skb_vlan_tag_present(skb)) {
4134 ret = deliver_skb(skb, pt_prev, orig_dev);
4137 if (vlan_do_receive(&skb))
4139 else if (unlikely(!skb))
4143 rx_handler = rcu_dereference(skb->dev->rx_handler);
4146 ret = deliver_skb(skb, pt_prev, orig_dev);
4149 switch (rx_handler(&skb)) {
4150 case RX_HANDLER_CONSUMED:
4151 ret = NET_RX_SUCCESS;
4153 case RX_HANDLER_ANOTHER:
4155 case RX_HANDLER_EXACT:
4156 deliver_exact = true;
4157 case RX_HANDLER_PASS:
4164 if (unlikely(skb_vlan_tag_present(skb))) {
4165 if (skb_vlan_tag_get_id(skb))
4166 skb->pkt_type = PACKET_OTHERHOST;
4167 /* Note: we might in the future use prio bits
4168 * and set skb->priority like in vlan_do_receive()
4169 * For the time being, just ignore Priority Code Point
4174 type = skb->protocol;
4176 /* deliver only exact match when indicated */
4177 if (likely(!deliver_exact)) {
4178 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4179 &ptype_base[ntohs(type) &
4183 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4184 &orig_dev->ptype_specific);
4186 if (unlikely(skb->dev != orig_dev)) {
4187 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4188 &skb->dev->ptype_specific);
4192 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4195 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4199 atomic_long_inc(&skb->dev->rx_dropped);
4201 atomic_long_inc(&skb->dev->rx_nohandler);
4203 /* Jamal, now you will not able to escape explaining
4204 * me how you were going to use this. :-)
4213 static int __netif_receive_skb(struct sk_buff *skb)
4217 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4218 unsigned long pflags = current->flags;
4221 * PFMEMALLOC skbs are special, they should
4222 * - be delivered to SOCK_MEMALLOC sockets only
4223 * - stay away from userspace
4224 * - have bounded memory usage
4226 * Use PF_MEMALLOC as this saves us from propagating the allocation
4227 * context down to all allocation sites.
4229 current->flags |= PF_MEMALLOC;
4230 ret = __netif_receive_skb_core(skb, true);
4231 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4233 ret = __netif_receive_skb_core(skb, false);
4238 static int netif_receive_skb_internal(struct sk_buff *skb)
4242 net_timestamp_check(netdev_tstamp_prequeue, skb);
4244 if (skb_defer_rx_timestamp(skb))
4245 return NET_RX_SUCCESS;
4250 if (static_key_false(&rps_needed)) {
4251 struct rps_dev_flow voidflow, *rflow = &voidflow;
4252 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4255 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4261 ret = __netif_receive_skb(skb);
4267 * netif_receive_skb - process receive buffer from network
4268 * @skb: buffer to process
4270 * netif_receive_skb() is the main receive data processing function.
4271 * It always succeeds. The buffer may be dropped during processing
4272 * for congestion control or by the protocol layers.
4274 * This function may only be called from softirq context and interrupts
4275 * should be enabled.
4277 * Return values (usually ignored):
4278 * NET_RX_SUCCESS: no congestion
4279 * NET_RX_DROP: packet was dropped
4281 int netif_receive_skb(struct sk_buff *skb)
4283 trace_netif_receive_skb_entry(skb);
4285 return netif_receive_skb_internal(skb);
4287 EXPORT_SYMBOL(netif_receive_skb);
4289 DEFINE_PER_CPU(struct work_struct, flush_works);
4291 /* Network device is going away, flush any packets still pending */
4292 static void flush_backlog(struct work_struct *work)
4294 struct sk_buff *skb, *tmp;
4295 struct softnet_data *sd;
4298 sd = this_cpu_ptr(&softnet_data);
4300 local_irq_disable();
4302 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4303 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4304 __skb_unlink(skb, &sd->input_pkt_queue);
4306 input_queue_head_incr(sd);
4312 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4313 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4314 __skb_unlink(skb, &sd->process_queue);
4316 input_queue_head_incr(sd);
4322 static void flush_all_backlogs(void)
4328 for_each_online_cpu(cpu)
4329 queue_work_on(cpu, system_highpri_wq,
4330 per_cpu_ptr(&flush_works, cpu));
4332 for_each_online_cpu(cpu)
4333 flush_work(per_cpu_ptr(&flush_works, cpu));
4338 static int napi_gro_complete(struct sk_buff *skb)
4340 struct packet_offload *ptype;
4341 __be16 type = skb->protocol;
4342 struct list_head *head = &offload_base;
4345 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4347 if (NAPI_GRO_CB(skb)->count == 1) {
4348 skb_shinfo(skb)->gso_size = 0;
4353 list_for_each_entry_rcu(ptype, head, list) {
4354 if (ptype->type != type || !ptype->callbacks.gro_complete)
4357 err = ptype->callbacks.gro_complete(skb, 0);
4363 WARN_ON(&ptype->list == head);
4365 return NET_RX_SUCCESS;
4369 return netif_receive_skb_internal(skb);
4372 /* napi->gro_list contains packets ordered by age.
4373 * youngest packets at the head of it.
4374 * Complete skbs in reverse order to reduce latencies.
4376 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4378 struct sk_buff *skb, *prev = NULL;
4380 /* scan list and build reverse chain */
4381 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4386 for (skb = prev; skb; skb = prev) {
4389 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4393 napi_gro_complete(skb);
4397 napi->gro_list = NULL;
4399 EXPORT_SYMBOL(napi_gro_flush);
4401 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4404 unsigned int maclen = skb->dev->hard_header_len;
4405 u32 hash = skb_get_hash_raw(skb);
4407 for (p = napi->gro_list; p; p = p->next) {
4408 unsigned long diffs;
4410 NAPI_GRO_CB(p)->flush = 0;
4412 if (hash != skb_get_hash_raw(p)) {
4413 NAPI_GRO_CB(p)->same_flow = 0;
4417 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4418 diffs |= p->vlan_tci ^ skb->vlan_tci;
4419 diffs |= skb_metadata_dst_cmp(p, skb);
4420 if (maclen == ETH_HLEN)
4421 diffs |= compare_ether_header(skb_mac_header(p),
4422 skb_mac_header(skb));
4424 diffs = memcmp(skb_mac_header(p),
4425 skb_mac_header(skb),
4427 NAPI_GRO_CB(p)->same_flow = !diffs;
4431 static void skb_gro_reset_offset(struct sk_buff *skb)
4433 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4434 const skb_frag_t *frag0 = &pinfo->frags[0];
4436 NAPI_GRO_CB(skb)->data_offset = 0;
4437 NAPI_GRO_CB(skb)->frag0 = NULL;
4438 NAPI_GRO_CB(skb)->frag0_len = 0;
4440 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4442 !PageHighMem(skb_frag_page(frag0))) {
4443 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4444 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4448 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4450 struct skb_shared_info *pinfo = skb_shinfo(skb);
4452 BUG_ON(skb->end - skb->tail < grow);
4454 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4456 skb->data_len -= grow;
4459 pinfo->frags[0].page_offset += grow;
4460 skb_frag_size_sub(&pinfo->frags[0], grow);
4462 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4463 skb_frag_unref(skb, 0);
4464 memmove(pinfo->frags, pinfo->frags + 1,
4465 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4469 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4471 struct sk_buff **pp = NULL;
4472 struct packet_offload *ptype;
4473 __be16 type = skb->protocol;
4474 struct list_head *head = &offload_base;
4476 enum gro_result ret;
4479 if (!(skb->dev->features & NETIF_F_GRO))
4485 gro_list_prepare(napi, skb);
4488 list_for_each_entry_rcu(ptype, head, list) {
4489 if (ptype->type != type || !ptype->callbacks.gro_receive)
4492 skb_set_network_header(skb, skb_gro_offset(skb));
4493 skb_reset_mac_len(skb);
4494 NAPI_GRO_CB(skb)->same_flow = 0;
4495 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4496 NAPI_GRO_CB(skb)->free = 0;
4497 NAPI_GRO_CB(skb)->encap_mark = 0;
4498 NAPI_GRO_CB(skb)->recursion_counter = 0;
4499 NAPI_GRO_CB(skb)->is_fou = 0;
4500 NAPI_GRO_CB(skb)->is_atomic = 1;
4501 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4503 /* Setup for GRO checksum validation */
4504 switch (skb->ip_summed) {
4505 case CHECKSUM_COMPLETE:
4506 NAPI_GRO_CB(skb)->csum = skb->csum;
4507 NAPI_GRO_CB(skb)->csum_valid = 1;
4508 NAPI_GRO_CB(skb)->csum_cnt = 0;
4510 case CHECKSUM_UNNECESSARY:
4511 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4512 NAPI_GRO_CB(skb)->csum_valid = 0;
4515 NAPI_GRO_CB(skb)->csum_cnt = 0;
4516 NAPI_GRO_CB(skb)->csum_valid = 0;
4519 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4524 if (&ptype->list == head)
4527 same_flow = NAPI_GRO_CB(skb)->same_flow;
4528 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4531 struct sk_buff *nskb = *pp;
4535 napi_gro_complete(nskb);
4542 if (NAPI_GRO_CB(skb)->flush)
4545 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4546 struct sk_buff *nskb = napi->gro_list;
4548 /* locate the end of the list to select the 'oldest' flow */
4549 while (nskb->next) {
4555 napi_gro_complete(nskb);
4559 NAPI_GRO_CB(skb)->count = 1;
4560 NAPI_GRO_CB(skb)->age = jiffies;
4561 NAPI_GRO_CB(skb)->last = skb;
4562 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4563 skb->next = napi->gro_list;
4564 napi->gro_list = skb;
4568 grow = skb_gro_offset(skb) - skb_headlen(skb);
4570 gro_pull_from_frag0(skb, grow);
4579 struct packet_offload *gro_find_receive_by_type(__be16 type)
4581 struct list_head *offload_head = &offload_base;
4582 struct packet_offload *ptype;
4584 list_for_each_entry_rcu(ptype, offload_head, list) {
4585 if (ptype->type != type || !ptype->callbacks.gro_receive)
4591 EXPORT_SYMBOL(gro_find_receive_by_type);
4593 struct packet_offload *gro_find_complete_by_type(__be16 type)
4595 struct list_head *offload_head = &offload_base;
4596 struct packet_offload *ptype;
4598 list_for_each_entry_rcu(ptype, offload_head, list) {
4599 if (ptype->type != type || !ptype->callbacks.gro_complete)
4605 EXPORT_SYMBOL(gro_find_complete_by_type);
4607 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4611 if (netif_receive_skb_internal(skb))
4619 case GRO_MERGED_FREE:
4620 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4622 kmem_cache_free(skbuff_head_cache, skb);
4636 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4638 skb_mark_napi_id(skb, napi);
4639 trace_napi_gro_receive_entry(skb);
4641 skb_gro_reset_offset(skb);
4643 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4645 EXPORT_SYMBOL(napi_gro_receive);
4647 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4649 if (unlikely(skb->pfmemalloc)) {
4653 __skb_pull(skb, skb_headlen(skb));
4654 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4655 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4657 skb->dev = napi->dev;
4659 skb->encapsulation = 0;
4660 skb_shinfo(skb)->gso_type = 0;
4661 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4666 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4668 struct sk_buff *skb = napi->skb;
4671 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4674 skb_mark_napi_id(skb, napi);
4679 EXPORT_SYMBOL(napi_get_frags);
4681 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4682 struct sk_buff *skb,
4688 __skb_push(skb, ETH_HLEN);
4689 skb->protocol = eth_type_trans(skb, skb->dev);
4690 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4695 case GRO_MERGED_FREE:
4696 napi_reuse_skb(napi, skb);
4706 /* Upper GRO stack assumes network header starts at gro_offset=0
4707 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4708 * We copy ethernet header into skb->data to have a common layout.
4710 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4712 struct sk_buff *skb = napi->skb;
4713 const struct ethhdr *eth;
4714 unsigned int hlen = sizeof(*eth);
4718 skb_reset_mac_header(skb);
4719 skb_gro_reset_offset(skb);
4721 eth = skb_gro_header_fast(skb, 0);
4722 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4723 eth = skb_gro_header_slow(skb, hlen, 0);
4724 if (unlikely(!eth)) {
4725 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4726 __func__, napi->dev->name);
4727 napi_reuse_skb(napi, skb);
4731 gro_pull_from_frag0(skb, hlen);
4732 NAPI_GRO_CB(skb)->frag0 += hlen;
4733 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4735 __skb_pull(skb, hlen);
4738 * This works because the only protocols we care about don't require
4740 * We'll fix it up properly in napi_frags_finish()
4742 skb->protocol = eth->h_proto;
4747 gro_result_t napi_gro_frags(struct napi_struct *napi)
4749 struct sk_buff *skb = napi_frags_skb(napi);
4754 trace_napi_gro_frags_entry(skb);
4756 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4758 EXPORT_SYMBOL(napi_gro_frags);
4760 /* Compute the checksum from gro_offset and return the folded value
4761 * after adding in any pseudo checksum.
4763 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4768 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4770 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4771 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4773 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4774 !skb->csum_complete_sw)
4775 netdev_rx_csum_fault(skb->dev);
4778 NAPI_GRO_CB(skb)->csum = wsum;
4779 NAPI_GRO_CB(skb)->csum_valid = 1;
4783 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4786 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4787 * Note: called with local irq disabled, but exits with local irq enabled.
4789 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4792 struct softnet_data *remsd = sd->rps_ipi_list;
4795 sd->rps_ipi_list = NULL;
4799 /* Send pending IPI's to kick RPS processing on remote cpus. */
4801 struct softnet_data *next = remsd->rps_ipi_next;
4803 if (cpu_online(remsd->cpu))
4804 smp_call_function_single_async(remsd->cpu,
4813 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4816 return sd->rps_ipi_list != NULL;
4822 static int process_backlog(struct napi_struct *napi, int quota)
4824 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4828 /* Check if we have pending ipi, its better to send them now,
4829 * not waiting net_rx_action() end.
4831 if (sd_has_rps_ipi_waiting(sd)) {
4832 local_irq_disable();
4833 net_rps_action_and_irq_enable(sd);
4836 napi->weight = weight_p;
4838 struct sk_buff *skb;
4840 while ((skb = __skb_dequeue(&sd->process_queue))) {
4842 __netif_receive_skb(skb);
4844 input_queue_head_incr(sd);
4845 if (++work >= quota)
4850 local_irq_disable();
4852 if (skb_queue_empty(&sd->input_pkt_queue)) {
4854 * Inline a custom version of __napi_complete().
4855 * only current cpu owns and manipulates this napi,
4856 * and NAPI_STATE_SCHED is the only possible flag set
4858 * We can use a plain write instead of clear_bit(),
4859 * and we dont need an smp_mb() memory barrier.
4864 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4865 &sd->process_queue);
4875 * __napi_schedule - schedule for receive
4876 * @n: entry to schedule
4878 * The entry's receive function will be scheduled to run.
4879 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4881 void __napi_schedule(struct napi_struct *n)
4883 unsigned long flags;
4885 local_irq_save(flags);
4886 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4887 local_irq_restore(flags);
4889 EXPORT_SYMBOL(__napi_schedule);
4892 * __napi_schedule_irqoff - schedule for receive
4893 * @n: entry to schedule
4895 * Variant of __napi_schedule() assuming hard irqs are masked
4897 void __napi_schedule_irqoff(struct napi_struct *n)
4899 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4901 EXPORT_SYMBOL(__napi_schedule_irqoff);
4903 bool __napi_complete(struct napi_struct *n)
4905 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4907 /* Some drivers call us directly, instead of calling
4908 * napi_complete_done().
4910 if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state)))
4913 list_del_init(&n->poll_list);
4914 smp_mb__before_atomic();
4915 clear_bit(NAPI_STATE_SCHED, &n->state);
4918 EXPORT_SYMBOL(__napi_complete);
4920 bool napi_complete_done(struct napi_struct *n, int work_done)
4922 unsigned long flags;
4925 * 1) Don't let napi dequeue from the cpu poll list
4926 * just in case its running on a different cpu.
4927 * 2) If we are busy polling, do nothing here, we have
4928 * the guarantee we will be called later.
4930 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4931 NAPIF_STATE_IN_BUSY_POLL)))
4935 unsigned long timeout = 0;
4938 timeout = n->dev->gro_flush_timeout;
4941 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4942 HRTIMER_MODE_REL_PINNED);
4944 napi_gro_flush(n, false);
4946 if (likely(list_empty(&n->poll_list))) {
4947 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4949 /* If n->poll_list is not empty, we need to mask irqs */
4950 local_irq_save(flags);
4952 local_irq_restore(flags);
4956 EXPORT_SYMBOL(napi_complete_done);
4958 /* must be called under rcu_read_lock(), as we dont take a reference */
4959 static struct napi_struct *napi_by_id(unsigned int napi_id)
4961 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4962 struct napi_struct *napi;
4964 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4965 if (napi->napi_id == napi_id)
4971 #if defined(CONFIG_NET_RX_BUSY_POLL)
4973 #define BUSY_POLL_BUDGET 8
4975 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4979 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4983 /* All we really want here is to re-enable device interrupts.
4984 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4986 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4987 netpoll_poll_unlock(have_poll_lock);
4988 if (rc == BUSY_POLL_BUDGET)
4989 __napi_schedule(napi);
4991 if (local_softirq_pending())
4995 bool sk_busy_loop(struct sock *sk, int nonblock)
4997 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4998 int (*napi_poll)(struct napi_struct *napi, int budget);
4999 int (*busy_poll)(struct napi_struct *dev);
5000 void *have_poll_lock = NULL;
5001 struct napi_struct *napi;
5010 napi = napi_by_id(sk->sk_napi_id);
5014 /* Note: ndo_busy_poll method is optional in linux-4.5 */
5015 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
5022 rc = busy_poll(napi);
5026 unsigned long val = READ_ONCE(napi->state);
5028 /* If multiple threads are competing for this napi,
5029 * we avoid dirtying napi->state as much as we can.
5031 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5032 NAPIF_STATE_IN_BUSY_POLL))
5034 if (cmpxchg(&napi->state, val,
5035 val | NAPIF_STATE_IN_BUSY_POLL |
5036 NAPIF_STATE_SCHED) != val)
5038 have_poll_lock = netpoll_poll_lock(napi);
5039 napi_poll = napi->poll;
5041 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5042 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5045 __NET_ADD_STATS(sock_net(sk),
5046 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5049 if (rc == LL_FLUSH_FAILED)
5050 break; /* permanent failure */
5052 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5053 busy_loop_timeout(end_time))
5056 if (unlikely(need_resched())) {
5058 busy_poll_stop(napi, have_poll_lock);
5062 rc = !skb_queue_empty(&sk->sk_receive_queue);
5063 if (rc || busy_loop_timeout(end_time))
5070 busy_poll_stop(napi, have_poll_lock);
5072 rc = !skb_queue_empty(&sk->sk_receive_queue);
5077 EXPORT_SYMBOL(sk_busy_loop);
5079 #endif /* CONFIG_NET_RX_BUSY_POLL */
5081 static void napi_hash_add(struct napi_struct *napi)
5083 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5084 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5087 spin_lock(&napi_hash_lock);
5089 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5091 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5092 napi_gen_id = NR_CPUS + 1;
5093 } while (napi_by_id(napi_gen_id));
5094 napi->napi_id = napi_gen_id;
5096 hlist_add_head_rcu(&napi->napi_hash_node,
5097 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5099 spin_unlock(&napi_hash_lock);
5102 /* Warning : caller is responsible to make sure rcu grace period
5103 * is respected before freeing memory containing @napi
5105 bool napi_hash_del(struct napi_struct *napi)
5107 bool rcu_sync_needed = false;
5109 spin_lock(&napi_hash_lock);
5111 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5112 rcu_sync_needed = true;
5113 hlist_del_rcu(&napi->napi_hash_node);
5115 spin_unlock(&napi_hash_lock);
5116 return rcu_sync_needed;
5118 EXPORT_SYMBOL_GPL(napi_hash_del);
5120 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5122 struct napi_struct *napi;
5124 napi = container_of(timer, struct napi_struct, timer);
5126 napi_schedule(napi);
5128 return HRTIMER_NORESTART;
5131 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5132 int (*poll)(struct napi_struct *, int), int weight)
5134 INIT_LIST_HEAD(&napi->poll_list);
5135 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5136 napi->timer.function = napi_watchdog;
5137 napi->gro_count = 0;
5138 napi->gro_list = NULL;
5141 if (weight > NAPI_POLL_WEIGHT)
5142 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5144 napi->weight = weight;
5145 list_add(&napi->dev_list, &dev->napi_list);
5147 #ifdef CONFIG_NETPOLL
5148 napi->poll_owner = -1;
5150 set_bit(NAPI_STATE_SCHED, &napi->state);
5151 napi_hash_add(napi);
5153 EXPORT_SYMBOL(netif_napi_add);
5155 void napi_disable(struct napi_struct *n)
5158 set_bit(NAPI_STATE_DISABLE, &n->state);
5160 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5162 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5165 hrtimer_cancel(&n->timer);
5167 clear_bit(NAPI_STATE_DISABLE, &n->state);
5169 EXPORT_SYMBOL(napi_disable);
5171 /* Must be called in process context */
5172 void netif_napi_del(struct napi_struct *napi)
5175 if (napi_hash_del(napi))
5177 list_del_init(&napi->dev_list);
5178 napi_free_frags(napi);
5180 kfree_skb_list(napi->gro_list);
5181 napi->gro_list = NULL;
5182 napi->gro_count = 0;
5184 EXPORT_SYMBOL(netif_napi_del);
5186 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5191 list_del_init(&n->poll_list);
5193 have = netpoll_poll_lock(n);
5197 /* This NAPI_STATE_SCHED test is for avoiding a race
5198 * with netpoll's poll_napi(). Only the entity which
5199 * obtains the lock and sees NAPI_STATE_SCHED set will
5200 * actually make the ->poll() call. Therefore we avoid
5201 * accidentally calling ->poll() when NAPI is not scheduled.
5204 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5205 work = n->poll(n, weight);
5206 trace_napi_poll(n, work, weight);
5209 WARN_ON_ONCE(work > weight);
5211 if (likely(work < weight))
5214 /* Drivers must not modify the NAPI state if they
5215 * consume the entire weight. In such cases this code
5216 * still "owns" the NAPI instance and therefore can
5217 * move the instance around on the list at-will.
5219 if (unlikely(napi_disable_pending(n))) {
5225 /* flush too old packets
5226 * If HZ < 1000, flush all packets.
5228 napi_gro_flush(n, HZ >= 1000);
5231 /* Some drivers may have called napi_schedule
5232 * prior to exhausting their budget.
5234 if (unlikely(!list_empty(&n->poll_list))) {
5235 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5236 n->dev ? n->dev->name : "backlog");
5240 list_add_tail(&n->poll_list, repoll);
5243 netpoll_poll_unlock(have);
5248 static __latent_entropy void net_rx_action(struct softirq_action *h)
5250 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5251 unsigned long time_limit = jiffies + 2;
5252 int budget = netdev_budget;
5256 local_irq_disable();
5257 list_splice_init(&sd->poll_list, &list);
5261 struct napi_struct *n;
5263 if (list_empty(&list)) {
5264 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5269 n = list_first_entry(&list, struct napi_struct, poll_list);
5270 budget -= napi_poll(n, &repoll);
5272 /* If softirq window is exhausted then punt.
5273 * Allow this to run for 2 jiffies since which will allow
5274 * an average latency of 1.5/HZ.
5276 if (unlikely(budget <= 0 ||
5277 time_after_eq(jiffies, time_limit))) {
5283 local_irq_disable();
5285 list_splice_tail_init(&sd->poll_list, &list);
5286 list_splice_tail(&repoll, &list);
5287 list_splice(&list, &sd->poll_list);
5288 if (!list_empty(&sd->poll_list))
5289 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5291 net_rps_action_and_irq_enable(sd);
5293 __kfree_skb_flush();
5296 struct netdev_adjacent {
5297 struct net_device *dev;
5299 /* upper master flag, there can only be one master device per list */
5302 /* counter for the number of times this device was added to us */
5305 /* private field for the users */
5308 struct list_head list;
5309 struct rcu_head rcu;
5312 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5313 struct list_head *adj_list)
5315 struct netdev_adjacent *adj;
5317 list_for_each_entry(adj, adj_list, list) {
5318 if (adj->dev == adj_dev)
5324 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5326 struct net_device *dev = data;
5328 return upper_dev == dev;
5332 * netdev_has_upper_dev - Check if device is linked to an upper device
5334 * @upper_dev: upper device to check
5336 * Find out if a device is linked to specified upper device and return true
5337 * in case it is. Note that this checks only immediate upper device,
5338 * not through a complete stack of devices. The caller must hold the RTNL lock.
5340 bool netdev_has_upper_dev(struct net_device *dev,
5341 struct net_device *upper_dev)
5345 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5348 EXPORT_SYMBOL(netdev_has_upper_dev);
5351 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5353 * @upper_dev: upper device to check
5355 * Find out if a device is linked to specified upper device and return true
5356 * in case it is. Note that this checks the entire upper device chain.
5357 * The caller must hold rcu lock.
5360 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5361 struct net_device *upper_dev)
5363 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5366 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5369 * netdev_has_any_upper_dev - Check if device is linked to some device
5372 * Find out if a device is linked to an upper device and return true in case
5373 * it is. The caller must hold the RTNL lock.
5375 static bool netdev_has_any_upper_dev(struct net_device *dev)
5379 return !list_empty(&dev->adj_list.upper);
5383 * netdev_master_upper_dev_get - Get master upper device
5386 * Find a master upper device and return pointer to it or NULL in case
5387 * it's not there. The caller must hold the RTNL lock.
5389 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5391 struct netdev_adjacent *upper;
5395 if (list_empty(&dev->adj_list.upper))
5398 upper = list_first_entry(&dev->adj_list.upper,
5399 struct netdev_adjacent, list);
5400 if (likely(upper->master))
5404 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5407 * netdev_has_any_lower_dev - Check if device is linked to some device
5410 * Find out if a device is linked to a lower device and return true in case
5411 * it is. The caller must hold the RTNL lock.
5413 static bool netdev_has_any_lower_dev(struct net_device *dev)
5417 return !list_empty(&dev->adj_list.lower);
5420 void *netdev_adjacent_get_private(struct list_head *adj_list)
5422 struct netdev_adjacent *adj;
5424 adj = list_entry(adj_list, struct netdev_adjacent, list);
5426 return adj->private;
5428 EXPORT_SYMBOL(netdev_adjacent_get_private);
5431 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5433 * @iter: list_head ** of the current position
5435 * Gets the next device from the dev's upper list, starting from iter
5436 * position. The caller must hold RCU read lock.
5438 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5439 struct list_head **iter)
5441 struct netdev_adjacent *upper;
5443 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5445 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5447 if (&upper->list == &dev->adj_list.upper)
5450 *iter = &upper->list;
5454 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5456 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5457 struct list_head **iter)
5459 struct netdev_adjacent *upper;
5461 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5463 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5465 if (&upper->list == &dev->adj_list.upper)
5468 *iter = &upper->list;
5473 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5474 int (*fn)(struct net_device *dev,
5478 struct net_device *udev;
5479 struct list_head *iter;
5482 for (iter = &dev->adj_list.upper,
5483 udev = netdev_next_upper_dev_rcu(dev, &iter);
5485 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5486 /* first is the upper device itself */
5487 ret = fn(udev, data);
5491 /* then look at all of its upper devices */
5492 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5499 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5502 * netdev_lower_get_next_private - Get the next ->private from the
5503 * lower neighbour list
5505 * @iter: list_head ** of the current position
5507 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5508 * list, starting from iter position. The caller must hold either hold the
5509 * RTNL lock or its own locking that guarantees that the neighbour lower
5510 * list will remain unchanged.
5512 void *netdev_lower_get_next_private(struct net_device *dev,
5513 struct list_head **iter)
5515 struct netdev_adjacent *lower;
5517 lower = list_entry(*iter, struct netdev_adjacent, list);
5519 if (&lower->list == &dev->adj_list.lower)
5522 *iter = lower->list.next;
5524 return lower->private;
5526 EXPORT_SYMBOL(netdev_lower_get_next_private);
5529 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5530 * lower neighbour list, RCU
5533 * @iter: list_head ** of the current position
5535 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5536 * list, starting from iter position. The caller must hold RCU read lock.
5538 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5539 struct list_head **iter)
5541 struct netdev_adjacent *lower;
5543 WARN_ON_ONCE(!rcu_read_lock_held());
5545 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5547 if (&lower->list == &dev->adj_list.lower)
5550 *iter = &lower->list;
5552 return lower->private;
5554 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5557 * netdev_lower_get_next - Get the next device from the lower neighbour
5560 * @iter: list_head ** of the current position
5562 * Gets the next netdev_adjacent from the dev's lower neighbour
5563 * list, starting from iter position. The caller must hold RTNL lock or
5564 * its own locking that guarantees that the neighbour lower
5565 * list will remain unchanged.
5567 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5569 struct netdev_adjacent *lower;
5571 lower = list_entry(*iter, struct netdev_adjacent, list);
5573 if (&lower->list == &dev->adj_list.lower)
5576 *iter = lower->list.next;
5580 EXPORT_SYMBOL(netdev_lower_get_next);
5582 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5583 struct list_head **iter)
5585 struct netdev_adjacent *lower;
5587 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5589 if (&lower->list == &dev->adj_list.lower)
5592 *iter = &lower->list;
5597 int netdev_walk_all_lower_dev(struct net_device *dev,
5598 int (*fn)(struct net_device *dev,
5602 struct net_device *ldev;
5603 struct list_head *iter;
5606 for (iter = &dev->adj_list.lower,
5607 ldev = netdev_next_lower_dev(dev, &iter);
5609 ldev = netdev_next_lower_dev(dev, &iter)) {
5610 /* first is the lower device itself */
5611 ret = fn(ldev, data);
5615 /* then look at all of its lower devices */
5616 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5623 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5625 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5626 struct list_head **iter)
5628 struct netdev_adjacent *lower;
5630 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5631 if (&lower->list == &dev->adj_list.lower)
5634 *iter = &lower->list;
5639 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5640 int (*fn)(struct net_device *dev,
5644 struct net_device *ldev;
5645 struct list_head *iter;
5648 for (iter = &dev->adj_list.lower,
5649 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5651 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5652 /* first is the lower device itself */
5653 ret = fn(ldev, data);
5657 /* then look at all of its lower devices */
5658 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5665 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5668 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5669 * lower neighbour list, RCU
5673 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5674 * list. The caller must hold RCU read lock.
5676 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5678 struct netdev_adjacent *lower;
5680 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5681 struct netdev_adjacent, list);
5683 return lower->private;
5686 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5689 * netdev_master_upper_dev_get_rcu - Get master upper device
5692 * Find a master upper device and return pointer to it or NULL in case
5693 * it's not there. The caller must hold the RCU read lock.
5695 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5697 struct netdev_adjacent *upper;
5699 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5700 struct netdev_adjacent, list);
5701 if (upper && likely(upper->master))
5705 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5707 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5708 struct net_device *adj_dev,
5709 struct list_head *dev_list)
5711 char linkname[IFNAMSIZ+7];
5712 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5713 "upper_%s" : "lower_%s", adj_dev->name);
5714 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5717 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5719 struct list_head *dev_list)
5721 char linkname[IFNAMSIZ+7];
5722 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5723 "upper_%s" : "lower_%s", name);
5724 sysfs_remove_link(&(dev->dev.kobj), linkname);
5727 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5728 struct net_device *adj_dev,
5729 struct list_head *dev_list)
5731 return (dev_list == &dev->adj_list.upper ||
5732 dev_list == &dev->adj_list.lower) &&
5733 net_eq(dev_net(dev), dev_net(adj_dev));
5736 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5737 struct net_device *adj_dev,
5738 struct list_head *dev_list,
5739 void *private, bool master)
5741 struct netdev_adjacent *adj;
5744 adj = __netdev_find_adj(adj_dev, dev_list);
5748 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5749 dev->name, adj_dev->name, adj->ref_nr);
5754 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5759 adj->master = master;
5761 adj->private = private;
5764 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5765 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5767 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5768 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5773 /* Ensure that master link is always the first item in list. */
5775 ret = sysfs_create_link(&(dev->dev.kobj),
5776 &(adj_dev->dev.kobj), "master");
5778 goto remove_symlinks;
5780 list_add_rcu(&adj->list, dev_list);
5782 list_add_tail_rcu(&adj->list, dev_list);
5788 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5789 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5797 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5798 struct net_device *adj_dev,
5800 struct list_head *dev_list)
5802 struct netdev_adjacent *adj;
5804 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5805 dev->name, adj_dev->name, ref_nr);
5807 adj = __netdev_find_adj(adj_dev, dev_list);
5810 pr_err("Adjacency does not exist for device %s from %s\n",
5811 dev->name, adj_dev->name);
5816 if (adj->ref_nr > ref_nr) {
5817 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5818 dev->name, adj_dev->name, ref_nr,
5819 adj->ref_nr - ref_nr);
5820 adj->ref_nr -= ref_nr;
5825 sysfs_remove_link(&(dev->dev.kobj), "master");
5827 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5828 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5830 list_del_rcu(&adj->list);
5831 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5832 adj_dev->name, dev->name, adj_dev->name);
5834 kfree_rcu(adj, rcu);
5837 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5838 struct net_device *upper_dev,
5839 struct list_head *up_list,
5840 struct list_head *down_list,
5841 void *private, bool master)
5845 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5850 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5853 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5860 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5861 struct net_device *upper_dev,
5863 struct list_head *up_list,
5864 struct list_head *down_list)
5866 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5867 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5870 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5871 struct net_device *upper_dev,
5872 void *private, bool master)
5874 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5875 &dev->adj_list.upper,
5876 &upper_dev->adj_list.lower,
5880 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5881 struct net_device *upper_dev)
5883 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5884 &dev->adj_list.upper,
5885 &upper_dev->adj_list.lower);
5888 static int __netdev_upper_dev_link(struct net_device *dev,
5889 struct net_device *upper_dev, bool master,
5890 void *upper_priv, void *upper_info)
5892 struct netdev_notifier_changeupper_info changeupper_info;
5897 if (dev == upper_dev)
5900 /* To prevent loops, check if dev is not upper device to upper_dev. */
5901 if (netdev_has_upper_dev(upper_dev, dev))
5904 if (netdev_has_upper_dev(dev, upper_dev))
5907 if (master && netdev_master_upper_dev_get(dev))
5910 changeupper_info.upper_dev = upper_dev;
5911 changeupper_info.master = master;
5912 changeupper_info.linking = true;
5913 changeupper_info.upper_info = upper_info;
5915 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5916 &changeupper_info.info);
5917 ret = notifier_to_errno(ret);
5921 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5926 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5927 &changeupper_info.info);
5928 ret = notifier_to_errno(ret);
5935 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5941 * netdev_upper_dev_link - Add a link to the upper device
5943 * @upper_dev: new upper device
5945 * Adds a link to device which is upper to this one. The caller must hold
5946 * the RTNL lock. On a failure a negative errno code is returned.
5947 * On success the reference counts are adjusted and the function
5950 int netdev_upper_dev_link(struct net_device *dev,
5951 struct net_device *upper_dev)
5953 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5955 EXPORT_SYMBOL(netdev_upper_dev_link);
5958 * netdev_master_upper_dev_link - Add a master link to the upper device
5960 * @upper_dev: new upper device
5961 * @upper_priv: upper device private
5962 * @upper_info: upper info to be passed down via notifier
5964 * Adds a link to device which is upper to this one. In this case, only
5965 * one master upper device can be linked, although other non-master devices
5966 * might be linked as well. The caller must hold the RTNL lock.
5967 * On a failure a negative errno code is returned. On success the reference
5968 * counts are adjusted and the function returns zero.
5970 int netdev_master_upper_dev_link(struct net_device *dev,
5971 struct net_device *upper_dev,
5972 void *upper_priv, void *upper_info)
5974 return __netdev_upper_dev_link(dev, upper_dev, true,
5975 upper_priv, upper_info);
5977 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5980 * netdev_upper_dev_unlink - Removes a link to upper device
5982 * @upper_dev: new upper device
5984 * Removes a link to device which is upper to this one. The caller must hold
5987 void netdev_upper_dev_unlink(struct net_device *dev,
5988 struct net_device *upper_dev)
5990 struct netdev_notifier_changeupper_info changeupper_info;
5993 changeupper_info.upper_dev = upper_dev;
5994 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5995 changeupper_info.linking = false;
5997 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5998 &changeupper_info.info);
6000 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6002 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6003 &changeupper_info.info);
6005 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6008 * netdev_bonding_info_change - Dispatch event about slave change
6010 * @bonding_info: info to dispatch
6012 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6013 * The caller must hold the RTNL lock.
6015 void netdev_bonding_info_change(struct net_device *dev,
6016 struct netdev_bonding_info *bonding_info)
6018 struct netdev_notifier_bonding_info info;
6020 memcpy(&info.bonding_info, bonding_info,
6021 sizeof(struct netdev_bonding_info));
6022 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6025 EXPORT_SYMBOL(netdev_bonding_info_change);
6027 static void netdev_adjacent_add_links(struct net_device *dev)
6029 struct netdev_adjacent *iter;
6031 struct net *net = dev_net(dev);
6033 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6034 if (!net_eq(net, dev_net(iter->dev)))
6036 netdev_adjacent_sysfs_add(iter->dev, dev,
6037 &iter->dev->adj_list.lower);
6038 netdev_adjacent_sysfs_add(dev, iter->dev,
6039 &dev->adj_list.upper);
6042 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6043 if (!net_eq(net, dev_net(iter->dev)))
6045 netdev_adjacent_sysfs_add(iter->dev, dev,
6046 &iter->dev->adj_list.upper);
6047 netdev_adjacent_sysfs_add(dev, iter->dev,
6048 &dev->adj_list.lower);
6052 static void netdev_adjacent_del_links(struct net_device *dev)
6054 struct netdev_adjacent *iter;
6056 struct net *net = dev_net(dev);
6058 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6059 if (!net_eq(net, dev_net(iter->dev)))
6061 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6062 &iter->dev->adj_list.lower);
6063 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6064 &dev->adj_list.upper);
6067 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6068 if (!net_eq(net, dev_net(iter->dev)))
6070 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6071 &iter->dev->adj_list.upper);
6072 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6073 &dev->adj_list.lower);
6077 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6079 struct netdev_adjacent *iter;
6081 struct net *net = dev_net(dev);
6083 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6084 if (!net_eq(net, dev_net(iter->dev)))
6086 netdev_adjacent_sysfs_del(iter->dev, oldname,
6087 &iter->dev->adj_list.lower);
6088 netdev_adjacent_sysfs_add(iter->dev, dev,
6089 &iter->dev->adj_list.lower);
6092 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6093 if (!net_eq(net, dev_net(iter->dev)))
6095 netdev_adjacent_sysfs_del(iter->dev, oldname,
6096 &iter->dev->adj_list.upper);
6097 netdev_adjacent_sysfs_add(iter->dev, dev,
6098 &iter->dev->adj_list.upper);
6102 void *netdev_lower_dev_get_private(struct net_device *dev,
6103 struct net_device *lower_dev)
6105 struct netdev_adjacent *lower;
6109 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6113 return lower->private;
6115 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6118 int dev_get_nest_level(struct net_device *dev)
6120 struct net_device *lower = NULL;
6121 struct list_head *iter;
6127 netdev_for_each_lower_dev(dev, lower, iter) {
6128 nest = dev_get_nest_level(lower);
6129 if (max_nest < nest)
6133 return max_nest + 1;
6135 EXPORT_SYMBOL(dev_get_nest_level);
6138 * netdev_lower_change - Dispatch event about lower device state change
6139 * @lower_dev: device
6140 * @lower_state_info: state to dispatch
6142 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6143 * The caller must hold the RTNL lock.
6145 void netdev_lower_state_changed(struct net_device *lower_dev,
6146 void *lower_state_info)
6148 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6151 changelowerstate_info.lower_state_info = lower_state_info;
6152 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6153 &changelowerstate_info.info);
6155 EXPORT_SYMBOL(netdev_lower_state_changed);
6157 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6158 struct neighbour *n)
6160 struct net_device *lower_dev, *stop_dev;
6161 struct list_head *iter;
6164 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6165 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6167 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6169 stop_dev = lower_dev;
6176 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6177 if (lower_dev == stop_dev)
6179 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6181 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6185 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6187 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6188 struct neighbour *n)
6190 struct net_device *lower_dev;
6191 struct list_head *iter;
6193 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6194 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6196 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6199 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6201 static void dev_change_rx_flags(struct net_device *dev, int flags)
6203 const struct net_device_ops *ops = dev->netdev_ops;
6205 if (ops->ndo_change_rx_flags)
6206 ops->ndo_change_rx_flags(dev, flags);
6209 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6211 unsigned int old_flags = dev->flags;
6217 dev->flags |= IFF_PROMISC;
6218 dev->promiscuity += inc;
6219 if (dev->promiscuity == 0) {
6222 * If inc causes overflow, untouch promisc and return error.
6225 dev->flags &= ~IFF_PROMISC;
6227 dev->promiscuity -= inc;
6228 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6233 if (dev->flags != old_flags) {
6234 pr_info("device %s %s promiscuous mode\n",
6236 dev->flags & IFF_PROMISC ? "entered" : "left");
6237 if (audit_enabled) {
6238 current_uid_gid(&uid, &gid);
6239 audit_log(current->audit_context, GFP_ATOMIC,
6240 AUDIT_ANOM_PROMISCUOUS,
6241 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6242 dev->name, (dev->flags & IFF_PROMISC),
6243 (old_flags & IFF_PROMISC),
6244 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6245 from_kuid(&init_user_ns, uid),
6246 from_kgid(&init_user_ns, gid),
6247 audit_get_sessionid(current));
6250 dev_change_rx_flags(dev, IFF_PROMISC);
6253 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6258 * dev_set_promiscuity - update promiscuity count on a device
6262 * Add or remove promiscuity from a device. While the count in the device
6263 * remains above zero the interface remains promiscuous. Once it hits zero
6264 * the device reverts back to normal filtering operation. A negative inc
6265 * value is used to drop promiscuity on the device.
6266 * Return 0 if successful or a negative errno code on error.
6268 int dev_set_promiscuity(struct net_device *dev, int inc)
6270 unsigned int old_flags = dev->flags;
6273 err = __dev_set_promiscuity(dev, inc, true);
6276 if (dev->flags != old_flags)
6277 dev_set_rx_mode(dev);
6280 EXPORT_SYMBOL(dev_set_promiscuity);
6282 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6284 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6288 dev->flags |= IFF_ALLMULTI;
6289 dev->allmulti += inc;
6290 if (dev->allmulti == 0) {
6293 * If inc causes overflow, untouch allmulti and return error.
6296 dev->flags &= ~IFF_ALLMULTI;
6298 dev->allmulti -= inc;
6299 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6304 if (dev->flags ^ old_flags) {
6305 dev_change_rx_flags(dev, IFF_ALLMULTI);
6306 dev_set_rx_mode(dev);
6308 __dev_notify_flags(dev, old_flags,
6309 dev->gflags ^ old_gflags);
6315 * dev_set_allmulti - update allmulti count on a device
6319 * Add or remove reception of all multicast frames to a device. While the
6320 * count in the device remains above zero the interface remains listening
6321 * to all interfaces. Once it hits zero the device reverts back to normal
6322 * filtering operation. A negative @inc value is used to drop the counter
6323 * when releasing a resource needing all multicasts.
6324 * Return 0 if successful or a negative errno code on error.
6327 int dev_set_allmulti(struct net_device *dev, int inc)
6329 return __dev_set_allmulti(dev, inc, true);
6331 EXPORT_SYMBOL(dev_set_allmulti);
6334 * Upload unicast and multicast address lists to device and
6335 * configure RX filtering. When the device doesn't support unicast
6336 * filtering it is put in promiscuous mode while unicast addresses
6339 void __dev_set_rx_mode(struct net_device *dev)
6341 const struct net_device_ops *ops = dev->netdev_ops;
6343 /* dev_open will call this function so the list will stay sane. */
6344 if (!(dev->flags&IFF_UP))
6347 if (!netif_device_present(dev))
6350 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6351 /* Unicast addresses changes may only happen under the rtnl,
6352 * therefore calling __dev_set_promiscuity here is safe.
6354 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6355 __dev_set_promiscuity(dev, 1, false);
6356 dev->uc_promisc = true;
6357 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6358 __dev_set_promiscuity(dev, -1, false);
6359 dev->uc_promisc = false;
6363 if (ops->ndo_set_rx_mode)
6364 ops->ndo_set_rx_mode(dev);
6367 void dev_set_rx_mode(struct net_device *dev)
6369 netif_addr_lock_bh(dev);
6370 __dev_set_rx_mode(dev);
6371 netif_addr_unlock_bh(dev);
6375 * dev_get_flags - get flags reported to userspace
6378 * Get the combination of flag bits exported through APIs to userspace.
6380 unsigned int dev_get_flags(const struct net_device *dev)
6384 flags = (dev->flags & ~(IFF_PROMISC |
6389 (dev->gflags & (IFF_PROMISC |
6392 if (netif_running(dev)) {
6393 if (netif_oper_up(dev))
6394 flags |= IFF_RUNNING;
6395 if (netif_carrier_ok(dev))
6396 flags |= IFF_LOWER_UP;
6397 if (netif_dormant(dev))
6398 flags |= IFF_DORMANT;
6403 EXPORT_SYMBOL(dev_get_flags);
6405 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6407 unsigned int old_flags = dev->flags;
6413 * Set the flags on our device.
6416 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6417 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6419 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6423 * Load in the correct multicast list now the flags have changed.
6426 if ((old_flags ^ flags) & IFF_MULTICAST)
6427 dev_change_rx_flags(dev, IFF_MULTICAST);
6429 dev_set_rx_mode(dev);
6432 * Have we downed the interface. We handle IFF_UP ourselves
6433 * according to user attempts to set it, rather than blindly
6438 if ((old_flags ^ flags) & IFF_UP)
6439 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6441 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6442 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6443 unsigned int old_flags = dev->flags;
6445 dev->gflags ^= IFF_PROMISC;
6447 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6448 if (dev->flags != old_flags)
6449 dev_set_rx_mode(dev);
6452 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6453 is important. Some (broken) drivers set IFF_PROMISC, when
6454 IFF_ALLMULTI is requested not asking us and not reporting.
6456 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6457 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6459 dev->gflags ^= IFF_ALLMULTI;
6460 __dev_set_allmulti(dev, inc, false);
6466 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6467 unsigned int gchanges)
6469 unsigned int changes = dev->flags ^ old_flags;
6472 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6474 if (changes & IFF_UP) {
6475 if (dev->flags & IFF_UP)
6476 call_netdevice_notifiers(NETDEV_UP, dev);
6478 call_netdevice_notifiers(NETDEV_DOWN, dev);
6481 if (dev->flags & IFF_UP &&
6482 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6483 struct netdev_notifier_change_info change_info;
6485 change_info.flags_changed = changes;
6486 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6492 * dev_change_flags - change device settings
6494 * @flags: device state flags
6496 * Change settings on device based state flags. The flags are
6497 * in the userspace exported format.
6499 int dev_change_flags(struct net_device *dev, unsigned int flags)
6502 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6504 ret = __dev_change_flags(dev, flags);
6508 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6509 __dev_notify_flags(dev, old_flags, changes);
6512 EXPORT_SYMBOL(dev_change_flags);
6514 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6516 const struct net_device_ops *ops = dev->netdev_ops;
6518 if (ops->ndo_change_mtu)
6519 return ops->ndo_change_mtu(dev, new_mtu);
6526 * dev_set_mtu - Change maximum transfer unit
6528 * @new_mtu: new transfer unit
6530 * Change the maximum transfer size of the network device.
6532 int dev_set_mtu(struct net_device *dev, int new_mtu)
6536 if (new_mtu == dev->mtu)
6539 /* MTU must be positive, and in range */
6540 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6541 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6542 dev->name, new_mtu, dev->min_mtu);
6546 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6547 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6548 dev->name, new_mtu, dev->max_mtu);
6552 if (!netif_device_present(dev))
6555 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6556 err = notifier_to_errno(err);
6560 orig_mtu = dev->mtu;
6561 err = __dev_set_mtu(dev, new_mtu);
6564 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6565 err = notifier_to_errno(err);
6567 /* setting mtu back and notifying everyone again,
6568 * so that they have a chance to revert changes.
6570 __dev_set_mtu(dev, orig_mtu);
6571 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6576 EXPORT_SYMBOL(dev_set_mtu);
6579 * dev_set_group - Change group this device belongs to
6581 * @new_group: group this device should belong to
6583 void dev_set_group(struct net_device *dev, int new_group)
6585 dev->group = new_group;
6587 EXPORT_SYMBOL(dev_set_group);
6590 * dev_set_mac_address - Change Media Access Control Address
6594 * Change the hardware (MAC) address of the device
6596 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6598 const struct net_device_ops *ops = dev->netdev_ops;
6601 if (!ops->ndo_set_mac_address)
6603 if (sa->sa_family != dev->type)
6605 if (!netif_device_present(dev))
6607 err = ops->ndo_set_mac_address(dev, sa);
6610 dev->addr_assign_type = NET_ADDR_SET;
6611 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6612 add_device_randomness(dev->dev_addr, dev->addr_len);
6615 EXPORT_SYMBOL(dev_set_mac_address);
6618 * dev_change_carrier - Change device carrier
6620 * @new_carrier: new value
6622 * Change device carrier
6624 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6626 const struct net_device_ops *ops = dev->netdev_ops;
6628 if (!ops->ndo_change_carrier)
6630 if (!netif_device_present(dev))
6632 return ops->ndo_change_carrier(dev, new_carrier);
6634 EXPORT_SYMBOL(dev_change_carrier);
6637 * dev_get_phys_port_id - Get device physical port ID
6641 * Get device physical port ID
6643 int dev_get_phys_port_id(struct net_device *dev,
6644 struct netdev_phys_item_id *ppid)
6646 const struct net_device_ops *ops = dev->netdev_ops;
6648 if (!ops->ndo_get_phys_port_id)
6650 return ops->ndo_get_phys_port_id(dev, ppid);
6652 EXPORT_SYMBOL(dev_get_phys_port_id);
6655 * dev_get_phys_port_name - Get device physical port name
6658 * @len: limit of bytes to copy to name
6660 * Get device physical port name
6662 int dev_get_phys_port_name(struct net_device *dev,
6663 char *name, size_t len)
6665 const struct net_device_ops *ops = dev->netdev_ops;
6667 if (!ops->ndo_get_phys_port_name)
6669 return ops->ndo_get_phys_port_name(dev, name, len);
6671 EXPORT_SYMBOL(dev_get_phys_port_name);
6674 * dev_change_proto_down - update protocol port state information
6676 * @proto_down: new value
6678 * This info can be used by switch drivers to set the phys state of the
6681 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6683 const struct net_device_ops *ops = dev->netdev_ops;
6685 if (!ops->ndo_change_proto_down)
6687 if (!netif_device_present(dev))
6689 return ops->ndo_change_proto_down(dev, proto_down);
6691 EXPORT_SYMBOL(dev_change_proto_down);
6694 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6696 * @fd: new program fd or negative value to clear
6697 * @flags: xdp-related flags
6699 * Set or clear a bpf program for a device
6701 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6703 const struct net_device_ops *ops = dev->netdev_ops;
6704 struct bpf_prog *prog = NULL;
6705 struct netdev_xdp xdp;
6713 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6714 memset(&xdp, 0, sizeof(xdp));
6715 xdp.command = XDP_QUERY_PROG;
6717 err = ops->ndo_xdp(dev, &xdp);
6720 if (xdp.prog_attached)
6724 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6726 return PTR_ERR(prog);
6729 memset(&xdp, 0, sizeof(xdp));
6730 xdp.command = XDP_SETUP_PROG;
6733 err = ops->ndo_xdp(dev, &xdp);
6734 if (err < 0 && prog)
6739 EXPORT_SYMBOL(dev_change_xdp_fd);
6742 * dev_new_index - allocate an ifindex
6743 * @net: the applicable net namespace
6745 * Returns a suitable unique value for a new device interface
6746 * number. The caller must hold the rtnl semaphore or the
6747 * dev_base_lock to be sure it remains unique.
6749 static int dev_new_index(struct net *net)
6751 int ifindex = net->ifindex;
6755 if (!__dev_get_by_index(net, ifindex))
6756 return net->ifindex = ifindex;
6760 /* Delayed registration/unregisteration */
6761 static LIST_HEAD(net_todo_list);
6762 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6764 static void net_set_todo(struct net_device *dev)
6766 list_add_tail(&dev->todo_list, &net_todo_list);
6767 dev_net(dev)->dev_unreg_count++;
6770 static void rollback_registered_many(struct list_head *head)
6772 struct net_device *dev, *tmp;
6773 LIST_HEAD(close_head);
6775 BUG_ON(dev_boot_phase);
6778 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6779 /* Some devices call without registering
6780 * for initialization unwind. Remove those
6781 * devices and proceed with the remaining.
6783 if (dev->reg_state == NETREG_UNINITIALIZED) {
6784 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6788 list_del(&dev->unreg_list);
6791 dev->dismantle = true;
6792 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6795 /* If device is running, close it first. */
6796 list_for_each_entry(dev, head, unreg_list)
6797 list_add_tail(&dev->close_list, &close_head);
6798 dev_close_many(&close_head, true);
6800 list_for_each_entry(dev, head, unreg_list) {
6801 /* And unlink it from device chain. */
6802 unlist_netdevice(dev);
6804 dev->reg_state = NETREG_UNREGISTERING;
6806 flush_all_backlogs();
6810 list_for_each_entry(dev, head, unreg_list) {
6811 struct sk_buff *skb = NULL;
6813 /* Shutdown queueing discipline. */
6817 /* Notify protocols, that we are about to destroy
6818 this device. They should clean all the things.
6820 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6822 if (!dev->rtnl_link_ops ||
6823 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6824 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6828 * Flush the unicast and multicast chains
6833 if (dev->netdev_ops->ndo_uninit)
6834 dev->netdev_ops->ndo_uninit(dev);
6837 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6839 /* Notifier chain MUST detach us all upper devices. */
6840 WARN_ON(netdev_has_any_upper_dev(dev));
6841 WARN_ON(netdev_has_any_lower_dev(dev));
6843 /* Remove entries from kobject tree */
6844 netdev_unregister_kobject(dev);
6846 /* Remove XPS queueing entries */
6847 netif_reset_xps_queues_gt(dev, 0);
6853 list_for_each_entry(dev, head, unreg_list)
6857 static void rollback_registered(struct net_device *dev)
6861 list_add(&dev->unreg_list, &single);
6862 rollback_registered_many(&single);
6866 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6867 struct net_device *upper, netdev_features_t features)
6869 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6870 netdev_features_t feature;
6873 for_each_netdev_feature(&upper_disables, feature_bit) {
6874 feature = __NETIF_F_BIT(feature_bit);
6875 if (!(upper->wanted_features & feature)
6876 && (features & feature)) {
6877 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6878 &feature, upper->name);
6879 features &= ~feature;
6886 static void netdev_sync_lower_features(struct net_device *upper,
6887 struct net_device *lower, netdev_features_t features)
6889 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6890 netdev_features_t feature;
6893 for_each_netdev_feature(&upper_disables, feature_bit) {
6894 feature = __NETIF_F_BIT(feature_bit);
6895 if (!(features & feature) && (lower->features & feature)) {
6896 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6897 &feature, lower->name);
6898 lower->wanted_features &= ~feature;
6899 netdev_update_features(lower);
6901 if (unlikely(lower->features & feature))
6902 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6903 &feature, lower->name);
6908 static netdev_features_t netdev_fix_features(struct net_device *dev,
6909 netdev_features_t features)
6911 /* Fix illegal checksum combinations */
6912 if ((features & NETIF_F_HW_CSUM) &&
6913 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6914 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6915 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6918 /* TSO requires that SG is present as well. */
6919 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6920 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6921 features &= ~NETIF_F_ALL_TSO;
6924 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6925 !(features & NETIF_F_IP_CSUM)) {
6926 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6927 features &= ~NETIF_F_TSO;
6928 features &= ~NETIF_F_TSO_ECN;
6931 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6932 !(features & NETIF_F_IPV6_CSUM)) {
6933 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6934 features &= ~NETIF_F_TSO6;
6937 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6938 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6939 features &= ~NETIF_F_TSO_MANGLEID;
6941 /* TSO ECN requires that TSO is present as well. */
6942 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6943 features &= ~NETIF_F_TSO_ECN;
6945 /* Software GSO depends on SG. */
6946 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6947 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6948 features &= ~NETIF_F_GSO;
6951 /* UFO needs SG and checksumming */
6952 if (features & NETIF_F_UFO) {
6953 /* maybe split UFO into V4 and V6? */
6954 if (!(features & NETIF_F_HW_CSUM) &&
6955 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6956 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6958 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6959 features &= ~NETIF_F_UFO;
6962 if (!(features & NETIF_F_SG)) {
6964 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6965 features &= ~NETIF_F_UFO;
6969 /* GSO partial features require GSO partial be set */
6970 if ((features & dev->gso_partial_features) &&
6971 !(features & NETIF_F_GSO_PARTIAL)) {
6973 "Dropping partially supported GSO features since no GSO partial.\n");
6974 features &= ~dev->gso_partial_features;
6977 #ifdef CONFIG_NET_RX_BUSY_POLL
6978 if (dev->netdev_ops->ndo_busy_poll)
6979 features |= NETIF_F_BUSY_POLL;
6982 features &= ~NETIF_F_BUSY_POLL;
6987 int __netdev_update_features(struct net_device *dev)
6989 struct net_device *upper, *lower;
6990 netdev_features_t features;
6991 struct list_head *iter;
6996 features = netdev_get_wanted_features(dev);
6998 if (dev->netdev_ops->ndo_fix_features)
6999 features = dev->netdev_ops->ndo_fix_features(dev, features);
7001 /* driver might be less strict about feature dependencies */
7002 features = netdev_fix_features(dev, features);
7004 /* some features can't be enabled if they're off an an upper device */
7005 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7006 features = netdev_sync_upper_features(dev, upper, features);
7008 if (dev->features == features)
7011 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7012 &dev->features, &features);
7014 if (dev->netdev_ops->ndo_set_features)
7015 err = dev->netdev_ops->ndo_set_features(dev, features);
7019 if (unlikely(err < 0)) {
7021 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7022 err, &features, &dev->features);
7023 /* return non-0 since some features might have changed and
7024 * it's better to fire a spurious notification than miss it
7030 /* some features must be disabled on lower devices when disabled
7031 * on an upper device (think: bonding master or bridge)
7033 netdev_for_each_lower_dev(dev, lower, iter)
7034 netdev_sync_lower_features(dev, lower, features);
7037 dev->features = features;
7039 return err < 0 ? 0 : 1;
7043 * netdev_update_features - recalculate device features
7044 * @dev: the device to check
7046 * Recalculate dev->features set and send notifications if it
7047 * has changed. Should be called after driver or hardware dependent
7048 * conditions might have changed that influence the features.
7050 void netdev_update_features(struct net_device *dev)
7052 if (__netdev_update_features(dev))
7053 netdev_features_change(dev);
7055 EXPORT_SYMBOL(netdev_update_features);
7058 * netdev_change_features - recalculate device features
7059 * @dev: the device to check
7061 * Recalculate dev->features set and send notifications even
7062 * if they have not changed. Should be called instead of
7063 * netdev_update_features() if also dev->vlan_features might
7064 * have changed to allow the changes to be propagated to stacked
7067 void netdev_change_features(struct net_device *dev)
7069 __netdev_update_features(dev);
7070 netdev_features_change(dev);
7072 EXPORT_SYMBOL(netdev_change_features);
7075 * netif_stacked_transfer_operstate - transfer operstate
7076 * @rootdev: the root or lower level device to transfer state from
7077 * @dev: the device to transfer operstate to
7079 * Transfer operational state from root to device. This is normally
7080 * called when a stacking relationship exists between the root
7081 * device and the device(a leaf device).
7083 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7084 struct net_device *dev)
7086 if (rootdev->operstate == IF_OPER_DORMANT)
7087 netif_dormant_on(dev);
7089 netif_dormant_off(dev);
7091 if (netif_carrier_ok(rootdev)) {
7092 if (!netif_carrier_ok(dev))
7093 netif_carrier_on(dev);
7095 if (netif_carrier_ok(dev))
7096 netif_carrier_off(dev);
7099 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7102 static int netif_alloc_rx_queues(struct net_device *dev)
7104 unsigned int i, count = dev->num_rx_queues;
7105 struct netdev_rx_queue *rx;
7106 size_t sz = count * sizeof(*rx);
7110 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7118 for (i = 0; i < count; i++)
7124 static void netdev_init_one_queue(struct net_device *dev,
7125 struct netdev_queue *queue, void *_unused)
7127 /* Initialize queue lock */
7128 spin_lock_init(&queue->_xmit_lock);
7129 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7130 queue->xmit_lock_owner = -1;
7131 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7134 dql_init(&queue->dql, HZ);
7138 static void netif_free_tx_queues(struct net_device *dev)
7143 static int netif_alloc_netdev_queues(struct net_device *dev)
7145 unsigned int count = dev->num_tx_queues;
7146 struct netdev_queue *tx;
7147 size_t sz = count * sizeof(*tx);
7149 if (count < 1 || count > 0xffff)
7152 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7160 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7161 spin_lock_init(&dev->tx_global_lock);
7166 void netif_tx_stop_all_queues(struct net_device *dev)
7170 for (i = 0; i < dev->num_tx_queues; i++) {
7171 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7172 netif_tx_stop_queue(txq);
7175 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7178 * register_netdevice - register a network device
7179 * @dev: device to register
7181 * Take a completed network device structure and add it to the kernel
7182 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7183 * chain. 0 is returned on success. A negative errno code is returned
7184 * on a failure to set up the device, or if the name is a duplicate.
7186 * Callers must hold the rtnl semaphore. You may want
7187 * register_netdev() instead of this.
7190 * The locking appears insufficient to guarantee two parallel registers
7191 * will not get the same name.
7194 int register_netdevice(struct net_device *dev)
7197 struct net *net = dev_net(dev);
7199 BUG_ON(dev_boot_phase);
7204 /* When net_device's are persistent, this will be fatal. */
7205 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7208 spin_lock_init(&dev->addr_list_lock);
7209 netdev_set_addr_lockdep_class(dev);
7211 ret = dev_get_valid_name(net, dev, dev->name);
7215 /* Init, if this function is available */
7216 if (dev->netdev_ops->ndo_init) {
7217 ret = dev->netdev_ops->ndo_init(dev);
7225 if (((dev->hw_features | dev->features) &
7226 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7227 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7228 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7229 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7236 dev->ifindex = dev_new_index(net);
7237 else if (__dev_get_by_index(net, dev->ifindex))
7240 /* Transfer changeable features to wanted_features and enable
7241 * software offloads (GSO and GRO).
7243 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7244 dev->features |= NETIF_F_SOFT_FEATURES;
7245 dev->wanted_features = dev->features & dev->hw_features;
7247 if (!(dev->flags & IFF_LOOPBACK))
7248 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7250 /* If IPv4 TCP segmentation offload is supported we should also
7251 * allow the device to enable segmenting the frame with the option
7252 * of ignoring a static IP ID value. This doesn't enable the
7253 * feature itself but allows the user to enable it later.
7255 if (dev->hw_features & NETIF_F_TSO)
7256 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7257 if (dev->vlan_features & NETIF_F_TSO)
7258 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7259 if (dev->mpls_features & NETIF_F_TSO)
7260 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7261 if (dev->hw_enc_features & NETIF_F_TSO)
7262 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7264 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7266 dev->vlan_features |= NETIF_F_HIGHDMA;
7268 /* Make NETIF_F_SG inheritable to tunnel devices.
7270 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7272 /* Make NETIF_F_SG inheritable to MPLS.
7274 dev->mpls_features |= NETIF_F_SG;
7276 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7277 ret = notifier_to_errno(ret);
7281 ret = netdev_register_kobject(dev);
7284 dev->reg_state = NETREG_REGISTERED;
7286 __netdev_update_features(dev);
7289 * Default initial state at registry is that the
7290 * device is present.
7293 set_bit(__LINK_STATE_PRESENT, &dev->state);
7295 linkwatch_init_dev(dev);
7297 dev_init_scheduler(dev);
7299 list_netdevice(dev);
7300 add_device_randomness(dev->dev_addr, dev->addr_len);
7302 /* If the device has permanent device address, driver should
7303 * set dev_addr and also addr_assign_type should be set to
7304 * NET_ADDR_PERM (default value).
7306 if (dev->addr_assign_type == NET_ADDR_PERM)
7307 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7309 /* Notify protocols, that a new device appeared. */
7310 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7311 ret = notifier_to_errno(ret);
7313 rollback_registered(dev);
7314 dev->reg_state = NETREG_UNREGISTERED;
7317 * Prevent userspace races by waiting until the network
7318 * device is fully setup before sending notifications.
7320 if (!dev->rtnl_link_ops ||
7321 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7322 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7328 if (dev->netdev_ops->ndo_uninit)
7329 dev->netdev_ops->ndo_uninit(dev);
7332 EXPORT_SYMBOL(register_netdevice);
7335 * init_dummy_netdev - init a dummy network device for NAPI
7336 * @dev: device to init
7338 * This takes a network device structure and initialize the minimum
7339 * amount of fields so it can be used to schedule NAPI polls without
7340 * registering a full blown interface. This is to be used by drivers
7341 * that need to tie several hardware interfaces to a single NAPI
7342 * poll scheduler due to HW limitations.
7344 int init_dummy_netdev(struct net_device *dev)
7346 /* Clear everything. Note we don't initialize spinlocks
7347 * are they aren't supposed to be taken by any of the
7348 * NAPI code and this dummy netdev is supposed to be
7349 * only ever used for NAPI polls
7351 memset(dev, 0, sizeof(struct net_device));
7353 /* make sure we BUG if trying to hit standard
7354 * register/unregister code path
7356 dev->reg_state = NETREG_DUMMY;
7358 /* NAPI wants this */
7359 INIT_LIST_HEAD(&dev->napi_list);
7361 /* a dummy interface is started by default */
7362 set_bit(__LINK_STATE_PRESENT, &dev->state);
7363 set_bit(__LINK_STATE_START, &dev->state);
7365 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7366 * because users of this 'device' dont need to change
7372 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7376 * register_netdev - register a network device
7377 * @dev: device to register
7379 * Take a completed network device structure and add it to the kernel
7380 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7381 * chain. 0 is returned on success. A negative errno code is returned
7382 * on a failure to set up the device, or if the name is a duplicate.
7384 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7385 * and expands the device name if you passed a format string to
7388 int register_netdev(struct net_device *dev)
7393 err = register_netdevice(dev);
7397 EXPORT_SYMBOL(register_netdev);
7399 int netdev_refcnt_read(const struct net_device *dev)
7403 for_each_possible_cpu(i)
7404 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7407 EXPORT_SYMBOL(netdev_refcnt_read);
7410 * netdev_wait_allrefs - wait until all references are gone.
7411 * @dev: target net_device
7413 * This is called when unregistering network devices.
7415 * Any protocol or device that holds a reference should register
7416 * for netdevice notification, and cleanup and put back the
7417 * reference if they receive an UNREGISTER event.
7418 * We can get stuck here if buggy protocols don't correctly
7421 static void netdev_wait_allrefs(struct net_device *dev)
7423 unsigned long rebroadcast_time, warning_time;
7426 linkwatch_forget_dev(dev);
7428 rebroadcast_time = warning_time = jiffies;
7429 refcnt = netdev_refcnt_read(dev);
7431 while (refcnt != 0) {
7432 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7435 /* Rebroadcast unregister notification */
7436 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7442 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7443 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7445 /* We must not have linkwatch events
7446 * pending on unregister. If this
7447 * happens, we simply run the queue
7448 * unscheduled, resulting in a noop
7451 linkwatch_run_queue();
7456 rebroadcast_time = jiffies;
7461 refcnt = netdev_refcnt_read(dev);
7463 if (time_after(jiffies, warning_time + 10 * HZ)) {
7464 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7466 warning_time = jiffies;
7475 * register_netdevice(x1);
7476 * register_netdevice(x2);
7478 * unregister_netdevice(y1);
7479 * unregister_netdevice(y2);
7485 * We are invoked by rtnl_unlock().
7486 * This allows us to deal with problems:
7487 * 1) We can delete sysfs objects which invoke hotplug
7488 * without deadlocking with linkwatch via keventd.
7489 * 2) Since we run with the RTNL semaphore not held, we can sleep
7490 * safely in order to wait for the netdev refcnt to drop to zero.
7492 * We must not return until all unregister events added during
7493 * the interval the lock was held have been completed.
7495 void netdev_run_todo(void)
7497 struct list_head list;
7499 /* Snapshot list, allow later requests */
7500 list_replace_init(&net_todo_list, &list);
7505 /* Wait for rcu callbacks to finish before next phase */
7506 if (!list_empty(&list))
7509 while (!list_empty(&list)) {
7510 struct net_device *dev
7511 = list_first_entry(&list, struct net_device, todo_list);
7512 list_del(&dev->todo_list);
7515 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7518 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7519 pr_err("network todo '%s' but state %d\n",
7520 dev->name, dev->reg_state);
7525 dev->reg_state = NETREG_UNREGISTERED;
7527 netdev_wait_allrefs(dev);
7530 BUG_ON(netdev_refcnt_read(dev));
7531 BUG_ON(!list_empty(&dev->ptype_all));
7532 BUG_ON(!list_empty(&dev->ptype_specific));
7533 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7534 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7535 WARN_ON(dev->dn_ptr);
7537 if (dev->destructor)
7538 dev->destructor(dev);
7540 /* Report a network device has been unregistered */
7542 dev_net(dev)->dev_unreg_count--;
7544 wake_up(&netdev_unregistering_wq);
7546 /* Free network device */
7547 kobject_put(&dev->dev.kobj);
7551 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7552 * all the same fields in the same order as net_device_stats, with only
7553 * the type differing, but rtnl_link_stats64 may have additional fields
7554 * at the end for newer counters.
7556 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7557 const struct net_device_stats *netdev_stats)
7559 #if BITS_PER_LONG == 64
7560 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7561 memcpy(stats64, netdev_stats, sizeof(*stats64));
7562 /* zero out counters that only exist in rtnl_link_stats64 */
7563 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7564 sizeof(*stats64) - sizeof(*netdev_stats));
7566 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7567 const unsigned long *src = (const unsigned long *)netdev_stats;
7568 u64 *dst = (u64 *)stats64;
7570 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7571 for (i = 0; i < n; i++)
7573 /* zero out counters that only exist in rtnl_link_stats64 */
7574 memset((char *)stats64 + n * sizeof(u64), 0,
7575 sizeof(*stats64) - n * sizeof(u64));
7578 EXPORT_SYMBOL(netdev_stats_to_stats64);
7581 * dev_get_stats - get network device statistics
7582 * @dev: device to get statistics from
7583 * @storage: place to store stats
7585 * Get network statistics from device. Return @storage.
7586 * The device driver may provide its own method by setting
7587 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7588 * otherwise the internal statistics structure is used.
7590 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7591 struct rtnl_link_stats64 *storage)
7593 const struct net_device_ops *ops = dev->netdev_ops;
7595 if (ops->ndo_get_stats64) {
7596 memset(storage, 0, sizeof(*storage));
7597 ops->ndo_get_stats64(dev, storage);
7598 } else if (ops->ndo_get_stats) {
7599 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7601 netdev_stats_to_stats64(storage, &dev->stats);
7603 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7604 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7605 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7608 EXPORT_SYMBOL(dev_get_stats);
7610 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7612 struct netdev_queue *queue = dev_ingress_queue(dev);
7614 #ifdef CONFIG_NET_CLS_ACT
7617 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7620 netdev_init_one_queue(dev, queue, NULL);
7621 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7622 queue->qdisc_sleeping = &noop_qdisc;
7623 rcu_assign_pointer(dev->ingress_queue, queue);
7628 static const struct ethtool_ops default_ethtool_ops;
7630 void netdev_set_default_ethtool_ops(struct net_device *dev,
7631 const struct ethtool_ops *ops)
7633 if (dev->ethtool_ops == &default_ethtool_ops)
7634 dev->ethtool_ops = ops;
7636 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7638 void netdev_freemem(struct net_device *dev)
7640 char *addr = (char *)dev - dev->padded;
7646 * alloc_netdev_mqs - allocate network device
7647 * @sizeof_priv: size of private data to allocate space for
7648 * @name: device name format string
7649 * @name_assign_type: origin of device name
7650 * @setup: callback to initialize device
7651 * @txqs: the number of TX subqueues to allocate
7652 * @rxqs: the number of RX subqueues to allocate
7654 * Allocates a struct net_device with private data area for driver use
7655 * and performs basic initialization. Also allocates subqueue structs
7656 * for each queue on the device.
7658 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7659 unsigned char name_assign_type,
7660 void (*setup)(struct net_device *),
7661 unsigned int txqs, unsigned int rxqs)
7663 struct net_device *dev;
7665 struct net_device *p;
7667 BUG_ON(strlen(name) >= sizeof(dev->name));
7670 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7676 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7681 alloc_size = sizeof(struct net_device);
7683 /* ensure 32-byte alignment of private area */
7684 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7685 alloc_size += sizeof_priv;
7687 /* ensure 32-byte alignment of whole construct */
7688 alloc_size += NETDEV_ALIGN - 1;
7690 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7692 p = vzalloc(alloc_size);
7696 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7697 dev->padded = (char *)dev - (char *)p;
7699 dev->pcpu_refcnt = alloc_percpu(int);
7700 if (!dev->pcpu_refcnt)
7703 if (dev_addr_init(dev))
7709 dev_net_set(dev, &init_net);
7711 dev->gso_max_size = GSO_MAX_SIZE;
7712 dev->gso_max_segs = GSO_MAX_SEGS;
7714 INIT_LIST_HEAD(&dev->napi_list);
7715 INIT_LIST_HEAD(&dev->unreg_list);
7716 INIT_LIST_HEAD(&dev->close_list);
7717 INIT_LIST_HEAD(&dev->link_watch_list);
7718 INIT_LIST_HEAD(&dev->adj_list.upper);
7719 INIT_LIST_HEAD(&dev->adj_list.lower);
7720 INIT_LIST_HEAD(&dev->ptype_all);
7721 INIT_LIST_HEAD(&dev->ptype_specific);
7722 #ifdef CONFIG_NET_SCHED
7723 hash_init(dev->qdisc_hash);
7725 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7728 if (!dev->tx_queue_len) {
7729 dev->priv_flags |= IFF_NO_QUEUE;
7730 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7733 dev->num_tx_queues = txqs;
7734 dev->real_num_tx_queues = txqs;
7735 if (netif_alloc_netdev_queues(dev))
7739 dev->num_rx_queues = rxqs;
7740 dev->real_num_rx_queues = rxqs;
7741 if (netif_alloc_rx_queues(dev))
7745 strcpy(dev->name, name);
7746 dev->name_assign_type = name_assign_type;
7747 dev->group = INIT_NETDEV_GROUP;
7748 if (!dev->ethtool_ops)
7749 dev->ethtool_ops = &default_ethtool_ops;
7751 nf_hook_ingress_init(dev);
7760 free_percpu(dev->pcpu_refcnt);
7762 netdev_freemem(dev);
7765 EXPORT_SYMBOL(alloc_netdev_mqs);
7768 * free_netdev - free network device
7771 * This function does the last stage of destroying an allocated device
7772 * interface. The reference to the device object is released.
7773 * If this is the last reference then it will be freed.
7774 * Must be called in process context.
7776 void free_netdev(struct net_device *dev)
7778 struct napi_struct *p, *n;
7781 netif_free_tx_queues(dev);
7786 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7788 /* Flush device addresses */
7789 dev_addr_flush(dev);
7791 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7794 free_percpu(dev->pcpu_refcnt);
7795 dev->pcpu_refcnt = NULL;
7797 /* Compatibility with error handling in drivers */
7798 if (dev->reg_state == NETREG_UNINITIALIZED) {
7799 netdev_freemem(dev);
7803 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7804 dev->reg_state = NETREG_RELEASED;
7806 /* will free via device release */
7807 put_device(&dev->dev);
7809 EXPORT_SYMBOL(free_netdev);
7812 * synchronize_net - Synchronize with packet receive processing
7814 * Wait for packets currently being received to be done.
7815 * Does not block later packets from starting.
7817 void synchronize_net(void)
7820 if (rtnl_is_locked())
7821 synchronize_rcu_expedited();
7825 EXPORT_SYMBOL(synchronize_net);
7828 * unregister_netdevice_queue - remove device from the kernel
7832 * This function shuts down a device interface and removes it
7833 * from the kernel tables.
7834 * If head not NULL, device is queued to be unregistered later.
7836 * Callers must hold the rtnl semaphore. You may want
7837 * unregister_netdev() instead of this.
7840 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7845 list_move_tail(&dev->unreg_list, head);
7847 rollback_registered(dev);
7848 /* Finish processing unregister after unlock */
7852 EXPORT_SYMBOL(unregister_netdevice_queue);
7855 * unregister_netdevice_many - unregister many devices
7856 * @head: list of devices
7858 * Note: As most callers use a stack allocated list_head,
7859 * we force a list_del() to make sure stack wont be corrupted later.
7861 void unregister_netdevice_many(struct list_head *head)
7863 struct net_device *dev;
7865 if (!list_empty(head)) {
7866 rollback_registered_many(head);
7867 list_for_each_entry(dev, head, unreg_list)
7872 EXPORT_SYMBOL(unregister_netdevice_many);
7875 * unregister_netdev - remove device from the kernel
7878 * This function shuts down a device interface and removes it
7879 * from the kernel tables.
7881 * This is just a wrapper for unregister_netdevice that takes
7882 * the rtnl semaphore. In general you want to use this and not
7883 * unregister_netdevice.
7885 void unregister_netdev(struct net_device *dev)
7888 unregister_netdevice(dev);
7891 EXPORT_SYMBOL(unregister_netdev);
7894 * dev_change_net_namespace - move device to different nethost namespace
7896 * @net: network namespace
7897 * @pat: If not NULL name pattern to try if the current device name
7898 * is already taken in the destination network namespace.
7900 * This function shuts down a device interface and moves it
7901 * to a new network namespace. On success 0 is returned, on
7902 * a failure a netagive errno code is returned.
7904 * Callers must hold the rtnl semaphore.
7907 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7913 /* Don't allow namespace local devices to be moved. */
7915 if (dev->features & NETIF_F_NETNS_LOCAL)
7918 /* Ensure the device has been registrered */
7919 if (dev->reg_state != NETREG_REGISTERED)
7922 /* Get out if there is nothing todo */
7924 if (net_eq(dev_net(dev), net))
7927 /* Pick the destination device name, and ensure
7928 * we can use it in the destination network namespace.
7931 if (__dev_get_by_name(net, dev->name)) {
7932 /* We get here if we can't use the current device name */
7935 if (dev_get_valid_name(net, dev, pat) < 0)
7940 * And now a mini version of register_netdevice unregister_netdevice.
7943 /* If device is running close it first. */
7946 /* And unlink it from device chain */
7948 unlist_netdevice(dev);
7952 /* Shutdown queueing discipline. */
7955 /* Notify protocols, that we are about to destroy
7956 this device. They should clean all the things.
7958 Note that dev->reg_state stays at NETREG_REGISTERED.
7959 This is wanted because this way 8021q and macvlan know
7960 the device is just moving and can keep their slaves up.
7962 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7964 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7965 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7968 * Flush the unicast and multicast chains
7973 /* Send a netdev-removed uevent to the old namespace */
7974 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7975 netdev_adjacent_del_links(dev);
7977 /* Actually switch the network namespace */
7978 dev_net_set(dev, net);
7980 /* If there is an ifindex conflict assign a new one */
7981 if (__dev_get_by_index(net, dev->ifindex))
7982 dev->ifindex = dev_new_index(net);
7984 /* Send a netdev-add uevent to the new namespace */
7985 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7986 netdev_adjacent_add_links(dev);
7988 /* Fixup kobjects */
7989 err = device_rename(&dev->dev, dev->name);
7992 /* Add the device back in the hashes */
7993 list_netdevice(dev);
7995 /* Notify protocols, that a new device appeared. */
7996 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7999 * Prevent userspace races by waiting until the network
8000 * device is fully setup before sending notifications.
8002 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8009 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8011 static int dev_cpu_dead(unsigned int oldcpu)
8013 struct sk_buff **list_skb;
8014 struct sk_buff *skb;
8016 struct softnet_data *sd, *oldsd;
8018 local_irq_disable();
8019 cpu = smp_processor_id();
8020 sd = &per_cpu(softnet_data, cpu);
8021 oldsd = &per_cpu(softnet_data, oldcpu);
8023 /* Find end of our completion_queue. */
8024 list_skb = &sd->completion_queue;
8026 list_skb = &(*list_skb)->next;
8027 /* Append completion queue from offline CPU. */
8028 *list_skb = oldsd->completion_queue;
8029 oldsd->completion_queue = NULL;
8031 /* Append output queue from offline CPU. */
8032 if (oldsd->output_queue) {
8033 *sd->output_queue_tailp = oldsd->output_queue;
8034 sd->output_queue_tailp = oldsd->output_queue_tailp;
8035 oldsd->output_queue = NULL;
8036 oldsd->output_queue_tailp = &oldsd->output_queue;
8038 /* Append NAPI poll list from offline CPU, with one exception :
8039 * process_backlog() must be called by cpu owning percpu backlog.
8040 * We properly handle process_queue & input_pkt_queue later.
8042 while (!list_empty(&oldsd->poll_list)) {
8043 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8047 list_del_init(&napi->poll_list);
8048 if (napi->poll == process_backlog)
8051 ____napi_schedule(sd, napi);
8054 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8057 /* Process offline CPU's input_pkt_queue */
8058 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8060 input_queue_head_incr(oldsd);
8062 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8064 input_queue_head_incr(oldsd);
8071 * netdev_increment_features - increment feature set by one
8072 * @all: current feature set
8073 * @one: new feature set
8074 * @mask: mask feature set
8076 * Computes a new feature set after adding a device with feature set
8077 * @one to the master device with current feature set @all. Will not
8078 * enable anything that is off in @mask. Returns the new feature set.
8080 netdev_features_t netdev_increment_features(netdev_features_t all,
8081 netdev_features_t one, netdev_features_t mask)
8083 if (mask & NETIF_F_HW_CSUM)
8084 mask |= NETIF_F_CSUM_MASK;
8085 mask |= NETIF_F_VLAN_CHALLENGED;
8087 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8088 all &= one | ~NETIF_F_ALL_FOR_ALL;
8090 /* If one device supports hw checksumming, set for all. */
8091 if (all & NETIF_F_HW_CSUM)
8092 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8096 EXPORT_SYMBOL(netdev_increment_features);
8098 static struct hlist_head * __net_init netdev_create_hash(void)
8101 struct hlist_head *hash;
8103 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8105 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8106 INIT_HLIST_HEAD(&hash[i]);
8111 /* Initialize per network namespace state */
8112 static int __net_init netdev_init(struct net *net)
8114 if (net != &init_net)
8115 INIT_LIST_HEAD(&net->dev_base_head);
8117 net->dev_name_head = netdev_create_hash();
8118 if (net->dev_name_head == NULL)
8121 net->dev_index_head = netdev_create_hash();
8122 if (net->dev_index_head == NULL)
8128 kfree(net->dev_name_head);
8134 * netdev_drivername - network driver for the device
8135 * @dev: network device
8137 * Determine network driver for device.
8139 const char *netdev_drivername(const struct net_device *dev)
8141 const struct device_driver *driver;
8142 const struct device *parent;
8143 const char *empty = "";
8145 parent = dev->dev.parent;
8149 driver = parent->driver;
8150 if (driver && driver->name)
8151 return driver->name;
8155 static void __netdev_printk(const char *level, const struct net_device *dev,
8156 struct va_format *vaf)
8158 if (dev && dev->dev.parent) {
8159 dev_printk_emit(level[1] - '0',
8162 dev_driver_string(dev->dev.parent),
8163 dev_name(dev->dev.parent),
8164 netdev_name(dev), netdev_reg_state(dev),
8167 printk("%s%s%s: %pV",
8168 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8170 printk("%s(NULL net_device): %pV", level, vaf);
8174 void netdev_printk(const char *level, const struct net_device *dev,
8175 const char *format, ...)
8177 struct va_format vaf;
8180 va_start(args, format);
8185 __netdev_printk(level, dev, &vaf);
8189 EXPORT_SYMBOL(netdev_printk);
8191 #define define_netdev_printk_level(func, level) \
8192 void func(const struct net_device *dev, const char *fmt, ...) \
8194 struct va_format vaf; \
8197 va_start(args, fmt); \
8202 __netdev_printk(level, dev, &vaf); \
8206 EXPORT_SYMBOL(func);
8208 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8209 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8210 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8211 define_netdev_printk_level(netdev_err, KERN_ERR);
8212 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8213 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8214 define_netdev_printk_level(netdev_info, KERN_INFO);
8216 static void __net_exit netdev_exit(struct net *net)
8218 kfree(net->dev_name_head);
8219 kfree(net->dev_index_head);
8222 static struct pernet_operations __net_initdata netdev_net_ops = {
8223 .init = netdev_init,
8224 .exit = netdev_exit,
8227 static void __net_exit default_device_exit(struct net *net)
8229 struct net_device *dev, *aux;
8231 * Push all migratable network devices back to the
8232 * initial network namespace
8235 for_each_netdev_safe(net, dev, aux) {
8237 char fb_name[IFNAMSIZ];
8239 /* Ignore unmoveable devices (i.e. loopback) */
8240 if (dev->features & NETIF_F_NETNS_LOCAL)
8243 /* Leave virtual devices for the generic cleanup */
8244 if (dev->rtnl_link_ops)
8247 /* Push remaining network devices to init_net */
8248 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8249 err = dev_change_net_namespace(dev, &init_net, fb_name);
8251 pr_emerg("%s: failed to move %s to init_net: %d\n",
8252 __func__, dev->name, err);
8259 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8261 /* Return with the rtnl_lock held when there are no network
8262 * devices unregistering in any network namespace in net_list.
8266 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8268 add_wait_queue(&netdev_unregistering_wq, &wait);
8270 unregistering = false;
8272 list_for_each_entry(net, net_list, exit_list) {
8273 if (net->dev_unreg_count > 0) {
8274 unregistering = true;
8282 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8284 remove_wait_queue(&netdev_unregistering_wq, &wait);
8287 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8289 /* At exit all network devices most be removed from a network
8290 * namespace. Do this in the reverse order of registration.
8291 * Do this across as many network namespaces as possible to
8292 * improve batching efficiency.
8294 struct net_device *dev;
8296 LIST_HEAD(dev_kill_list);
8298 /* To prevent network device cleanup code from dereferencing
8299 * loopback devices or network devices that have been freed
8300 * wait here for all pending unregistrations to complete,
8301 * before unregistring the loopback device and allowing the
8302 * network namespace be freed.
8304 * The netdev todo list containing all network devices
8305 * unregistrations that happen in default_device_exit_batch
8306 * will run in the rtnl_unlock() at the end of
8307 * default_device_exit_batch.
8309 rtnl_lock_unregistering(net_list);
8310 list_for_each_entry(net, net_list, exit_list) {
8311 for_each_netdev_reverse(net, dev) {
8312 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8313 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8315 unregister_netdevice_queue(dev, &dev_kill_list);
8318 unregister_netdevice_many(&dev_kill_list);
8322 static struct pernet_operations __net_initdata default_device_ops = {
8323 .exit = default_device_exit,
8324 .exit_batch = default_device_exit_batch,
8328 * Initialize the DEV module. At boot time this walks the device list and
8329 * unhooks any devices that fail to initialise (normally hardware not
8330 * present) and leaves us with a valid list of present and active devices.
8335 * This is called single threaded during boot, so no need
8336 * to take the rtnl semaphore.
8338 static int __init net_dev_init(void)
8340 int i, rc = -ENOMEM;
8342 BUG_ON(!dev_boot_phase);
8344 if (dev_proc_init())
8347 if (netdev_kobject_init())
8350 INIT_LIST_HEAD(&ptype_all);
8351 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8352 INIT_LIST_HEAD(&ptype_base[i]);
8354 INIT_LIST_HEAD(&offload_base);
8356 if (register_pernet_subsys(&netdev_net_ops))
8360 * Initialise the packet receive queues.
8363 for_each_possible_cpu(i) {
8364 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8365 struct softnet_data *sd = &per_cpu(softnet_data, i);
8367 INIT_WORK(flush, flush_backlog);
8369 skb_queue_head_init(&sd->input_pkt_queue);
8370 skb_queue_head_init(&sd->process_queue);
8371 INIT_LIST_HEAD(&sd->poll_list);
8372 sd->output_queue_tailp = &sd->output_queue;
8374 sd->csd.func = rps_trigger_softirq;
8379 sd->backlog.poll = process_backlog;
8380 sd->backlog.weight = weight_p;
8385 /* The loopback device is special if any other network devices
8386 * is present in a network namespace the loopback device must
8387 * be present. Since we now dynamically allocate and free the
8388 * loopback device ensure this invariant is maintained by
8389 * keeping the loopback device as the first device on the
8390 * list of network devices. Ensuring the loopback devices
8391 * is the first device that appears and the last network device
8394 if (register_pernet_device(&loopback_net_ops))
8397 if (register_pernet_device(&default_device_ops))
8400 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8401 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8403 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8404 NULL, dev_cpu_dead);
8412 subsys_initcall(net_dev_init);