2 * Linux INET6 implementation
3 * Forwarding Information Database
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
17 * Ville Nuorvala: Fixed routing subtrees.
20 #define pr_fmt(fmt) "IPv6: " fmt
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
43 #define RT6_TRACE(x...) pr_debug(x)
45 #define RT6_TRACE(x...) do { ; } while (0)
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
53 int (*func)(struct rt6_info *, void *arg);
58 #ifdef CONFIG_IPV6_SUBTREES
59 #define FWS_INIT FWS_S
61 #define FWS_INIT FWS_L
64 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
65 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
66 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
67 static int fib6_walk(struct net *net, struct fib6_walker *w);
68 static int fib6_walk_continue(struct fib6_walker *w);
71 * A routing update causes an increase of the serial number on the
72 * affected subtree. This allows for cached routes to be asynchronously
73 * tested when modifications are made to the destination cache as a
74 * result of redirects, path MTU changes, etc.
77 static void fib6_gc_timer_cb(unsigned long arg);
79 #define FOR_WALKERS(net, w) \
80 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
82 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
84 write_lock_bh(&net->ipv6.fib6_walker_lock);
85 list_add(&w->lh, &net->ipv6.fib6_walkers);
86 write_unlock_bh(&net->ipv6.fib6_walker_lock);
89 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
91 write_lock_bh(&net->ipv6.fib6_walker_lock);
93 write_unlock_bh(&net->ipv6.fib6_walker_lock);
96 static int fib6_new_sernum(struct net *net)
101 old = atomic_read(&net->ipv6.fib6_sernum);
102 new = old < INT_MAX ? old + 1 : 1;
103 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
109 FIB6_NO_SERNUM_CHANGE = 0,
113 * Auxiliary address test functions for the radix tree.
115 * These assume a 32bit processor (although it will work on
122 #if defined(__LITTLE_ENDIAN)
123 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
125 # define BITOP_BE32_SWIZZLE 0
128 static __be32 addr_bit_set(const void *token, int fn_bit)
130 const __be32 *addr = token;
133 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134 * is optimized version of
135 * htonl(1 << ((~fn_bit)&0x1F))
136 * See include/asm-generic/bitops/le.h.
138 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
142 static struct fib6_node *node_alloc(void)
144 struct fib6_node *fn;
146 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
151 static void node_free(struct fib6_node *fn)
153 kmem_cache_free(fib6_node_kmem, fn);
156 static void rt6_rcu_free(struct rt6_info *rt)
158 call_rcu(&rt->dst.rcu_head, dst_rcu_free);
161 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
165 if (!non_pcpu_rt->rt6i_pcpu)
168 for_each_possible_cpu(cpu) {
169 struct rt6_info **ppcpu_rt;
170 struct rt6_info *pcpu_rt;
172 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
175 rt6_rcu_free(pcpu_rt);
180 non_pcpu_rt->rt6i_pcpu = NULL;
183 static void rt6_release(struct rt6_info *rt)
185 if (atomic_dec_and_test(&rt->rt6i_ref)) {
191 static void fib6_link_table(struct net *net, struct fib6_table *tb)
196 * Initialize table lock at a single place to give lockdep a key,
197 * tables aren't visible prior to being linked to the list.
199 rwlock_init(&tb->tb6_lock);
201 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
204 * No protection necessary, this is the only list mutatation
205 * operation, tables never disappear once they exist.
207 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
210 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
212 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
214 struct fib6_table *table;
216 table = kzalloc(sizeof(*table), GFP_ATOMIC);
219 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
220 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
221 inet_peer_base_init(&table->tb6_peers);
227 struct fib6_table *fib6_new_table(struct net *net, u32 id)
229 struct fib6_table *tb;
233 tb = fib6_get_table(net, id);
237 tb = fib6_alloc_table(net, id);
239 fib6_link_table(net, tb);
243 EXPORT_SYMBOL_GPL(fib6_new_table);
245 struct fib6_table *fib6_get_table(struct net *net, u32 id)
247 struct fib6_table *tb;
248 struct hlist_head *head;
253 h = id & (FIB6_TABLE_HASHSZ - 1);
255 head = &net->ipv6.fib_table_hash[h];
256 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
257 if (tb->tb6_id == id) {
266 EXPORT_SYMBOL_GPL(fib6_get_table);
268 static void __net_init fib6_tables_init(struct net *net)
270 fib6_link_table(net, net->ipv6.fib6_main_tbl);
271 fib6_link_table(net, net->ipv6.fib6_local_tbl);
275 struct fib6_table *fib6_new_table(struct net *net, u32 id)
277 return fib6_get_table(net, id);
280 struct fib6_table *fib6_get_table(struct net *net, u32 id)
282 return net->ipv6.fib6_main_tbl;
285 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
286 int flags, pol_lookup_t lookup)
290 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
291 if (rt->rt6i_flags & RTF_REJECT &&
292 rt->dst.error == -EAGAIN) {
294 rt = net->ipv6.ip6_null_entry;
301 static void __net_init fib6_tables_init(struct net *net)
303 fib6_link_table(net, net->ipv6.fib6_main_tbl);
308 static int fib6_dump_node(struct fib6_walker *w)
313 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
314 res = rt6_dump_route(rt, w->args);
316 /* Frame is full, suspend walking */
325 static void fib6_dump_end(struct netlink_callback *cb)
327 struct net *net = sock_net(cb->skb->sk);
328 struct fib6_walker *w = (void *)cb->args[2];
333 fib6_walker_unlink(net, w);
338 cb->done = (void *)cb->args[3];
342 static int fib6_dump_done(struct netlink_callback *cb)
345 return cb->done ? cb->done(cb) : 0;
348 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
349 struct netlink_callback *cb)
351 struct net *net = sock_net(skb->sk);
352 struct fib6_walker *w;
355 w = (void *)cb->args[2];
356 w->root = &table->tb6_root;
358 if (cb->args[4] == 0) {
362 read_lock_bh(&table->tb6_lock);
363 res = fib6_walk(net, w);
364 read_unlock_bh(&table->tb6_lock);
367 cb->args[5] = w->root->fn_sernum;
370 if (cb->args[5] != w->root->fn_sernum) {
371 /* Begin at the root if the tree changed */
372 cb->args[5] = w->root->fn_sernum;
379 read_lock_bh(&table->tb6_lock);
380 res = fib6_walk_continue(w);
381 read_unlock_bh(&table->tb6_lock);
383 fib6_walker_unlink(net, w);
391 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
393 struct net *net = sock_net(skb->sk);
395 unsigned int e = 0, s_e;
396 struct rt6_rtnl_dump_arg arg;
397 struct fib6_walker *w;
398 struct fib6_table *tb;
399 struct hlist_head *head;
405 w = (void *)cb->args[2];
409 * 1. hook callback destructor.
411 cb->args[3] = (long)cb->done;
412 cb->done = fib6_dump_done;
415 * 2. allocate and initialize walker.
417 w = kzalloc(sizeof(*w), GFP_ATOMIC);
420 w->func = fib6_dump_node;
421 cb->args[2] = (long)w;
430 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
432 head = &net->ipv6.fib_table_hash[h];
433 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
436 res = fib6_dump_table(tb, skb, cb);
448 res = res < 0 ? res : skb->len;
457 * return the appropriate node for a routing tree "add" operation
458 * by either creating and inserting or by returning an existing
462 static struct fib6_node *fib6_add_1(struct fib6_node *root,
463 struct in6_addr *addr, int plen,
464 int offset, int allow_create,
465 int replace_required, int sernum)
467 struct fib6_node *fn, *in, *ln;
468 struct fib6_node *pn = NULL;
473 RT6_TRACE("fib6_add_1\n");
475 /* insert node in tree */
480 key = (struct rt6key *)((u8 *)fn->leaf + offset);
485 if (plen < fn->fn_bit ||
486 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
488 if (replace_required) {
489 pr_warn("Can't replace route, no match found\n");
490 return ERR_PTR(-ENOENT);
492 pr_warn("NLM_F_CREATE should be set when creating new route\n");
501 if (plen == fn->fn_bit) {
502 /* clean up an intermediate node */
503 if (!(fn->fn_flags & RTN_RTINFO)) {
504 rt6_release(fn->leaf);
508 fn->fn_sernum = sernum;
514 * We have more bits to go
517 /* Try to walk down on tree. */
518 fn->fn_sernum = sernum;
519 dir = addr_bit_set(addr, fn->fn_bit);
521 fn = dir ? fn->right : fn->left;
525 /* We should not create new node because
526 * NLM_F_REPLACE was specified without NLM_F_CREATE
527 * I assume it is safe to require NLM_F_CREATE when
528 * REPLACE flag is used! Later we may want to remove the
529 * check for replace_required, because according
530 * to netlink specification, NLM_F_CREATE
531 * MUST be specified if new route is created.
532 * That would keep IPv6 consistent with IPv4
534 if (replace_required) {
535 pr_warn("Can't replace route, no match found\n");
536 return ERR_PTR(-ENOENT);
538 pr_warn("NLM_F_CREATE should be set when creating new route\n");
541 * We walked to the bottom of tree.
542 * Create new leaf node without children.
548 return ERR_PTR(-ENOMEM);
552 ln->fn_sernum = sernum;
564 * split since we don't have a common prefix anymore or
565 * we have a less significant route.
566 * we've to insert an intermediate node on the list
567 * this new node will point to the one we need to create
573 /* find 1st bit in difference between the 2 addrs.
575 See comment in __ipv6_addr_diff: bit may be an invalid value,
576 but if it is >= plen, the value is ignored in any case.
579 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
584 * (new leaf node)[ln] (old node)[fn]
595 return ERR_PTR(-ENOMEM);
599 * new intermediate node.
601 * be off since that an address that chooses one of
602 * the branches would not match less specific routes
603 * in the other branch
610 atomic_inc(&in->leaf->rt6i_ref);
612 in->fn_sernum = sernum;
614 /* update parent pointer */
625 ln->fn_sernum = sernum;
627 if (addr_bit_set(addr, bit)) {
634 } else { /* plen <= bit */
637 * (new leaf node)[ln]
639 * (old node)[fn] NULL
645 return ERR_PTR(-ENOMEM);
651 ln->fn_sernum = sernum;
658 if (addr_bit_set(&key->addr, plen))
668 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
670 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
674 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
678 for (i = 0; i < RTAX_MAX; i++) {
679 if (test_bit(i, mxc->mx_valid))
684 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
689 if (dst->flags & DST_HOST) {
690 u32 *mp = dst_metrics_write_ptr(dst);
695 fib6_copy_metrics(mp, mxc);
697 dst_init_metrics(dst, mxc->mx, false);
699 /* We've stolen mx now. */
706 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
709 if (atomic_read(&rt->rt6i_ref) != 1) {
710 /* This route is used as dummy address holder in some split
711 * nodes. It is not leaked, but it still holds other resources,
712 * which must be released in time. So, scan ascendant nodes
713 * and replace dummy references to this route with references
714 * to still alive ones.
717 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
718 fn->leaf = fib6_find_prefix(net, fn);
719 atomic_inc(&fn->leaf->rt6i_ref);
724 /* No more references are possible at this point. */
725 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
730 * Insert routing information in a node.
733 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
734 struct nl_info *info, struct mx6_config *mxc)
736 struct rt6_info *iter = NULL;
737 struct rt6_info **ins;
738 struct rt6_info **fallback_ins = NULL;
739 int replace = (info->nlh &&
740 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
741 int add = (!info->nlh ||
742 (info->nlh->nlmsg_flags & NLM_F_CREATE));
744 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
749 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
751 * Search for duplicates
754 if (iter->rt6i_metric == rt->rt6i_metric) {
756 * Same priority level
759 (info->nlh->nlmsg_flags & NLM_F_EXCL))
762 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
767 fallback_ins = fallback_ins ?: ins;
771 if (iter->dst.dev == rt->dst.dev &&
772 iter->rt6i_idev == rt->rt6i_idev &&
773 ipv6_addr_equal(&iter->rt6i_gateway,
774 &rt->rt6i_gateway)) {
775 if (rt->rt6i_nsiblings)
776 rt->rt6i_nsiblings = 0;
777 if (!(iter->rt6i_flags & RTF_EXPIRES))
779 if (!(rt->rt6i_flags & RTF_EXPIRES))
780 rt6_clean_expires(iter);
782 rt6_set_expires(iter, rt->dst.expires);
783 iter->rt6i_pmtu = rt->rt6i_pmtu;
786 /* If we have the same destination and the same metric,
787 * but not the same gateway, then the route we try to
788 * add is sibling to this route, increment our counter
789 * of siblings, and later we will add our route to the
791 * Only static routes (which don't have flag
792 * RTF_EXPIRES) are used for ECMPv6.
794 * To avoid long list, we only had siblings if the
795 * route have a gateway.
798 rt6_qualify_for_ecmp(iter))
799 rt->rt6i_nsiblings++;
802 if (iter->rt6i_metric > rt->rt6i_metric)
806 ins = &iter->dst.rt6_next;
809 if (fallback_ins && !found) {
810 /* No ECMP-able route found, replace first non-ECMP one */
816 /* Reset round-robin state, if necessary */
817 if (ins == &fn->leaf)
820 /* Link this route to others same route. */
821 if (rt->rt6i_nsiblings) {
822 unsigned int rt6i_nsiblings;
823 struct rt6_info *sibling, *temp_sibling;
825 /* Find the first route that have the same metric */
828 if (sibling->rt6i_metric == rt->rt6i_metric &&
829 rt6_qualify_for_ecmp(sibling)) {
830 list_add_tail(&rt->rt6i_siblings,
831 &sibling->rt6i_siblings);
834 sibling = sibling->dst.rt6_next;
836 /* For each sibling in the list, increment the counter of
837 * siblings. BUG() if counters does not match, list of siblings
841 list_for_each_entry_safe(sibling, temp_sibling,
842 &rt->rt6i_siblings, rt6i_siblings) {
843 sibling->rt6i_nsiblings++;
844 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
847 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
855 pr_warn("NLM_F_CREATE should be set when creating new route\n");
858 err = fib6_commit_metrics(&rt->dst, mxc);
862 rt->dst.rt6_next = iter;
865 atomic_inc(&rt->rt6i_ref);
866 inet6_rt_notify(RTM_NEWROUTE, rt, info, 0);
867 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
869 if (!(fn->fn_flags & RTN_RTINFO)) {
870 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
871 fn->fn_flags |= RTN_RTINFO;
880 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
884 err = fib6_commit_metrics(&rt->dst, mxc);
890 rt->dst.rt6_next = iter->dst.rt6_next;
891 atomic_inc(&rt->rt6i_ref);
892 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
893 if (!(fn->fn_flags & RTN_RTINFO)) {
894 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
895 fn->fn_flags |= RTN_RTINFO;
897 nsiblings = iter->rt6i_nsiblings;
898 fib6_purge_rt(iter, fn, info->nl_net);
902 /* Replacing an ECMP route, remove all siblings */
903 ins = &rt->dst.rt6_next;
906 if (rt6_qualify_for_ecmp(iter)) {
907 *ins = iter->dst.rt6_next;
908 fib6_purge_rt(iter, fn, info->nl_net);
912 ins = &iter->dst.rt6_next;
916 WARN_ON(nsiblings != 0);
923 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
925 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
926 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
927 mod_timer(&net->ipv6.ip6_fib_timer,
928 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
931 void fib6_force_start_gc(struct net *net)
933 if (!timer_pending(&net->ipv6.ip6_fib_timer))
934 mod_timer(&net->ipv6.ip6_fib_timer,
935 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
939 * Add routing information to the routing tree.
940 * <destination addr>/<source addr>
941 * with source addr info in sub-trees
944 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
945 struct nl_info *info, struct mx6_config *mxc)
947 struct fib6_node *fn, *pn = NULL;
949 int allow_create = 1;
950 int replace_required = 0;
951 int sernum = fib6_new_sernum(info->nl_net);
953 if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
954 !atomic_read(&rt->dst.__refcnt)))
958 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
960 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
961 replace_required = 1;
963 if (!allow_create && !replace_required)
964 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
966 fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
967 offsetof(struct rt6_info, rt6i_dst), allow_create,
968 replace_required, sernum);
977 #ifdef CONFIG_IPV6_SUBTREES
978 if (rt->rt6i_src.plen) {
979 struct fib6_node *sn;
982 struct fib6_node *sfn;
994 /* Create subtree root node */
999 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1000 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1001 sfn->fn_flags = RTN_ROOT;
1002 sfn->fn_sernum = sernum;
1004 /* Now add the first leaf node to new subtree */
1006 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1008 offsetof(struct rt6_info, rt6i_src),
1009 allow_create, replace_required, sernum);
1012 /* If it is failed, discard just allocated
1013 root, and then (in st_failure) stale node
1021 /* Now link new subtree to main tree */
1025 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1027 offsetof(struct rt6_info, rt6i_src),
1028 allow_create, replace_required, sernum);
1038 atomic_inc(&rt->rt6i_ref);
1044 err = fib6_add_rt2node(fn, rt, info, mxc);
1046 fib6_start_gc(info->nl_net, rt);
1047 if (!(rt->rt6i_flags & RTF_CACHE))
1048 fib6_prune_clones(info->nl_net, pn);
1049 rt->dst.flags &= ~DST_NOCACHE;
1054 #ifdef CONFIG_IPV6_SUBTREES
1056 * If fib6_add_1 has cleared the old leaf pointer in the
1057 * super-tree leaf node we have to find a new one for it.
1059 if (pn != fn && pn->leaf == rt) {
1061 atomic_dec(&rt->rt6i_ref);
1063 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1064 pn->leaf = fib6_find_prefix(info->nl_net, pn);
1067 WARN_ON(pn->leaf == NULL);
1068 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1071 atomic_inc(&pn->leaf->rt6i_ref);
1074 if (!(rt->dst.flags & DST_NOCACHE))
1079 #ifdef CONFIG_IPV6_SUBTREES
1080 /* Subtree creation failed, probably main tree node
1081 is orphan. If it is, shoot it.
1084 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1085 fib6_repair_tree(info->nl_net, fn);
1086 if (!(rt->dst.flags & DST_NOCACHE))
1093 * Routing tree lookup
1097 struct lookup_args {
1098 int offset; /* key offset on rt6_info */
1099 const struct in6_addr *addr; /* search key */
1102 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1103 struct lookup_args *args)
1105 struct fib6_node *fn;
1108 if (unlikely(args->offset == 0))
1118 struct fib6_node *next;
1120 dir = addr_bit_set(args->addr, fn->fn_bit);
1122 next = dir ? fn->right : fn->left;
1132 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1135 key = (struct rt6key *) ((u8 *) fn->leaf +
1138 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1139 #ifdef CONFIG_IPV6_SUBTREES
1141 struct fib6_node *sfn;
1142 sfn = fib6_lookup_1(fn->subtree,
1149 if (fn->fn_flags & RTN_RTINFO)
1153 #ifdef CONFIG_IPV6_SUBTREES
1156 if (fn->fn_flags & RTN_ROOT)
1165 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1166 const struct in6_addr *saddr)
1168 struct fib6_node *fn;
1169 struct lookup_args args[] = {
1171 .offset = offsetof(struct rt6_info, rt6i_dst),
1174 #ifdef CONFIG_IPV6_SUBTREES
1176 .offset = offsetof(struct rt6_info, rt6i_src),
1181 .offset = 0, /* sentinel */
1185 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1186 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1193 * Get node with specified destination prefix (and source prefix,
1194 * if subtrees are used)
1198 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1199 const struct in6_addr *addr,
1200 int plen, int offset)
1202 struct fib6_node *fn;
1204 for (fn = root; fn ; ) {
1205 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1210 if (plen < fn->fn_bit ||
1211 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1214 if (plen == fn->fn_bit)
1218 * We have more bits to go
1220 if (addr_bit_set(addr, fn->fn_bit))
1228 struct fib6_node *fib6_locate(struct fib6_node *root,
1229 const struct in6_addr *daddr, int dst_len,
1230 const struct in6_addr *saddr, int src_len)
1232 struct fib6_node *fn;
1234 fn = fib6_locate_1(root, daddr, dst_len,
1235 offsetof(struct rt6_info, rt6i_dst));
1237 #ifdef CONFIG_IPV6_SUBTREES
1239 WARN_ON(saddr == NULL);
1240 if (fn && fn->subtree)
1241 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1242 offsetof(struct rt6_info, rt6i_src));
1246 if (fn && fn->fn_flags & RTN_RTINFO)
1258 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1260 if (fn->fn_flags & RTN_ROOT)
1261 return net->ipv6.ip6_null_entry;
1265 return fn->left->leaf;
1267 return fn->right->leaf;
1269 fn = FIB6_SUBTREE(fn);
1275 * Called to trim the tree of intermediate nodes when possible. "fn"
1276 * is the node we want to try and remove.
1279 static struct fib6_node *fib6_repair_tree(struct net *net,
1280 struct fib6_node *fn)
1284 struct fib6_node *child, *pn;
1285 struct fib6_walker *w;
1289 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1292 WARN_ON(fn->fn_flags & RTN_RTINFO);
1293 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1299 child = fn->right, children |= 1;
1301 child = fn->left, children |= 2;
1303 if (children == 3 || FIB6_SUBTREE(fn)
1304 #ifdef CONFIG_IPV6_SUBTREES
1305 /* Subtree root (i.e. fn) may have one child */
1306 || (children && fn->fn_flags & RTN_ROOT)
1309 fn->leaf = fib6_find_prefix(net, fn);
1313 fn->leaf = net->ipv6.ip6_null_entry;
1316 atomic_inc(&fn->leaf->rt6i_ref);
1321 #ifdef CONFIG_IPV6_SUBTREES
1322 if (FIB6_SUBTREE(pn) == fn) {
1323 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1324 FIB6_SUBTREE(pn) = NULL;
1327 WARN_ON(fn->fn_flags & RTN_ROOT);
1329 if (pn->right == fn)
1331 else if (pn->left == fn)
1340 #ifdef CONFIG_IPV6_SUBTREES
1344 read_lock(&net->ipv6.fib6_walker_lock);
1345 FOR_WALKERS(net, w) {
1347 if (w->root == fn) {
1348 w->root = w->node = NULL;
1349 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1350 } else if (w->node == fn) {
1351 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1356 if (w->root == fn) {
1358 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1360 if (w->node == fn) {
1363 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1364 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1366 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1367 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1372 read_unlock(&net->ipv6.fib6_walker_lock);
1375 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1378 rt6_release(pn->leaf);
1384 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1385 struct nl_info *info)
1387 struct fib6_walker *w;
1388 struct rt6_info *rt = *rtp;
1389 struct net *net = info->nl_net;
1391 RT6_TRACE("fib6_del_route\n");
1394 *rtp = rt->dst.rt6_next;
1395 rt->rt6i_node = NULL;
1396 net->ipv6.rt6_stats->fib_rt_entries--;
1397 net->ipv6.rt6_stats->fib_discarded_routes++;
1399 /* Reset round-robin state, if necessary */
1400 if (fn->rr_ptr == rt)
1403 /* Remove this entry from other siblings */
1404 if (rt->rt6i_nsiblings) {
1405 struct rt6_info *sibling, *next_sibling;
1407 list_for_each_entry_safe(sibling, next_sibling,
1408 &rt->rt6i_siblings, rt6i_siblings)
1409 sibling->rt6i_nsiblings--;
1410 rt->rt6i_nsiblings = 0;
1411 list_del_init(&rt->rt6i_siblings);
1414 /* Adjust walkers */
1415 read_lock(&net->ipv6.fib6_walker_lock);
1416 FOR_WALKERS(net, w) {
1417 if (w->state == FWS_C && w->leaf == rt) {
1418 RT6_TRACE("walker %p adjusted by delroute\n", w);
1419 w->leaf = rt->dst.rt6_next;
1424 read_unlock(&net->ipv6.fib6_walker_lock);
1426 rt->dst.rt6_next = NULL;
1428 /* If it was last route, expunge its radix tree node */
1430 fn->fn_flags &= ~RTN_RTINFO;
1431 net->ipv6.rt6_stats->fib_route_nodes--;
1432 fn = fib6_repair_tree(net, fn);
1435 fib6_purge_rt(rt, fn, net);
1437 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1441 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1443 struct net *net = info->nl_net;
1444 struct fib6_node *fn = rt->rt6i_node;
1445 struct rt6_info **rtp;
1448 if (rt->dst.obsolete > 0) {
1453 if (!fn || rt == net->ipv6.ip6_null_entry)
1456 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1458 if (!(rt->rt6i_flags & RTF_CACHE)) {
1459 struct fib6_node *pn = fn;
1460 #ifdef CONFIG_IPV6_SUBTREES
1461 /* clones of this route might be in another subtree */
1462 if (rt->rt6i_src.plen) {
1463 while (!(pn->fn_flags & RTN_ROOT))
1468 fib6_prune_clones(info->nl_net, pn);
1472 * Walk the leaf entries looking for ourself
1475 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1477 fib6_del_route(fn, rtp, info);
1485 * Tree traversal function.
1487 * Certainly, it is not interrupt safe.
1488 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1489 * It means, that we can modify tree during walking
1490 * and use this function for garbage collection, clone pruning,
1491 * cleaning tree when a device goes down etc. etc.
1493 * It guarantees that every node will be traversed,
1494 * and that it will be traversed only once.
1496 * Callback function w->func may return:
1497 * 0 -> continue walking.
1498 * positive value -> walking is suspended (used by tree dumps,
1499 * and probably by gc, if it will be split to several slices)
1500 * negative value -> terminate walking.
1502 * The function itself returns:
1503 * 0 -> walk is complete.
1504 * >0 -> walk is incomplete (i.e. suspended)
1505 * <0 -> walk is terminated by an error.
1508 static int fib6_walk_continue(struct fib6_walker *w)
1510 struct fib6_node *fn, *pn;
1517 if (w->prune && fn != w->root &&
1518 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1523 #ifdef CONFIG_IPV6_SUBTREES
1525 if (FIB6_SUBTREE(fn)) {
1526 w->node = FIB6_SUBTREE(fn);
1534 w->state = FWS_INIT;
1540 w->node = fn->right;
1541 w->state = FWS_INIT;
1547 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1569 #ifdef CONFIG_IPV6_SUBTREES
1570 if (FIB6_SUBTREE(pn) == fn) {
1571 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1576 if (pn->left == fn) {
1580 if (pn->right == fn) {
1582 w->leaf = w->node->leaf;
1592 static int fib6_walk(struct net *net, struct fib6_walker *w)
1596 w->state = FWS_INIT;
1599 fib6_walker_link(net, w);
1600 res = fib6_walk_continue(w);
1602 fib6_walker_unlink(net, w);
1606 static int fib6_clean_node(struct fib6_walker *w)
1609 struct rt6_info *rt;
1610 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1611 struct nl_info info = {
1615 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1616 w->node->fn_sernum != c->sernum)
1617 w->node->fn_sernum = c->sernum;
1620 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1625 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1626 res = c->func(rt, c->arg);
1629 res = fib6_del(rt, &info);
1632 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1633 __func__, rt, rt->rt6i_node, res);
1646 * Convenient frontend to tree walker.
1648 * func is called on each route.
1649 * It may return -1 -> delete this route.
1650 * 0 -> continue walking
1652 * prune==1 -> only immediate children of node (certainly,
1653 * ignoring pure split nodes) will be scanned.
1656 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1657 int (*func)(struct rt6_info *, void *arg),
1658 bool prune, int sernum, void *arg)
1660 struct fib6_cleaner c;
1663 c.w.func = fib6_clean_node;
1672 fib6_walk(net, &c.w);
1675 static void __fib6_clean_all(struct net *net,
1676 int (*func)(struct rt6_info *, void *),
1677 int sernum, void *arg)
1679 struct fib6_table *table;
1680 struct hlist_head *head;
1684 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1685 head = &net->ipv6.fib_table_hash[h];
1686 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1687 write_lock_bh(&table->tb6_lock);
1688 fib6_clean_tree(net, &table->tb6_root,
1689 func, false, sernum, arg);
1690 write_unlock_bh(&table->tb6_lock);
1696 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1699 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1702 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1704 if (rt->rt6i_flags & RTF_CACHE) {
1705 RT6_TRACE("pruning clone %p\n", rt);
1712 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1714 fib6_clean_tree(net, fn, fib6_prune_clone, true,
1715 FIB6_NO_SERNUM_CHANGE, NULL);
1718 static void fib6_flush_trees(struct net *net)
1720 int new_sernum = fib6_new_sernum(net);
1722 __fib6_clean_all(net, NULL, new_sernum, NULL);
1726 * Garbage collection
1735 static int fib6_age(struct rt6_info *rt, void *arg)
1737 struct fib6_gc_args *gc_args = arg;
1738 unsigned long now = jiffies;
1741 * check addrconf expiration here.
1742 * Routes are expired even if they are in use.
1744 * Also age clones. Note, that clones are aged out
1745 * only if they are not in use now.
1748 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1749 if (time_after(now, rt->dst.expires)) {
1750 RT6_TRACE("expiring %p\n", rt);
1754 } else if (rt->rt6i_flags & RTF_CACHE) {
1755 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1756 time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1757 RT6_TRACE("aging clone %p\n", rt);
1759 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1760 struct neighbour *neigh;
1761 __u8 neigh_flags = 0;
1763 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1765 neigh_flags = neigh->flags;
1766 neigh_release(neigh);
1768 if (!(neigh_flags & NTF_ROUTER)) {
1769 RT6_TRACE("purging route %p via non-router but gateway\n",
1780 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1782 struct fib6_gc_args gc_args;
1786 spin_lock_bh(&net->ipv6.fib6_gc_lock);
1787 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1788 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1791 gc_args.timeout = expires ? (int)expires :
1792 net->ipv6.sysctl.ip6_rt_gc_interval;
1794 gc_args.more = icmp6_dst_gc();
1796 fib6_clean_all(net, fib6_age, &gc_args);
1798 net->ipv6.ip6_rt_last_gc = now;
1801 mod_timer(&net->ipv6.ip6_fib_timer,
1803 + net->ipv6.sysctl.ip6_rt_gc_interval));
1805 del_timer(&net->ipv6.ip6_fib_timer);
1806 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1809 static void fib6_gc_timer_cb(unsigned long arg)
1811 fib6_run_gc(0, (struct net *)arg, true);
1814 static int __net_init fib6_net_init(struct net *net)
1816 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1818 spin_lock_init(&net->ipv6.fib6_gc_lock);
1819 rwlock_init(&net->ipv6.fib6_walker_lock);
1820 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1821 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1823 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1824 if (!net->ipv6.rt6_stats)
1827 /* Avoid false sharing : Use at least a full cache line */
1828 size = max_t(size_t, size, L1_CACHE_BYTES);
1830 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1831 if (!net->ipv6.fib_table_hash)
1834 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1836 if (!net->ipv6.fib6_main_tbl)
1837 goto out_fib_table_hash;
1839 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1840 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1841 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1842 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1843 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1845 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1846 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1848 if (!net->ipv6.fib6_local_tbl)
1849 goto out_fib6_main_tbl;
1850 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1851 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1852 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1853 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1854 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1856 fib6_tables_init(net);
1860 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1862 kfree(net->ipv6.fib6_main_tbl);
1865 kfree(net->ipv6.fib_table_hash);
1867 kfree(net->ipv6.rt6_stats);
1872 static void fib6_net_exit(struct net *net)
1874 rt6_ifdown(net, NULL);
1875 del_timer_sync(&net->ipv6.ip6_fib_timer);
1877 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1878 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1879 kfree(net->ipv6.fib6_local_tbl);
1881 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1882 kfree(net->ipv6.fib6_main_tbl);
1883 kfree(net->ipv6.fib_table_hash);
1884 kfree(net->ipv6.rt6_stats);
1887 static struct pernet_operations fib6_net_ops = {
1888 .init = fib6_net_init,
1889 .exit = fib6_net_exit,
1892 int __init fib6_init(void)
1896 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1897 sizeof(struct fib6_node),
1898 0, SLAB_HWCACHE_ALIGN,
1900 if (!fib6_node_kmem)
1903 ret = register_pernet_subsys(&fib6_net_ops);
1905 goto out_kmem_cache_create;
1907 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1910 goto out_unregister_subsys;
1912 __fib6_flush_trees = fib6_flush_trees;
1916 out_unregister_subsys:
1917 unregister_pernet_subsys(&fib6_net_ops);
1918 out_kmem_cache_create:
1919 kmem_cache_destroy(fib6_node_kmem);
1923 void fib6_gc_cleanup(void)
1925 unregister_pernet_subsys(&fib6_net_ops);
1926 kmem_cache_destroy(fib6_node_kmem);
1929 #ifdef CONFIG_PROC_FS
1931 struct ipv6_route_iter {
1932 struct seq_net_private p;
1933 struct fib6_walker w;
1935 struct fib6_table *tbl;
1939 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1941 struct rt6_info *rt = v;
1942 struct ipv6_route_iter *iter = seq->private;
1944 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1946 #ifdef CONFIG_IPV6_SUBTREES
1947 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1949 seq_puts(seq, "00000000000000000000000000000000 00 ");
1951 if (rt->rt6i_flags & RTF_GATEWAY)
1952 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1954 seq_puts(seq, "00000000000000000000000000000000");
1956 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1957 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1958 rt->dst.__use, rt->rt6i_flags,
1959 rt->dst.dev ? rt->dst.dev->name : "");
1960 iter->w.leaf = NULL;
1964 static int ipv6_route_yield(struct fib6_walker *w)
1966 struct ipv6_route_iter *iter = w->args;
1972 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1974 if (!iter->skip && iter->w.leaf)
1976 } while (iter->w.leaf);
1981 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
1984 memset(&iter->w, 0, sizeof(iter->w));
1985 iter->w.func = ipv6_route_yield;
1986 iter->w.root = &iter->tbl->tb6_root;
1987 iter->w.state = FWS_INIT;
1988 iter->w.node = iter->w.root;
1989 iter->w.args = iter;
1990 iter->sernum = iter->w.root->fn_sernum;
1991 INIT_LIST_HEAD(&iter->w.lh);
1992 fib6_walker_link(net, &iter->w);
1995 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1999 struct hlist_node *node;
2002 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2003 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2009 while (!node && h < FIB6_TABLE_HASHSZ) {
2010 node = rcu_dereference_bh(
2011 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2013 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2016 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2018 if (iter->sernum != iter->w.root->fn_sernum) {
2019 iter->sernum = iter->w.root->fn_sernum;
2020 iter->w.state = FWS_INIT;
2021 iter->w.node = iter->w.root;
2022 WARN_ON(iter->w.skip);
2023 iter->w.skip = iter->w.count;
2027 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2031 struct net *net = seq_file_net(seq);
2032 struct ipv6_route_iter *iter = seq->private;
2037 n = ((struct rt6_info *)v)->dst.rt6_next;
2044 ipv6_route_check_sernum(iter);
2045 read_lock(&iter->tbl->tb6_lock);
2046 r = fib6_walk_continue(&iter->w);
2047 read_unlock(&iter->tbl->tb6_lock);
2051 return iter->w.leaf;
2053 fib6_walker_unlink(net, &iter->w);
2056 fib6_walker_unlink(net, &iter->w);
2058 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2062 ipv6_route_seq_setup_walk(iter, net);
2066 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2069 struct net *net = seq_file_net(seq);
2070 struct ipv6_route_iter *iter = seq->private;
2073 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2077 ipv6_route_seq_setup_walk(iter, net);
2078 return ipv6_route_seq_next(seq, NULL, pos);
2084 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2086 struct fib6_walker *w = &iter->w;
2087 return w->node && !(w->state == FWS_U && w->node == w->root);
2090 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2093 struct net *net = seq_file_net(seq);
2094 struct ipv6_route_iter *iter = seq->private;
2096 if (ipv6_route_iter_active(iter))
2097 fib6_walker_unlink(net, &iter->w);
2099 rcu_read_unlock_bh();
2102 static const struct seq_operations ipv6_route_seq_ops = {
2103 .start = ipv6_route_seq_start,
2104 .next = ipv6_route_seq_next,
2105 .stop = ipv6_route_seq_stop,
2106 .show = ipv6_route_seq_show
2109 int ipv6_route_open(struct inode *inode, struct file *file)
2111 return seq_open_net(inode, file, &ipv6_route_seq_ops,
2112 sizeof(struct ipv6_route_iter));
2115 #endif /* CONFIG_PROC_FS */