1 // SPDX-License-Identifier: GPL-2.0
3 * Performance events core code:
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
60 #include <asm/irq_regs.h>
62 typedef int (*remote_function_f)(void *);
64 struct remote_function_call {
65 struct task_struct *p;
66 remote_function_f func;
71 static void remote_function(void *data)
73 struct remote_function_call *tfc = data;
74 struct task_struct *p = tfc->p;
78 if (task_cpu(p) != smp_processor_id())
82 * Now that we're on right CPU with IRQs disabled, we can test
83 * if we hit the right task without races.
86 tfc->ret = -ESRCH; /* No such (running) process */
91 tfc->ret = tfc->func(tfc->info);
95 * task_function_call - call a function on the cpu on which a task runs
96 * @p: the task to evaluate
97 * @func: the function to be called
98 * @info: the function call argument
100 * Calls the function @func when the task is currently running. This might
101 * be on the current CPU, which just calls the function directly. This will
102 * retry due to any failures in smp_call_function_single(), such as if the
103 * task_cpu() goes offline concurrently.
105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 struct remote_function_call data = {
119 ret = smp_call_function_single(task_cpu(p), remote_function,
134 * cpu_function_call - call a function on the cpu
135 * @func: the function to be called
136 * @info: the function call argument
138 * Calls the function @func on the remote cpu.
140 * returns: @func return value or -ENXIO when the cpu is offline
142 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 struct remote_function_call data = {
148 .ret = -ENXIO, /* No such CPU */
151 smp_call_function_single(cpu, remote_function, &data, 1);
156 static inline struct perf_cpu_context *
157 __get_cpu_context(struct perf_event_context *ctx)
159 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
162 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
163 struct perf_event_context *ctx)
165 raw_spin_lock(&cpuctx->ctx.lock);
167 raw_spin_lock(&ctx->lock);
170 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
171 struct perf_event_context *ctx)
174 raw_spin_unlock(&ctx->lock);
175 raw_spin_unlock(&cpuctx->ctx.lock);
178 #define TASK_TOMBSTONE ((void *)-1L)
180 static bool is_kernel_event(struct perf_event *event)
182 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
186 * On task ctx scheduling...
188 * When !ctx->nr_events a task context will not be scheduled. This means
189 * we can disable the scheduler hooks (for performance) without leaving
190 * pending task ctx state.
192 * This however results in two special cases:
194 * - removing the last event from a task ctx; this is relatively straight
195 * forward and is done in __perf_remove_from_context.
197 * - adding the first event to a task ctx; this is tricky because we cannot
198 * rely on ctx->is_active and therefore cannot use event_function_call().
199 * See perf_install_in_context().
201 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
204 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
205 struct perf_event_context *, void *);
207 struct event_function_struct {
208 struct perf_event *event;
213 static int event_function(void *info)
215 struct event_function_struct *efs = info;
216 struct perf_event *event = efs->event;
217 struct perf_event_context *ctx = event->ctx;
218 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
219 struct perf_event_context *task_ctx = cpuctx->task_ctx;
222 lockdep_assert_irqs_disabled();
224 perf_ctx_lock(cpuctx, task_ctx);
226 * Since we do the IPI call without holding ctx->lock things can have
227 * changed, double check we hit the task we set out to hit.
230 if (ctx->task != current) {
236 * We only use event_function_call() on established contexts,
237 * and event_function() is only ever called when active (or
238 * rather, we'll have bailed in task_function_call() or the
239 * above ctx->task != current test), therefore we must have
240 * ctx->is_active here.
242 WARN_ON_ONCE(!ctx->is_active);
244 * And since we have ctx->is_active, cpuctx->task_ctx must
247 WARN_ON_ONCE(task_ctx != ctx);
249 WARN_ON_ONCE(&cpuctx->ctx != ctx);
252 efs->func(event, cpuctx, ctx, efs->data);
254 perf_ctx_unlock(cpuctx, task_ctx);
259 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 struct perf_event_context *ctx = event->ctx;
262 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
263 struct event_function_struct efs = {
269 if (!event->parent) {
271 * If this is a !child event, we must hold ctx::mutex to
272 * stabilize the event->ctx relation. See
273 * perf_event_ctx_lock().
275 lockdep_assert_held(&ctx->mutex);
279 cpu_function_call(event->cpu, event_function, &efs);
283 if (task == TASK_TOMBSTONE)
287 if (!task_function_call(task, event_function, &efs))
290 raw_spin_lock_irq(&ctx->lock);
292 * Reload the task pointer, it might have been changed by
293 * a concurrent perf_event_context_sched_out().
296 if (task == TASK_TOMBSTONE) {
297 raw_spin_unlock_irq(&ctx->lock);
300 if (ctx->is_active) {
301 raw_spin_unlock_irq(&ctx->lock);
304 func(event, NULL, ctx, data);
305 raw_spin_unlock_irq(&ctx->lock);
309 * Similar to event_function_call() + event_function(), but hard assumes IRQs
310 * are already disabled and we're on the right CPU.
312 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 struct perf_event_context *ctx = event->ctx;
315 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
316 struct task_struct *task = READ_ONCE(ctx->task);
317 struct perf_event_context *task_ctx = NULL;
319 lockdep_assert_irqs_disabled();
322 if (task == TASK_TOMBSTONE)
328 perf_ctx_lock(cpuctx, task_ctx);
331 if (task == TASK_TOMBSTONE)
336 * We must be either inactive or active and the right task,
337 * otherwise we're screwed, since we cannot IPI to somewhere
340 if (ctx->is_active) {
341 if (WARN_ON_ONCE(task != current))
344 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
348 WARN_ON_ONCE(&cpuctx->ctx != ctx);
351 func(event, cpuctx, ctx, data);
353 perf_ctx_unlock(cpuctx, task_ctx);
356 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
357 PERF_FLAG_FD_OUTPUT |\
358 PERF_FLAG_PID_CGROUP |\
359 PERF_FLAG_FD_CLOEXEC)
362 * branch priv levels that need permission checks
364 #define PERF_SAMPLE_BRANCH_PERM_PLM \
365 (PERF_SAMPLE_BRANCH_KERNEL |\
366 PERF_SAMPLE_BRANCH_HV)
369 EVENT_FLEXIBLE = 0x1,
372 /* see ctx_resched() for details */
374 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
378 * perf_sched_events : >0 events exist
379 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
382 static void perf_sched_delayed(struct work_struct *work);
383 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
384 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
385 static DEFINE_MUTEX(perf_sched_mutex);
386 static atomic_t perf_sched_count;
388 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
389 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
390 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392 static atomic_t nr_mmap_events __read_mostly;
393 static atomic_t nr_comm_events __read_mostly;
394 static atomic_t nr_namespaces_events __read_mostly;
395 static atomic_t nr_task_events __read_mostly;
396 static atomic_t nr_freq_events __read_mostly;
397 static atomic_t nr_switch_events __read_mostly;
398 static atomic_t nr_ksymbol_events __read_mostly;
399 static atomic_t nr_bpf_events __read_mostly;
400 static atomic_t nr_cgroup_events __read_mostly;
401 static atomic_t nr_text_poke_events __read_mostly;
402 static atomic_t nr_build_id_events __read_mostly;
404 static LIST_HEAD(pmus);
405 static DEFINE_MUTEX(pmus_lock);
406 static struct srcu_struct pmus_srcu;
407 static cpumask_var_t perf_online_mask;
408 static struct kmem_cache *perf_event_cache;
411 * perf event paranoia level:
412 * -1 - not paranoid at all
413 * 0 - disallow raw tracepoint access for unpriv
414 * 1 - disallow cpu events for unpriv
415 * 2 - disallow kernel profiling for unpriv
417 int sysctl_perf_event_paranoid __read_mostly = 2;
419 /* Minimum for 512 kiB + 1 user control page */
420 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423 * max perf event sample rate
425 #define DEFAULT_MAX_SAMPLE_RATE 100000
426 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
427 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
429 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
431 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
432 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
434 static int perf_sample_allowed_ns __read_mostly =
435 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437 static void update_perf_cpu_limits(void)
439 u64 tmp = perf_sample_period_ns;
441 tmp *= sysctl_perf_cpu_time_max_percent;
442 tmp = div_u64(tmp, 100);
446 WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451 int perf_proc_update_handler(struct ctl_table *table, int write,
452 void *buffer, size_t *lenp, loff_t *ppos)
455 int perf_cpu = sysctl_perf_cpu_time_max_percent;
457 * If throttling is disabled don't allow the write:
459 if (write && (perf_cpu == 100 || perf_cpu == 0))
462 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
467 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
468 update_perf_cpu_limits();
473 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
476 void *buffer, size_t *lenp, loff_t *ppos)
478 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
483 if (sysctl_perf_cpu_time_max_percent == 100 ||
484 sysctl_perf_cpu_time_max_percent == 0) {
486 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
487 WRITE_ONCE(perf_sample_allowed_ns, 0);
489 update_perf_cpu_limits();
496 * perf samples are done in some very critical code paths (NMIs).
497 * If they take too much CPU time, the system can lock up and not
498 * get any real work done. This will drop the sample rate when
499 * we detect that events are taking too long.
501 #define NR_ACCUMULATED_SAMPLES 128
502 static DEFINE_PER_CPU(u64, running_sample_length);
504 static u64 __report_avg;
505 static u64 __report_allowed;
507 static void perf_duration_warn(struct irq_work *w)
509 printk_ratelimited(KERN_INFO
510 "perf: interrupt took too long (%lld > %lld), lowering "
511 "kernel.perf_event_max_sample_rate to %d\n",
512 __report_avg, __report_allowed,
513 sysctl_perf_event_sample_rate);
516 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518 void perf_sample_event_took(u64 sample_len_ns)
520 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
528 /* Decay the counter by 1 average sample. */
529 running_len = __this_cpu_read(running_sample_length);
530 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
531 running_len += sample_len_ns;
532 __this_cpu_write(running_sample_length, running_len);
535 * Note: this will be biased artifically low until we have
536 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
537 * from having to maintain a count.
539 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
540 if (avg_len <= max_len)
543 __report_avg = avg_len;
544 __report_allowed = max_len;
547 * Compute a throttle threshold 25% below the current duration.
549 avg_len += avg_len / 4;
550 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
556 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
557 WRITE_ONCE(max_samples_per_tick, max);
559 sysctl_perf_event_sample_rate = max * HZ;
560 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562 if (!irq_work_queue(&perf_duration_work)) {
563 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
564 "kernel.perf_event_max_sample_rate to %d\n",
565 __report_avg, __report_allowed,
566 sysctl_perf_event_sample_rate);
570 static atomic64_t perf_event_id;
572 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
573 enum event_type_t event_type);
575 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
576 enum event_type_t event_type,
577 struct task_struct *task);
579 static void update_context_time(struct perf_event_context *ctx);
580 static u64 perf_event_time(struct perf_event *event);
582 void __weak perf_event_print_debug(void) { }
584 extern __weak const char *perf_pmu_name(void)
589 static inline u64 perf_clock(void)
591 return local_clock();
594 static inline u64 perf_event_clock(struct perf_event *event)
596 return event->clock();
600 * State based event timekeeping...
602 * The basic idea is to use event->state to determine which (if any) time
603 * fields to increment with the current delta. This means we only need to
604 * update timestamps when we change state or when they are explicitly requested
607 * Event groups make things a little more complicated, but not terribly so. The
608 * rules for a group are that if the group leader is OFF the entire group is
609 * OFF, irrespecive of what the group member states are. This results in
610 * __perf_effective_state().
612 * A futher ramification is that when a group leader flips between OFF and
613 * !OFF, we need to update all group member times.
616 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
617 * need to make sure the relevant context time is updated before we try and
618 * update our timestamps.
621 static __always_inline enum perf_event_state
622 __perf_effective_state(struct perf_event *event)
624 struct perf_event *leader = event->group_leader;
626 if (leader->state <= PERF_EVENT_STATE_OFF)
627 return leader->state;
632 static __always_inline void
633 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
635 enum perf_event_state state = __perf_effective_state(event);
636 u64 delta = now - event->tstamp;
638 *enabled = event->total_time_enabled;
639 if (state >= PERF_EVENT_STATE_INACTIVE)
642 *running = event->total_time_running;
643 if (state >= PERF_EVENT_STATE_ACTIVE)
647 static void perf_event_update_time(struct perf_event *event)
649 u64 now = perf_event_time(event);
651 __perf_update_times(event, now, &event->total_time_enabled,
652 &event->total_time_running);
656 static void perf_event_update_sibling_time(struct perf_event *leader)
658 struct perf_event *sibling;
660 for_each_sibling_event(sibling, leader)
661 perf_event_update_time(sibling);
665 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
667 if (event->state == state)
670 perf_event_update_time(event);
672 * If a group leader gets enabled/disabled all its siblings
675 if ((event->state < 0) ^ (state < 0))
676 perf_event_update_sibling_time(event);
678 WRITE_ONCE(event->state, state);
681 #ifdef CONFIG_CGROUP_PERF
684 perf_cgroup_match(struct perf_event *event)
686 struct perf_event_context *ctx = event->ctx;
687 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
689 /* @event doesn't care about cgroup */
693 /* wants specific cgroup scope but @cpuctx isn't associated with any */
698 * Cgroup scoping is recursive. An event enabled for a cgroup is
699 * also enabled for all its descendant cgroups. If @cpuctx's
700 * cgroup is a descendant of @event's (the test covers identity
701 * case), it's a match.
703 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
704 event->cgrp->css.cgroup);
707 static inline void perf_detach_cgroup(struct perf_event *event)
709 css_put(&event->cgrp->css);
713 static inline int is_cgroup_event(struct perf_event *event)
715 return event->cgrp != NULL;
718 static inline u64 perf_cgroup_event_time(struct perf_event *event)
720 struct perf_cgroup_info *t;
722 t = per_cpu_ptr(event->cgrp->info, event->cpu);
726 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
728 struct perf_cgroup_info *info;
733 info = this_cpu_ptr(cgrp->info);
735 info->time += now - info->timestamp;
736 info->timestamp = now;
739 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
741 struct perf_cgroup *cgrp = cpuctx->cgrp;
742 struct cgroup_subsys_state *css;
745 for (css = &cgrp->css; css; css = css->parent) {
746 cgrp = container_of(css, struct perf_cgroup, css);
747 __update_cgrp_time(cgrp);
752 static inline void update_cgrp_time_from_event(struct perf_event *event)
754 struct perf_cgroup *cgrp;
757 * ensure we access cgroup data only when needed and
758 * when we know the cgroup is pinned (css_get)
760 if (!is_cgroup_event(event))
763 cgrp = perf_cgroup_from_task(current, event->ctx);
765 * Do not update time when cgroup is not active
767 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
768 __update_cgrp_time(event->cgrp);
772 perf_cgroup_set_timestamp(struct task_struct *task,
773 struct perf_event_context *ctx)
775 struct perf_cgroup *cgrp;
776 struct perf_cgroup_info *info;
777 struct cgroup_subsys_state *css;
780 * ctx->lock held by caller
781 * ensure we do not access cgroup data
782 * unless we have the cgroup pinned (css_get)
784 if (!task || !ctx->nr_cgroups)
787 cgrp = perf_cgroup_from_task(task, ctx);
789 for (css = &cgrp->css; css; css = css->parent) {
790 cgrp = container_of(css, struct perf_cgroup, css);
791 info = this_cpu_ptr(cgrp->info);
792 info->timestamp = ctx->timestamp;
796 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
798 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
799 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
802 * reschedule events based on the cgroup constraint of task.
804 * mode SWOUT : schedule out everything
805 * mode SWIN : schedule in based on cgroup for next
807 static void perf_cgroup_switch(struct task_struct *task, int mode)
809 struct perf_cpu_context *cpuctx;
810 struct list_head *list;
814 * Disable interrupts and preemption to avoid this CPU's
815 * cgrp_cpuctx_entry to change under us.
817 local_irq_save(flags);
819 list = this_cpu_ptr(&cgrp_cpuctx_list);
820 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
821 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
823 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
824 perf_pmu_disable(cpuctx->ctx.pmu);
826 if (mode & PERF_CGROUP_SWOUT) {
827 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
829 * must not be done before ctxswout due
830 * to event_filter_match() in event_sched_out()
835 if (mode & PERF_CGROUP_SWIN) {
836 WARN_ON_ONCE(cpuctx->cgrp);
838 * set cgrp before ctxsw in to allow
839 * event_filter_match() to not have to pass
841 * we pass the cpuctx->ctx to perf_cgroup_from_task()
842 * because cgorup events are only per-cpu
844 cpuctx->cgrp = perf_cgroup_from_task(task,
846 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
848 perf_pmu_enable(cpuctx->ctx.pmu);
849 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
852 local_irq_restore(flags);
855 static inline void perf_cgroup_sched_out(struct task_struct *task,
856 struct task_struct *next)
858 struct perf_cgroup *cgrp1;
859 struct perf_cgroup *cgrp2 = NULL;
863 * we come here when we know perf_cgroup_events > 0
864 * we do not need to pass the ctx here because we know
865 * we are holding the rcu lock
867 cgrp1 = perf_cgroup_from_task(task, NULL);
868 cgrp2 = perf_cgroup_from_task(next, NULL);
871 * only schedule out current cgroup events if we know
872 * that we are switching to a different cgroup. Otherwise,
873 * do no touch the cgroup events.
876 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
881 static inline void perf_cgroup_sched_in(struct task_struct *prev,
882 struct task_struct *task)
884 struct perf_cgroup *cgrp1;
885 struct perf_cgroup *cgrp2 = NULL;
889 * we come here when we know perf_cgroup_events > 0
890 * we do not need to pass the ctx here because we know
891 * we are holding the rcu lock
893 cgrp1 = perf_cgroup_from_task(task, NULL);
894 cgrp2 = perf_cgroup_from_task(prev, NULL);
897 * only need to schedule in cgroup events if we are changing
898 * cgroup during ctxsw. Cgroup events were not scheduled
899 * out of ctxsw out if that was not the case.
902 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
907 static int perf_cgroup_ensure_storage(struct perf_event *event,
908 struct cgroup_subsys_state *css)
910 struct perf_cpu_context *cpuctx;
911 struct perf_event **storage;
912 int cpu, heap_size, ret = 0;
915 * Allow storage to have sufficent space for an iterator for each
916 * possibly nested cgroup plus an iterator for events with no cgroup.
918 for (heap_size = 1; css; css = css->parent)
921 for_each_possible_cpu(cpu) {
922 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
923 if (heap_size <= cpuctx->heap_size)
926 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
927 GFP_KERNEL, cpu_to_node(cpu));
933 raw_spin_lock_irq(&cpuctx->ctx.lock);
934 if (cpuctx->heap_size < heap_size) {
935 swap(cpuctx->heap, storage);
936 if (storage == cpuctx->heap_default)
938 cpuctx->heap_size = heap_size;
940 raw_spin_unlock_irq(&cpuctx->ctx.lock);
948 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
949 struct perf_event_attr *attr,
950 struct perf_event *group_leader)
952 struct perf_cgroup *cgrp;
953 struct cgroup_subsys_state *css;
954 struct fd f = fdget(fd);
960 css = css_tryget_online_from_dir(f.file->f_path.dentry,
961 &perf_event_cgrp_subsys);
967 ret = perf_cgroup_ensure_storage(event, css);
971 cgrp = container_of(css, struct perf_cgroup, css);
975 * all events in a group must monitor
976 * the same cgroup because a task belongs
977 * to only one perf cgroup at a time
979 if (group_leader && group_leader->cgrp != cgrp) {
980 perf_detach_cgroup(event);
989 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
991 struct perf_cgroup_info *t;
992 t = per_cpu_ptr(event->cgrp->info, event->cpu);
993 event->shadow_ctx_time = now - t->timestamp;
997 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
999 struct perf_cpu_context *cpuctx;
1001 if (!is_cgroup_event(event))
1005 * Because cgroup events are always per-cpu events,
1006 * @ctx == &cpuctx->ctx.
1008 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1011 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1012 * matching the event's cgroup, we must do this for every new event,
1013 * because if the first would mismatch, the second would not try again
1014 * and we would leave cpuctx->cgrp unset.
1016 if (ctx->is_active && !cpuctx->cgrp) {
1017 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1019 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1020 cpuctx->cgrp = cgrp;
1023 if (ctx->nr_cgroups++)
1026 list_add(&cpuctx->cgrp_cpuctx_entry,
1027 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1031 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1033 struct perf_cpu_context *cpuctx;
1035 if (!is_cgroup_event(event))
1039 * Because cgroup events are always per-cpu events,
1040 * @ctx == &cpuctx->ctx.
1042 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1044 if (--ctx->nr_cgroups)
1047 if (ctx->is_active && cpuctx->cgrp)
1048 cpuctx->cgrp = NULL;
1050 list_del(&cpuctx->cgrp_cpuctx_entry);
1053 #else /* !CONFIG_CGROUP_PERF */
1056 perf_cgroup_match(struct perf_event *event)
1061 static inline void perf_detach_cgroup(struct perf_event *event)
1064 static inline int is_cgroup_event(struct perf_event *event)
1069 static inline void update_cgrp_time_from_event(struct perf_event *event)
1073 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1077 static inline void perf_cgroup_sched_out(struct task_struct *task,
1078 struct task_struct *next)
1082 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1083 struct task_struct *task)
1087 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1088 struct perf_event_attr *attr,
1089 struct perf_event *group_leader)
1095 perf_cgroup_set_timestamp(struct task_struct *task,
1096 struct perf_event_context *ctx)
1101 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1106 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1110 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1116 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1121 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1127 * set default to be dependent on timer tick just
1128 * like original code
1130 #define PERF_CPU_HRTIMER (1000 / HZ)
1132 * function must be called with interrupts disabled
1134 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1136 struct perf_cpu_context *cpuctx;
1139 lockdep_assert_irqs_disabled();
1141 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1142 rotations = perf_rotate_context(cpuctx);
1144 raw_spin_lock(&cpuctx->hrtimer_lock);
1146 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1148 cpuctx->hrtimer_active = 0;
1149 raw_spin_unlock(&cpuctx->hrtimer_lock);
1151 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1154 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1156 struct hrtimer *timer = &cpuctx->hrtimer;
1157 struct pmu *pmu = cpuctx->ctx.pmu;
1160 /* no multiplexing needed for SW PMU */
1161 if (pmu->task_ctx_nr == perf_sw_context)
1165 * check default is sane, if not set then force to
1166 * default interval (1/tick)
1168 interval = pmu->hrtimer_interval_ms;
1170 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1172 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1174 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1175 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1176 timer->function = perf_mux_hrtimer_handler;
1179 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1181 struct hrtimer *timer = &cpuctx->hrtimer;
1182 struct pmu *pmu = cpuctx->ctx.pmu;
1183 unsigned long flags;
1185 /* not for SW PMU */
1186 if (pmu->task_ctx_nr == perf_sw_context)
1189 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1190 if (!cpuctx->hrtimer_active) {
1191 cpuctx->hrtimer_active = 1;
1192 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1193 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1195 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1200 void perf_pmu_disable(struct pmu *pmu)
1202 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1204 pmu->pmu_disable(pmu);
1207 void perf_pmu_enable(struct pmu *pmu)
1209 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1211 pmu->pmu_enable(pmu);
1214 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1217 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1218 * perf_event_task_tick() are fully serialized because they're strictly cpu
1219 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1220 * disabled, while perf_event_task_tick is called from IRQ context.
1222 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1224 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1226 lockdep_assert_irqs_disabled();
1228 WARN_ON(!list_empty(&ctx->active_ctx_list));
1230 list_add(&ctx->active_ctx_list, head);
1233 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1235 lockdep_assert_irqs_disabled();
1237 WARN_ON(list_empty(&ctx->active_ctx_list));
1239 list_del_init(&ctx->active_ctx_list);
1242 static void get_ctx(struct perf_event_context *ctx)
1244 refcount_inc(&ctx->refcount);
1247 static void *alloc_task_ctx_data(struct pmu *pmu)
1249 if (pmu->task_ctx_cache)
1250 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1255 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1257 if (pmu->task_ctx_cache && task_ctx_data)
1258 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1261 static void free_ctx(struct rcu_head *head)
1263 struct perf_event_context *ctx;
1265 ctx = container_of(head, struct perf_event_context, rcu_head);
1266 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1270 static void put_ctx(struct perf_event_context *ctx)
1272 if (refcount_dec_and_test(&ctx->refcount)) {
1273 if (ctx->parent_ctx)
1274 put_ctx(ctx->parent_ctx);
1275 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1276 put_task_struct(ctx->task);
1277 call_rcu(&ctx->rcu_head, free_ctx);
1282 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1283 * perf_pmu_migrate_context() we need some magic.
1285 * Those places that change perf_event::ctx will hold both
1286 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1288 * Lock ordering is by mutex address. There are two other sites where
1289 * perf_event_context::mutex nests and those are:
1291 * - perf_event_exit_task_context() [ child , 0 ]
1292 * perf_event_exit_event()
1293 * put_event() [ parent, 1 ]
1295 * - perf_event_init_context() [ parent, 0 ]
1296 * inherit_task_group()
1299 * perf_event_alloc()
1301 * perf_try_init_event() [ child , 1 ]
1303 * While it appears there is an obvious deadlock here -- the parent and child
1304 * nesting levels are inverted between the two. This is in fact safe because
1305 * life-time rules separate them. That is an exiting task cannot fork, and a
1306 * spawning task cannot (yet) exit.
1308 * But remember that these are parent<->child context relations, and
1309 * migration does not affect children, therefore these two orderings should not
1312 * The change in perf_event::ctx does not affect children (as claimed above)
1313 * because the sys_perf_event_open() case will install a new event and break
1314 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1315 * concerned with cpuctx and that doesn't have children.
1317 * The places that change perf_event::ctx will issue:
1319 * perf_remove_from_context();
1320 * synchronize_rcu();
1321 * perf_install_in_context();
1323 * to affect the change. The remove_from_context() + synchronize_rcu() should
1324 * quiesce the event, after which we can install it in the new location. This
1325 * means that only external vectors (perf_fops, prctl) can perturb the event
1326 * while in transit. Therefore all such accessors should also acquire
1327 * perf_event_context::mutex to serialize against this.
1329 * However; because event->ctx can change while we're waiting to acquire
1330 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1335 * task_struct::perf_event_mutex
1336 * perf_event_context::mutex
1337 * perf_event::child_mutex;
1338 * perf_event_context::lock
1339 * perf_event::mmap_mutex
1341 * perf_addr_filters_head::lock
1345 * cpuctx->mutex / perf_event_context::mutex
1347 static struct perf_event_context *
1348 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1350 struct perf_event_context *ctx;
1354 ctx = READ_ONCE(event->ctx);
1355 if (!refcount_inc_not_zero(&ctx->refcount)) {
1361 mutex_lock_nested(&ctx->mutex, nesting);
1362 if (event->ctx != ctx) {
1363 mutex_unlock(&ctx->mutex);
1371 static inline struct perf_event_context *
1372 perf_event_ctx_lock(struct perf_event *event)
1374 return perf_event_ctx_lock_nested(event, 0);
1377 static void perf_event_ctx_unlock(struct perf_event *event,
1378 struct perf_event_context *ctx)
1380 mutex_unlock(&ctx->mutex);
1385 * This must be done under the ctx->lock, such as to serialize against
1386 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1387 * calling scheduler related locks and ctx->lock nests inside those.
1389 static __must_check struct perf_event_context *
1390 unclone_ctx(struct perf_event_context *ctx)
1392 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1394 lockdep_assert_held(&ctx->lock);
1397 ctx->parent_ctx = NULL;
1403 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1408 * only top level events have the pid namespace they were created in
1411 event = event->parent;
1413 nr = __task_pid_nr_ns(p, type, event->ns);
1414 /* avoid -1 if it is idle thread or runs in another ns */
1415 if (!nr && !pid_alive(p))
1420 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1422 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1425 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1427 return perf_event_pid_type(event, p, PIDTYPE_PID);
1431 * If we inherit events we want to return the parent event id
1434 static u64 primary_event_id(struct perf_event *event)
1439 id = event->parent->id;
1445 * Get the perf_event_context for a task and lock it.
1447 * This has to cope with the fact that until it is locked,
1448 * the context could get moved to another task.
1450 static struct perf_event_context *
1451 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1453 struct perf_event_context *ctx;
1457 * One of the few rules of preemptible RCU is that one cannot do
1458 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1459 * part of the read side critical section was irqs-enabled -- see
1460 * rcu_read_unlock_special().
1462 * Since ctx->lock nests under rq->lock we must ensure the entire read
1463 * side critical section has interrupts disabled.
1465 local_irq_save(*flags);
1467 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1470 * If this context is a clone of another, it might
1471 * get swapped for another underneath us by
1472 * perf_event_task_sched_out, though the
1473 * rcu_read_lock() protects us from any context
1474 * getting freed. Lock the context and check if it
1475 * got swapped before we could get the lock, and retry
1476 * if so. If we locked the right context, then it
1477 * can't get swapped on us any more.
1479 raw_spin_lock(&ctx->lock);
1480 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1481 raw_spin_unlock(&ctx->lock);
1483 local_irq_restore(*flags);
1487 if (ctx->task == TASK_TOMBSTONE ||
1488 !refcount_inc_not_zero(&ctx->refcount)) {
1489 raw_spin_unlock(&ctx->lock);
1492 WARN_ON_ONCE(ctx->task != task);
1497 local_irq_restore(*flags);
1502 * Get the context for a task and increment its pin_count so it
1503 * can't get swapped to another task. This also increments its
1504 * reference count so that the context can't get freed.
1506 static struct perf_event_context *
1507 perf_pin_task_context(struct task_struct *task, int ctxn)
1509 struct perf_event_context *ctx;
1510 unsigned long flags;
1512 ctx = perf_lock_task_context(task, ctxn, &flags);
1515 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1520 static void perf_unpin_context(struct perf_event_context *ctx)
1522 unsigned long flags;
1524 raw_spin_lock_irqsave(&ctx->lock, flags);
1526 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1530 * Update the record of the current time in a context.
1532 static void update_context_time(struct perf_event_context *ctx)
1534 u64 now = perf_clock();
1536 ctx->time += now - ctx->timestamp;
1537 ctx->timestamp = now;
1540 static u64 perf_event_time(struct perf_event *event)
1542 struct perf_event_context *ctx = event->ctx;
1544 if (is_cgroup_event(event))
1545 return perf_cgroup_event_time(event);
1547 return ctx ? ctx->time : 0;
1550 static enum event_type_t get_event_type(struct perf_event *event)
1552 struct perf_event_context *ctx = event->ctx;
1553 enum event_type_t event_type;
1555 lockdep_assert_held(&ctx->lock);
1558 * It's 'group type', really, because if our group leader is
1559 * pinned, so are we.
1561 if (event->group_leader != event)
1562 event = event->group_leader;
1564 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1566 event_type |= EVENT_CPU;
1572 * Helper function to initialize event group nodes.
1574 static void init_event_group(struct perf_event *event)
1576 RB_CLEAR_NODE(&event->group_node);
1577 event->group_index = 0;
1581 * Extract pinned or flexible groups from the context
1582 * based on event attrs bits.
1584 static struct perf_event_groups *
1585 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1587 if (event->attr.pinned)
1588 return &ctx->pinned_groups;
1590 return &ctx->flexible_groups;
1594 * Helper function to initializes perf_event_group trees.
1596 static void perf_event_groups_init(struct perf_event_groups *groups)
1598 groups->tree = RB_ROOT;
1602 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1604 struct cgroup *cgroup = NULL;
1606 #ifdef CONFIG_CGROUP_PERF
1608 cgroup = event->cgrp->css.cgroup;
1615 * Compare function for event groups;
1617 * Implements complex key that first sorts by CPU and then by virtual index
1618 * which provides ordering when rotating groups for the same CPU.
1620 static __always_inline int
1621 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1622 const u64 left_group_index, const struct perf_event *right)
1624 if (left_cpu < right->cpu)
1626 if (left_cpu > right->cpu)
1629 #ifdef CONFIG_CGROUP_PERF
1631 const struct cgroup *right_cgroup = event_cgroup(right);
1633 if (left_cgroup != right_cgroup) {
1636 * Left has no cgroup but right does, no
1637 * cgroups come first.
1641 if (!right_cgroup) {
1643 * Right has no cgroup but left does, no
1644 * cgroups come first.
1648 /* Two dissimilar cgroups, order by id. */
1649 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1657 if (left_group_index < right->group_index)
1659 if (left_group_index > right->group_index)
1665 #define __node_2_pe(node) \
1666 rb_entry((node), struct perf_event, group_node)
1668 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1670 struct perf_event *e = __node_2_pe(a);
1671 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1672 __node_2_pe(b)) < 0;
1675 struct __group_key {
1677 struct cgroup *cgroup;
1680 static inline int __group_cmp(const void *key, const struct rb_node *node)
1682 const struct __group_key *a = key;
1683 const struct perf_event *b = __node_2_pe(node);
1685 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1686 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1690 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1691 * key (see perf_event_groups_less). This places it last inside the CPU
1695 perf_event_groups_insert(struct perf_event_groups *groups,
1696 struct perf_event *event)
1698 event->group_index = ++groups->index;
1700 rb_add(&event->group_node, &groups->tree, __group_less);
1704 * Helper function to insert event into the pinned or flexible groups.
1707 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1709 struct perf_event_groups *groups;
1711 groups = get_event_groups(event, ctx);
1712 perf_event_groups_insert(groups, event);
1716 * Delete a group from a tree.
1719 perf_event_groups_delete(struct perf_event_groups *groups,
1720 struct perf_event *event)
1722 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1723 RB_EMPTY_ROOT(&groups->tree));
1725 rb_erase(&event->group_node, &groups->tree);
1726 init_event_group(event);
1730 * Helper function to delete event from its groups.
1733 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1735 struct perf_event_groups *groups;
1737 groups = get_event_groups(event, ctx);
1738 perf_event_groups_delete(groups, event);
1742 * Get the leftmost event in the cpu/cgroup subtree.
1744 static struct perf_event *
1745 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1746 struct cgroup *cgrp)
1748 struct __group_key key = {
1752 struct rb_node *node;
1754 node = rb_find_first(&key, &groups->tree, __group_cmp);
1756 return __node_2_pe(node);
1762 * Like rb_entry_next_safe() for the @cpu subtree.
1764 static struct perf_event *
1765 perf_event_groups_next(struct perf_event *event)
1767 struct __group_key key = {
1769 .cgroup = event_cgroup(event),
1771 struct rb_node *next;
1773 next = rb_next_match(&key, &event->group_node, __group_cmp);
1775 return __node_2_pe(next);
1781 * Iterate through the whole groups tree.
1783 #define perf_event_groups_for_each(event, groups) \
1784 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1785 typeof(*event), group_node); event; \
1786 event = rb_entry_safe(rb_next(&event->group_node), \
1787 typeof(*event), group_node))
1790 * Add an event from the lists for its context.
1791 * Must be called with ctx->mutex and ctx->lock held.
1794 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1796 lockdep_assert_held(&ctx->lock);
1798 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1799 event->attach_state |= PERF_ATTACH_CONTEXT;
1801 event->tstamp = perf_event_time(event);
1804 * If we're a stand alone event or group leader, we go to the context
1805 * list, group events are kept attached to the group so that
1806 * perf_group_detach can, at all times, locate all siblings.
1808 if (event->group_leader == event) {
1809 event->group_caps = event->event_caps;
1810 add_event_to_groups(event, ctx);
1813 list_add_rcu(&event->event_entry, &ctx->event_list);
1815 if (event->attr.inherit_stat)
1818 if (event->state > PERF_EVENT_STATE_OFF)
1819 perf_cgroup_event_enable(event, ctx);
1825 * Initialize event state based on the perf_event_attr::disabled.
1827 static inline void perf_event__state_init(struct perf_event *event)
1829 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1830 PERF_EVENT_STATE_INACTIVE;
1833 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1835 int entry = sizeof(u64); /* value */
1839 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1840 size += sizeof(u64);
1842 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1843 size += sizeof(u64);
1845 if (event->attr.read_format & PERF_FORMAT_ID)
1846 entry += sizeof(u64);
1848 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1850 size += sizeof(u64);
1854 event->read_size = size;
1857 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1859 struct perf_sample_data *data;
1862 if (sample_type & PERF_SAMPLE_IP)
1863 size += sizeof(data->ip);
1865 if (sample_type & PERF_SAMPLE_ADDR)
1866 size += sizeof(data->addr);
1868 if (sample_type & PERF_SAMPLE_PERIOD)
1869 size += sizeof(data->period);
1871 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1872 size += sizeof(data->weight.full);
1874 if (sample_type & PERF_SAMPLE_READ)
1875 size += event->read_size;
1877 if (sample_type & PERF_SAMPLE_DATA_SRC)
1878 size += sizeof(data->data_src.val);
1880 if (sample_type & PERF_SAMPLE_TRANSACTION)
1881 size += sizeof(data->txn);
1883 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1884 size += sizeof(data->phys_addr);
1886 if (sample_type & PERF_SAMPLE_CGROUP)
1887 size += sizeof(data->cgroup);
1889 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1890 size += sizeof(data->data_page_size);
1892 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1893 size += sizeof(data->code_page_size);
1895 event->header_size = size;
1899 * Called at perf_event creation and when events are attached/detached from a
1902 static void perf_event__header_size(struct perf_event *event)
1904 __perf_event_read_size(event,
1905 event->group_leader->nr_siblings);
1906 __perf_event_header_size(event, event->attr.sample_type);
1909 static void perf_event__id_header_size(struct perf_event *event)
1911 struct perf_sample_data *data;
1912 u64 sample_type = event->attr.sample_type;
1915 if (sample_type & PERF_SAMPLE_TID)
1916 size += sizeof(data->tid_entry);
1918 if (sample_type & PERF_SAMPLE_TIME)
1919 size += sizeof(data->time);
1921 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1922 size += sizeof(data->id);
1924 if (sample_type & PERF_SAMPLE_ID)
1925 size += sizeof(data->id);
1927 if (sample_type & PERF_SAMPLE_STREAM_ID)
1928 size += sizeof(data->stream_id);
1930 if (sample_type & PERF_SAMPLE_CPU)
1931 size += sizeof(data->cpu_entry);
1933 event->id_header_size = size;
1936 static bool perf_event_validate_size(struct perf_event *event)
1939 * The values computed here will be over-written when we actually
1942 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1943 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1944 perf_event__id_header_size(event);
1947 * Sum the lot; should not exceed the 64k limit we have on records.
1948 * Conservative limit to allow for callchains and other variable fields.
1950 if (event->read_size + event->header_size +
1951 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1957 static void perf_group_attach(struct perf_event *event)
1959 struct perf_event *group_leader = event->group_leader, *pos;
1961 lockdep_assert_held(&event->ctx->lock);
1964 * We can have double attach due to group movement in perf_event_open.
1966 if (event->attach_state & PERF_ATTACH_GROUP)
1969 event->attach_state |= PERF_ATTACH_GROUP;
1971 if (group_leader == event)
1974 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1976 group_leader->group_caps &= event->event_caps;
1978 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1979 group_leader->nr_siblings++;
1981 perf_event__header_size(group_leader);
1983 for_each_sibling_event(pos, group_leader)
1984 perf_event__header_size(pos);
1988 * Remove an event from the lists for its context.
1989 * Must be called with ctx->mutex and ctx->lock held.
1992 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1994 WARN_ON_ONCE(event->ctx != ctx);
1995 lockdep_assert_held(&ctx->lock);
1998 * We can have double detach due to exit/hot-unplug + close.
2000 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2003 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2006 if (event->attr.inherit_stat)
2009 list_del_rcu(&event->event_entry);
2011 if (event->group_leader == event)
2012 del_event_from_groups(event, ctx);
2015 * If event was in error state, then keep it
2016 * that way, otherwise bogus counts will be
2017 * returned on read(). The only way to get out
2018 * of error state is by explicit re-enabling
2021 if (event->state > PERF_EVENT_STATE_OFF) {
2022 perf_cgroup_event_disable(event, ctx);
2023 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2030 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2032 if (!has_aux(aux_event))
2035 if (!event->pmu->aux_output_match)
2038 return event->pmu->aux_output_match(aux_event);
2041 static void put_event(struct perf_event *event);
2042 static void event_sched_out(struct perf_event *event,
2043 struct perf_cpu_context *cpuctx,
2044 struct perf_event_context *ctx);
2046 static void perf_put_aux_event(struct perf_event *event)
2048 struct perf_event_context *ctx = event->ctx;
2049 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2050 struct perf_event *iter;
2053 * If event uses aux_event tear down the link
2055 if (event->aux_event) {
2056 iter = event->aux_event;
2057 event->aux_event = NULL;
2063 * If the event is an aux_event, tear down all links to
2064 * it from other events.
2066 for_each_sibling_event(iter, event->group_leader) {
2067 if (iter->aux_event != event)
2070 iter->aux_event = NULL;
2074 * If it's ACTIVE, schedule it out and put it into ERROR
2075 * state so that we don't try to schedule it again. Note
2076 * that perf_event_enable() will clear the ERROR status.
2078 event_sched_out(iter, cpuctx, ctx);
2079 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2083 static bool perf_need_aux_event(struct perf_event *event)
2085 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2088 static int perf_get_aux_event(struct perf_event *event,
2089 struct perf_event *group_leader)
2092 * Our group leader must be an aux event if we want to be
2093 * an aux_output. This way, the aux event will precede its
2094 * aux_output events in the group, and therefore will always
2101 * aux_output and aux_sample_size are mutually exclusive.
2103 if (event->attr.aux_output && event->attr.aux_sample_size)
2106 if (event->attr.aux_output &&
2107 !perf_aux_output_match(event, group_leader))
2110 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2113 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2117 * Link aux_outputs to their aux event; this is undone in
2118 * perf_group_detach() by perf_put_aux_event(). When the
2119 * group in torn down, the aux_output events loose their
2120 * link to the aux_event and can't schedule any more.
2122 event->aux_event = group_leader;
2127 static inline struct list_head *get_event_list(struct perf_event *event)
2129 struct perf_event_context *ctx = event->ctx;
2130 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2134 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2135 * cannot exist on their own, schedule them out and move them into the ERROR
2136 * state. Also see _perf_event_enable(), it will not be able to recover
2139 static inline void perf_remove_sibling_event(struct perf_event *event)
2141 struct perf_event_context *ctx = event->ctx;
2142 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2144 event_sched_out(event, cpuctx, ctx);
2145 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2148 static void perf_group_detach(struct perf_event *event)
2150 struct perf_event *leader = event->group_leader;
2151 struct perf_event *sibling, *tmp;
2152 struct perf_event_context *ctx = event->ctx;
2154 lockdep_assert_held(&ctx->lock);
2157 * We can have double detach due to exit/hot-unplug + close.
2159 if (!(event->attach_state & PERF_ATTACH_GROUP))
2162 event->attach_state &= ~PERF_ATTACH_GROUP;
2164 perf_put_aux_event(event);
2167 * If this is a sibling, remove it from its group.
2169 if (leader != event) {
2170 list_del_init(&event->sibling_list);
2171 event->group_leader->nr_siblings--;
2176 * If this was a group event with sibling events then
2177 * upgrade the siblings to singleton events by adding them
2178 * to whatever list we are on.
2180 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2182 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2183 perf_remove_sibling_event(sibling);
2185 sibling->group_leader = sibling;
2186 list_del_init(&sibling->sibling_list);
2188 /* Inherit group flags from the previous leader */
2189 sibling->group_caps = event->group_caps;
2191 if (!RB_EMPTY_NODE(&event->group_node)) {
2192 add_event_to_groups(sibling, event->ctx);
2194 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2195 list_add_tail(&sibling->active_list, get_event_list(sibling));
2198 WARN_ON_ONCE(sibling->ctx != event->ctx);
2202 for_each_sibling_event(tmp, leader)
2203 perf_event__header_size(tmp);
2205 perf_event__header_size(leader);
2208 static void sync_child_event(struct perf_event *child_event);
2210 static void perf_child_detach(struct perf_event *event)
2212 struct perf_event *parent_event = event->parent;
2214 if (!(event->attach_state & PERF_ATTACH_CHILD))
2217 event->attach_state &= ~PERF_ATTACH_CHILD;
2219 if (WARN_ON_ONCE(!parent_event))
2222 lockdep_assert_held(&parent_event->child_mutex);
2224 sync_child_event(event);
2225 list_del_init(&event->child_list);
2228 static bool is_orphaned_event(struct perf_event *event)
2230 return event->state == PERF_EVENT_STATE_DEAD;
2233 static inline int __pmu_filter_match(struct perf_event *event)
2235 struct pmu *pmu = event->pmu;
2236 return pmu->filter_match ? pmu->filter_match(event) : 1;
2240 * Check whether we should attempt to schedule an event group based on
2241 * PMU-specific filtering. An event group can consist of HW and SW events,
2242 * potentially with a SW leader, so we must check all the filters, to
2243 * determine whether a group is schedulable:
2245 static inline int pmu_filter_match(struct perf_event *event)
2247 struct perf_event *sibling;
2249 if (!__pmu_filter_match(event))
2252 for_each_sibling_event(sibling, event) {
2253 if (!__pmu_filter_match(sibling))
2261 event_filter_match(struct perf_event *event)
2263 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2264 perf_cgroup_match(event) && pmu_filter_match(event);
2268 event_sched_out(struct perf_event *event,
2269 struct perf_cpu_context *cpuctx,
2270 struct perf_event_context *ctx)
2272 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2274 WARN_ON_ONCE(event->ctx != ctx);
2275 lockdep_assert_held(&ctx->lock);
2277 if (event->state != PERF_EVENT_STATE_ACTIVE)
2281 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2282 * we can schedule events _OUT_ individually through things like
2283 * __perf_remove_from_context().
2285 list_del_init(&event->active_list);
2287 perf_pmu_disable(event->pmu);
2289 event->pmu->del(event, 0);
2292 if (READ_ONCE(event->pending_disable) >= 0) {
2293 WRITE_ONCE(event->pending_disable, -1);
2294 perf_cgroup_event_disable(event, ctx);
2295 state = PERF_EVENT_STATE_OFF;
2297 perf_event_set_state(event, state);
2299 if (!is_software_event(event))
2300 cpuctx->active_oncpu--;
2301 if (!--ctx->nr_active)
2302 perf_event_ctx_deactivate(ctx);
2303 if (event->attr.freq && event->attr.sample_freq)
2305 if (event->attr.exclusive || !cpuctx->active_oncpu)
2306 cpuctx->exclusive = 0;
2308 perf_pmu_enable(event->pmu);
2312 group_sched_out(struct perf_event *group_event,
2313 struct perf_cpu_context *cpuctx,
2314 struct perf_event_context *ctx)
2316 struct perf_event *event;
2318 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2321 perf_pmu_disable(ctx->pmu);
2323 event_sched_out(group_event, cpuctx, ctx);
2326 * Schedule out siblings (if any):
2328 for_each_sibling_event(event, group_event)
2329 event_sched_out(event, cpuctx, ctx);
2331 perf_pmu_enable(ctx->pmu);
2334 #define DETACH_GROUP 0x01UL
2335 #define DETACH_CHILD 0x02UL
2338 * Cross CPU call to remove a performance event
2340 * We disable the event on the hardware level first. After that we
2341 * remove it from the context list.
2344 __perf_remove_from_context(struct perf_event *event,
2345 struct perf_cpu_context *cpuctx,
2346 struct perf_event_context *ctx,
2349 unsigned long flags = (unsigned long)info;
2351 if (ctx->is_active & EVENT_TIME) {
2352 update_context_time(ctx);
2353 update_cgrp_time_from_cpuctx(cpuctx);
2356 event_sched_out(event, cpuctx, ctx);
2357 if (flags & DETACH_GROUP)
2358 perf_group_detach(event);
2359 if (flags & DETACH_CHILD)
2360 perf_child_detach(event);
2361 list_del_event(event, ctx);
2363 if (!ctx->nr_events && ctx->is_active) {
2365 ctx->rotate_necessary = 0;
2367 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2368 cpuctx->task_ctx = NULL;
2374 * Remove the event from a task's (or a CPU's) list of events.
2376 * If event->ctx is a cloned context, callers must make sure that
2377 * every task struct that event->ctx->task could possibly point to
2378 * remains valid. This is OK when called from perf_release since
2379 * that only calls us on the top-level context, which can't be a clone.
2380 * When called from perf_event_exit_task, it's OK because the
2381 * context has been detached from its task.
2383 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2385 struct perf_event_context *ctx = event->ctx;
2387 lockdep_assert_held(&ctx->mutex);
2390 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2391 * to work in the face of TASK_TOMBSTONE, unlike every other
2392 * event_function_call() user.
2394 raw_spin_lock_irq(&ctx->lock);
2395 if (!ctx->is_active) {
2396 __perf_remove_from_context(event, __get_cpu_context(ctx),
2397 ctx, (void *)flags);
2398 raw_spin_unlock_irq(&ctx->lock);
2401 raw_spin_unlock_irq(&ctx->lock);
2403 event_function_call(event, __perf_remove_from_context, (void *)flags);
2407 * Cross CPU call to disable a performance event
2409 static void __perf_event_disable(struct perf_event *event,
2410 struct perf_cpu_context *cpuctx,
2411 struct perf_event_context *ctx,
2414 if (event->state < PERF_EVENT_STATE_INACTIVE)
2417 if (ctx->is_active & EVENT_TIME) {
2418 update_context_time(ctx);
2419 update_cgrp_time_from_event(event);
2422 if (event == event->group_leader)
2423 group_sched_out(event, cpuctx, ctx);
2425 event_sched_out(event, cpuctx, ctx);
2427 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2428 perf_cgroup_event_disable(event, ctx);
2434 * If event->ctx is a cloned context, callers must make sure that
2435 * every task struct that event->ctx->task could possibly point to
2436 * remains valid. This condition is satisfied when called through
2437 * perf_event_for_each_child or perf_event_for_each because they
2438 * hold the top-level event's child_mutex, so any descendant that
2439 * goes to exit will block in perf_event_exit_event().
2441 * When called from perf_pending_event it's OK because event->ctx
2442 * is the current context on this CPU and preemption is disabled,
2443 * hence we can't get into perf_event_task_sched_out for this context.
2445 static void _perf_event_disable(struct perf_event *event)
2447 struct perf_event_context *ctx = event->ctx;
2449 raw_spin_lock_irq(&ctx->lock);
2450 if (event->state <= PERF_EVENT_STATE_OFF) {
2451 raw_spin_unlock_irq(&ctx->lock);
2454 raw_spin_unlock_irq(&ctx->lock);
2456 event_function_call(event, __perf_event_disable, NULL);
2459 void perf_event_disable_local(struct perf_event *event)
2461 event_function_local(event, __perf_event_disable, NULL);
2465 * Strictly speaking kernel users cannot create groups and therefore this
2466 * interface does not need the perf_event_ctx_lock() magic.
2468 void perf_event_disable(struct perf_event *event)
2470 struct perf_event_context *ctx;
2472 ctx = perf_event_ctx_lock(event);
2473 _perf_event_disable(event);
2474 perf_event_ctx_unlock(event, ctx);
2476 EXPORT_SYMBOL_GPL(perf_event_disable);
2478 void perf_event_disable_inatomic(struct perf_event *event)
2480 WRITE_ONCE(event->pending_disable, smp_processor_id());
2481 /* can fail, see perf_pending_event_disable() */
2482 irq_work_queue(&event->pending);
2485 static void perf_set_shadow_time(struct perf_event *event,
2486 struct perf_event_context *ctx)
2489 * use the correct time source for the time snapshot
2491 * We could get by without this by leveraging the
2492 * fact that to get to this function, the caller
2493 * has most likely already called update_context_time()
2494 * and update_cgrp_time_xx() and thus both timestamp
2495 * are identical (or very close). Given that tstamp is,
2496 * already adjusted for cgroup, we could say that:
2497 * tstamp - ctx->timestamp
2499 * tstamp - cgrp->timestamp.
2501 * Then, in perf_output_read(), the calculation would
2502 * work with no changes because:
2503 * - event is guaranteed scheduled in
2504 * - no scheduled out in between
2505 * - thus the timestamp would be the same
2507 * But this is a bit hairy.
2509 * So instead, we have an explicit cgroup call to remain
2510 * within the time source all along. We believe it
2511 * is cleaner and simpler to understand.
2513 if (is_cgroup_event(event))
2514 perf_cgroup_set_shadow_time(event, event->tstamp);
2516 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2519 #define MAX_INTERRUPTS (~0ULL)
2521 static void perf_log_throttle(struct perf_event *event, int enable);
2522 static void perf_log_itrace_start(struct perf_event *event);
2525 event_sched_in(struct perf_event *event,
2526 struct perf_cpu_context *cpuctx,
2527 struct perf_event_context *ctx)
2531 WARN_ON_ONCE(event->ctx != ctx);
2533 lockdep_assert_held(&ctx->lock);
2535 if (event->state <= PERF_EVENT_STATE_OFF)
2538 WRITE_ONCE(event->oncpu, smp_processor_id());
2540 * Order event::oncpu write to happen before the ACTIVE state is
2541 * visible. This allows perf_event_{stop,read}() to observe the correct
2542 * ->oncpu if it sees ACTIVE.
2545 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2548 * Unthrottle events, since we scheduled we might have missed several
2549 * ticks already, also for a heavily scheduling task there is little
2550 * guarantee it'll get a tick in a timely manner.
2552 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2553 perf_log_throttle(event, 1);
2554 event->hw.interrupts = 0;
2557 perf_pmu_disable(event->pmu);
2559 perf_set_shadow_time(event, ctx);
2561 perf_log_itrace_start(event);
2563 if (event->pmu->add(event, PERF_EF_START)) {
2564 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2570 if (!is_software_event(event))
2571 cpuctx->active_oncpu++;
2572 if (!ctx->nr_active++)
2573 perf_event_ctx_activate(ctx);
2574 if (event->attr.freq && event->attr.sample_freq)
2577 if (event->attr.exclusive)
2578 cpuctx->exclusive = 1;
2581 perf_pmu_enable(event->pmu);
2587 group_sched_in(struct perf_event *group_event,
2588 struct perf_cpu_context *cpuctx,
2589 struct perf_event_context *ctx)
2591 struct perf_event *event, *partial_group = NULL;
2592 struct pmu *pmu = ctx->pmu;
2594 if (group_event->state == PERF_EVENT_STATE_OFF)
2597 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2599 if (event_sched_in(group_event, cpuctx, ctx))
2603 * Schedule in siblings as one group (if any):
2605 for_each_sibling_event(event, group_event) {
2606 if (event_sched_in(event, cpuctx, ctx)) {
2607 partial_group = event;
2612 if (!pmu->commit_txn(pmu))
2617 * Groups can be scheduled in as one unit only, so undo any
2618 * partial group before returning:
2619 * The events up to the failed event are scheduled out normally.
2621 for_each_sibling_event(event, group_event) {
2622 if (event == partial_group)
2625 event_sched_out(event, cpuctx, ctx);
2627 event_sched_out(group_event, cpuctx, ctx);
2630 pmu->cancel_txn(pmu);
2635 * Work out whether we can put this event group on the CPU now.
2637 static int group_can_go_on(struct perf_event *event,
2638 struct perf_cpu_context *cpuctx,
2642 * Groups consisting entirely of software events can always go on.
2644 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2647 * If an exclusive group is already on, no other hardware
2650 if (cpuctx->exclusive)
2653 * If this group is exclusive and there are already
2654 * events on the CPU, it can't go on.
2656 if (event->attr.exclusive && !list_empty(get_event_list(event)))
2659 * Otherwise, try to add it if all previous groups were able
2665 static void add_event_to_ctx(struct perf_event *event,
2666 struct perf_event_context *ctx)
2668 list_add_event(event, ctx);
2669 perf_group_attach(event);
2672 static void ctx_sched_out(struct perf_event_context *ctx,
2673 struct perf_cpu_context *cpuctx,
2674 enum event_type_t event_type);
2676 ctx_sched_in(struct perf_event_context *ctx,
2677 struct perf_cpu_context *cpuctx,
2678 enum event_type_t event_type,
2679 struct task_struct *task);
2681 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2682 struct perf_event_context *ctx,
2683 enum event_type_t event_type)
2685 if (!cpuctx->task_ctx)
2688 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2691 ctx_sched_out(ctx, cpuctx, event_type);
2694 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2695 struct perf_event_context *ctx,
2696 struct task_struct *task)
2698 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2700 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2701 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2703 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2707 * We want to maintain the following priority of scheduling:
2708 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2709 * - task pinned (EVENT_PINNED)
2710 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2711 * - task flexible (EVENT_FLEXIBLE).
2713 * In order to avoid unscheduling and scheduling back in everything every
2714 * time an event is added, only do it for the groups of equal priority and
2717 * This can be called after a batch operation on task events, in which case
2718 * event_type is a bit mask of the types of events involved. For CPU events,
2719 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2721 static void ctx_resched(struct perf_cpu_context *cpuctx,
2722 struct perf_event_context *task_ctx,
2723 enum event_type_t event_type)
2725 enum event_type_t ctx_event_type;
2726 bool cpu_event = !!(event_type & EVENT_CPU);
2729 * If pinned groups are involved, flexible groups also need to be
2732 if (event_type & EVENT_PINNED)
2733 event_type |= EVENT_FLEXIBLE;
2735 ctx_event_type = event_type & EVENT_ALL;
2737 perf_pmu_disable(cpuctx->ctx.pmu);
2739 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2742 * Decide which cpu ctx groups to schedule out based on the types
2743 * of events that caused rescheduling:
2744 * - EVENT_CPU: schedule out corresponding groups;
2745 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2746 * - otherwise, do nothing more.
2749 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2750 else if (ctx_event_type & EVENT_PINNED)
2751 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2753 perf_event_sched_in(cpuctx, task_ctx, current);
2754 perf_pmu_enable(cpuctx->ctx.pmu);
2757 void perf_pmu_resched(struct pmu *pmu)
2759 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2760 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2762 perf_ctx_lock(cpuctx, task_ctx);
2763 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2764 perf_ctx_unlock(cpuctx, task_ctx);
2768 * Cross CPU call to install and enable a performance event
2770 * Very similar to remote_function() + event_function() but cannot assume that
2771 * things like ctx->is_active and cpuctx->task_ctx are set.
2773 static int __perf_install_in_context(void *info)
2775 struct perf_event *event = info;
2776 struct perf_event_context *ctx = event->ctx;
2777 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2778 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2779 bool reprogram = true;
2782 raw_spin_lock(&cpuctx->ctx.lock);
2784 raw_spin_lock(&ctx->lock);
2787 reprogram = (ctx->task == current);
2790 * If the task is running, it must be running on this CPU,
2791 * otherwise we cannot reprogram things.
2793 * If its not running, we don't care, ctx->lock will
2794 * serialize against it becoming runnable.
2796 if (task_curr(ctx->task) && !reprogram) {
2801 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2802 } else if (task_ctx) {
2803 raw_spin_lock(&task_ctx->lock);
2806 #ifdef CONFIG_CGROUP_PERF
2807 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2809 * If the current cgroup doesn't match the event's
2810 * cgroup, we should not try to schedule it.
2812 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2813 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2814 event->cgrp->css.cgroup);
2819 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2820 add_event_to_ctx(event, ctx);
2821 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2823 add_event_to_ctx(event, ctx);
2827 perf_ctx_unlock(cpuctx, task_ctx);
2832 static bool exclusive_event_installable(struct perf_event *event,
2833 struct perf_event_context *ctx);
2836 * Attach a performance event to a context.
2838 * Very similar to event_function_call, see comment there.
2841 perf_install_in_context(struct perf_event_context *ctx,
2842 struct perf_event *event,
2845 struct task_struct *task = READ_ONCE(ctx->task);
2847 lockdep_assert_held(&ctx->mutex);
2849 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2851 if (event->cpu != -1)
2855 * Ensures that if we can observe event->ctx, both the event and ctx
2856 * will be 'complete'. See perf_iterate_sb_cpu().
2858 smp_store_release(&event->ctx, ctx);
2861 * perf_event_attr::disabled events will not run and can be initialized
2862 * without IPI. Except when this is the first event for the context, in
2863 * that case we need the magic of the IPI to set ctx->is_active.
2865 * The IOC_ENABLE that is sure to follow the creation of a disabled
2866 * event will issue the IPI and reprogram the hardware.
2868 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2869 raw_spin_lock_irq(&ctx->lock);
2870 if (ctx->task == TASK_TOMBSTONE) {
2871 raw_spin_unlock_irq(&ctx->lock);
2874 add_event_to_ctx(event, ctx);
2875 raw_spin_unlock_irq(&ctx->lock);
2880 cpu_function_call(cpu, __perf_install_in_context, event);
2885 * Should not happen, we validate the ctx is still alive before calling.
2887 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2891 * Installing events is tricky because we cannot rely on ctx->is_active
2892 * to be set in case this is the nr_events 0 -> 1 transition.
2894 * Instead we use task_curr(), which tells us if the task is running.
2895 * However, since we use task_curr() outside of rq::lock, we can race
2896 * against the actual state. This means the result can be wrong.
2898 * If we get a false positive, we retry, this is harmless.
2900 * If we get a false negative, things are complicated. If we are after
2901 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2902 * value must be correct. If we're before, it doesn't matter since
2903 * perf_event_context_sched_in() will program the counter.
2905 * However, this hinges on the remote context switch having observed
2906 * our task->perf_event_ctxp[] store, such that it will in fact take
2907 * ctx::lock in perf_event_context_sched_in().
2909 * We do this by task_function_call(), if the IPI fails to hit the task
2910 * we know any future context switch of task must see the
2911 * perf_event_ctpx[] store.
2915 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2916 * task_cpu() load, such that if the IPI then does not find the task
2917 * running, a future context switch of that task must observe the
2922 if (!task_function_call(task, __perf_install_in_context, event))
2925 raw_spin_lock_irq(&ctx->lock);
2927 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2929 * Cannot happen because we already checked above (which also
2930 * cannot happen), and we hold ctx->mutex, which serializes us
2931 * against perf_event_exit_task_context().
2933 raw_spin_unlock_irq(&ctx->lock);
2937 * If the task is not running, ctx->lock will avoid it becoming so,
2938 * thus we can safely install the event.
2940 if (task_curr(task)) {
2941 raw_spin_unlock_irq(&ctx->lock);
2944 add_event_to_ctx(event, ctx);
2945 raw_spin_unlock_irq(&ctx->lock);
2949 * Cross CPU call to enable a performance event
2951 static void __perf_event_enable(struct perf_event *event,
2952 struct perf_cpu_context *cpuctx,
2953 struct perf_event_context *ctx,
2956 struct perf_event *leader = event->group_leader;
2957 struct perf_event_context *task_ctx;
2959 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2960 event->state <= PERF_EVENT_STATE_ERROR)
2964 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2966 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2967 perf_cgroup_event_enable(event, ctx);
2969 if (!ctx->is_active)
2972 if (!event_filter_match(event)) {
2973 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2978 * If the event is in a group and isn't the group leader,
2979 * then don't put it on unless the group is on.
2981 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2982 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2986 task_ctx = cpuctx->task_ctx;
2988 WARN_ON_ONCE(task_ctx != ctx);
2990 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2996 * If event->ctx is a cloned context, callers must make sure that
2997 * every task struct that event->ctx->task could possibly point to
2998 * remains valid. This condition is satisfied when called through
2999 * perf_event_for_each_child or perf_event_for_each as described
3000 * for perf_event_disable.
3002 static void _perf_event_enable(struct perf_event *event)
3004 struct perf_event_context *ctx = event->ctx;
3006 raw_spin_lock_irq(&ctx->lock);
3007 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3008 event->state < PERF_EVENT_STATE_ERROR) {
3010 raw_spin_unlock_irq(&ctx->lock);
3015 * If the event is in error state, clear that first.
3017 * That way, if we see the event in error state below, we know that it
3018 * has gone back into error state, as distinct from the task having
3019 * been scheduled away before the cross-call arrived.
3021 if (event->state == PERF_EVENT_STATE_ERROR) {
3023 * Detached SIBLING events cannot leave ERROR state.
3025 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3026 event->group_leader == event)
3029 event->state = PERF_EVENT_STATE_OFF;
3031 raw_spin_unlock_irq(&ctx->lock);
3033 event_function_call(event, __perf_event_enable, NULL);
3037 * See perf_event_disable();
3039 void perf_event_enable(struct perf_event *event)
3041 struct perf_event_context *ctx;
3043 ctx = perf_event_ctx_lock(event);
3044 _perf_event_enable(event);
3045 perf_event_ctx_unlock(event, ctx);
3047 EXPORT_SYMBOL_GPL(perf_event_enable);
3049 struct stop_event_data {
3050 struct perf_event *event;
3051 unsigned int restart;
3054 static int __perf_event_stop(void *info)
3056 struct stop_event_data *sd = info;
3057 struct perf_event *event = sd->event;
3059 /* if it's already INACTIVE, do nothing */
3060 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3063 /* matches smp_wmb() in event_sched_in() */
3067 * There is a window with interrupts enabled before we get here,
3068 * so we need to check again lest we try to stop another CPU's event.
3070 if (READ_ONCE(event->oncpu) != smp_processor_id())
3073 event->pmu->stop(event, PERF_EF_UPDATE);
3076 * May race with the actual stop (through perf_pmu_output_stop()),
3077 * but it is only used for events with AUX ring buffer, and such
3078 * events will refuse to restart because of rb::aux_mmap_count==0,
3079 * see comments in perf_aux_output_begin().
3081 * Since this is happening on an event-local CPU, no trace is lost
3085 event->pmu->start(event, 0);
3090 static int perf_event_stop(struct perf_event *event, int restart)
3092 struct stop_event_data sd = {
3099 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3102 /* matches smp_wmb() in event_sched_in() */
3106 * We only want to restart ACTIVE events, so if the event goes
3107 * inactive here (event->oncpu==-1), there's nothing more to do;
3108 * fall through with ret==-ENXIO.
3110 ret = cpu_function_call(READ_ONCE(event->oncpu),
3111 __perf_event_stop, &sd);
3112 } while (ret == -EAGAIN);
3118 * In order to contain the amount of racy and tricky in the address filter
3119 * configuration management, it is a two part process:
3121 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3122 * we update the addresses of corresponding vmas in
3123 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3124 * (p2) when an event is scheduled in (pmu::add), it calls
3125 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3126 * if the generation has changed since the previous call.
3128 * If (p1) happens while the event is active, we restart it to force (p2).
3130 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3131 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3133 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3134 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3136 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3139 void perf_event_addr_filters_sync(struct perf_event *event)
3141 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3143 if (!has_addr_filter(event))
3146 raw_spin_lock(&ifh->lock);
3147 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3148 event->pmu->addr_filters_sync(event);
3149 event->hw.addr_filters_gen = event->addr_filters_gen;
3151 raw_spin_unlock(&ifh->lock);
3153 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3155 static int _perf_event_refresh(struct perf_event *event, int refresh)
3158 * not supported on inherited events
3160 if (event->attr.inherit || !is_sampling_event(event))
3163 atomic_add(refresh, &event->event_limit);
3164 _perf_event_enable(event);
3170 * See perf_event_disable()
3172 int perf_event_refresh(struct perf_event *event, int refresh)
3174 struct perf_event_context *ctx;
3177 ctx = perf_event_ctx_lock(event);
3178 ret = _perf_event_refresh(event, refresh);
3179 perf_event_ctx_unlock(event, ctx);
3183 EXPORT_SYMBOL_GPL(perf_event_refresh);
3185 static int perf_event_modify_breakpoint(struct perf_event *bp,
3186 struct perf_event_attr *attr)
3190 _perf_event_disable(bp);
3192 err = modify_user_hw_breakpoint_check(bp, attr, true);
3194 if (!bp->attr.disabled)
3195 _perf_event_enable(bp);
3200 static int perf_event_modify_attr(struct perf_event *event,
3201 struct perf_event_attr *attr)
3203 int (*func)(struct perf_event *, struct perf_event_attr *);
3204 struct perf_event *child;
3207 if (event->attr.type != attr->type)
3210 switch (event->attr.type) {
3211 case PERF_TYPE_BREAKPOINT:
3212 func = perf_event_modify_breakpoint;
3215 /* Place holder for future additions. */
3219 WARN_ON_ONCE(event->ctx->parent_ctx);
3221 mutex_lock(&event->child_mutex);
3222 err = func(event, attr);
3225 list_for_each_entry(child, &event->child_list, child_list) {
3226 err = func(child, attr);
3231 mutex_unlock(&event->child_mutex);
3235 static void ctx_sched_out(struct perf_event_context *ctx,
3236 struct perf_cpu_context *cpuctx,
3237 enum event_type_t event_type)
3239 struct perf_event *event, *tmp;
3240 int is_active = ctx->is_active;
3242 lockdep_assert_held(&ctx->lock);
3244 if (likely(!ctx->nr_events)) {
3246 * See __perf_remove_from_context().
3248 WARN_ON_ONCE(ctx->is_active);
3250 WARN_ON_ONCE(cpuctx->task_ctx);
3254 ctx->is_active &= ~event_type;
3255 if (!(ctx->is_active & EVENT_ALL))
3259 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3260 if (!ctx->is_active)
3261 cpuctx->task_ctx = NULL;
3265 * Always update time if it was set; not only when it changes.
3266 * Otherwise we can 'forget' to update time for any but the last
3267 * context we sched out. For example:
3269 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3270 * ctx_sched_out(.event_type = EVENT_PINNED)
3272 * would only update time for the pinned events.
3274 if (is_active & EVENT_TIME) {
3275 /* update (and stop) ctx time */
3276 update_context_time(ctx);
3277 update_cgrp_time_from_cpuctx(cpuctx);
3280 is_active ^= ctx->is_active; /* changed bits */
3282 if (!ctx->nr_active || !(is_active & EVENT_ALL))
3285 perf_pmu_disable(ctx->pmu);
3286 if (is_active & EVENT_PINNED) {
3287 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3288 group_sched_out(event, cpuctx, ctx);
3291 if (is_active & EVENT_FLEXIBLE) {
3292 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3293 group_sched_out(event, cpuctx, ctx);
3296 * Since we cleared EVENT_FLEXIBLE, also clear
3297 * rotate_necessary, is will be reset by
3298 * ctx_flexible_sched_in() when needed.
3300 ctx->rotate_necessary = 0;
3302 perf_pmu_enable(ctx->pmu);
3306 * Test whether two contexts are equivalent, i.e. whether they have both been
3307 * cloned from the same version of the same context.
3309 * Equivalence is measured using a generation number in the context that is
3310 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3311 * and list_del_event().
3313 static int context_equiv(struct perf_event_context *ctx1,
3314 struct perf_event_context *ctx2)
3316 lockdep_assert_held(&ctx1->lock);
3317 lockdep_assert_held(&ctx2->lock);
3319 /* Pinning disables the swap optimization */
3320 if (ctx1->pin_count || ctx2->pin_count)
3323 /* If ctx1 is the parent of ctx2 */
3324 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3327 /* If ctx2 is the parent of ctx1 */
3328 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3332 * If ctx1 and ctx2 have the same parent; we flatten the parent
3333 * hierarchy, see perf_event_init_context().
3335 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3336 ctx1->parent_gen == ctx2->parent_gen)
3343 static void __perf_event_sync_stat(struct perf_event *event,
3344 struct perf_event *next_event)
3348 if (!event->attr.inherit_stat)
3352 * Update the event value, we cannot use perf_event_read()
3353 * because we're in the middle of a context switch and have IRQs
3354 * disabled, which upsets smp_call_function_single(), however
3355 * we know the event must be on the current CPU, therefore we
3356 * don't need to use it.
3358 if (event->state == PERF_EVENT_STATE_ACTIVE)
3359 event->pmu->read(event);
3361 perf_event_update_time(event);
3364 * In order to keep per-task stats reliable we need to flip the event
3365 * values when we flip the contexts.
3367 value = local64_read(&next_event->count);
3368 value = local64_xchg(&event->count, value);
3369 local64_set(&next_event->count, value);
3371 swap(event->total_time_enabled, next_event->total_time_enabled);
3372 swap(event->total_time_running, next_event->total_time_running);
3375 * Since we swizzled the values, update the user visible data too.
3377 perf_event_update_userpage(event);
3378 perf_event_update_userpage(next_event);
3381 static void perf_event_sync_stat(struct perf_event_context *ctx,
3382 struct perf_event_context *next_ctx)
3384 struct perf_event *event, *next_event;
3389 update_context_time(ctx);
3391 event = list_first_entry(&ctx->event_list,
3392 struct perf_event, event_entry);
3394 next_event = list_first_entry(&next_ctx->event_list,
3395 struct perf_event, event_entry);
3397 while (&event->event_entry != &ctx->event_list &&
3398 &next_event->event_entry != &next_ctx->event_list) {
3400 __perf_event_sync_stat(event, next_event);
3402 event = list_next_entry(event, event_entry);
3403 next_event = list_next_entry(next_event, event_entry);
3407 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3408 struct task_struct *next)
3410 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3411 struct perf_event_context *next_ctx;
3412 struct perf_event_context *parent, *next_parent;
3413 struct perf_cpu_context *cpuctx;
3421 cpuctx = __get_cpu_context(ctx);
3422 if (!cpuctx->task_ctx)
3426 next_ctx = next->perf_event_ctxp[ctxn];
3430 parent = rcu_dereference(ctx->parent_ctx);
3431 next_parent = rcu_dereference(next_ctx->parent_ctx);
3433 /* If neither context have a parent context; they cannot be clones. */
3434 if (!parent && !next_parent)
3437 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3439 * Looks like the two contexts are clones, so we might be
3440 * able to optimize the context switch. We lock both
3441 * contexts and check that they are clones under the
3442 * lock (including re-checking that neither has been
3443 * uncloned in the meantime). It doesn't matter which
3444 * order we take the locks because no other cpu could
3445 * be trying to lock both of these tasks.
3447 raw_spin_lock(&ctx->lock);
3448 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3449 if (context_equiv(ctx, next_ctx)) {
3451 WRITE_ONCE(ctx->task, next);
3452 WRITE_ONCE(next_ctx->task, task);
3454 perf_pmu_disable(pmu);
3456 if (cpuctx->sched_cb_usage && pmu->sched_task)
3457 pmu->sched_task(ctx, false);
3460 * PMU specific parts of task perf context can require
3461 * additional synchronization. As an example of such
3462 * synchronization see implementation details of Intel
3463 * LBR call stack data profiling;
3465 if (pmu->swap_task_ctx)
3466 pmu->swap_task_ctx(ctx, next_ctx);
3468 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3470 perf_pmu_enable(pmu);
3473 * RCU_INIT_POINTER here is safe because we've not
3474 * modified the ctx and the above modification of
3475 * ctx->task and ctx->task_ctx_data are immaterial
3476 * since those values are always verified under
3477 * ctx->lock which we're now holding.
3479 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3480 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3484 perf_event_sync_stat(ctx, next_ctx);
3486 raw_spin_unlock(&next_ctx->lock);
3487 raw_spin_unlock(&ctx->lock);
3493 raw_spin_lock(&ctx->lock);
3494 perf_pmu_disable(pmu);
3496 if (cpuctx->sched_cb_usage && pmu->sched_task)
3497 pmu->sched_task(ctx, false);
3498 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3500 perf_pmu_enable(pmu);
3501 raw_spin_unlock(&ctx->lock);
3505 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3507 void perf_sched_cb_dec(struct pmu *pmu)
3509 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3511 this_cpu_dec(perf_sched_cb_usages);
3513 if (!--cpuctx->sched_cb_usage)
3514 list_del(&cpuctx->sched_cb_entry);
3518 void perf_sched_cb_inc(struct pmu *pmu)
3520 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3522 if (!cpuctx->sched_cb_usage++)
3523 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3525 this_cpu_inc(perf_sched_cb_usages);
3529 * This function provides the context switch callback to the lower code
3530 * layer. It is invoked ONLY when the context switch callback is enabled.
3532 * This callback is relevant even to per-cpu events; for example multi event
3533 * PEBS requires this to provide PID/TID information. This requires we flush
3534 * all queued PEBS records before we context switch to a new task.
3536 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3540 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3542 if (WARN_ON_ONCE(!pmu->sched_task))
3545 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3546 perf_pmu_disable(pmu);
3548 pmu->sched_task(cpuctx->task_ctx, sched_in);
3550 perf_pmu_enable(pmu);
3551 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3554 static void perf_pmu_sched_task(struct task_struct *prev,
3555 struct task_struct *next,
3558 struct perf_cpu_context *cpuctx;
3563 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3564 /* will be handled in perf_event_context_sched_in/out */
3565 if (cpuctx->task_ctx)
3568 __perf_pmu_sched_task(cpuctx, sched_in);
3572 static void perf_event_switch(struct task_struct *task,
3573 struct task_struct *next_prev, bool sched_in);
3575 #define for_each_task_context_nr(ctxn) \
3576 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3579 * Called from scheduler to remove the events of the current task,
3580 * with interrupts disabled.
3582 * We stop each event and update the event value in event->count.
3584 * This does not protect us against NMI, but disable()
3585 * sets the disabled bit in the control field of event _before_
3586 * accessing the event control register. If a NMI hits, then it will
3587 * not restart the event.
3589 void __perf_event_task_sched_out(struct task_struct *task,
3590 struct task_struct *next)
3594 if (__this_cpu_read(perf_sched_cb_usages))
3595 perf_pmu_sched_task(task, next, false);
3597 if (atomic_read(&nr_switch_events))
3598 perf_event_switch(task, next, false);
3600 for_each_task_context_nr(ctxn)
3601 perf_event_context_sched_out(task, ctxn, next);
3604 * if cgroup events exist on this CPU, then we need
3605 * to check if we have to switch out PMU state.
3606 * cgroup event are system-wide mode only
3608 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3609 perf_cgroup_sched_out(task, next);
3613 * Called with IRQs disabled
3615 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3616 enum event_type_t event_type)
3618 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3621 static bool perf_less_group_idx(const void *l, const void *r)
3623 const struct perf_event *le = *(const struct perf_event **)l;
3624 const struct perf_event *re = *(const struct perf_event **)r;
3626 return le->group_index < re->group_index;
3629 static void swap_ptr(void *l, void *r)
3631 void **lp = l, **rp = r;
3636 static const struct min_heap_callbacks perf_min_heap = {
3637 .elem_size = sizeof(struct perf_event *),
3638 .less = perf_less_group_idx,
3642 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3644 struct perf_event **itrs = heap->data;
3647 itrs[heap->nr] = event;
3652 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3653 struct perf_event_groups *groups, int cpu,
3654 int (*func)(struct perf_event *, void *),
3657 #ifdef CONFIG_CGROUP_PERF
3658 struct cgroup_subsys_state *css = NULL;
3660 /* Space for per CPU and/or any CPU event iterators. */
3661 struct perf_event *itrs[2];
3662 struct min_heap event_heap;
3663 struct perf_event **evt;
3667 event_heap = (struct min_heap){
3668 .data = cpuctx->heap,
3670 .size = cpuctx->heap_size,
3673 lockdep_assert_held(&cpuctx->ctx.lock);
3675 #ifdef CONFIG_CGROUP_PERF
3677 css = &cpuctx->cgrp->css;
3680 event_heap = (struct min_heap){
3683 .size = ARRAY_SIZE(itrs),
3685 /* Events not within a CPU context may be on any CPU. */
3686 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3688 evt = event_heap.data;
3690 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3692 #ifdef CONFIG_CGROUP_PERF
3693 for (; css; css = css->parent)
3694 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3697 min_heapify_all(&event_heap, &perf_min_heap);
3699 while (event_heap.nr) {
3700 ret = func(*evt, data);
3704 *evt = perf_event_groups_next(*evt);
3706 min_heapify(&event_heap, 0, &perf_min_heap);
3708 min_heap_pop(&event_heap, &perf_min_heap);
3714 static int merge_sched_in(struct perf_event *event, void *data)
3716 struct perf_event_context *ctx = event->ctx;
3717 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3718 int *can_add_hw = data;
3720 if (event->state <= PERF_EVENT_STATE_OFF)
3723 if (!event_filter_match(event))
3726 if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3727 if (!group_sched_in(event, cpuctx, ctx))
3728 list_add_tail(&event->active_list, get_event_list(event));
3731 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3732 if (event->attr.pinned) {
3733 perf_cgroup_event_disable(event, ctx);
3734 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3738 ctx->rotate_necessary = 1;
3739 perf_mux_hrtimer_restart(cpuctx);
3746 ctx_pinned_sched_in(struct perf_event_context *ctx,
3747 struct perf_cpu_context *cpuctx)
3751 if (ctx != &cpuctx->ctx)
3754 visit_groups_merge(cpuctx, &ctx->pinned_groups,
3756 merge_sched_in, &can_add_hw);
3760 ctx_flexible_sched_in(struct perf_event_context *ctx,
3761 struct perf_cpu_context *cpuctx)
3765 if (ctx != &cpuctx->ctx)
3768 visit_groups_merge(cpuctx, &ctx->flexible_groups,
3770 merge_sched_in, &can_add_hw);
3774 ctx_sched_in(struct perf_event_context *ctx,
3775 struct perf_cpu_context *cpuctx,
3776 enum event_type_t event_type,
3777 struct task_struct *task)
3779 int is_active = ctx->is_active;
3782 lockdep_assert_held(&ctx->lock);
3784 if (likely(!ctx->nr_events))
3787 ctx->is_active |= (event_type | EVENT_TIME);
3790 cpuctx->task_ctx = ctx;
3792 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3795 is_active ^= ctx->is_active; /* changed bits */
3797 if (is_active & EVENT_TIME) {
3798 /* start ctx time */
3800 ctx->timestamp = now;
3801 perf_cgroup_set_timestamp(task, ctx);
3805 * First go through the list and put on any pinned groups
3806 * in order to give them the best chance of going on.
3808 if (is_active & EVENT_PINNED)
3809 ctx_pinned_sched_in(ctx, cpuctx);
3811 /* Then walk through the lower prio flexible groups */
3812 if (is_active & EVENT_FLEXIBLE)
3813 ctx_flexible_sched_in(ctx, cpuctx);
3816 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3817 enum event_type_t event_type,
3818 struct task_struct *task)
3820 struct perf_event_context *ctx = &cpuctx->ctx;
3822 ctx_sched_in(ctx, cpuctx, event_type, task);
3825 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3826 struct task_struct *task)
3828 struct perf_cpu_context *cpuctx;
3829 struct pmu *pmu = ctx->pmu;
3831 cpuctx = __get_cpu_context(ctx);
3832 if (cpuctx->task_ctx == ctx) {
3833 if (cpuctx->sched_cb_usage)
3834 __perf_pmu_sched_task(cpuctx, true);
3838 perf_ctx_lock(cpuctx, ctx);
3840 * We must check ctx->nr_events while holding ctx->lock, such
3841 * that we serialize against perf_install_in_context().
3843 if (!ctx->nr_events)
3846 perf_pmu_disable(pmu);
3848 * We want to keep the following priority order:
3849 * cpu pinned (that don't need to move), task pinned,
3850 * cpu flexible, task flexible.
3852 * However, if task's ctx is not carrying any pinned
3853 * events, no need to flip the cpuctx's events around.
3855 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3856 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3857 perf_event_sched_in(cpuctx, ctx, task);
3859 if (cpuctx->sched_cb_usage && pmu->sched_task)
3860 pmu->sched_task(cpuctx->task_ctx, true);
3862 perf_pmu_enable(pmu);
3865 perf_ctx_unlock(cpuctx, ctx);
3869 * Called from scheduler to add the events of the current task
3870 * with interrupts disabled.
3872 * We restore the event value and then enable it.
3874 * This does not protect us against NMI, but enable()
3875 * sets the enabled bit in the control field of event _before_
3876 * accessing the event control register. If a NMI hits, then it will
3877 * keep the event running.
3879 void __perf_event_task_sched_in(struct task_struct *prev,
3880 struct task_struct *task)
3882 struct perf_event_context *ctx;
3886 * If cgroup events exist on this CPU, then we need to check if we have
3887 * to switch in PMU state; cgroup event are system-wide mode only.
3889 * Since cgroup events are CPU events, we must schedule these in before
3890 * we schedule in the task events.
3892 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3893 perf_cgroup_sched_in(prev, task);
3895 for_each_task_context_nr(ctxn) {
3896 ctx = task->perf_event_ctxp[ctxn];
3900 perf_event_context_sched_in(ctx, task);
3903 if (atomic_read(&nr_switch_events))
3904 perf_event_switch(task, prev, true);
3906 if (__this_cpu_read(perf_sched_cb_usages))
3907 perf_pmu_sched_task(prev, task, true);
3910 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3912 u64 frequency = event->attr.sample_freq;
3913 u64 sec = NSEC_PER_SEC;
3914 u64 divisor, dividend;
3916 int count_fls, nsec_fls, frequency_fls, sec_fls;
3918 count_fls = fls64(count);
3919 nsec_fls = fls64(nsec);
3920 frequency_fls = fls64(frequency);
3924 * We got @count in @nsec, with a target of sample_freq HZ
3925 * the target period becomes:
3928 * period = -------------------
3929 * @nsec * sample_freq
3934 * Reduce accuracy by one bit such that @a and @b converge
3935 * to a similar magnitude.
3937 #define REDUCE_FLS(a, b) \
3939 if (a##_fls > b##_fls) { \
3949 * Reduce accuracy until either term fits in a u64, then proceed with
3950 * the other, so that finally we can do a u64/u64 division.
3952 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3953 REDUCE_FLS(nsec, frequency);
3954 REDUCE_FLS(sec, count);
3957 if (count_fls + sec_fls > 64) {
3958 divisor = nsec * frequency;
3960 while (count_fls + sec_fls > 64) {
3961 REDUCE_FLS(count, sec);
3965 dividend = count * sec;
3967 dividend = count * sec;
3969 while (nsec_fls + frequency_fls > 64) {
3970 REDUCE_FLS(nsec, frequency);
3974 divisor = nsec * frequency;
3980 return div64_u64(dividend, divisor);
3983 static DEFINE_PER_CPU(int, perf_throttled_count);
3984 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3986 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3988 struct hw_perf_event *hwc = &event->hw;
3989 s64 period, sample_period;
3992 period = perf_calculate_period(event, nsec, count);
3994 delta = (s64)(period - hwc->sample_period);
3995 delta = (delta + 7) / 8; /* low pass filter */
3997 sample_period = hwc->sample_period + delta;
4002 hwc->sample_period = sample_period;
4004 if (local64_read(&hwc->period_left) > 8*sample_period) {
4006 event->pmu->stop(event, PERF_EF_UPDATE);
4008 local64_set(&hwc->period_left, 0);
4011 event->pmu->start(event, PERF_EF_RELOAD);
4016 * combine freq adjustment with unthrottling to avoid two passes over the
4017 * events. At the same time, make sure, having freq events does not change
4018 * the rate of unthrottling as that would introduce bias.
4020 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4023 struct perf_event *event;
4024 struct hw_perf_event *hwc;
4025 u64 now, period = TICK_NSEC;
4029 * only need to iterate over all events iff:
4030 * - context have events in frequency mode (needs freq adjust)
4031 * - there are events to unthrottle on this cpu
4033 if (!(ctx->nr_freq || needs_unthr))
4036 raw_spin_lock(&ctx->lock);
4037 perf_pmu_disable(ctx->pmu);
4039 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4040 if (event->state != PERF_EVENT_STATE_ACTIVE)
4043 if (!event_filter_match(event))
4046 perf_pmu_disable(event->pmu);
4050 if (hwc->interrupts == MAX_INTERRUPTS) {
4051 hwc->interrupts = 0;
4052 perf_log_throttle(event, 1);
4053 event->pmu->start(event, 0);
4056 if (!event->attr.freq || !event->attr.sample_freq)
4060 * stop the event and update event->count
4062 event->pmu->stop(event, PERF_EF_UPDATE);
4064 now = local64_read(&event->count);
4065 delta = now - hwc->freq_count_stamp;
4066 hwc->freq_count_stamp = now;
4070 * reload only if value has changed
4071 * we have stopped the event so tell that
4072 * to perf_adjust_period() to avoid stopping it
4076 perf_adjust_period(event, period, delta, false);
4078 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4080 perf_pmu_enable(event->pmu);
4083 perf_pmu_enable(ctx->pmu);
4084 raw_spin_unlock(&ctx->lock);
4088 * Move @event to the tail of the @ctx's elegible events.
4090 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4093 * Rotate the first entry last of non-pinned groups. Rotation might be
4094 * disabled by the inheritance code.
4096 if (ctx->rotate_disable)
4099 perf_event_groups_delete(&ctx->flexible_groups, event);
4100 perf_event_groups_insert(&ctx->flexible_groups, event);
4103 /* pick an event from the flexible_groups to rotate */
4104 static inline struct perf_event *
4105 ctx_event_to_rotate(struct perf_event_context *ctx)
4107 struct perf_event *event;
4109 /* pick the first active flexible event */
4110 event = list_first_entry_or_null(&ctx->flexible_active,
4111 struct perf_event, active_list);
4113 /* if no active flexible event, pick the first event */
4115 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4116 typeof(*event), group_node);
4120 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4121 * finds there are unschedulable events, it will set it again.
4123 ctx->rotate_necessary = 0;
4128 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4130 struct perf_event *cpu_event = NULL, *task_event = NULL;
4131 struct perf_event_context *task_ctx = NULL;
4132 int cpu_rotate, task_rotate;
4135 * Since we run this from IRQ context, nobody can install new
4136 * events, thus the event count values are stable.
4139 cpu_rotate = cpuctx->ctx.rotate_necessary;
4140 task_ctx = cpuctx->task_ctx;
4141 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4143 if (!(cpu_rotate || task_rotate))
4146 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4147 perf_pmu_disable(cpuctx->ctx.pmu);
4150 task_event = ctx_event_to_rotate(task_ctx);
4152 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4155 * As per the order given at ctx_resched() first 'pop' task flexible
4156 * and then, if needed CPU flexible.
4158 if (task_event || (task_ctx && cpu_event))
4159 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4161 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4164 rotate_ctx(task_ctx, task_event);
4166 rotate_ctx(&cpuctx->ctx, cpu_event);
4168 perf_event_sched_in(cpuctx, task_ctx, current);
4170 perf_pmu_enable(cpuctx->ctx.pmu);
4171 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4176 void perf_event_task_tick(void)
4178 struct list_head *head = this_cpu_ptr(&active_ctx_list);
4179 struct perf_event_context *ctx, *tmp;
4182 lockdep_assert_irqs_disabled();
4184 __this_cpu_inc(perf_throttled_seq);
4185 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4186 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4188 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4189 perf_adjust_freq_unthr_context(ctx, throttled);
4192 static int event_enable_on_exec(struct perf_event *event,
4193 struct perf_event_context *ctx)
4195 if (!event->attr.enable_on_exec)
4198 event->attr.enable_on_exec = 0;
4199 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4202 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4208 * Enable all of a task's events that have been marked enable-on-exec.
4209 * This expects task == current.
4211 static void perf_event_enable_on_exec(int ctxn)
4213 struct perf_event_context *ctx, *clone_ctx = NULL;
4214 enum event_type_t event_type = 0;
4215 struct perf_cpu_context *cpuctx;
4216 struct perf_event *event;
4217 unsigned long flags;
4220 local_irq_save(flags);
4221 ctx = current->perf_event_ctxp[ctxn];
4222 if (!ctx || !ctx->nr_events)
4225 cpuctx = __get_cpu_context(ctx);
4226 perf_ctx_lock(cpuctx, ctx);
4227 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4228 list_for_each_entry(event, &ctx->event_list, event_entry) {
4229 enabled |= event_enable_on_exec(event, ctx);
4230 event_type |= get_event_type(event);
4234 * Unclone and reschedule this context if we enabled any event.
4237 clone_ctx = unclone_ctx(ctx);
4238 ctx_resched(cpuctx, ctx, event_type);
4240 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4242 perf_ctx_unlock(cpuctx, ctx);
4245 local_irq_restore(flags);
4251 static void perf_remove_from_owner(struct perf_event *event);
4252 static void perf_event_exit_event(struct perf_event *event,
4253 struct perf_event_context *ctx);
4256 * Removes all events from the current task that have been marked
4257 * remove-on-exec, and feeds their values back to parent events.
4259 static void perf_event_remove_on_exec(int ctxn)
4261 struct perf_event_context *ctx, *clone_ctx = NULL;
4262 struct perf_event *event, *next;
4263 LIST_HEAD(free_list);
4264 unsigned long flags;
4265 bool modified = false;
4267 ctx = perf_pin_task_context(current, ctxn);
4271 mutex_lock(&ctx->mutex);
4273 if (WARN_ON_ONCE(ctx->task != current))
4276 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4277 if (!event->attr.remove_on_exec)
4280 if (!is_kernel_event(event))
4281 perf_remove_from_owner(event);
4285 perf_event_exit_event(event, ctx);
4288 raw_spin_lock_irqsave(&ctx->lock, flags);
4290 clone_ctx = unclone_ctx(ctx);
4292 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4295 mutex_unlock(&ctx->mutex);
4302 struct perf_read_data {
4303 struct perf_event *event;
4308 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4310 u16 local_pkg, event_pkg;
4312 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4313 int local_cpu = smp_processor_id();
4315 event_pkg = topology_physical_package_id(event_cpu);
4316 local_pkg = topology_physical_package_id(local_cpu);
4318 if (event_pkg == local_pkg)
4326 * Cross CPU call to read the hardware event
4328 static void __perf_event_read(void *info)
4330 struct perf_read_data *data = info;
4331 struct perf_event *sub, *event = data->event;
4332 struct perf_event_context *ctx = event->ctx;
4333 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4334 struct pmu *pmu = event->pmu;
4337 * If this is a task context, we need to check whether it is
4338 * the current task context of this cpu. If not it has been
4339 * scheduled out before the smp call arrived. In that case
4340 * event->count would have been updated to a recent sample
4341 * when the event was scheduled out.
4343 if (ctx->task && cpuctx->task_ctx != ctx)
4346 raw_spin_lock(&ctx->lock);
4347 if (ctx->is_active & EVENT_TIME) {
4348 update_context_time(ctx);
4349 update_cgrp_time_from_event(event);
4352 perf_event_update_time(event);
4354 perf_event_update_sibling_time(event);
4356 if (event->state != PERF_EVENT_STATE_ACTIVE)
4365 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4369 for_each_sibling_event(sub, event) {
4370 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4372 * Use sibling's PMU rather than @event's since
4373 * sibling could be on different (eg: software) PMU.
4375 sub->pmu->read(sub);
4379 data->ret = pmu->commit_txn(pmu);
4382 raw_spin_unlock(&ctx->lock);
4385 static inline u64 perf_event_count(struct perf_event *event)
4387 return local64_read(&event->count) + atomic64_read(&event->child_count);
4391 * NMI-safe method to read a local event, that is an event that
4393 * - either for the current task, or for this CPU
4394 * - does not have inherit set, for inherited task events
4395 * will not be local and we cannot read them atomically
4396 * - must not have a pmu::count method
4398 int perf_event_read_local(struct perf_event *event, u64 *value,
4399 u64 *enabled, u64 *running)
4401 unsigned long flags;
4405 * Disabling interrupts avoids all counter scheduling (context
4406 * switches, timer based rotation and IPIs).
4408 local_irq_save(flags);
4411 * It must not be an event with inherit set, we cannot read
4412 * all child counters from atomic context.
4414 if (event->attr.inherit) {
4419 /* If this is a per-task event, it must be for current */
4420 if ((event->attach_state & PERF_ATTACH_TASK) &&
4421 event->hw.target != current) {
4426 /* If this is a per-CPU event, it must be for this CPU */
4427 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4428 event->cpu != smp_processor_id()) {
4433 /* If this is a pinned event it must be running on this CPU */
4434 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4440 * If the event is currently on this CPU, its either a per-task event,
4441 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4444 if (event->oncpu == smp_processor_id())
4445 event->pmu->read(event);
4447 *value = local64_read(&event->count);
4448 if (enabled || running) {
4449 u64 now = event->shadow_ctx_time + perf_clock();
4450 u64 __enabled, __running;
4452 __perf_update_times(event, now, &__enabled, &__running);
4454 *enabled = __enabled;
4456 *running = __running;
4459 local_irq_restore(flags);
4464 static int perf_event_read(struct perf_event *event, bool group)
4466 enum perf_event_state state = READ_ONCE(event->state);
4467 int event_cpu, ret = 0;
4470 * If event is enabled and currently active on a CPU, update the
4471 * value in the event structure:
4474 if (state == PERF_EVENT_STATE_ACTIVE) {
4475 struct perf_read_data data;
4478 * Orders the ->state and ->oncpu loads such that if we see
4479 * ACTIVE we must also see the right ->oncpu.
4481 * Matches the smp_wmb() from event_sched_in().
4485 event_cpu = READ_ONCE(event->oncpu);
4486 if ((unsigned)event_cpu >= nr_cpu_ids)
4489 data = (struct perf_read_data){
4496 event_cpu = __perf_event_read_cpu(event, event_cpu);
4499 * Purposely ignore the smp_call_function_single() return
4502 * If event_cpu isn't a valid CPU it means the event got
4503 * scheduled out and that will have updated the event count.
4505 * Therefore, either way, we'll have an up-to-date event count
4508 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4512 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4513 struct perf_event_context *ctx = event->ctx;
4514 unsigned long flags;
4516 raw_spin_lock_irqsave(&ctx->lock, flags);
4517 state = event->state;
4518 if (state != PERF_EVENT_STATE_INACTIVE) {
4519 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4524 * May read while context is not active (e.g., thread is
4525 * blocked), in that case we cannot update context time
4527 if (ctx->is_active & EVENT_TIME) {
4528 update_context_time(ctx);
4529 update_cgrp_time_from_event(event);
4532 perf_event_update_time(event);
4534 perf_event_update_sibling_time(event);
4535 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4542 * Initialize the perf_event context in a task_struct:
4544 static void __perf_event_init_context(struct perf_event_context *ctx)
4546 raw_spin_lock_init(&ctx->lock);
4547 mutex_init(&ctx->mutex);
4548 INIT_LIST_HEAD(&ctx->active_ctx_list);
4549 perf_event_groups_init(&ctx->pinned_groups);
4550 perf_event_groups_init(&ctx->flexible_groups);
4551 INIT_LIST_HEAD(&ctx->event_list);
4552 INIT_LIST_HEAD(&ctx->pinned_active);
4553 INIT_LIST_HEAD(&ctx->flexible_active);
4554 refcount_set(&ctx->refcount, 1);
4557 static struct perf_event_context *
4558 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4560 struct perf_event_context *ctx;
4562 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4566 __perf_event_init_context(ctx);
4568 ctx->task = get_task_struct(task);
4574 static struct task_struct *
4575 find_lively_task_by_vpid(pid_t vpid)
4577 struct task_struct *task;
4583 task = find_task_by_vpid(vpid);
4585 get_task_struct(task);
4589 return ERR_PTR(-ESRCH);
4595 * Returns a matching context with refcount and pincount.
4597 static struct perf_event_context *
4598 find_get_context(struct pmu *pmu, struct task_struct *task,
4599 struct perf_event *event)
4601 struct perf_event_context *ctx, *clone_ctx = NULL;
4602 struct perf_cpu_context *cpuctx;
4603 void *task_ctx_data = NULL;
4604 unsigned long flags;
4606 int cpu = event->cpu;
4609 /* Must be root to operate on a CPU event: */
4610 err = perf_allow_cpu(&event->attr);
4612 return ERR_PTR(err);
4614 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4623 ctxn = pmu->task_ctx_nr;
4627 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4628 task_ctx_data = alloc_task_ctx_data(pmu);
4629 if (!task_ctx_data) {
4636 ctx = perf_lock_task_context(task, ctxn, &flags);
4638 clone_ctx = unclone_ctx(ctx);
4641 if (task_ctx_data && !ctx->task_ctx_data) {
4642 ctx->task_ctx_data = task_ctx_data;
4643 task_ctx_data = NULL;
4645 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4650 ctx = alloc_perf_context(pmu, task);
4655 if (task_ctx_data) {
4656 ctx->task_ctx_data = task_ctx_data;
4657 task_ctx_data = NULL;
4661 mutex_lock(&task->perf_event_mutex);
4663 * If it has already passed perf_event_exit_task().
4664 * we must see PF_EXITING, it takes this mutex too.
4666 if (task->flags & PF_EXITING)
4668 else if (task->perf_event_ctxp[ctxn])
4673 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4675 mutex_unlock(&task->perf_event_mutex);
4677 if (unlikely(err)) {
4686 free_task_ctx_data(pmu, task_ctx_data);
4690 free_task_ctx_data(pmu, task_ctx_data);
4691 return ERR_PTR(err);
4694 static void perf_event_free_filter(struct perf_event *event);
4695 static void perf_event_free_bpf_prog(struct perf_event *event);
4697 static void free_event_rcu(struct rcu_head *head)
4699 struct perf_event *event;
4701 event = container_of(head, struct perf_event, rcu_head);
4703 put_pid_ns(event->ns);
4704 perf_event_free_filter(event);
4705 kmem_cache_free(perf_event_cache, event);
4708 static void ring_buffer_attach(struct perf_event *event,
4709 struct perf_buffer *rb);
4711 static void detach_sb_event(struct perf_event *event)
4713 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4715 raw_spin_lock(&pel->lock);
4716 list_del_rcu(&event->sb_list);
4717 raw_spin_unlock(&pel->lock);
4720 static bool is_sb_event(struct perf_event *event)
4722 struct perf_event_attr *attr = &event->attr;
4727 if (event->attach_state & PERF_ATTACH_TASK)
4730 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4731 attr->comm || attr->comm_exec ||
4732 attr->task || attr->ksymbol ||
4733 attr->context_switch || attr->text_poke ||
4739 static void unaccount_pmu_sb_event(struct perf_event *event)
4741 if (is_sb_event(event))
4742 detach_sb_event(event);
4745 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4750 if (is_cgroup_event(event))
4751 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4754 #ifdef CONFIG_NO_HZ_FULL
4755 static DEFINE_SPINLOCK(nr_freq_lock);
4758 static void unaccount_freq_event_nohz(void)
4760 #ifdef CONFIG_NO_HZ_FULL
4761 spin_lock(&nr_freq_lock);
4762 if (atomic_dec_and_test(&nr_freq_events))
4763 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4764 spin_unlock(&nr_freq_lock);
4768 static void unaccount_freq_event(void)
4770 if (tick_nohz_full_enabled())
4771 unaccount_freq_event_nohz();
4773 atomic_dec(&nr_freq_events);
4776 static void unaccount_event(struct perf_event *event)
4783 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4785 if (event->attr.mmap || event->attr.mmap_data)
4786 atomic_dec(&nr_mmap_events);
4787 if (event->attr.build_id)
4788 atomic_dec(&nr_build_id_events);
4789 if (event->attr.comm)
4790 atomic_dec(&nr_comm_events);
4791 if (event->attr.namespaces)
4792 atomic_dec(&nr_namespaces_events);
4793 if (event->attr.cgroup)
4794 atomic_dec(&nr_cgroup_events);
4795 if (event->attr.task)
4796 atomic_dec(&nr_task_events);
4797 if (event->attr.freq)
4798 unaccount_freq_event();
4799 if (event->attr.context_switch) {
4801 atomic_dec(&nr_switch_events);
4803 if (is_cgroup_event(event))
4805 if (has_branch_stack(event))
4807 if (event->attr.ksymbol)
4808 atomic_dec(&nr_ksymbol_events);
4809 if (event->attr.bpf_event)
4810 atomic_dec(&nr_bpf_events);
4811 if (event->attr.text_poke)
4812 atomic_dec(&nr_text_poke_events);
4815 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4816 schedule_delayed_work(&perf_sched_work, HZ);
4819 unaccount_event_cpu(event, event->cpu);
4821 unaccount_pmu_sb_event(event);
4824 static void perf_sched_delayed(struct work_struct *work)
4826 mutex_lock(&perf_sched_mutex);
4827 if (atomic_dec_and_test(&perf_sched_count))
4828 static_branch_disable(&perf_sched_events);
4829 mutex_unlock(&perf_sched_mutex);
4833 * The following implement mutual exclusion of events on "exclusive" pmus
4834 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4835 * at a time, so we disallow creating events that might conflict, namely:
4837 * 1) cpu-wide events in the presence of per-task events,
4838 * 2) per-task events in the presence of cpu-wide events,
4839 * 3) two matching events on the same context.
4841 * The former two cases are handled in the allocation path (perf_event_alloc(),
4842 * _free_event()), the latter -- before the first perf_install_in_context().
4844 static int exclusive_event_init(struct perf_event *event)
4846 struct pmu *pmu = event->pmu;
4848 if (!is_exclusive_pmu(pmu))
4852 * Prevent co-existence of per-task and cpu-wide events on the
4853 * same exclusive pmu.
4855 * Negative pmu::exclusive_cnt means there are cpu-wide
4856 * events on this "exclusive" pmu, positive means there are
4859 * Since this is called in perf_event_alloc() path, event::ctx
4860 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4861 * to mean "per-task event", because unlike other attach states it
4862 * never gets cleared.
4864 if (event->attach_state & PERF_ATTACH_TASK) {
4865 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4868 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4875 static void exclusive_event_destroy(struct perf_event *event)
4877 struct pmu *pmu = event->pmu;
4879 if (!is_exclusive_pmu(pmu))
4882 /* see comment in exclusive_event_init() */
4883 if (event->attach_state & PERF_ATTACH_TASK)
4884 atomic_dec(&pmu->exclusive_cnt);
4886 atomic_inc(&pmu->exclusive_cnt);
4889 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4891 if ((e1->pmu == e2->pmu) &&
4892 (e1->cpu == e2->cpu ||
4899 static bool exclusive_event_installable(struct perf_event *event,
4900 struct perf_event_context *ctx)
4902 struct perf_event *iter_event;
4903 struct pmu *pmu = event->pmu;
4905 lockdep_assert_held(&ctx->mutex);
4907 if (!is_exclusive_pmu(pmu))
4910 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4911 if (exclusive_event_match(iter_event, event))
4918 static void perf_addr_filters_splice(struct perf_event *event,
4919 struct list_head *head);
4921 static void _free_event(struct perf_event *event)
4923 irq_work_sync(&event->pending);
4925 unaccount_event(event);
4927 security_perf_event_free(event);
4931 * Can happen when we close an event with re-directed output.
4933 * Since we have a 0 refcount, perf_mmap_close() will skip
4934 * over us; possibly making our ring_buffer_put() the last.
4936 mutex_lock(&event->mmap_mutex);
4937 ring_buffer_attach(event, NULL);
4938 mutex_unlock(&event->mmap_mutex);
4941 if (is_cgroup_event(event))
4942 perf_detach_cgroup(event);
4944 if (!event->parent) {
4945 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4946 put_callchain_buffers();
4949 perf_event_free_bpf_prog(event);
4950 perf_addr_filters_splice(event, NULL);
4951 kfree(event->addr_filter_ranges);
4954 event->destroy(event);
4957 * Must be after ->destroy(), due to uprobe_perf_close() using
4960 if (event->hw.target)
4961 put_task_struct(event->hw.target);
4964 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4965 * all task references must be cleaned up.
4968 put_ctx(event->ctx);
4970 exclusive_event_destroy(event);
4971 module_put(event->pmu->module);
4973 call_rcu(&event->rcu_head, free_event_rcu);
4977 * Used to free events which have a known refcount of 1, such as in error paths
4978 * where the event isn't exposed yet and inherited events.
4980 static void free_event(struct perf_event *event)
4982 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4983 "unexpected event refcount: %ld; ptr=%p\n",
4984 atomic_long_read(&event->refcount), event)) {
4985 /* leak to avoid use-after-free */
4993 * Remove user event from the owner task.
4995 static void perf_remove_from_owner(struct perf_event *event)
4997 struct task_struct *owner;
5001 * Matches the smp_store_release() in perf_event_exit_task(). If we
5002 * observe !owner it means the list deletion is complete and we can
5003 * indeed free this event, otherwise we need to serialize on
5004 * owner->perf_event_mutex.
5006 owner = READ_ONCE(event->owner);
5009 * Since delayed_put_task_struct() also drops the last
5010 * task reference we can safely take a new reference
5011 * while holding the rcu_read_lock().
5013 get_task_struct(owner);
5019 * If we're here through perf_event_exit_task() we're already
5020 * holding ctx->mutex which would be an inversion wrt. the
5021 * normal lock order.
5023 * However we can safely take this lock because its the child
5026 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5029 * We have to re-check the event->owner field, if it is cleared
5030 * we raced with perf_event_exit_task(), acquiring the mutex
5031 * ensured they're done, and we can proceed with freeing the
5035 list_del_init(&event->owner_entry);
5036 smp_store_release(&event->owner, NULL);
5038 mutex_unlock(&owner->perf_event_mutex);
5039 put_task_struct(owner);
5043 static void put_event(struct perf_event *event)
5045 if (!atomic_long_dec_and_test(&event->refcount))
5052 * Kill an event dead; while event:refcount will preserve the event
5053 * object, it will not preserve its functionality. Once the last 'user'
5054 * gives up the object, we'll destroy the thing.
5056 int perf_event_release_kernel(struct perf_event *event)
5058 struct perf_event_context *ctx = event->ctx;
5059 struct perf_event *child, *tmp;
5060 LIST_HEAD(free_list);
5063 * If we got here through err_file: fput(event_file); we will not have
5064 * attached to a context yet.
5067 WARN_ON_ONCE(event->attach_state &
5068 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5072 if (!is_kernel_event(event))
5073 perf_remove_from_owner(event);
5075 ctx = perf_event_ctx_lock(event);
5076 WARN_ON_ONCE(ctx->parent_ctx);
5077 perf_remove_from_context(event, DETACH_GROUP);
5079 raw_spin_lock_irq(&ctx->lock);
5081 * Mark this event as STATE_DEAD, there is no external reference to it
5084 * Anybody acquiring event->child_mutex after the below loop _must_
5085 * also see this, most importantly inherit_event() which will avoid
5086 * placing more children on the list.
5088 * Thus this guarantees that we will in fact observe and kill _ALL_
5091 event->state = PERF_EVENT_STATE_DEAD;
5092 raw_spin_unlock_irq(&ctx->lock);
5094 perf_event_ctx_unlock(event, ctx);
5097 mutex_lock(&event->child_mutex);
5098 list_for_each_entry(child, &event->child_list, child_list) {
5101 * Cannot change, child events are not migrated, see the
5102 * comment with perf_event_ctx_lock_nested().
5104 ctx = READ_ONCE(child->ctx);
5106 * Since child_mutex nests inside ctx::mutex, we must jump
5107 * through hoops. We start by grabbing a reference on the ctx.
5109 * Since the event cannot get freed while we hold the
5110 * child_mutex, the context must also exist and have a !0
5116 * Now that we have a ctx ref, we can drop child_mutex, and
5117 * acquire ctx::mutex without fear of it going away. Then we
5118 * can re-acquire child_mutex.
5120 mutex_unlock(&event->child_mutex);
5121 mutex_lock(&ctx->mutex);
5122 mutex_lock(&event->child_mutex);
5125 * Now that we hold ctx::mutex and child_mutex, revalidate our
5126 * state, if child is still the first entry, it didn't get freed
5127 * and we can continue doing so.
5129 tmp = list_first_entry_or_null(&event->child_list,
5130 struct perf_event, child_list);
5132 perf_remove_from_context(child, DETACH_GROUP);
5133 list_move(&child->child_list, &free_list);
5135 * This matches the refcount bump in inherit_event();
5136 * this can't be the last reference.
5141 mutex_unlock(&event->child_mutex);
5142 mutex_unlock(&ctx->mutex);
5146 mutex_unlock(&event->child_mutex);
5148 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5149 void *var = &child->ctx->refcount;
5151 list_del(&child->child_list);
5155 * Wake any perf_event_free_task() waiting for this event to be
5158 smp_mb(); /* pairs with wait_var_event() */
5163 put_event(event); /* Must be the 'last' reference */
5166 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5169 * Called when the last reference to the file is gone.
5171 static int perf_release(struct inode *inode, struct file *file)
5173 perf_event_release_kernel(file->private_data);
5177 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5179 struct perf_event *child;
5185 mutex_lock(&event->child_mutex);
5187 (void)perf_event_read(event, false);
5188 total += perf_event_count(event);
5190 *enabled += event->total_time_enabled +
5191 atomic64_read(&event->child_total_time_enabled);
5192 *running += event->total_time_running +
5193 atomic64_read(&event->child_total_time_running);
5195 list_for_each_entry(child, &event->child_list, child_list) {
5196 (void)perf_event_read(child, false);
5197 total += perf_event_count(child);
5198 *enabled += child->total_time_enabled;
5199 *running += child->total_time_running;
5201 mutex_unlock(&event->child_mutex);
5206 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5208 struct perf_event_context *ctx;
5211 ctx = perf_event_ctx_lock(event);
5212 count = __perf_event_read_value(event, enabled, running);
5213 perf_event_ctx_unlock(event, ctx);
5217 EXPORT_SYMBOL_GPL(perf_event_read_value);
5219 static int __perf_read_group_add(struct perf_event *leader,
5220 u64 read_format, u64 *values)
5222 struct perf_event_context *ctx = leader->ctx;
5223 struct perf_event *sub;
5224 unsigned long flags;
5225 int n = 1; /* skip @nr */
5228 ret = perf_event_read(leader, true);
5232 raw_spin_lock_irqsave(&ctx->lock, flags);
5235 * Since we co-schedule groups, {enabled,running} times of siblings
5236 * will be identical to those of the leader, so we only publish one
5239 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5240 values[n++] += leader->total_time_enabled +
5241 atomic64_read(&leader->child_total_time_enabled);
5244 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5245 values[n++] += leader->total_time_running +
5246 atomic64_read(&leader->child_total_time_running);
5250 * Write {count,id} tuples for every sibling.
5252 values[n++] += perf_event_count(leader);
5253 if (read_format & PERF_FORMAT_ID)
5254 values[n++] = primary_event_id(leader);
5256 for_each_sibling_event(sub, leader) {
5257 values[n++] += perf_event_count(sub);
5258 if (read_format & PERF_FORMAT_ID)
5259 values[n++] = primary_event_id(sub);
5262 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5266 static int perf_read_group(struct perf_event *event,
5267 u64 read_format, char __user *buf)
5269 struct perf_event *leader = event->group_leader, *child;
5270 struct perf_event_context *ctx = leader->ctx;
5274 lockdep_assert_held(&ctx->mutex);
5276 values = kzalloc(event->read_size, GFP_KERNEL);
5280 values[0] = 1 + leader->nr_siblings;
5283 * By locking the child_mutex of the leader we effectively
5284 * lock the child list of all siblings.. XXX explain how.
5286 mutex_lock(&leader->child_mutex);
5288 ret = __perf_read_group_add(leader, read_format, values);
5292 list_for_each_entry(child, &leader->child_list, child_list) {
5293 ret = __perf_read_group_add(child, read_format, values);
5298 mutex_unlock(&leader->child_mutex);
5300 ret = event->read_size;
5301 if (copy_to_user(buf, values, event->read_size))
5306 mutex_unlock(&leader->child_mutex);
5312 static int perf_read_one(struct perf_event *event,
5313 u64 read_format, char __user *buf)
5315 u64 enabled, running;
5319 values[n++] = __perf_event_read_value(event, &enabled, &running);
5320 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5321 values[n++] = enabled;
5322 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5323 values[n++] = running;
5324 if (read_format & PERF_FORMAT_ID)
5325 values[n++] = primary_event_id(event);
5327 if (copy_to_user(buf, values, n * sizeof(u64)))
5330 return n * sizeof(u64);
5333 static bool is_event_hup(struct perf_event *event)
5337 if (event->state > PERF_EVENT_STATE_EXIT)
5340 mutex_lock(&event->child_mutex);
5341 no_children = list_empty(&event->child_list);
5342 mutex_unlock(&event->child_mutex);
5347 * Read the performance event - simple non blocking version for now
5350 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5352 u64 read_format = event->attr.read_format;
5356 * Return end-of-file for a read on an event that is in
5357 * error state (i.e. because it was pinned but it couldn't be
5358 * scheduled on to the CPU at some point).
5360 if (event->state == PERF_EVENT_STATE_ERROR)
5363 if (count < event->read_size)
5366 WARN_ON_ONCE(event->ctx->parent_ctx);
5367 if (read_format & PERF_FORMAT_GROUP)
5368 ret = perf_read_group(event, read_format, buf);
5370 ret = perf_read_one(event, read_format, buf);
5376 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5378 struct perf_event *event = file->private_data;
5379 struct perf_event_context *ctx;
5382 ret = security_perf_event_read(event);
5386 ctx = perf_event_ctx_lock(event);
5387 ret = __perf_read(event, buf, count);
5388 perf_event_ctx_unlock(event, ctx);
5393 static __poll_t perf_poll(struct file *file, poll_table *wait)
5395 struct perf_event *event = file->private_data;
5396 struct perf_buffer *rb;
5397 __poll_t events = EPOLLHUP;
5399 poll_wait(file, &event->waitq, wait);
5401 if (is_event_hup(event))
5405 * Pin the event->rb by taking event->mmap_mutex; otherwise
5406 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5408 mutex_lock(&event->mmap_mutex);
5411 events = atomic_xchg(&rb->poll, 0);
5412 mutex_unlock(&event->mmap_mutex);
5416 static void _perf_event_reset(struct perf_event *event)
5418 (void)perf_event_read(event, false);
5419 local64_set(&event->count, 0);
5420 perf_event_update_userpage(event);
5423 /* Assume it's not an event with inherit set. */
5424 u64 perf_event_pause(struct perf_event *event, bool reset)
5426 struct perf_event_context *ctx;
5429 ctx = perf_event_ctx_lock(event);
5430 WARN_ON_ONCE(event->attr.inherit);
5431 _perf_event_disable(event);
5432 count = local64_read(&event->count);
5434 local64_set(&event->count, 0);
5435 perf_event_ctx_unlock(event, ctx);
5439 EXPORT_SYMBOL_GPL(perf_event_pause);
5442 * Holding the top-level event's child_mutex means that any
5443 * descendant process that has inherited this event will block
5444 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5445 * task existence requirements of perf_event_enable/disable.
5447 static void perf_event_for_each_child(struct perf_event *event,
5448 void (*func)(struct perf_event *))
5450 struct perf_event *child;
5452 WARN_ON_ONCE(event->ctx->parent_ctx);
5454 mutex_lock(&event->child_mutex);
5456 list_for_each_entry(child, &event->child_list, child_list)
5458 mutex_unlock(&event->child_mutex);
5461 static void perf_event_for_each(struct perf_event *event,
5462 void (*func)(struct perf_event *))
5464 struct perf_event_context *ctx = event->ctx;
5465 struct perf_event *sibling;
5467 lockdep_assert_held(&ctx->mutex);
5469 event = event->group_leader;
5471 perf_event_for_each_child(event, func);
5472 for_each_sibling_event(sibling, event)
5473 perf_event_for_each_child(sibling, func);
5476 static void __perf_event_period(struct perf_event *event,
5477 struct perf_cpu_context *cpuctx,
5478 struct perf_event_context *ctx,
5481 u64 value = *((u64 *)info);
5484 if (event->attr.freq) {
5485 event->attr.sample_freq = value;
5487 event->attr.sample_period = value;
5488 event->hw.sample_period = value;
5491 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5493 perf_pmu_disable(ctx->pmu);
5495 * We could be throttled; unthrottle now to avoid the tick
5496 * trying to unthrottle while we already re-started the event.
5498 if (event->hw.interrupts == MAX_INTERRUPTS) {
5499 event->hw.interrupts = 0;
5500 perf_log_throttle(event, 1);
5502 event->pmu->stop(event, PERF_EF_UPDATE);
5505 local64_set(&event->hw.period_left, 0);
5508 event->pmu->start(event, PERF_EF_RELOAD);
5509 perf_pmu_enable(ctx->pmu);
5513 static int perf_event_check_period(struct perf_event *event, u64 value)
5515 return event->pmu->check_period(event, value);
5518 static int _perf_event_period(struct perf_event *event, u64 value)
5520 if (!is_sampling_event(event))
5526 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5529 if (perf_event_check_period(event, value))
5532 if (!event->attr.freq && (value & (1ULL << 63)))
5535 event_function_call(event, __perf_event_period, &value);
5540 int perf_event_period(struct perf_event *event, u64 value)
5542 struct perf_event_context *ctx;
5545 ctx = perf_event_ctx_lock(event);
5546 ret = _perf_event_period(event, value);
5547 perf_event_ctx_unlock(event, ctx);
5551 EXPORT_SYMBOL_GPL(perf_event_period);
5553 static const struct file_operations perf_fops;
5555 static inline int perf_fget_light(int fd, struct fd *p)
5557 struct fd f = fdget(fd);
5561 if (f.file->f_op != &perf_fops) {
5569 static int perf_event_set_output(struct perf_event *event,
5570 struct perf_event *output_event);
5571 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5572 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5573 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5574 struct perf_event_attr *attr);
5576 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5578 void (*func)(struct perf_event *);
5582 case PERF_EVENT_IOC_ENABLE:
5583 func = _perf_event_enable;
5585 case PERF_EVENT_IOC_DISABLE:
5586 func = _perf_event_disable;
5588 case PERF_EVENT_IOC_RESET:
5589 func = _perf_event_reset;
5592 case PERF_EVENT_IOC_REFRESH:
5593 return _perf_event_refresh(event, arg);
5595 case PERF_EVENT_IOC_PERIOD:
5599 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5602 return _perf_event_period(event, value);
5604 case PERF_EVENT_IOC_ID:
5606 u64 id = primary_event_id(event);
5608 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5613 case PERF_EVENT_IOC_SET_OUTPUT:
5617 struct perf_event *output_event;
5619 ret = perf_fget_light(arg, &output);
5622 output_event = output.file->private_data;
5623 ret = perf_event_set_output(event, output_event);
5626 ret = perf_event_set_output(event, NULL);
5631 case PERF_EVENT_IOC_SET_FILTER:
5632 return perf_event_set_filter(event, (void __user *)arg);
5634 case PERF_EVENT_IOC_SET_BPF:
5635 return perf_event_set_bpf_prog(event, arg);
5637 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5638 struct perf_buffer *rb;
5641 rb = rcu_dereference(event->rb);
5642 if (!rb || !rb->nr_pages) {
5646 rb_toggle_paused(rb, !!arg);
5651 case PERF_EVENT_IOC_QUERY_BPF:
5652 return perf_event_query_prog_array(event, (void __user *)arg);
5654 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5655 struct perf_event_attr new_attr;
5656 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5662 return perf_event_modify_attr(event, &new_attr);
5668 if (flags & PERF_IOC_FLAG_GROUP)
5669 perf_event_for_each(event, func);
5671 perf_event_for_each_child(event, func);
5676 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5678 struct perf_event *event = file->private_data;
5679 struct perf_event_context *ctx;
5682 /* Treat ioctl like writes as it is likely a mutating operation. */
5683 ret = security_perf_event_write(event);
5687 ctx = perf_event_ctx_lock(event);
5688 ret = _perf_ioctl(event, cmd, arg);
5689 perf_event_ctx_unlock(event, ctx);
5694 #ifdef CONFIG_COMPAT
5695 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5698 switch (_IOC_NR(cmd)) {
5699 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5700 case _IOC_NR(PERF_EVENT_IOC_ID):
5701 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5702 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5703 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5704 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5705 cmd &= ~IOCSIZE_MASK;
5706 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5710 return perf_ioctl(file, cmd, arg);
5713 # define perf_compat_ioctl NULL
5716 int perf_event_task_enable(void)
5718 struct perf_event_context *ctx;
5719 struct perf_event *event;
5721 mutex_lock(¤t->perf_event_mutex);
5722 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
5723 ctx = perf_event_ctx_lock(event);
5724 perf_event_for_each_child(event, _perf_event_enable);
5725 perf_event_ctx_unlock(event, ctx);
5727 mutex_unlock(¤t->perf_event_mutex);
5732 int perf_event_task_disable(void)
5734 struct perf_event_context *ctx;
5735 struct perf_event *event;
5737 mutex_lock(¤t->perf_event_mutex);
5738 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
5739 ctx = perf_event_ctx_lock(event);
5740 perf_event_for_each_child(event, _perf_event_disable);
5741 perf_event_ctx_unlock(event, ctx);
5743 mutex_unlock(¤t->perf_event_mutex);
5748 static int perf_event_index(struct perf_event *event)
5750 if (event->hw.state & PERF_HES_STOPPED)
5753 if (event->state != PERF_EVENT_STATE_ACTIVE)
5756 return event->pmu->event_idx(event);
5759 static void calc_timer_values(struct perf_event *event,
5766 *now = perf_clock();
5767 ctx_time = event->shadow_ctx_time + *now;
5768 __perf_update_times(event, ctx_time, enabled, running);
5771 static void perf_event_init_userpage(struct perf_event *event)
5773 struct perf_event_mmap_page *userpg;
5774 struct perf_buffer *rb;
5777 rb = rcu_dereference(event->rb);
5781 userpg = rb->user_page;
5783 /* Allow new userspace to detect that bit 0 is deprecated */
5784 userpg->cap_bit0_is_deprecated = 1;
5785 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5786 userpg->data_offset = PAGE_SIZE;
5787 userpg->data_size = perf_data_size(rb);
5793 void __weak arch_perf_update_userpage(
5794 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5799 * Callers need to ensure there can be no nesting of this function, otherwise
5800 * the seqlock logic goes bad. We can not serialize this because the arch
5801 * code calls this from NMI context.
5803 void perf_event_update_userpage(struct perf_event *event)
5805 struct perf_event_mmap_page *userpg;
5806 struct perf_buffer *rb;
5807 u64 enabled, running, now;
5810 rb = rcu_dereference(event->rb);
5815 * compute total_time_enabled, total_time_running
5816 * based on snapshot values taken when the event
5817 * was last scheduled in.
5819 * we cannot simply called update_context_time()
5820 * because of locking issue as we can be called in
5823 calc_timer_values(event, &now, &enabled, &running);
5825 userpg = rb->user_page;
5827 * Disable preemption to guarantee consistent time stamps are stored to
5833 userpg->index = perf_event_index(event);
5834 userpg->offset = perf_event_count(event);
5836 userpg->offset -= local64_read(&event->hw.prev_count);
5838 userpg->time_enabled = enabled +
5839 atomic64_read(&event->child_total_time_enabled);
5841 userpg->time_running = running +
5842 atomic64_read(&event->child_total_time_running);
5844 arch_perf_update_userpage(event, userpg, now);
5852 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5854 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5856 struct perf_event *event = vmf->vma->vm_file->private_data;
5857 struct perf_buffer *rb;
5858 vm_fault_t ret = VM_FAULT_SIGBUS;
5860 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5861 if (vmf->pgoff == 0)
5867 rb = rcu_dereference(event->rb);
5871 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5874 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5878 get_page(vmf->page);
5879 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5880 vmf->page->index = vmf->pgoff;
5889 static void ring_buffer_attach(struct perf_event *event,
5890 struct perf_buffer *rb)
5892 struct perf_buffer *old_rb = NULL;
5893 unsigned long flags;
5897 * Should be impossible, we set this when removing
5898 * event->rb_entry and wait/clear when adding event->rb_entry.
5900 WARN_ON_ONCE(event->rcu_pending);
5903 spin_lock_irqsave(&old_rb->event_lock, flags);
5904 list_del_rcu(&event->rb_entry);
5905 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5907 event->rcu_batches = get_state_synchronize_rcu();
5908 event->rcu_pending = 1;
5912 if (event->rcu_pending) {
5913 cond_synchronize_rcu(event->rcu_batches);
5914 event->rcu_pending = 0;
5917 spin_lock_irqsave(&rb->event_lock, flags);
5918 list_add_rcu(&event->rb_entry, &rb->event_list);
5919 spin_unlock_irqrestore(&rb->event_lock, flags);
5923 * Avoid racing with perf_mmap_close(AUX): stop the event
5924 * before swizzling the event::rb pointer; if it's getting
5925 * unmapped, its aux_mmap_count will be 0 and it won't
5926 * restart. See the comment in __perf_pmu_output_stop().
5928 * Data will inevitably be lost when set_output is done in
5929 * mid-air, but then again, whoever does it like this is
5930 * not in for the data anyway.
5933 perf_event_stop(event, 0);
5935 rcu_assign_pointer(event->rb, rb);
5938 ring_buffer_put(old_rb);
5940 * Since we detached before setting the new rb, so that we
5941 * could attach the new rb, we could have missed a wakeup.
5944 wake_up_all(&event->waitq);
5948 static void ring_buffer_wakeup(struct perf_event *event)
5950 struct perf_buffer *rb;
5953 rb = rcu_dereference(event->rb);
5955 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5956 wake_up_all(&event->waitq);
5961 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5963 struct perf_buffer *rb;
5966 rb = rcu_dereference(event->rb);
5968 if (!refcount_inc_not_zero(&rb->refcount))
5976 void ring_buffer_put(struct perf_buffer *rb)
5978 if (!refcount_dec_and_test(&rb->refcount))
5981 WARN_ON_ONCE(!list_empty(&rb->event_list));
5983 call_rcu(&rb->rcu_head, rb_free_rcu);
5986 static void perf_mmap_open(struct vm_area_struct *vma)
5988 struct perf_event *event = vma->vm_file->private_data;
5990 atomic_inc(&event->mmap_count);
5991 atomic_inc(&event->rb->mmap_count);
5994 atomic_inc(&event->rb->aux_mmap_count);
5996 if (event->pmu->event_mapped)
5997 event->pmu->event_mapped(event, vma->vm_mm);
6000 static void perf_pmu_output_stop(struct perf_event *event);
6003 * A buffer can be mmap()ed multiple times; either directly through the same
6004 * event, or through other events by use of perf_event_set_output().
6006 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6007 * the buffer here, where we still have a VM context. This means we need
6008 * to detach all events redirecting to us.
6010 static void perf_mmap_close(struct vm_area_struct *vma)
6012 struct perf_event *event = vma->vm_file->private_data;
6013 struct perf_buffer *rb = ring_buffer_get(event);
6014 struct user_struct *mmap_user = rb->mmap_user;
6015 int mmap_locked = rb->mmap_locked;
6016 unsigned long size = perf_data_size(rb);
6017 bool detach_rest = false;
6019 if (event->pmu->event_unmapped)
6020 event->pmu->event_unmapped(event, vma->vm_mm);
6023 * rb->aux_mmap_count will always drop before rb->mmap_count and
6024 * event->mmap_count, so it is ok to use event->mmap_mutex to
6025 * serialize with perf_mmap here.
6027 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6028 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6030 * Stop all AUX events that are writing to this buffer,
6031 * so that we can free its AUX pages and corresponding PMU
6032 * data. Note that after rb::aux_mmap_count dropped to zero,
6033 * they won't start any more (see perf_aux_output_begin()).
6035 perf_pmu_output_stop(event);
6037 /* now it's safe to free the pages */
6038 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6039 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6041 /* this has to be the last one */
6043 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6045 mutex_unlock(&event->mmap_mutex);
6048 if (atomic_dec_and_test(&rb->mmap_count))
6051 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6054 ring_buffer_attach(event, NULL);
6055 mutex_unlock(&event->mmap_mutex);
6057 /* If there's still other mmap()s of this buffer, we're done. */
6062 * No other mmap()s, detach from all other events that might redirect
6063 * into the now unreachable buffer. Somewhat complicated by the
6064 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6068 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6069 if (!atomic_long_inc_not_zero(&event->refcount)) {
6071 * This event is en-route to free_event() which will
6072 * detach it and remove it from the list.
6078 mutex_lock(&event->mmap_mutex);
6080 * Check we didn't race with perf_event_set_output() which can
6081 * swizzle the rb from under us while we were waiting to
6082 * acquire mmap_mutex.
6084 * If we find a different rb; ignore this event, a next
6085 * iteration will no longer find it on the list. We have to
6086 * still restart the iteration to make sure we're not now
6087 * iterating the wrong list.
6089 if (event->rb == rb)
6090 ring_buffer_attach(event, NULL);
6092 mutex_unlock(&event->mmap_mutex);
6096 * Restart the iteration; either we're on the wrong list or
6097 * destroyed its integrity by doing a deletion.
6104 * It could be there's still a few 0-ref events on the list; they'll
6105 * get cleaned up by free_event() -- they'll also still have their
6106 * ref on the rb and will free it whenever they are done with it.
6108 * Aside from that, this buffer is 'fully' detached and unmapped,
6109 * undo the VM accounting.
6112 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6113 &mmap_user->locked_vm);
6114 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6115 free_uid(mmap_user);
6118 ring_buffer_put(rb); /* could be last */
6121 static const struct vm_operations_struct perf_mmap_vmops = {
6122 .open = perf_mmap_open,
6123 .close = perf_mmap_close, /* non mergeable */
6124 .fault = perf_mmap_fault,
6125 .page_mkwrite = perf_mmap_fault,
6128 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6130 struct perf_event *event = file->private_data;
6131 unsigned long user_locked, user_lock_limit;
6132 struct user_struct *user = current_user();
6133 struct perf_buffer *rb = NULL;
6134 unsigned long locked, lock_limit;
6135 unsigned long vma_size;
6136 unsigned long nr_pages;
6137 long user_extra = 0, extra = 0;
6138 int ret = 0, flags = 0;
6141 * Don't allow mmap() of inherited per-task counters. This would
6142 * create a performance issue due to all children writing to the
6145 if (event->cpu == -1 && event->attr.inherit)
6148 if (!(vma->vm_flags & VM_SHARED))
6151 ret = security_perf_event_read(event);
6155 vma_size = vma->vm_end - vma->vm_start;
6157 if (vma->vm_pgoff == 0) {
6158 nr_pages = (vma_size / PAGE_SIZE) - 1;
6161 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6162 * mapped, all subsequent mappings should have the same size
6163 * and offset. Must be above the normal perf buffer.
6165 u64 aux_offset, aux_size;
6170 nr_pages = vma_size / PAGE_SIZE;
6172 mutex_lock(&event->mmap_mutex);
6179 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6180 aux_size = READ_ONCE(rb->user_page->aux_size);
6182 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6185 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6188 /* already mapped with a different offset */
6189 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6192 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6195 /* already mapped with a different size */
6196 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6199 if (!is_power_of_2(nr_pages))
6202 if (!atomic_inc_not_zero(&rb->mmap_count))
6205 if (rb_has_aux(rb)) {
6206 atomic_inc(&rb->aux_mmap_count);
6211 atomic_set(&rb->aux_mmap_count, 1);
6212 user_extra = nr_pages;
6218 * If we have rb pages ensure they're a power-of-two number, so we
6219 * can do bitmasks instead of modulo.
6221 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6224 if (vma_size != PAGE_SIZE * (1 + nr_pages))
6227 WARN_ON_ONCE(event->ctx->parent_ctx);
6229 mutex_lock(&event->mmap_mutex);
6231 if (event->rb->nr_pages != nr_pages) {
6236 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6238 * Raced against perf_mmap_close() through
6239 * perf_event_set_output(). Try again, hope for better
6242 mutex_unlock(&event->mmap_mutex);
6249 user_extra = nr_pages + 1;
6252 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6255 * Increase the limit linearly with more CPUs:
6257 user_lock_limit *= num_online_cpus();
6259 user_locked = atomic_long_read(&user->locked_vm);
6262 * sysctl_perf_event_mlock may have changed, so that
6263 * user->locked_vm > user_lock_limit
6265 if (user_locked > user_lock_limit)
6266 user_locked = user_lock_limit;
6267 user_locked += user_extra;
6269 if (user_locked > user_lock_limit) {
6271 * charge locked_vm until it hits user_lock_limit;
6272 * charge the rest from pinned_vm
6274 extra = user_locked - user_lock_limit;
6275 user_extra -= extra;
6278 lock_limit = rlimit(RLIMIT_MEMLOCK);
6279 lock_limit >>= PAGE_SHIFT;
6280 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6282 if ((locked > lock_limit) && perf_is_paranoid() &&
6283 !capable(CAP_IPC_LOCK)) {
6288 WARN_ON(!rb && event->rb);
6290 if (vma->vm_flags & VM_WRITE)
6291 flags |= RING_BUFFER_WRITABLE;
6294 rb = rb_alloc(nr_pages,
6295 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6303 atomic_set(&rb->mmap_count, 1);
6304 rb->mmap_user = get_current_user();
6305 rb->mmap_locked = extra;
6307 ring_buffer_attach(event, rb);
6309 perf_event_init_userpage(event);
6310 perf_event_update_userpage(event);
6312 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6313 event->attr.aux_watermark, flags);
6315 rb->aux_mmap_locked = extra;
6320 atomic_long_add(user_extra, &user->locked_vm);
6321 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6323 atomic_inc(&event->mmap_count);
6325 atomic_dec(&rb->mmap_count);
6328 mutex_unlock(&event->mmap_mutex);
6331 * Since pinned accounting is per vm we cannot allow fork() to copy our
6334 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6335 vma->vm_ops = &perf_mmap_vmops;
6337 if (event->pmu->event_mapped)
6338 event->pmu->event_mapped(event, vma->vm_mm);
6343 static int perf_fasync(int fd, struct file *filp, int on)
6345 struct inode *inode = file_inode(filp);
6346 struct perf_event *event = filp->private_data;
6350 retval = fasync_helper(fd, filp, on, &event->fasync);
6351 inode_unlock(inode);
6359 static const struct file_operations perf_fops = {
6360 .llseek = no_llseek,
6361 .release = perf_release,
6364 .unlocked_ioctl = perf_ioctl,
6365 .compat_ioctl = perf_compat_ioctl,
6367 .fasync = perf_fasync,
6373 * If there's data, ensure we set the poll() state and publish everything
6374 * to user-space before waking everybody up.
6377 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6379 /* only the parent has fasync state */
6381 event = event->parent;
6382 return &event->fasync;
6385 void perf_event_wakeup(struct perf_event *event)
6387 ring_buffer_wakeup(event);
6389 if (event->pending_kill) {
6390 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6391 event->pending_kill = 0;
6395 static void perf_sigtrap(struct perf_event *event)
6397 struct kernel_siginfo info;
6400 * We'd expect this to only occur if the irq_work is delayed and either
6401 * ctx->task or current has changed in the meantime. This can be the
6402 * case on architectures that do not implement arch_irq_work_raise().
6404 if (WARN_ON_ONCE(event->ctx->task != current))
6408 * perf_pending_event() can race with the task exiting.
6410 if (current->flags & PF_EXITING)
6413 clear_siginfo(&info);
6414 info.si_signo = SIGTRAP;
6415 info.si_code = TRAP_PERF;
6416 info.si_errno = event->attr.type;
6417 info.si_perf = event->attr.sig_data;
6418 info.si_addr = (void __user *)event->pending_addr;
6419 force_sig_info(&info);
6422 static void perf_pending_event_disable(struct perf_event *event)
6424 int cpu = READ_ONCE(event->pending_disable);
6429 if (cpu == smp_processor_id()) {
6430 WRITE_ONCE(event->pending_disable, -1);
6432 if (event->attr.sigtrap) {
6433 perf_sigtrap(event);
6434 atomic_set_release(&event->event_limit, 1); /* rearm event */
6438 perf_event_disable_local(event);
6445 * perf_event_disable_inatomic()
6446 * @pending_disable = CPU-A;
6450 * @pending_disable = -1;
6453 * perf_event_disable_inatomic()
6454 * @pending_disable = CPU-B;
6455 * irq_work_queue(); // FAILS
6458 * perf_pending_event()
6460 * But the event runs on CPU-B and wants disabling there.
6462 irq_work_queue_on(&event->pending, cpu);
6465 static void perf_pending_event(struct irq_work *entry)
6467 struct perf_event *event = container_of(entry, struct perf_event, pending);
6470 rctx = perf_swevent_get_recursion_context();
6472 * If we 'fail' here, that's OK, it means recursion is already disabled
6473 * and we won't recurse 'further'.
6476 perf_pending_event_disable(event);
6478 if (event->pending_wakeup) {
6479 event->pending_wakeup = 0;
6480 perf_event_wakeup(event);
6484 perf_swevent_put_recursion_context(rctx);
6488 * We assume there is only KVM supporting the callbacks.
6489 * Later on, we might change it to a list if there is
6490 * another virtualization implementation supporting the callbacks.
6492 struct perf_guest_info_callbacks *perf_guest_cbs;
6494 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6496 perf_guest_cbs = cbs;
6499 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6501 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6503 perf_guest_cbs = NULL;
6506 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6509 perf_output_sample_regs(struct perf_output_handle *handle,
6510 struct pt_regs *regs, u64 mask)
6513 DECLARE_BITMAP(_mask, 64);
6515 bitmap_from_u64(_mask, mask);
6516 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6519 val = perf_reg_value(regs, bit);
6520 perf_output_put(handle, val);
6524 static void perf_sample_regs_user(struct perf_regs *regs_user,
6525 struct pt_regs *regs)
6527 if (user_mode(regs)) {
6528 regs_user->abi = perf_reg_abi(current);
6529 regs_user->regs = regs;
6530 } else if (!(current->flags & PF_KTHREAD)) {
6531 perf_get_regs_user(regs_user, regs);
6533 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6534 regs_user->regs = NULL;
6538 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6539 struct pt_regs *regs)
6541 regs_intr->regs = regs;
6542 regs_intr->abi = perf_reg_abi(current);
6547 * Get remaining task size from user stack pointer.
6549 * It'd be better to take stack vma map and limit this more
6550 * precisely, but there's no way to get it safely under interrupt,
6551 * so using TASK_SIZE as limit.
6553 static u64 perf_ustack_task_size(struct pt_regs *regs)
6555 unsigned long addr = perf_user_stack_pointer(regs);
6557 if (!addr || addr >= TASK_SIZE)
6560 return TASK_SIZE - addr;
6564 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6565 struct pt_regs *regs)
6569 /* No regs, no stack pointer, no dump. */
6574 * Check if we fit in with the requested stack size into the:
6576 * If we don't, we limit the size to the TASK_SIZE.
6578 * - remaining sample size
6579 * If we don't, we customize the stack size to
6580 * fit in to the remaining sample size.
6583 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6584 stack_size = min(stack_size, (u16) task_size);
6586 /* Current header size plus static size and dynamic size. */
6587 header_size += 2 * sizeof(u64);
6589 /* Do we fit in with the current stack dump size? */
6590 if ((u16) (header_size + stack_size) < header_size) {
6592 * If we overflow the maximum size for the sample,
6593 * we customize the stack dump size to fit in.
6595 stack_size = USHRT_MAX - header_size - sizeof(u64);
6596 stack_size = round_up(stack_size, sizeof(u64));
6603 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6604 struct pt_regs *regs)
6606 /* Case of a kernel thread, nothing to dump */
6609 perf_output_put(handle, size);
6619 * - the size requested by user or the best one we can fit
6620 * in to the sample max size
6622 * - user stack dump data
6624 * - the actual dumped size
6628 perf_output_put(handle, dump_size);
6631 sp = perf_user_stack_pointer(regs);
6632 fs = force_uaccess_begin();
6633 rem = __output_copy_user(handle, (void *) sp, dump_size);
6634 force_uaccess_end(fs);
6635 dyn_size = dump_size - rem;
6637 perf_output_skip(handle, rem);
6640 perf_output_put(handle, dyn_size);
6644 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6645 struct perf_sample_data *data,
6648 struct perf_event *sampler = event->aux_event;
6649 struct perf_buffer *rb;
6656 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6659 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6662 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6667 * If this is an NMI hit inside sampling code, don't take
6668 * the sample. See also perf_aux_sample_output().
6670 if (READ_ONCE(rb->aux_in_sampling)) {
6673 size = min_t(size_t, size, perf_aux_size(rb));
6674 data->aux_size = ALIGN(size, sizeof(u64));
6676 ring_buffer_put(rb);
6679 return data->aux_size;
6682 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6683 struct perf_event *event,
6684 struct perf_output_handle *handle,
6687 unsigned long flags;
6691 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6692 * paths. If we start calling them in NMI context, they may race with
6693 * the IRQ ones, that is, for example, re-starting an event that's just
6694 * been stopped, which is why we're using a separate callback that
6695 * doesn't change the event state.
6697 * IRQs need to be disabled to prevent IPIs from racing with us.
6699 local_irq_save(flags);
6701 * Guard against NMI hits inside the critical section;
6702 * see also perf_prepare_sample_aux().
6704 WRITE_ONCE(rb->aux_in_sampling, 1);
6707 ret = event->pmu->snapshot_aux(event, handle, size);
6710 WRITE_ONCE(rb->aux_in_sampling, 0);
6711 local_irq_restore(flags);
6716 static void perf_aux_sample_output(struct perf_event *event,
6717 struct perf_output_handle *handle,
6718 struct perf_sample_data *data)
6720 struct perf_event *sampler = event->aux_event;
6721 struct perf_buffer *rb;
6725 if (WARN_ON_ONCE(!sampler || !data->aux_size))
6728 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6732 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6735 * An error here means that perf_output_copy() failed (returned a
6736 * non-zero surplus that it didn't copy), which in its current
6737 * enlightened implementation is not possible. If that changes, we'd
6740 if (WARN_ON_ONCE(size < 0))
6744 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6745 * perf_prepare_sample_aux(), so should not be more than that.
6747 pad = data->aux_size - size;
6748 if (WARN_ON_ONCE(pad >= sizeof(u64)))
6753 perf_output_copy(handle, &zero, pad);
6757 ring_buffer_put(rb);
6760 static void __perf_event_header__init_id(struct perf_event_header *header,
6761 struct perf_sample_data *data,
6762 struct perf_event *event)
6764 u64 sample_type = event->attr.sample_type;
6766 data->type = sample_type;
6767 header->size += event->id_header_size;
6769 if (sample_type & PERF_SAMPLE_TID) {
6770 /* namespace issues */
6771 data->tid_entry.pid = perf_event_pid(event, current);
6772 data->tid_entry.tid = perf_event_tid(event, current);
6775 if (sample_type & PERF_SAMPLE_TIME)
6776 data->time = perf_event_clock(event);
6778 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6779 data->id = primary_event_id(event);
6781 if (sample_type & PERF_SAMPLE_STREAM_ID)
6782 data->stream_id = event->id;
6784 if (sample_type & PERF_SAMPLE_CPU) {
6785 data->cpu_entry.cpu = raw_smp_processor_id();
6786 data->cpu_entry.reserved = 0;
6790 void perf_event_header__init_id(struct perf_event_header *header,
6791 struct perf_sample_data *data,
6792 struct perf_event *event)
6794 if (event->attr.sample_id_all)
6795 __perf_event_header__init_id(header, data, event);
6798 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6799 struct perf_sample_data *data)
6801 u64 sample_type = data->type;
6803 if (sample_type & PERF_SAMPLE_TID)
6804 perf_output_put(handle, data->tid_entry);
6806 if (sample_type & PERF_SAMPLE_TIME)
6807 perf_output_put(handle, data->time);
6809 if (sample_type & PERF_SAMPLE_ID)
6810 perf_output_put(handle, data->id);
6812 if (sample_type & PERF_SAMPLE_STREAM_ID)
6813 perf_output_put(handle, data->stream_id);
6815 if (sample_type & PERF_SAMPLE_CPU)
6816 perf_output_put(handle, data->cpu_entry);
6818 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6819 perf_output_put(handle, data->id);
6822 void perf_event__output_id_sample(struct perf_event *event,
6823 struct perf_output_handle *handle,
6824 struct perf_sample_data *sample)
6826 if (event->attr.sample_id_all)
6827 __perf_event__output_id_sample(handle, sample);
6830 static void perf_output_read_one(struct perf_output_handle *handle,
6831 struct perf_event *event,
6832 u64 enabled, u64 running)
6834 u64 read_format = event->attr.read_format;
6838 values[n++] = perf_event_count(event);
6839 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6840 values[n++] = enabled +
6841 atomic64_read(&event->child_total_time_enabled);
6843 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6844 values[n++] = running +
6845 atomic64_read(&event->child_total_time_running);
6847 if (read_format & PERF_FORMAT_ID)
6848 values[n++] = primary_event_id(event);
6850 __output_copy(handle, values, n * sizeof(u64));
6853 static void perf_output_read_group(struct perf_output_handle *handle,
6854 struct perf_event *event,
6855 u64 enabled, u64 running)
6857 struct perf_event *leader = event->group_leader, *sub;
6858 u64 read_format = event->attr.read_format;
6862 values[n++] = 1 + leader->nr_siblings;
6864 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6865 values[n++] = enabled;
6867 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6868 values[n++] = running;
6870 if ((leader != event) &&
6871 (leader->state == PERF_EVENT_STATE_ACTIVE))
6872 leader->pmu->read(leader);
6874 values[n++] = perf_event_count(leader);
6875 if (read_format & PERF_FORMAT_ID)
6876 values[n++] = primary_event_id(leader);
6878 __output_copy(handle, values, n * sizeof(u64));
6880 for_each_sibling_event(sub, leader) {
6883 if ((sub != event) &&
6884 (sub->state == PERF_EVENT_STATE_ACTIVE))
6885 sub->pmu->read(sub);
6887 values[n++] = perf_event_count(sub);
6888 if (read_format & PERF_FORMAT_ID)
6889 values[n++] = primary_event_id(sub);
6891 __output_copy(handle, values, n * sizeof(u64));
6895 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6896 PERF_FORMAT_TOTAL_TIME_RUNNING)
6899 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6901 * The problem is that its both hard and excessively expensive to iterate the
6902 * child list, not to mention that its impossible to IPI the children running
6903 * on another CPU, from interrupt/NMI context.
6905 static void perf_output_read(struct perf_output_handle *handle,
6906 struct perf_event *event)
6908 u64 enabled = 0, running = 0, now;
6909 u64 read_format = event->attr.read_format;
6912 * compute total_time_enabled, total_time_running
6913 * based on snapshot values taken when the event
6914 * was last scheduled in.
6916 * we cannot simply called update_context_time()
6917 * because of locking issue as we are called in
6920 if (read_format & PERF_FORMAT_TOTAL_TIMES)
6921 calc_timer_values(event, &now, &enabled, &running);
6923 if (event->attr.read_format & PERF_FORMAT_GROUP)
6924 perf_output_read_group(handle, event, enabled, running);
6926 perf_output_read_one(handle, event, enabled, running);
6929 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6931 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6934 void perf_output_sample(struct perf_output_handle *handle,
6935 struct perf_event_header *header,
6936 struct perf_sample_data *data,
6937 struct perf_event *event)
6939 u64 sample_type = data->type;
6941 perf_output_put(handle, *header);
6943 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6944 perf_output_put(handle, data->id);
6946 if (sample_type & PERF_SAMPLE_IP)
6947 perf_output_put(handle, data->ip);
6949 if (sample_type & PERF_SAMPLE_TID)
6950 perf_output_put(handle, data->tid_entry);
6952 if (sample_type & PERF_SAMPLE_TIME)
6953 perf_output_put(handle, data->time);
6955 if (sample_type & PERF_SAMPLE_ADDR)
6956 perf_output_put(handle, data->addr);
6958 if (sample_type & PERF_SAMPLE_ID)
6959 perf_output_put(handle, data->id);
6961 if (sample_type & PERF_SAMPLE_STREAM_ID)
6962 perf_output_put(handle, data->stream_id);
6964 if (sample_type & PERF_SAMPLE_CPU)
6965 perf_output_put(handle, data->cpu_entry);
6967 if (sample_type & PERF_SAMPLE_PERIOD)
6968 perf_output_put(handle, data->period);
6970 if (sample_type & PERF_SAMPLE_READ)
6971 perf_output_read(handle, event);
6973 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6976 size += data->callchain->nr;
6977 size *= sizeof(u64);
6978 __output_copy(handle, data->callchain, size);
6981 if (sample_type & PERF_SAMPLE_RAW) {
6982 struct perf_raw_record *raw = data->raw;
6985 struct perf_raw_frag *frag = &raw->frag;
6987 perf_output_put(handle, raw->size);
6990 __output_custom(handle, frag->copy,
6991 frag->data, frag->size);
6993 __output_copy(handle, frag->data,
6996 if (perf_raw_frag_last(frag))
7001 __output_skip(handle, NULL, frag->pad);
7007 .size = sizeof(u32),
7010 perf_output_put(handle, raw);
7014 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7015 if (data->br_stack) {
7018 size = data->br_stack->nr
7019 * sizeof(struct perf_branch_entry);
7021 perf_output_put(handle, data->br_stack->nr);
7022 if (perf_sample_save_hw_index(event))
7023 perf_output_put(handle, data->br_stack->hw_idx);
7024 perf_output_copy(handle, data->br_stack->entries, size);
7027 * we always store at least the value of nr
7030 perf_output_put(handle, nr);
7034 if (sample_type & PERF_SAMPLE_REGS_USER) {
7035 u64 abi = data->regs_user.abi;
7038 * If there are no regs to dump, notice it through
7039 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7041 perf_output_put(handle, abi);
7044 u64 mask = event->attr.sample_regs_user;
7045 perf_output_sample_regs(handle,
7046 data->regs_user.regs,
7051 if (sample_type & PERF_SAMPLE_STACK_USER) {
7052 perf_output_sample_ustack(handle,
7053 data->stack_user_size,
7054 data->regs_user.regs);
7057 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7058 perf_output_put(handle, data->weight.full);
7060 if (sample_type & PERF_SAMPLE_DATA_SRC)
7061 perf_output_put(handle, data->data_src.val);
7063 if (sample_type & PERF_SAMPLE_TRANSACTION)
7064 perf_output_put(handle, data->txn);
7066 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7067 u64 abi = data->regs_intr.abi;
7069 * If there are no regs to dump, notice it through
7070 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7072 perf_output_put(handle, abi);
7075 u64 mask = event->attr.sample_regs_intr;
7077 perf_output_sample_regs(handle,
7078 data->regs_intr.regs,
7083 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7084 perf_output_put(handle, data->phys_addr);
7086 if (sample_type & PERF_SAMPLE_CGROUP)
7087 perf_output_put(handle, data->cgroup);
7089 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7090 perf_output_put(handle, data->data_page_size);
7092 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7093 perf_output_put(handle, data->code_page_size);
7095 if (sample_type & PERF_SAMPLE_AUX) {
7096 perf_output_put(handle, data->aux_size);
7099 perf_aux_sample_output(event, handle, data);
7102 if (!event->attr.watermark) {
7103 int wakeup_events = event->attr.wakeup_events;
7105 if (wakeup_events) {
7106 struct perf_buffer *rb = handle->rb;
7107 int events = local_inc_return(&rb->events);
7109 if (events >= wakeup_events) {
7110 local_sub(wakeup_events, &rb->events);
7111 local_inc(&rb->wakeup);
7117 static u64 perf_virt_to_phys(u64 virt)
7120 struct page *p = NULL;
7125 if (virt >= TASK_SIZE) {
7126 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7127 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7128 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7129 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7132 * Walking the pages tables for user address.
7133 * Interrupts are disabled, so it prevents any tear down
7134 * of the page tables.
7135 * Try IRQ-safe get_user_page_fast_only first.
7136 * If failed, leave phys_addr as 0.
7138 if (current->mm != NULL) {
7139 pagefault_disable();
7140 if (get_user_page_fast_only(virt, 0, &p))
7141 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7153 * Return the pagetable size of a given virtual address.
7155 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7159 #ifdef CONFIG_HAVE_FAST_GUP
7166 pgdp = pgd_offset(mm, addr);
7167 pgd = READ_ONCE(*pgdp);
7172 return pgd_leaf_size(pgd);
7174 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7175 p4d = READ_ONCE(*p4dp);
7176 if (!p4d_present(p4d))
7180 return p4d_leaf_size(p4d);
7182 pudp = pud_offset_lockless(p4dp, p4d, addr);
7183 pud = READ_ONCE(*pudp);
7184 if (!pud_present(pud))
7188 return pud_leaf_size(pud);
7190 pmdp = pmd_offset_lockless(pudp, pud, addr);
7191 pmd = READ_ONCE(*pmdp);
7192 if (!pmd_present(pmd))
7196 return pmd_leaf_size(pmd);
7198 ptep = pte_offset_map(&pmd, addr);
7199 pte = ptep_get_lockless(ptep);
7200 if (pte_present(pte))
7201 size = pte_leaf_size(pte);
7203 #endif /* CONFIG_HAVE_FAST_GUP */
7208 static u64 perf_get_page_size(unsigned long addr)
7210 struct mm_struct *mm;
7211 unsigned long flags;
7218 * Software page-table walkers must disable IRQs,
7219 * which prevents any tear down of the page tables.
7221 local_irq_save(flags);
7226 * For kernel threads and the like, use init_mm so that
7227 * we can find kernel memory.
7232 size = perf_get_pgtable_size(mm, addr);
7234 local_irq_restore(flags);
7239 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7241 struct perf_callchain_entry *
7242 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7244 bool kernel = !event->attr.exclude_callchain_kernel;
7245 bool user = !event->attr.exclude_callchain_user;
7246 /* Disallow cross-task user callchains. */
7247 bool crosstask = event->ctx->task && event->ctx->task != current;
7248 const u32 max_stack = event->attr.sample_max_stack;
7249 struct perf_callchain_entry *callchain;
7251 if (!kernel && !user)
7252 return &__empty_callchain;
7254 callchain = get_perf_callchain(regs, 0, kernel, user,
7255 max_stack, crosstask, true);
7256 return callchain ?: &__empty_callchain;
7259 void perf_prepare_sample(struct perf_event_header *header,
7260 struct perf_sample_data *data,
7261 struct perf_event *event,
7262 struct pt_regs *regs)
7264 u64 sample_type = event->attr.sample_type;
7266 header->type = PERF_RECORD_SAMPLE;
7267 header->size = sizeof(*header) + event->header_size;
7270 header->misc |= perf_misc_flags(regs);
7272 __perf_event_header__init_id(header, data, event);
7274 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7275 data->ip = perf_instruction_pointer(regs);
7277 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7280 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7281 data->callchain = perf_callchain(event, regs);
7283 size += data->callchain->nr;
7285 header->size += size * sizeof(u64);
7288 if (sample_type & PERF_SAMPLE_RAW) {
7289 struct perf_raw_record *raw = data->raw;
7293 struct perf_raw_frag *frag = &raw->frag;
7298 if (perf_raw_frag_last(frag))
7303 size = round_up(sum + sizeof(u32), sizeof(u64));
7304 raw->size = size - sizeof(u32);
7305 frag->pad = raw->size - sum;
7310 header->size += size;
7313 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7314 int size = sizeof(u64); /* nr */
7315 if (data->br_stack) {
7316 if (perf_sample_save_hw_index(event))
7317 size += sizeof(u64);
7319 size += data->br_stack->nr
7320 * sizeof(struct perf_branch_entry);
7322 header->size += size;
7325 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7326 perf_sample_regs_user(&data->regs_user, regs);
7328 if (sample_type & PERF_SAMPLE_REGS_USER) {
7329 /* regs dump ABI info */
7330 int size = sizeof(u64);
7332 if (data->regs_user.regs) {
7333 u64 mask = event->attr.sample_regs_user;
7334 size += hweight64(mask) * sizeof(u64);
7337 header->size += size;
7340 if (sample_type & PERF_SAMPLE_STACK_USER) {
7342 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7343 * processed as the last one or have additional check added
7344 * in case new sample type is added, because we could eat
7345 * up the rest of the sample size.
7347 u16 stack_size = event->attr.sample_stack_user;
7348 u16 size = sizeof(u64);
7350 stack_size = perf_sample_ustack_size(stack_size, header->size,
7351 data->regs_user.regs);
7354 * If there is something to dump, add space for the dump
7355 * itself and for the field that tells the dynamic size,
7356 * which is how many have been actually dumped.
7359 size += sizeof(u64) + stack_size;
7361 data->stack_user_size = stack_size;
7362 header->size += size;
7365 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7366 /* regs dump ABI info */
7367 int size = sizeof(u64);
7369 perf_sample_regs_intr(&data->regs_intr, regs);
7371 if (data->regs_intr.regs) {
7372 u64 mask = event->attr.sample_regs_intr;
7374 size += hweight64(mask) * sizeof(u64);
7377 header->size += size;
7380 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7381 data->phys_addr = perf_virt_to_phys(data->addr);
7383 #ifdef CONFIG_CGROUP_PERF
7384 if (sample_type & PERF_SAMPLE_CGROUP) {
7385 struct cgroup *cgrp;
7387 /* protected by RCU */
7388 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7389 data->cgroup = cgroup_id(cgrp);
7394 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7395 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7396 * but the value will not dump to the userspace.
7398 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7399 data->data_page_size = perf_get_page_size(data->addr);
7401 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7402 data->code_page_size = perf_get_page_size(data->ip);
7404 if (sample_type & PERF_SAMPLE_AUX) {
7407 header->size += sizeof(u64); /* size */
7410 * Given the 16bit nature of header::size, an AUX sample can
7411 * easily overflow it, what with all the preceding sample bits.
7412 * Make sure this doesn't happen by using up to U16_MAX bytes
7413 * per sample in total (rounded down to 8 byte boundary).
7415 size = min_t(size_t, U16_MAX - header->size,
7416 event->attr.aux_sample_size);
7417 size = rounddown(size, 8);
7418 size = perf_prepare_sample_aux(event, data, size);
7420 WARN_ON_ONCE(size + header->size > U16_MAX);
7421 header->size += size;
7424 * If you're adding more sample types here, you likely need to do
7425 * something about the overflowing header::size, like repurpose the
7426 * lowest 3 bits of size, which should be always zero at the moment.
7427 * This raises a more important question, do we really need 512k sized
7428 * samples and why, so good argumentation is in order for whatever you
7431 WARN_ON_ONCE(header->size & 7);
7434 static __always_inline int
7435 __perf_event_output(struct perf_event *event,
7436 struct perf_sample_data *data,
7437 struct pt_regs *regs,
7438 int (*output_begin)(struct perf_output_handle *,
7439 struct perf_sample_data *,
7440 struct perf_event *,
7443 struct perf_output_handle handle;
7444 struct perf_event_header header;
7447 /* protect the callchain buffers */
7450 perf_prepare_sample(&header, data, event, regs);
7452 err = output_begin(&handle, data, event, header.size);
7456 perf_output_sample(&handle, &header, data, event);
7458 perf_output_end(&handle);
7466 perf_event_output_forward(struct perf_event *event,
7467 struct perf_sample_data *data,
7468 struct pt_regs *regs)
7470 __perf_event_output(event, data, regs, perf_output_begin_forward);
7474 perf_event_output_backward(struct perf_event *event,
7475 struct perf_sample_data *data,
7476 struct pt_regs *regs)
7478 __perf_event_output(event, data, regs, perf_output_begin_backward);
7482 perf_event_output(struct perf_event *event,
7483 struct perf_sample_data *data,
7484 struct pt_regs *regs)
7486 return __perf_event_output(event, data, regs, perf_output_begin);
7493 struct perf_read_event {
7494 struct perf_event_header header;
7501 perf_event_read_event(struct perf_event *event,
7502 struct task_struct *task)
7504 struct perf_output_handle handle;
7505 struct perf_sample_data sample;
7506 struct perf_read_event read_event = {
7508 .type = PERF_RECORD_READ,
7510 .size = sizeof(read_event) + event->read_size,
7512 .pid = perf_event_pid(event, task),
7513 .tid = perf_event_tid(event, task),
7517 perf_event_header__init_id(&read_event.header, &sample, event);
7518 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7522 perf_output_put(&handle, read_event);
7523 perf_output_read(&handle, event);
7524 perf_event__output_id_sample(event, &handle, &sample);
7526 perf_output_end(&handle);
7529 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7532 perf_iterate_ctx(struct perf_event_context *ctx,
7533 perf_iterate_f output,
7534 void *data, bool all)
7536 struct perf_event *event;
7538 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7540 if (event->state < PERF_EVENT_STATE_INACTIVE)
7542 if (!event_filter_match(event))
7546 output(event, data);
7550 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7552 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7553 struct perf_event *event;
7555 list_for_each_entry_rcu(event, &pel->list, sb_list) {
7557 * Skip events that are not fully formed yet; ensure that
7558 * if we observe event->ctx, both event and ctx will be
7559 * complete enough. See perf_install_in_context().
7561 if (!smp_load_acquire(&event->ctx))
7564 if (event->state < PERF_EVENT_STATE_INACTIVE)
7566 if (!event_filter_match(event))
7568 output(event, data);
7573 * Iterate all events that need to receive side-band events.
7575 * For new callers; ensure that account_pmu_sb_event() includes
7576 * your event, otherwise it might not get delivered.
7579 perf_iterate_sb(perf_iterate_f output, void *data,
7580 struct perf_event_context *task_ctx)
7582 struct perf_event_context *ctx;
7589 * If we have task_ctx != NULL we only notify the task context itself.
7590 * The task_ctx is set only for EXIT events before releasing task
7594 perf_iterate_ctx(task_ctx, output, data, false);
7598 perf_iterate_sb_cpu(output, data);
7600 for_each_task_context_nr(ctxn) {
7601 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7603 perf_iterate_ctx(ctx, output, data, false);
7611 * Clear all file-based filters at exec, they'll have to be
7612 * re-instated when/if these objects are mmapped again.
7614 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7616 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7617 struct perf_addr_filter *filter;
7618 unsigned int restart = 0, count = 0;
7619 unsigned long flags;
7621 if (!has_addr_filter(event))
7624 raw_spin_lock_irqsave(&ifh->lock, flags);
7625 list_for_each_entry(filter, &ifh->list, entry) {
7626 if (filter->path.dentry) {
7627 event->addr_filter_ranges[count].start = 0;
7628 event->addr_filter_ranges[count].size = 0;
7636 event->addr_filters_gen++;
7637 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7640 perf_event_stop(event, 1);
7643 void perf_event_exec(void)
7645 struct perf_event_context *ctx;
7648 for_each_task_context_nr(ctxn) {
7649 perf_event_enable_on_exec(ctxn);
7650 perf_event_remove_on_exec(ctxn);
7653 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7655 perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7662 struct remote_output {
7663 struct perf_buffer *rb;
7667 static void __perf_event_output_stop(struct perf_event *event, void *data)
7669 struct perf_event *parent = event->parent;
7670 struct remote_output *ro = data;
7671 struct perf_buffer *rb = ro->rb;
7672 struct stop_event_data sd = {
7676 if (!has_aux(event))
7683 * In case of inheritance, it will be the parent that links to the
7684 * ring-buffer, but it will be the child that's actually using it.
7686 * We are using event::rb to determine if the event should be stopped,
7687 * however this may race with ring_buffer_attach() (through set_output),
7688 * which will make us skip the event that actually needs to be stopped.
7689 * So ring_buffer_attach() has to stop an aux event before re-assigning
7692 if (rcu_dereference(parent->rb) == rb)
7693 ro->err = __perf_event_stop(&sd);
7696 static int __perf_pmu_output_stop(void *info)
7698 struct perf_event *event = info;
7699 struct pmu *pmu = event->ctx->pmu;
7700 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7701 struct remote_output ro = {
7706 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7707 if (cpuctx->task_ctx)
7708 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7715 static void perf_pmu_output_stop(struct perf_event *event)
7717 struct perf_event *iter;
7722 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7724 * For per-CPU events, we need to make sure that neither they
7725 * nor their children are running; for cpu==-1 events it's
7726 * sufficient to stop the event itself if it's active, since
7727 * it can't have children.
7731 cpu = READ_ONCE(iter->oncpu);
7736 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7737 if (err == -EAGAIN) {
7746 * task tracking -- fork/exit
7748 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7751 struct perf_task_event {
7752 struct task_struct *task;
7753 struct perf_event_context *task_ctx;
7756 struct perf_event_header header;
7766 static int perf_event_task_match(struct perf_event *event)
7768 return event->attr.comm || event->attr.mmap ||
7769 event->attr.mmap2 || event->attr.mmap_data ||
7773 static void perf_event_task_output(struct perf_event *event,
7776 struct perf_task_event *task_event = data;
7777 struct perf_output_handle handle;
7778 struct perf_sample_data sample;
7779 struct task_struct *task = task_event->task;
7780 int ret, size = task_event->event_id.header.size;
7782 if (!perf_event_task_match(event))
7785 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7787 ret = perf_output_begin(&handle, &sample, event,
7788 task_event->event_id.header.size);
7792 task_event->event_id.pid = perf_event_pid(event, task);
7793 task_event->event_id.tid = perf_event_tid(event, task);
7795 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7796 task_event->event_id.ppid = perf_event_pid(event,
7798 task_event->event_id.ptid = perf_event_pid(event,
7800 } else { /* PERF_RECORD_FORK */
7801 task_event->event_id.ppid = perf_event_pid(event, current);
7802 task_event->event_id.ptid = perf_event_tid(event, current);
7805 task_event->event_id.time = perf_event_clock(event);
7807 perf_output_put(&handle, task_event->event_id);
7809 perf_event__output_id_sample(event, &handle, &sample);
7811 perf_output_end(&handle);
7813 task_event->event_id.header.size = size;
7816 static void perf_event_task(struct task_struct *task,
7817 struct perf_event_context *task_ctx,
7820 struct perf_task_event task_event;
7822 if (!atomic_read(&nr_comm_events) &&
7823 !atomic_read(&nr_mmap_events) &&
7824 !atomic_read(&nr_task_events))
7827 task_event = (struct perf_task_event){
7829 .task_ctx = task_ctx,
7832 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7834 .size = sizeof(task_event.event_id),
7844 perf_iterate_sb(perf_event_task_output,
7849 void perf_event_fork(struct task_struct *task)
7851 perf_event_task(task, NULL, 1);
7852 perf_event_namespaces(task);
7859 struct perf_comm_event {
7860 struct task_struct *task;
7865 struct perf_event_header header;
7872 static int perf_event_comm_match(struct perf_event *event)
7874 return event->attr.comm;
7877 static void perf_event_comm_output(struct perf_event *event,
7880 struct perf_comm_event *comm_event = data;
7881 struct perf_output_handle handle;
7882 struct perf_sample_data sample;
7883 int size = comm_event->event_id.header.size;
7886 if (!perf_event_comm_match(event))
7889 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7890 ret = perf_output_begin(&handle, &sample, event,
7891 comm_event->event_id.header.size);
7896 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7897 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7899 perf_output_put(&handle, comm_event->event_id);
7900 __output_copy(&handle, comm_event->comm,
7901 comm_event->comm_size);
7903 perf_event__output_id_sample(event, &handle, &sample);
7905 perf_output_end(&handle);
7907 comm_event->event_id.header.size = size;
7910 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7912 char comm[TASK_COMM_LEN];
7915 memset(comm, 0, sizeof(comm));
7916 strlcpy(comm, comm_event->task->comm, sizeof(comm));
7917 size = ALIGN(strlen(comm)+1, sizeof(u64));
7919 comm_event->comm = comm;
7920 comm_event->comm_size = size;
7922 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7924 perf_iterate_sb(perf_event_comm_output,
7929 void perf_event_comm(struct task_struct *task, bool exec)
7931 struct perf_comm_event comm_event;
7933 if (!atomic_read(&nr_comm_events))
7936 comm_event = (struct perf_comm_event){
7942 .type = PERF_RECORD_COMM,
7943 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7951 perf_event_comm_event(&comm_event);
7955 * namespaces tracking
7958 struct perf_namespaces_event {
7959 struct task_struct *task;
7962 struct perf_event_header header;
7967 struct perf_ns_link_info link_info[NR_NAMESPACES];
7971 static int perf_event_namespaces_match(struct perf_event *event)
7973 return event->attr.namespaces;
7976 static void perf_event_namespaces_output(struct perf_event *event,
7979 struct perf_namespaces_event *namespaces_event = data;
7980 struct perf_output_handle handle;
7981 struct perf_sample_data sample;
7982 u16 header_size = namespaces_event->event_id.header.size;
7985 if (!perf_event_namespaces_match(event))
7988 perf_event_header__init_id(&namespaces_event->event_id.header,
7990 ret = perf_output_begin(&handle, &sample, event,
7991 namespaces_event->event_id.header.size);
7995 namespaces_event->event_id.pid = perf_event_pid(event,
7996 namespaces_event->task);
7997 namespaces_event->event_id.tid = perf_event_tid(event,
7998 namespaces_event->task);
8000 perf_output_put(&handle, namespaces_event->event_id);
8002 perf_event__output_id_sample(event, &handle, &sample);
8004 perf_output_end(&handle);
8006 namespaces_event->event_id.header.size = header_size;
8009 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8010 struct task_struct *task,
8011 const struct proc_ns_operations *ns_ops)
8013 struct path ns_path;
8014 struct inode *ns_inode;
8017 error = ns_get_path(&ns_path, task, ns_ops);
8019 ns_inode = ns_path.dentry->d_inode;
8020 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8021 ns_link_info->ino = ns_inode->i_ino;
8026 void perf_event_namespaces(struct task_struct *task)
8028 struct perf_namespaces_event namespaces_event;
8029 struct perf_ns_link_info *ns_link_info;
8031 if (!atomic_read(&nr_namespaces_events))
8034 namespaces_event = (struct perf_namespaces_event){
8038 .type = PERF_RECORD_NAMESPACES,
8040 .size = sizeof(namespaces_event.event_id),
8044 .nr_namespaces = NR_NAMESPACES,
8045 /* .link_info[NR_NAMESPACES] */
8049 ns_link_info = namespaces_event.event_id.link_info;
8051 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8052 task, &mntns_operations);
8054 #ifdef CONFIG_USER_NS
8055 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8056 task, &userns_operations);
8058 #ifdef CONFIG_NET_NS
8059 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8060 task, &netns_operations);
8062 #ifdef CONFIG_UTS_NS
8063 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8064 task, &utsns_operations);
8066 #ifdef CONFIG_IPC_NS
8067 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8068 task, &ipcns_operations);
8070 #ifdef CONFIG_PID_NS
8071 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8072 task, &pidns_operations);
8074 #ifdef CONFIG_CGROUPS
8075 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8076 task, &cgroupns_operations);
8079 perf_iterate_sb(perf_event_namespaces_output,
8087 #ifdef CONFIG_CGROUP_PERF
8089 struct perf_cgroup_event {
8093 struct perf_event_header header;
8099 static int perf_event_cgroup_match(struct perf_event *event)
8101 return event->attr.cgroup;
8104 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8106 struct perf_cgroup_event *cgroup_event = data;
8107 struct perf_output_handle handle;
8108 struct perf_sample_data sample;
8109 u16 header_size = cgroup_event->event_id.header.size;
8112 if (!perf_event_cgroup_match(event))
8115 perf_event_header__init_id(&cgroup_event->event_id.header,
8117 ret = perf_output_begin(&handle, &sample, event,
8118 cgroup_event->event_id.header.size);
8122 perf_output_put(&handle, cgroup_event->event_id);
8123 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8125 perf_event__output_id_sample(event, &handle, &sample);
8127 perf_output_end(&handle);
8129 cgroup_event->event_id.header.size = header_size;
8132 static void perf_event_cgroup(struct cgroup *cgrp)
8134 struct perf_cgroup_event cgroup_event;
8135 char path_enomem[16] = "//enomem";
8139 if (!atomic_read(&nr_cgroup_events))
8142 cgroup_event = (struct perf_cgroup_event){
8145 .type = PERF_RECORD_CGROUP,
8147 .size = sizeof(cgroup_event.event_id),
8149 .id = cgroup_id(cgrp),
8153 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8154 if (pathname == NULL) {
8155 cgroup_event.path = path_enomem;
8157 /* just to be sure to have enough space for alignment */
8158 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8159 cgroup_event.path = pathname;
8163 * Since our buffer works in 8 byte units we need to align our string
8164 * size to a multiple of 8. However, we must guarantee the tail end is
8165 * zero'd out to avoid leaking random bits to userspace.
8167 size = strlen(cgroup_event.path) + 1;
8168 while (!IS_ALIGNED(size, sizeof(u64)))
8169 cgroup_event.path[size++] = '\0';
8171 cgroup_event.event_id.header.size += size;
8172 cgroup_event.path_size = size;
8174 perf_iterate_sb(perf_event_cgroup_output,
8187 struct perf_mmap_event {
8188 struct vm_area_struct *vma;
8190 const char *file_name;
8196 u8 build_id[BUILD_ID_SIZE_MAX];
8200 struct perf_event_header header;
8210 static int perf_event_mmap_match(struct perf_event *event,
8213 struct perf_mmap_event *mmap_event = data;
8214 struct vm_area_struct *vma = mmap_event->vma;
8215 int executable = vma->vm_flags & VM_EXEC;
8217 return (!executable && event->attr.mmap_data) ||
8218 (executable && (event->attr.mmap || event->attr.mmap2));
8221 static void perf_event_mmap_output(struct perf_event *event,
8224 struct perf_mmap_event *mmap_event = data;
8225 struct perf_output_handle handle;
8226 struct perf_sample_data sample;
8227 int size = mmap_event->event_id.header.size;
8228 u32 type = mmap_event->event_id.header.type;
8232 if (!perf_event_mmap_match(event, data))
8235 if (event->attr.mmap2) {
8236 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8237 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8238 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8239 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8240 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8241 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8242 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8245 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8246 ret = perf_output_begin(&handle, &sample, event,
8247 mmap_event->event_id.header.size);
8251 mmap_event->event_id.pid = perf_event_pid(event, current);
8252 mmap_event->event_id.tid = perf_event_tid(event, current);
8254 use_build_id = event->attr.build_id && mmap_event->build_id_size;
8256 if (event->attr.mmap2 && use_build_id)
8257 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8259 perf_output_put(&handle, mmap_event->event_id);
8261 if (event->attr.mmap2) {
8263 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8265 __output_copy(&handle, size, 4);
8266 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8268 perf_output_put(&handle, mmap_event->maj);
8269 perf_output_put(&handle, mmap_event->min);
8270 perf_output_put(&handle, mmap_event->ino);
8271 perf_output_put(&handle, mmap_event->ino_generation);
8273 perf_output_put(&handle, mmap_event->prot);
8274 perf_output_put(&handle, mmap_event->flags);
8277 __output_copy(&handle, mmap_event->file_name,
8278 mmap_event->file_size);
8280 perf_event__output_id_sample(event, &handle, &sample);
8282 perf_output_end(&handle);
8284 mmap_event->event_id.header.size = size;
8285 mmap_event->event_id.header.type = type;
8288 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8290 struct vm_area_struct *vma = mmap_event->vma;
8291 struct file *file = vma->vm_file;
8292 int maj = 0, min = 0;
8293 u64 ino = 0, gen = 0;
8294 u32 prot = 0, flags = 0;
8300 if (vma->vm_flags & VM_READ)
8302 if (vma->vm_flags & VM_WRITE)
8304 if (vma->vm_flags & VM_EXEC)
8307 if (vma->vm_flags & VM_MAYSHARE)
8310 flags = MAP_PRIVATE;
8312 if (vma->vm_flags & VM_DENYWRITE)
8313 flags |= MAP_DENYWRITE;
8314 if (vma->vm_flags & VM_MAYEXEC)
8315 flags |= MAP_EXECUTABLE;
8316 if (vma->vm_flags & VM_LOCKED)
8317 flags |= MAP_LOCKED;
8318 if (is_vm_hugetlb_page(vma))
8319 flags |= MAP_HUGETLB;
8322 struct inode *inode;
8325 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8331 * d_path() works from the end of the rb backwards, so we
8332 * need to add enough zero bytes after the string to handle
8333 * the 64bit alignment we do later.
8335 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8340 inode = file_inode(vma->vm_file);
8341 dev = inode->i_sb->s_dev;
8343 gen = inode->i_generation;
8349 if (vma->vm_ops && vma->vm_ops->name) {
8350 name = (char *) vma->vm_ops->name(vma);
8355 name = (char *)arch_vma_name(vma);
8359 if (vma->vm_start <= vma->vm_mm->start_brk &&
8360 vma->vm_end >= vma->vm_mm->brk) {
8364 if (vma->vm_start <= vma->vm_mm->start_stack &&
8365 vma->vm_end >= vma->vm_mm->start_stack) {
8375 strlcpy(tmp, name, sizeof(tmp));
8379 * Since our buffer works in 8 byte units we need to align our string
8380 * size to a multiple of 8. However, we must guarantee the tail end is
8381 * zero'd out to avoid leaking random bits to userspace.
8383 size = strlen(name)+1;
8384 while (!IS_ALIGNED(size, sizeof(u64)))
8385 name[size++] = '\0';
8387 mmap_event->file_name = name;
8388 mmap_event->file_size = size;
8389 mmap_event->maj = maj;
8390 mmap_event->min = min;
8391 mmap_event->ino = ino;
8392 mmap_event->ino_generation = gen;
8393 mmap_event->prot = prot;
8394 mmap_event->flags = flags;
8396 if (!(vma->vm_flags & VM_EXEC))
8397 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8399 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8401 if (atomic_read(&nr_build_id_events))
8402 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8404 perf_iterate_sb(perf_event_mmap_output,
8412 * Check whether inode and address range match filter criteria.
8414 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8415 struct file *file, unsigned long offset,
8418 /* d_inode(NULL) won't be equal to any mapped user-space file */
8419 if (!filter->path.dentry)
8422 if (d_inode(filter->path.dentry) != file_inode(file))
8425 if (filter->offset > offset + size)
8428 if (filter->offset + filter->size < offset)
8434 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8435 struct vm_area_struct *vma,
8436 struct perf_addr_filter_range *fr)
8438 unsigned long vma_size = vma->vm_end - vma->vm_start;
8439 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8440 struct file *file = vma->vm_file;
8442 if (!perf_addr_filter_match(filter, file, off, vma_size))
8445 if (filter->offset < off) {
8446 fr->start = vma->vm_start;
8447 fr->size = min(vma_size, filter->size - (off - filter->offset));
8449 fr->start = vma->vm_start + filter->offset - off;
8450 fr->size = min(vma->vm_end - fr->start, filter->size);
8456 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8458 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8459 struct vm_area_struct *vma = data;
8460 struct perf_addr_filter *filter;
8461 unsigned int restart = 0, count = 0;
8462 unsigned long flags;
8464 if (!has_addr_filter(event))
8470 raw_spin_lock_irqsave(&ifh->lock, flags);
8471 list_for_each_entry(filter, &ifh->list, entry) {
8472 if (perf_addr_filter_vma_adjust(filter, vma,
8473 &event->addr_filter_ranges[count]))
8480 event->addr_filters_gen++;
8481 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8484 perf_event_stop(event, 1);
8488 * Adjust all task's events' filters to the new vma
8490 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8492 struct perf_event_context *ctx;
8496 * Data tracing isn't supported yet and as such there is no need
8497 * to keep track of anything that isn't related to executable code:
8499 if (!(vma->vm_flags & VM_EXEC))
8503 for_each_task_context_nr(ctxn) {
8504 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8508 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8513 void perf_event_mmap(struct vm_area_struct *vma)
8515 struct perf_mmap_event mmap_event;
8517 if (!atomic_read(&nr_mmap_events))
8520 mmap_event = (struct perf_mmap_event){
8526 .type = PERF_RECORD_MMAP,
8527 .misc = PERF_RECORD_MISC_USER,
8532 .start = vma->vm_start,
8533 .len = vma->vm_end - vma->vm_start,
8534 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
8536 /* .maj (attr_mmap2 only) */
8537 /* .min (attr_mmap2 only) */
8538 /* .ino (attr_mmap2 only) */
8539 /* .ino_generation (attr_mmap2 only) */
8540 /* .prot (attr_mmap2 only) */
8541 /* .flags (attr_mmap2 only) */
8544 perf_addr_filters_adjust(vma);
8545 perf_event_mmap_event(&mmap_event);
8548 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8549 unsigned long size, u64 flags)
8551 struct perf_output_handle handle;
8552 struct perf_sample_data sample;
8553 struct perf_aux_event {
8554 struct perf_event_header header;
8560 .type = PERF_RECORD_AUX,
8562 .size = sizeof(rec),
8570 perf_event_header__init_id(&rec.header, &sample, event);
8571 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8576 perf_output_put(&handle, rec);
8577 perf_event__output_id_sample(event, &handle, &sample);
8579 perf_output_end(&handle);
8583 * Lost/dropped samples logging
8585 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8587 struct perf_output_handle handle;
8588 struct perf_sample_data sample;
8592 struct perf_event_header header;
8594 } lost_samples_event = {
8596 .type = PERF_RECORD_LOST_SAMPLES,
8598 .size = sizeof(lost_samples_event),
8603 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8605 ret = perf_output_begin(&handle, &sample, event,
8606 lost_samples_event.header.size);
8610 perf_output_put(&handle, lost_samples_event);
8611 perf_event__output_id_sample(event, &handle, &sample);
8612 perf_output_end(&handle);
8616 * context_switch tracking
8619 struct perf_switch_event {
8620 struct task_struct *task;
8621 struct task_struct *next_prev;
8624 struct perf_event_header header;
8630 static int perf_event_switch_match(struct perf_event *event)
8632 return event->attr.context_switch;
8635 static void perf_event_switch_output(struct perf_event *event, void *data)
8637 struct perf_switch_event *se = data;
8638 struct perf_output_handle handle;
8639 struct perf_sample_data sample;
8642 if (!perf_event_switch_match(event))
8645 /* Only CPU-wide events are allowed to see next/prev pid/tid */
8646 if (event->ctx->task) {
8647 se->event_id.header.type = PERF_RECORD_SWITCH;
8648 se->event_id.header.size = sizeof(se->event_id.header);
8650 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8651 se->event_id.header.size = sizeof(se->event_id);
8652 se->event_id.next_prev_pid =
8653 perf_event_pid(event, se->next_prev);
8654 se->event_id.next_prev_tid =
8655 perf_event_tid(event, se->next_prev);
8658 perf_event_header__init_id(&se->event_id.header, &sample, event);
8660 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8664 if (event->ctx->task)
8665 perf_output_put(&handle, se->event_id.header);
8667 perf_output_put(&handle, se->event_id);
8669 perf_event__output_id_sample(event, &handle, &sample);
8671 perf_output_end(&handle);
8674 static void perf_event_switch(struct task_struct *task,
8675 struct task_struct *next_prev, bool sched_in)
8677 struct perf_switch_event switch_event;
8679 /* N.B. caller checks nr_switch_events != 0 */
8681 switch_event = (struct perf_switch_event){
8683 .next_prev = next_prev,
8687 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8690 /* .next_prev_pid */
8691 /* .next_prev_tid */
8695 if (!sched_in && task->state == TASK_RUNNING)
8696 switch_event.event_id.header.misc |=
8697 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8699 perf_iterate_sb(perf_event_switch_output,
8705 * IRQ throttle logging
8708 static void perf_log_throttle(struct perf_event *event, int enable)
8710 struct perf_output_handle handle;
8711 struct perf_sample_data sample;
8715 struct perf_event_header header;
8719 } throttle_event = {
8721 .type = PERF_RECORD_THROTTLE,
8723 .size = sizeof(throttle_event),
8725 .time = perf_event_clock(event),
8726 .id = primary_event_id(event),
8727 .stream_id = event->id,
8731 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8733 perf_event_header__init_id(&throttle_event.header, &sample, event);
8735 ret = perf_output_begin(&handle, &sample, event,
8736 throttle_event.header.size);
8740 perf_output_put(&handle, throttle_event);
8741 perf_event__output_id_sample(event, &handle, &sample);
8742 perf_output_end(&handle);
8746 * ksymbol register/unregister tracking
8749 struct perf_ksymbol_event {
8753 struct perf_event_header header;
8761 static int perf_event_ksymbol_match(struct perf_event *event)
8763 return event->attr.ksymbol;
8766 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8768 struct perf_ksymbol_event *ksymbol_event = data;
8769 struct perf_output_handle handle;
8770 struct perf_sample_data sample;
8773 if (!perf_event_ksymbol_match(event))
8776 perf_event_header__init_id(&ksymbol_event->event_id.header,
8778 ret = perf_output_begin(&handle, &sample, event,
8779 ksymbol_event->event_id.header.size);
8783 perf_output_put(&handle, ksymbol_event->event_id);
8784 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8785 perf_event__output_id_sample(event, &handle, &sample);
8787 perf_output_end(&handle);
8790 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8793 struct perf_ksymbol_event ksymbol_event;
8794 char name[KSYM_NAME_LEN];
8798 if (!atomic_read(&nr_ksymbol_events))
8801 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8802 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8805 strlcpy(name, sym, KSYM_NAME_LEN);
8806 name_len = strlen(name) + 1;
8807 while (!IS_ALIGNED(name_len, sizeof(u64)))
8808 name[name_len++] = '\0';
8809 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8812 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8814 ksymbol_event = (struct perf_ksymbol_event){
8816 .name_len = name_len,
8819 .type = PERF_RECORD_KSYMBOL,
8820 .size = sizeof(ksymbol_event.event_id) +
8825 .ksym_type = ksym_type,
8830 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8833 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8837 * bpf program load/unload tracking
8840 struct perf_bpf_event {
8841 struct bpf_prog *prog;
8843 struct perf_event_header header;
8847 u8 tag[BPF_TAG_SIZE];
8851 static int perf_event_bpf_match(struct perf_event *event)
8853 return event->attr.bpf_event;
8856 static void perf_event_bpf_output(struct perf_event *event, void *data)
8858 struct perf_bpf_event *bpf_event = data;
8859 struct perf_output_handle handle;
8860 struct perf_sample_data sample;
8863 if (!perf_event_bpf_match(event))
8866 perf_event_header__init_id(&bpf_event->event_id.header,
8868 ret = perf_output_begin(&handle, data, event,
8869 bpf_event->event_id.header.size);
8873 perf_output_put(&handle, bpf_event->event_id);
8874 perf_event__output_id_sample(event, &handle, &sample);
8876 perf_output_end(&handle);
8879 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8880 enum perf_bpf_event_type type)
8882 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8885 if (prog->aux->func_cnt == 0) {
8886 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8887 (u64)(unsigned long)prog->bpf_func,
8888 prog->jited_len, unregister,
8889 prog->aux->ksym.name);
8891 for (i = 0; i < prog->aux->func_cnt; i++) {
8892 struct bpf_prog *subprog = prog->aux->func[i];
8895 PERF_RECORD_KSYMBOL_TYPE_BPF,
8896 (u64)(unsigned long)subprog->bpf_func,
8897 subprog->jited_len, unregister,
8898 prog->aux->ksym.name);
8903 void perf_event_bpf_event(struct bpf_prog *prog,
8904 enum perf_bpf_event_type type,
8907 struct perf_bpf_event bpf_event;
8909 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8910 type >= PERF_BPF_EVENT_MAX)
8914 case PERF_BPF_EVENT_PROG_LOAD:
8915 case PERF_BPF_EVENT_PROG_UNLOAD:
8916 if (atomic_read(&nr_ksymbol_events))
8917 perf_event_bpf_emit_ksymbols(prog, type);
8923 if (!atomic_read(&nr_bpf_events))
8926 bpf_event = (struct perf_bpf_event){
8930 .type = PERF_RECORD_BPF_EVENT,
8931 .size = sizeof(bpf_event.event_id),
8935 .id = prog->aux->id,
8939 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8941 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8942 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8945 struct perf_text_poke_event {
8946 const void *old_bytes;
8947 const void *new_bytes;
8953 struct perf_event_header header;
8959 static int perf_event_text_poke_match(struct perf_event *event)
8961 return event->attr.text_poke;
8964 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8966 struct perf_text_poke_event *text_poke_event = data;
8967 struct perf_output_handle handle;
8968 struct perf_sample_data sample;
8972 if (!perf_event_text_poke_match(event))
8975 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8977 ret = perf_output_begin(&handle, &sample, event,
8978 text_poke_event->event_id.header.size);
8982 perf_output_put(&handle, text_poke_event->event_id);
8983 perf_output_put(&handle, text_poke_event->old_len);
8984 perf_output_put(&handle, text_poke_event->new_len);
8986 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8987 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8989 if (text_poke_event->pad)
8990 __output_copy(&handle, &padding, text_poke_event->pad);
8992 perf_event__output_id_sample(event, &handle, &sample);
8994 perf_output_end(&handle);
8997 void perf_event_text_poke(const void *addr, const void *old_bytes,
8998 size_t old_len, const void *new_bytes, size_t new_len)
9000 struct perf_text_poke_event text_poke_event;
9003 if (!atomic_read(&nr_text_poke_events))
9006 tot = sizeof(text_poke_event.old_len) + old_len;
9007 tot += sizeof(text_poke_event.new_len) + new_len;
9008 pad = ALIGN(tot, sizeof(u64)) - tot;
9010 text_poke_event = (struct perf_text_poke_event){
9011 .old_bytes = old_bytes,
9012 .new_bytes = new_bytes,
9018 .type = PERF_RECORD_TEXT_POKE,
9019 .misc = PERF_RECORD_MISC_KERNEL,
9020 .size = sizeof(text_poke_event.event_id) + tot + pad,
9022 .addr = (unsigned long)addr,
9026 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9029 void perf_event_itrace_started(struct perf_event *event)
9031 event->attach_state |= PERF_ATTACH_ITRACE;
9034 static void perf_log_itrace_start(struct perf_event *event)
9036 struct perf_output_handle handle;
9037 struct perf_sample_data sample;
9038 struct perf_aux_event {
9039 struct perf_event_header header;
9046 event = event->parent;
9048 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9049 event->attach_state & PERF_ATTACH_ITRACE)
9052 rec.header.type = PERF_RECORD_ITRACE_START;
9053 rec.header.misc = 0;
9054 rec.header.size = sizeof(rec);
9055 rec.pid = perf_event_pid(event, current);
9056 rec.tid = perf_event_tid(event, current);
9058 perf_event_header__init_id(&rec.header, &sample, event);
9059 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9064 perf_output_put(&handle, rec);
9065 perf_event__output_id_sample(event, &handle, &sample);
9067 perf_output_end(&handle);
9071 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9073 struct hw_perf_event *hwc = &event->hw;
9077 seq = __this_cpu_read(perf_throttled_seq);
9078 if (seq != hwc->interrupts_seq) {
9079 hwc->interrupts_seq = seq;
9080 hwc->interrupts = 1;
9083 if (unlikely(throttle
9084 && hwc->interrupts >= max_samples_per_tick)) {
9085 __this_cpu_inc(perf_throttled_count);
9086 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9087 hwc->interrupts = MAX_INTERRUPTS;
9088 perf_log_throttle(event, 0);
9093 if (event->attr.freq) {
9094 u64 now = perf_clock();
9095 s64 delta = now - hwc->freq_time_stamp;
9097 hwc->freq_time_stamp = now;
9099 if (delta > 0 && delta < 2*TICK_NSEC)
9100 perf_adjust_period(event, delta, hwc->last_period, true);
9106 int perf_event_account_interrupt(struct perf_event *event)
9108 return __perf_event_account_interrupt(event, 1);
9112 * Generic event overflow handling, sampling.
9115 static int __perf_event_overflow(struct perf_event *event,
9116 int throttle, struct perf_sample_data *data,
9117 struct pt_regs *regs)
9119 int events = atomic_read(&event->event_limit);
9123 * Non-sampling counters might still use the PMI to fold short
9124 * hardware counters, ignore those.
9126 if (unlikely(!is_sampling_event(event)))
9129 ret = __perf_event_account_interrupt(event, throttle);
9132 * XXX event_limit might not quite work as expected on inherited
9136 event->pending_kill = POLL_IN;
9137 if (events && atomic_dec_and_test(&event->event_limit)) {
9139 event->pending_kill = POLL_HUP;
9140 event->pending_addr = data->addr;
9142 perf_event_disable_inatomic(event);
9145 READ_ONCE(event->overflow_handler)(event, data, regs);
9147 if (*perf_event_fasync(event) && event->pending_kill) {
9148 event->pending_wakeup = 1;
9149 irq_work_queue(&event->pending);
9155 int perf_event_overflow(struct perf_event *event,
9156 struct perf_sample_data *data,
9157 struct pt_regs *regs)
9159 return __perf_event_overflow(event, 1, data, regs);
9163 * Generic software event infrastructure
9166 struct swevent_htable {
9167 struct swevent_hlist *swevent_hlist;
9168 struct mutex hlist_mutex;
9171 /* Recursion avoidance in each contexts */
9172 int recursion[PERF_NR_CONTEXTS];
9175 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9178 * We directly increment event->count and keep a second value in
9179 * event->hw.period_left to count intervals. This period event
9180 * is kept in the range [-sample_period, 0] so that we can use the
9184 u64 perf_swevent_set_period(struct perf_event *event)
9186 struct hw_perf_event *hwc = &event->hw;
9187 u64 period = hwc->last_period;
9191 hwc->last_period = hwc->sample_period;
9194 old = val = local64_read(&hwc->period_left);
9198 nr = div64_u64(period + val, period);
9199 offset = nr * period;
9201 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9207 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9208 struct perf_sample_data *data,
9209 struct pt_regs *regs)
9211 struct hw_perf_event *hwc = &event->hw;
9215 overflow = perf_swevent_set_period(event);
9217 if (hwc->interrupts == MAX_INTERRUPTS)
9220 for (; overflow; overflow--) {
9221 if (__perf_event_overflow(event, throttle,
9224 * We inhibit the overflow from happening when
9225 * hwc->interrupts == MAX_INTERRUPTS.
9233 static void perf_swevent_event(struct perf_event *event, u64 nr,
9234 struct perf_sample_data *data,
9235 struct pt_regs *regs)
9237 struct hw_perf_event *hwc = &event->hw;
9239 local64_add(nr, &event->count);
9244 if (!is_sampling_event(event))
9247 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9249 return perf_swevent_overflow(event, 1, data, regs);
9251 data->period = event->hw.last_period;
9253 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9254 return perf_swevent_overflow(event, 1, data, regs);
9256 if (local64_add_negative(nr, &hwc->period_left))
9259 perf_swevent_overflow(event, 0, data, regs);
9262 static int perf_exclude_event(struct perf_event *event,
9263 struct pt_regs *regs)
9265 if (event->hw.state & PERF_HES_STOPPED)
9269 if (event->attr.exclude_user && user_mode(regs))
9272 if (event->attr.exclude_kernel && !user_mode(regs))
9279 static int perf_swevent_match(struct perf_event *event,
9280 enum perf_type_id type,
9282 struct perf_sample_data *data,
9283 struct pt_regs *regs)
9285 if (event->attr.type != type)
9288 if (event->attr.config != event_id)
9291 if (perf_exclude_event(event, regs))
9297 static inline u64 swevent_hash(u64 type, u32 event_id)
9299 u64 val = event_id | (type << 32);
9301 return hash_64(val, SWEVENT_HLIST_BITS);
9304 static inline struct hlist_head *
9305 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9307 u64 hash = swevent_hash(type, event_id);
9309 return &hlist->heads[hash];
9312 /* For the read side: events when they trigger */
9313 static inline struct hlist_head *
9314 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9316 struct swevent_hlist *hlist;
9318 hlist = rcu_dereference(swhash->swevent_hlist);
9322 return __find_swevent_head(hlist, type, event_id);
9325 /* For the event head insertion and removal in the hlist */
9326 static inline struct hlist_head *
9327 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9329 struct swevent_hlist *hlist;
9330 u32 event_id = event->attr.config;
9331 u64 type = event->attr.type;
9334 * Event scheduling is always serialized against hlist allocation
9335 * and release. Which makes the protected version suitable here.
9336 * The context lock guarantees that.
9338 hlist = rcu_dereference_protected(swhash->swevent_hlist,
9339 lockdep_is_held(&event->ctx->lock));
9343 return __find_swevent_head(hlist, type, event_id);
9346 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9348 struct perf_sample_data *data,
9349 struct pt_regs *regs)
9351 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9352 struct perf_event *event;
9353 struct hlist_head *head;
9356 head = find_swevent_head_rcu(swhash, type, event_id);
9360 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9361 if (perf_swevent_match(event, type, event_id, data, regs))
9362 perf_swevent_event(event, nr, data, regs);
9368 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9370 int perf_swevent_get_recursion_context(void)
9372 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9374 return get_recursion_context(swhash->recursion);
9376 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9378 void perf_swevent_put_recursion_context(int rctx)
9380 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9382 put_recursion_context(swhash->recursion, rctx);
9385 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9387 struct perf_sample_data data;
9389 if (WARN_ON_ONCE(!regs))
9392 perf_sample_data_init(&data, addr, 0);
9393 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9396 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9400 preempt_disable_notrace();
9401 rctx = perf_swevent_get_recursion_context();
9402 if (unlikely(rctx < 0))
9405 ___perf_sw_event(event_id, nr, regs, addr);
9407 perf_swevent_put_recursion_context(rctx);
9409 preempt_enable_notrace();
9412 static void perf_swevent_read(struct perf_event *event)
9416 static int perf_swevent_add(struct perf_event *event, int flags)
9418 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9419 struct hw_perf_event *hwc = &event->hw;
9420 struct hlist_head *head;
9422 if (is_sampling_event(event)) {
9423 hwc->last_period = hwc->sample_period;
9424 perf_swevent_set_period(event);
9427 hwc->state = !(flags & PERF_EF_START);
9429 head = find_swevent_head(swhash, event);
9430 if (WARN_ON_ONCE(!head))
9433 hlist_add_head_rcu(&event->hlist_entry, head);
9434 perf_event_update_userpage(event);
9439 static void perf_swevent_del(struct perf_event *event, int flags)
9441 hlist_del_rcu(&event->hlist_entry);
9444 static void perf_swevent_start(struct perf_event *event, int flags)
9446 event->hw.state = 0;
9449 static void perf_swevent_stop(struct perf_event *event, int flags)
9451 event->hw.state = PERF_HES_STOPPED;
9454 /* Deref the hlist from the update side */
9455 static inline struct swevent_hlist *
9456 swevent_hlist_deref(struct swevent_htable *swhash)
9458 return rcu_dereference_protected(swhash->swevent_hlist,
9459 lockdep_is_held(&swhash->hlist_mutex));
9462 static void swevent_hlist_release(struct swevent_htable *swhash)
9464 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9469 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9470 kfree_rcu(hlist, rcu_head);
9473 static void swevent_hlist_put_cpu(int cpu)
9475 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9477 mutex_lock(&swhash->hlist_mutex);
9479 if (!--swhash->hlist_refcount)
9480 swevent_hlist_release(swhash);
9482 mutex_unlock(&swhash->hlist_mutex);
9485 static void swevent_hlist_put(void)
9489 for_each_possible_cpu(cpu)
9490 swevent_hlist_put_cpu(cpu);
9493 static int swevent_hlist_get_cpu(int cpu)
9495 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9498 mutex_lock(&swhash->hlist_mutex);
9499 if (!swevent_hlist_deref(swhash) &&
9500 cpumask_test_cpu(cpu, perf_online_mask)) {
9501 struct swevent_hlist *hlist;
9503 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9508 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9510 swhash->hlist_refcount++;
9512 mutex_unlock(&swhash->hlist_mutex);
9517 static int swevent_hlist_get(void)
9519 int err, cpu, failed_cpu;
9521 mutex_lock(&pmus_lock);
9522 for_each_possible_cpu(cpu) {
9523 err = swevent_hlist_get_cpu(cpu);
9529 mutex_unlock(&pmus_lock);
9532 for_each_possible_cpu(cpu) {
9533 if (cpu == failed_cpu)
9535 swevent_hlist_put_cpu(cpu);
9537 mutex_unlock(&pmus_lock);
9541 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9543 static void sw_perf_event_destroy(struct perf_event *event)
9545 u64 event_id = event->attr.config;
9547 WARN_ON(event->parent);
9549 static_key_slow_dec(&perf_swevent_enabled[event_id]);
9550 swevent_hlist_put();
9553 static int perf_swevent_init(struct perf_event *event)
9555 u64 event_id = event->attr.config;
9557 if (event->attr.type != PERF_TYPE_SOFTWARE)
9561 * no branch sampling for software events
9563 if (has_branch_stack(event))
9567 case PERF_COUNT_SW_CPU_CLOCK:
9568 case PERF_COUNT_SW_TASK_CLOCK:
9575 if (event_id >= PERF_COUNT_SW_MAX)
9578 if (!event->parent) {
9581 err = swevent_hlist_get();
9585 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9586 event->destroy = sw_perf_event_destroy;
9592 static struct pmu perf_swevent = {
9593 .task_ctx_nr = perf_sw_context,
9595 .capabilities = PERF_PMU_CAP_NO_NMI,
9597 .event_init = perf_swevent_init,
9598 .add = perf_swevent_add,
9599 .del = perf_swevent_del,
9600 .start = perf_swevent_start,
9601 .stop = perf_swevent_stop,
9602 .read = perf_swevent_read,
9605 #ifdef CONFIG_EVENT_TRACING
9607 static int perf_tp_filter_match(struct perf_event *event,
9608 struct perf_sample_data *data)
9610 void *record = data->raw->frag.data;
9612 /* only top level events have filters set */
9614 event = event->parent;
9616 if (likely(!event->filter) || filter_match_preds(event->filter, record))
9621 static int perf_tp_event_match(struct perf_event *event,
9622 struct perf_sample_data *data,
9623 struct pt_regs *regs)
9625 if (event->hw.state & PERF_HES_STOPPED)
9628 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9630 if (event->attr.exclude_kernel && !user_mode(regs))
9633 if (!perf_tp_filter_match(event, data))
9639 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9640 struct trace_event_call *call, u64 count,
9641 struct pt_regs *regs, struct hlist_head *head,
9642 struct task_struct *task)
9644 if (bpf_prog_array_valid(call)) {
9645 *(struct pt_regs **)raw_data = regs;
9646 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9647 perf_swevent_put_recursion_context(rctx);
9651 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9654 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9656 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9657 struct pt_regs *regs, struct hlist_head *head, int rctx,
9658 struct task_struct *task)
9660 struct perf_sample_data data;
9661 struct perf_event *event;
9663 struct perf_raw_record raw = {
9670 perf_sample_data_init(&data, 0, 0);
9673 perf_trace_buf_update(record, event_type);
9675 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9676 if (perf_tp_event_match(event, &data, regs))
9677 perf_swevent_event(event, count, &data, regs);
9681 * If we got specified a target task, also iterate its context and
9682 * deliver this event there too.
9684 if (task && task != current) {
9685 struct perf_event_context *ctx;
9686 struct trace_entry *entry = record;
9689 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9693 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9694 if (event->cpu != smp_processor_id())
9696 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9698 if (event->attr.config != entry->type)
9700 if (perf_tp_event_match(event, &data, regs))
9701 perf_swevent_event(event, count, &data, regs);
9707 perf_swevent_put_recursion_context(rctx);
9709 EXPORT_SYMBOL_GPL(perf_tp_event);
9711 static void tp_perf_event_destroy(struct perf_event *event)
9713 perf_trace_destroy(event);
9716 static int perf_tp_event_init(struct perf_event *event)
9720 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9724 * no branch sampling for tracepoint events
9726 if (has_branch_stack(event))
9729 err = perf_trace_init(event);
9733 event->destroy = tp_perf_event_destroy;
9738 static struct pmu perf_tracepoint = {
9739 .task_ctx_nr = perf_sw_context,
9741 .event_init = perf_tp_event_init,
9742 .add = perf_trace_add,
9743 .del = perf_trace_del,
9744 .start = perf_swevent_start,
9745 .stop = perf_swevent_stop,
9746 .read = perf_swevent_read,
9749 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9751 * Flags in config, used by dynamic PMU kprobe and uprobe
9752 * The flags should match following PMU_FORMAT_ATTR().
9754 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9755 * if not set, create kprobe/uprobe
9757 * The following values specify a reference counter (or semaphore in the
9758 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9759 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9761 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
9762 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
9764 enum perf_probe_config {
9765 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
9766 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9767 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9770 PMU_FORMAT_ATTR(retprobe, "config:0");
9773 #ifdef CONFIG_KPROBE_EVENTS
9774 static struct attribute *kprobe_attrs[] = {
9775 &format_attr_retprobe.attr,
9779 static struct attribute_group kprobe_format_group = {
9781 .attrs = kprobe_attrs,
9784 static const struct attribute_group *kprobe_attr_groups[] = {
9785 &kprobe_format_group,
9789 static int perf_kprobe_event_init(struct perf_event *event);
9790 static struct pmu perf_kprobe = {
9791 .task_ctx_nr = perf_sw_context,
9792 .event_init = perf_kprobe_event_init,
9793 .add = perf_trace_add,
9794 .del = perf_trace_del,
9795 .start = perf_swevent_start,
9796 .stop = perf_swevent_stop,
9797 .read = perf_swevent_read,
9798 .attr_groups = kprobe_attr_groups,
9801 static int perf_kprobe_event_init(struct perf_event *event)
9806 if (event->attr.type != perf_kprobe.type)
9809 if (!perfmon_capable())
9813 * no branch sampling for probe events
9815 if (has_branch_stack(event))
9818 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9819 err = perf_kprobe_init(event, is_retprobe);
9823 event->destroy = perf_kprobe_destroy;
9827 #endif /* CONFIG_KPROBE_EVENTS */
9829 #ifdef CONFIG_UPROBE_EVENTS
9830 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9832 static struct attribute *uprobe_attrs[] = {
9833 &format_attr_retprobe.attr,
9834 &format_attr_ref_ctr_offset.attr,
9838 static struct attribute_group uprobe_format_group = {
9840 .attrs = uprobe_attrs,
9843 static const struct attribute_group *uprobe_attr_groups[] = {
9844 &uprobe_format_group,
9848 static int perf_uprobe_event_init(struct perf_event *event);
9849 static struct pmu perf_uprobe = {
9850 .task_ctx_nr = perf_sw_context,
9851 .event_init = perf_uprobe_event_init,
9852 .add = perf_trace_add,
9853 .del = perf_trace_del,
9854 .start = perf_swevent_start,
9855 .stop = perf_swevent_stop,
9856 .read = perf_swevent_read,
9857 .attr_groups = uprobe_attr_groups,
9860 static int perf_uprobe_event_init(struct perf_event *event)
9863 unsigned long ref_ctr_offset;
9866 if (event->attr.type != perf_uprobe.type)
9869 if (!perfmon_capable())
9873 * no branch sampling for probe events
9875 if (has_branch_stack(event))
9878 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9879 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9880 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9884 event->destroy = perf_uprobe_destroy;
9888 #endif /* CONFIG_UPROBE_EVENTS */
9890 static inline void perf_tp_register(void)
9892 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9893 #ifdef CONFIG_KPROBE_EVENTS
9894 perf_pmu_register(&perf_kprobe, "kprobe", -1);
9896 #ifdef CONFIG_UPROBE_EVENTS
9897 perf_pmu_register(&perf_uprobe, "uprobe", -1);
9901 static void perf_event_free_filter(struct perf_event *event)
9903 ftrace_profile_free_filter(event);
9906 #ifdef CONFIG_BPF_SYSCALL
9907 static void bpf_overflow_handler(struct perf_event *event,
9908 struct perf_sample_data *data,
9909 struct pt_regs *regs)
9911 struct bpf_perf_event_data_kern ctx = {
9917 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9918 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9921 ret = BPF_PROG_RUN(event->prog, &ctx);
9924 __this_cpu_dec(bpf_prog_active);
9928 event->orig_overflow_handler(event, data, regs);
9931 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9933 struct bpf_prog *prog;
9935 if (event->overflow_handler_context)
9936 /* hw breakpoint or kernel counter */
9942 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9944 return PTR_ERR(prog);
9946 if (event->attr.precise_ip &&
9947 prog->call_get_stack &&
9948 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9949 event->attr.exclude_callchain_kernel ||
9950 event->attr.exclude_callchain_user)) {
9952 * On perf_event with precise_ip, calling bpf_get_stack()
9953 * may trigger unwinder warnings and occasional crashes.
9954 * bpf_get_[stack|stackid] works around this issue by using
9955 * callchain attached to perf_sample_data. If the
9956 * perf_event does not full (kernel and user) callchain
9957 * attached to perf_sample_data, do not allow attaching BPF
9958 * program that calls bpf_get_[stack|stackid].
9965 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9966 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9970 static void perf_event_free_bpf_handler(struct perf_event *event)
9972 struct bpf_prog *prog = event->prog;
9977 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9982 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9986 static void perf_event_free_bpf_handler(struct perf_event *event)
9992 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9993 * with perf_event_open()
9995 static inline bool perf_event_is_tracing(struct perf_event *event)
9997 if (event->pmu == &perf_tracepoint)
9999 #ifdef CONFIG_KPROBE_EVENTS
10000 if (event->pmu == &perf_kprobe)
10003 #ifdef CONFIG_UPROBE_EVENTS
10004 if (event->pmu == &perf_uprobe)
10010 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10012 bool is_kprobe, is_tracepoint, is_syscall_tp;
10013 struct bpf_prog *prog;
10016 if (!perf_event_is_tracing(event))
10017 return perf_event_set_bpf_handler(event, prog_fd);
10019 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10020 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10021 is_syscall_tp = is_syscall_trace_event(event->tp_event);
10022 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10023 /* bpf programs can only be attached to u/kprobe or tracepoint */
10026 prog = bpf_prog_get(prog_fd);
10028 return PTR_ERR(prog);
10030 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10031 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10032 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
10033 /* valid fd, but invalid bpf program type */
10034 bpf_prog_put(prog);
10038 /* Kprobe override only works for kprobes, not uprobes. */
10039 if (prog->kprobe_override &&
10040 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
10041 bpf_prog_put(prog);
10045 if (is_tracepoint || is_syscall_tp) {
10046 int off = trace_event_get_offsets(event->tp_event);
10048 if (prog->aux->max_ctx_offset > off) {
10049 bpf_prog_put(prog);
10054 ret = perf_event_attach_bpf_prog(event, prog);
10056 bpf_prog_put(prog);
10060 static void perf_event_free_bpf_prog(struct perf_event *event)
10062 if (!perf_event_is_tracing(event)) {
10063 perf_event_free_bpf_handler(event);
10066 perf_event_detach_bpf_prog(event);
10071 static inline void perf_tp_register(void)
10075 static void perf_event_free_filter(struct perf_event *event)
10079 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10084 static void perf_event_free_bpf_prog(struct perf_event *event)
10087 #endif /* CONFIG_EVENT_TRACING */
10089 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10090 void perf_bp_event(struct perf_event *bp, void *data)
10092 struct perf_sample_data sample;
10093 struct pt_regs *regs = data;
10095 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10097 if (!bp->hw.state && !perf_exclude_event(bp, regs))
10098 perf_swevent_event(bp, 1, &sample, regs);
10103 * Allocate a new address filter
10105 static struct perf_addr_filter *
10106 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10108 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10109 struct perf_addr_filter *filter;
10111 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10115 INIT_LIST_HEAD(&filter->entry);
10116 list_add_tail(&filter->entry, filters);
10121 static void free_filters_list(struct list_head *filters)
10123 struct perf_addr_filter *filter, *iter;
10125 list_for_each_entry_safe(filter, iter, filters, entry) {
10126 path_put(&filter->path);
10127 list_del(&filter->entry);
10133 * Free existing address filters and optionally install new ones
10135 static void perf_addr_filters_splice(struct perf_event *event,
10136 struct list_head *head)
10138 unsigned long flags;
10141 if (!has_addr_filter(event))
10144 /* don't bother with children, they don't have their own filters */
10148 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10150 list_splice_init(&event->addr_filters.list, &list);
10152 list_splice(head, &event->addr_filters.list);
10154 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10156 free_filters_list(&list);
10160 * Scan through mm's vmas and see if one of them matches the
10161 * @filter; if so, adjust filter's address range.
10162 * Called with mm::mmap_lock down for reading.
10164 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10165 struct mm_struct *mm,
10166 struct perf_addr_filter_range *fr)
10168 struct vm_area_struct *vma;
10170 for (vma = mm->mmap; vma; vma = vma->vm_next) {
10174 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10180 * Update event's address range filters based on the
10181 * task's existing mappings, if any.
10183 static void perf_event_addr_filters_apply(struct perf_event *event)
10185 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10186 struct task_struct *task = READ_ONCE(event->ctx->task);
10187 struct perf_addr_filter *filter;
10188 struct mm_struct *mm = NULL;
10189 unsigned int count = 0;
10190 unsigned long flags;
10193 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10194 * will stop on the parent's child_mutex that our caller is also holding
10196 if (task == TASK_TOMBSTONE)
10199 if (ifh->nr_file_filters) {
10200 mm = get_task_mm(event->ctx->task);
10204 mmap_read_lock(mm);
10207 raw_spin_lock_irqsave(&ifh->lock, flags);
10208 list_for_each_entry(filter, &ifh->list, entry) {
10209 if (filter->path.dentry) {
10211 * Adjust base offset if the filter is associated to a
10212 * binary that needs to be mapped:
10214 event->addr_filter_ranges[count].start = 0;
10215 event->addr_filter_ranges[count].size = 0;
10217 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10219 event->addr_filter_ranges[count].start = filter->offset;
10220 event->addr_filter_ranges[count].size = filter->size;
10226 event->addr_filters_gen++;
10227 raw_spin_unlock_irqrestore(&ifh->lock, flags);
10229 if (ifh->nr_file_filters) {
10230 mmap_read_unlock(mm);
10236 perf_event_stop(event, 1);
10240 * Address range filtering: limiting the data to certain
10241 * instruction address ranges. Filters are ioctl()ed to us from
10242 * userspace as ascii strings.
10244 * Filter string format:
10246 * ACTION RANGE_SPEC
10247 * where ACTION is one of the
10248 * * "filter": limit the trace to this region
10249 * * "start": start tracing from this address
10250 * * "stop": stop tracing at this address/region;
10252 * * for kernel addresses: <start address>[/<size>]
10253 * * for object files: <start address>[/<size>]@</path/to/object/file>
10255 * if <size> is not specified or is zero, the range is treated as a single
10256 * address; not valid for ACTION=="filter".
10270 IF_STATE_ACTION = 0,
10275 static const match_table_t if_tokens = {
10276 { IF_ACT_FILTER, "filter" },
10277 { IF_ACT_START, "start" },
10278 { IF_ACT_STOP, "stop" },
10279 { IF_SRC_FILE, "%u/%u@%s" },
10280 { IF_SRC_KERNEL, "%u/%u" },
10281 { IF_SRC_FILEADDR, "%u@%s" },
10282 { IF_SRC_KERNELADDR, "%u" },
10283 { IF_ACT_NONE, NULL },
10287 * Address filter string parser
10290 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10291 struct list_head *filters)
10293 struct perf_addr_filter *filter = NULL;
10294 char *start, *orig, *filename = NULL;
10295 substring_t args[MAX_OPT_ARGS];
10296 int state = IF_STATE_ACTION, token;
10297 unsigned int kernel = 0;
10300 orig = fstr = kstrdup(fstr, GFP_KERNEL);
10304 while ((start = strsep(&fstr, " ,\n")) != NULL) {
10305 static const enum perf_addr_filter_action_t actions[] = {
10306 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10307 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
10308 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
10315 /* filter definition begins */
10316 if (state == IF_STATE_ACTION) {
10317 filter = perf_addr_filter_new(event, filters);
10322 token = match_token(start, if_tokens, args);
10324 case IF_ACT_FILTER:
10327 if (state != IF_STATE_ACTION)
10330 filter->action = actions[token];
10331 state = IF_STATE_SOURCE;
10334 case IF_SRC_KERNELADDR:
10335 case IF_SRC_KERNEL:
10339 case IF_SRC_FILEADDR:
10341 if (state != IF_STATE_SOURCE)
10345 ret = kstrtoul(args[0].from, 0, &filter->offset);
10349 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10351 ret = kstrtoul(args[1].from, 0, &filter->size);
10356 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10357 int fpos = token == IF_SRC_FILE ? 2 : 1;
10360 filename = match_strdup(&args[fpos]);
10367 state = IF_STATE_END;
10375 * Filter definition is fully parsed, validate and install it.
10376 * Make sure that it doesn't contradict itself or the event's
10379 if (state == IF_STATE_END) {
10381 if (kernel && event->attr.exclude_kernel)
10385 * ACTION "filter" must have a non-zero length region
10388 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10397 * For now, we only support file-based filters
10398 * in per-task events; doing so for CPU-wide
10399 * events requires additional context switching
10400 * trickery, since same object code will be
10401 * mapped at different virtual addresses in
10402 * different processes.
10405 if (!event->ctx->task)
10408 /* look up the path and grab its inode */
10409 ret = kern_path(filename, LOOKUP_FOLLOW,
10415 if (!filter->path.dentry ||
10416 !S_ISREG(d_inode(filter->path.dentry)
10420 event->addr_filters.nr_file_filters++;
10423 /* ready to consume more filters */
10424 state = IF_STATE_ACTION;
10429 if (state != IF_STATE_ACTION)
10439 free_filters_list(filters);
10446 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10448 LIST_HEAD(filters);
10452 * Since this is called in perf_ioctl() path, we're already holding
10455 lockdep_assert_held(&event->ctx->mutex);
10457 if (WARN_ON_ONCE(event->parent))
10460 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10462 goto fail_clear_files;
10464 ret = event->pmu->addr_filters_validate(&filters);
10466 goto fail_free_filters;
10468 /* remove existing filters, if any */
10469 perf_addr_filters_splice(event, &filters);
10471 /* install new filters */
10472 perf_event_for_each_child(event, perf_event_addr_filters_apply);
10477 free_filters_list(&filters);
10480 event->addr_filters.nr_file_filters = 0;
10485 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10490 filter_str = strndup_user(arg, PAGE_SIZE);
10491 if (IS_ERR(filter_str))
10492 return PTR_ERR(filter_str);
10494 #ifdef CONFIG_EVENT_TRACING
10495 if (perf_event_is_tracing(event)) {
10496 struct perf_event_context *ctx = event->ctx;
10499 * Beware, here be dragons!!
10501 * the tracepoint muck will deadlock against ctx->mutex, but
10502 * the tracepoint stuff does not actually need it. So
10503 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10504 * already have a reference on ctx.
10506 * This can result in event getting moved to a different ctx,
10507 * but that does not affect the tracepoint state.
10509 mutex_unlock(&ctx->mutex);
10510 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10511 mutex_lock(&ctx->mutex);
10514 if (has_addr_filter(event))
10515 ret = perf_event_set_addr_filter(event, filter_str);
10522 * hrtimer based swevent callback
10525 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10527 enum hrtimer_restart ret = HRTIMER_RESTART;
10528 struct perf_sample_data data;
10529 struct pt_regs *regs;
10530 struct perf_event *event;
10533 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10535 if (event->state != PERF_EVENT_STATE_ACTIVE)
10536 return HRTIMER_NORESTART;
10538 event->pmu->read(event);
10540 perf_sample_data_init(&data, 0, event->hw.last_period);
10541 regs = get_irq_regs();
10543 if (regs && !perf_exclude_event(event, regs)) {
10544 if (!(event->attr.exclude_idle && is_idle_task(current)))
10545 if (__perf_event_overflow(event, 1, &data, regs))
10546 ret = HRTIMER_NORESTART;
10549 period = max_t(u64, 10000, event->hw.sample_period);
10550 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10555 static void perf_swevent_start_hrtimer(struct perf_event *event)
10557 struct hw_perf_event *hwc = &event->hw;
10560 if (!is_sampling_event(event))
10563 period = local64_read(&hwc->period_left);
10568 local64_set(&hwc->period_left, 0);
10570 period = max_t(u64, 10000, hwc->sample_period);
10572 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10573 HRTIMER_MODE_REL_PINNED_HARD);
10576 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10578 struct hw_perf_event *hwc = &event->hw;
10580 if (is_sampling_event(event)) {
10581 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10582 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10584 hrtimer_cancel(&hwc->hrtimer);
10588 static void perf_swevent_init_hrtimer(struct perf_event *event)
10590 struct hw_perf_event *hwc = &event->hw;
10592 if (!is_sampling_event(event))
10595 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10596 hwc->hrtimer.function = perf_swevent_hrtimer;
10599 * Since hrtimers have a fixed rate, we can do a static freq->period
10600 * mapping and avoid the whole period adjust feedback stuff.
10602 if (event->attr.freq) {
10603 long freq = event->attr.sample_freq;
10605 event->attr.sample_period = NSEC_PER_SEC / freq;
10606 hwc->sample_period = event->attr.sample_period;
10607 local64_set(&hwc->period_left, hwc->sample_period);
10608 hwc->last_period = hwc->sample_period;
10609 event->attr.freq = 0;
10614 * Software event: cpu wall time clock
10617 static void cpu_clock_event_update(struct perf_event *event)
10622 now = local_clock();
10623 prev = local64_xchg(&event->hw.prev_count, now);
10624 local64_add(now - prev, &event->count);
10627 static void cpu_clock_event_start(struct perf_event *event, int flags)
10629 local64_set(&event->hw.prev_count, local_clock());
10630 perf_swevent_start_hrtimer(event);
10633 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10635 perf_swevent_cancel_hrtimer(event);
10636 cpu_clock_event_update(event);
10639 static int cpu_clock_event_add(struct perf_event *event, int flags)
10641 if (flags & PERF_EF_START)
10642 cpu_clock_event_start(event, flags);
10643 perf_event_update_userpage(event);
10648 static void cpu_clock_event_del(struct perf_event *event, int flags)
10650 cpu_clock_event_stop(event, flags);
10653 static void cpu_clock_event_read(struct perf_event *event)
10655 cpu_clock_event_update(event);
10658 static int cpu_clock_event_init(struct perf_event *event)
10660 if (event->attr.type != PERF_TYPE_SOFTWARE)
10663 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10667 * no branch sampling for software events
10669 if (has_branch_stack(event))
10670 return -EOPNOTSUPP;
10672 perf_swevent_init_hrtimer(event);
10677 static struct pmu perf_cpu_clock = {
10678 .task_ctx_nr = perf_sw_context,
10680 .capabilities = PERF_PMU_CAP_NO_NMI,
10682 .event_init = cpu_clock_event_init,
10683 .add = cpu_clock_event_add,
10684 .del = cpu_clock_event_del,
10685 .start = cpu_clock_event_start,
10686 .stop = cpu_clock_event_stop,
10687 .read = cpu_clock_event_read,
10691 * Software event: task time clock
10694 static void task_clock_event_update(struct perf_event *event, u64 now)
10699 prev = local64_xchg(&event->hw.prev_count, now);
10700 delta = now - prev;
10701 local64_add(delta, &event->count);
10704 static void task_clock_event_start(struct perf_event *event, int flags)
10706 local64_set(&event->hw.prev_count, event->ctx->time);
10707 perf_swevent_start_hrtimer(event);
10710 static void task_clock_event_stop(struct perf_event *event, int flags)
10712 perf_swevent_cancel_hrtimer(event);
10713 task_clock_event_update(event, event->ctx->time);
10716 static int task_clock_event_add(struct perf_event *event, int flags)
10718 if (flags & PERF_EF_START)
10719 task_clock_event_start(event, flags);
10720 perf_event_update_userpage(event);
10725 static void task_clock_event_del(struct perf_event *event, int flags)
10727 task_clock_event_stop(event, PERF_EF_UPDATE);
10730 static void task_clock_event_read(struct perf_event *event)
10732 u64 now = perf_clock();
10733 u64 delta = now - event->ctx->timestamp;
10734 u64 time = event->ctx->time + delta;
10736 task_clock_event_update(event, time);
10739 static int task_clock_event_init(struct perf_event *event)
10741 if (event->attr.type != PERF_TYPE_SOFTWARE)
10744 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10748 * no branch sampling for software events
10750 if (has_branch_stack(event))
10751 return -EOPNOTSUPP;
10753 perf_swevent_init_hrtimer(event);
10758 static struct pmu perf_task_clock = {
10759 .task_ctx_nr = perf_sw_context,
10761 .capabilities = PERF_PMU_CAP_NO_NMI,
10763 .event_init = task_clock_event_init,
10764 .add = task_clock_event_add,
10765 .del = task_clock_event_del,
10766 .start = task_clock_event_start,
10767 .stop = task_clock_event_stop,
10768 .read = task_clock_event_read,
10771 static void perf_pmu_nop_void(struct pmu *pmu)
10775 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10779 static int perf_pmu_nop_int(struct pmu *pmu)
10784 static int perf_event_nop_int(struct perf_event *event, u64 value)
10789 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10791 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10793 __this_cpu_write(nop_txn_flags, flags);
10795 if (flags & ~PERF_PMU_TXN_ADD)
10798 perf_pmu_disable(pmu);
10801 static int perf_pmu_commit_txn(struct pmu *pmu)
10803 unsigned int flags = __this_cpu_read(nop_txn_flags);
10805 __this_cpu_write(nop_txn_flags, 0);
10807 if (flags & ~PERF_PMU_TXN_ADD)
10810 perf_pmu_enable(pmu);
10814 static void perf_pmu_cancel_txn(struct pmu *pmu)
10816 unsigned int flags = __this_cpu_read(nop_txn_flags);
10818 __this_cpu_write(nop_txn_flags, 0);
10820 if (flags & ~PERF_PMU_TXN_ADD)
10823 perf_pmu_enable(pmu);
10826 static int perf_event_idx_default(struct perf_event *event)
10832 * Ensures all contexts with the same task_ctx_nr have the same
10833 * pmu_cpu_context too.
10835 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10842 list_for_each_entry(pmu, &pmus, entry) {
10843 if (pmu->task_ctx_nr == ctxn)
10844 return pmu->pmu_cpu_context;
10850 static void free_pmu_context(struct pmu *pmu)
10853 * Static contexts such as perf_sw_context have a global lifetime
10854 * and may be shared between different PMUs. Avoid freeing them
10855 * when a single PMU is going away.
10857 if (pmu->task_ctx_nr > perf_invalid_context)
10860 free_percpu(pmu->pmu_cpu_context);
10864 * Let userspace know that this PMU supports address range filtering:
10866 static ssize_t nr_addr_filters_show(struct device *dev,
10867 struct device_attribute *attr,
10870 struct pmu *pmu = dev_get_drvdata(dev);
10872 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10874 DEVICE_ATTR_RO(nr_addr_filters);
10876 static struct idr pmu_idr;
10879 type_show(struct device *dev, struct device_attribute *attr, char *page)
10881 struct pmu *pmu = dev_get_drvdata(dev);
10883 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10885 static DEVICE_ATTR_RO(type);
10888 perf_event_mux_interval_ms_show(struct device *dev,
10889 struct device_attribute *attr,
10892 struct pmu *pmu = dev_get_drvdata(dev);
10894 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10897 static DEFINE_MUTEX(mux_interval_mutex);
10900 perf_event_mux_interval_ms_store(struct device *dev,
10901 struct device_attribute *attr,
10902 const char *buf, size_t count)
10904 struct pmu *pmu = dev_get_drvdata(dev);
10905 int timer, cpu, ret;
10907 ret = kstrtoint(buf, 0, &timer);
10914 /* same value, noting to do */
10915 if (timer == pmu->hrtimer_interval_ms)
10918 mutex_lock(&mux_interval_mutex);
10919 pmu->hrtimer_interval_ms = timer;
10921 /* update all cpuctx for this PMU */
10923 for_each_online_cpu(cpu) {
10924 struct perf_cpu_context *cpuctx;
10925 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10926 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10928 cpu_function_call(cpu,
10929 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10931 cpus_read_unlock();
10932 mutex_unlock(&mux_interval_mutex);
10936 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10938 static struct attribute *pmu_dev_attrs[] = {
10939 &dev_attr_type.attr,
10940 &dev_attr_perf_event_mux_interval_ms.attr,
10943 ATTRIBUTE_GROUPS(pmu_dev);
10945 static int pmu_bus_running;
10946 static struct bus_type pmu_bus = {
10947 .name = "event_source",
10948 .dev_groups = pmu_dev_groups,
10951 static void pmu_dev_release(struct device *dev)
10956 static int pmu_dev_alloc(struct pmu *pmu)
10960 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10964 pmu->dev->groups = pmu->attr_groups;
10965 device_initialize(pmu->dev);
10966 ret = dev_set_name(pmu->dev, "%s", pmu->name);
10970 dev_set_drvdata(pmu->dev, pmu);
10971 pmu->dev->bus = &pmu_bus;
10972 pmu->dev->release = pmu_dev_release;
10973 ret = device_add(pmu->dev);
10977 /* For PMUs with address filters, throw in an extra attribute: */
10978 if (pmu->nr_addr_filters)
10979 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10984 if (pmu->attr_update)
10985 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10994 device_del(pmu->dev);
10997 put_device(pmu->dev);
11001 static struct lock_class_key cpuctx_mutex;
11002 static struct lock_class_key cpuctx_lock;
11004 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11006 int cpu, ret, max = PERF_TYPE_MAX;
11008 mutex_lock(&pmus_lock);
11010 pmu->pmu_disable_count = alloc_percpu(int);
11011 if (!pmu->pmu_disable_count)
11019 if (type != PERF_TYPE_SOFTWARE) {
11023 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11027 WARN_ON(type >= 0 && ret != type);
11033 if (pmu_bus_running) {
11034 ret = pmu_dev_alloc(pmu);
11040 if (pmu->task_ctx_nr == perf_hw_context) {
11041 static int hw_context_taken = 0;
11044 * Other than systems with heterogeneous CPUs, it never makes
11045 * sense for two PMUs to share perf_hw_context. PMUs which are
11046 * uncore must use perf_invalid_context.
11048 if (WARN_ON_ONCE(hw_context_taken &&
11049 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11050 pmu->task_ctx_nr = perf_invalid_context;
11052 hw_context_taken = 1;
11055 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11056 if (pmu->pmu_cpu_context)
11057 goto got_cpu_context;
11060 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11061 if (!pmu->pmu_cpu_context)
11064 for_each_possible_cpu(cpu) {
11065 struct perf_cpu_context *cpuctx;
11067 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11068 __perf_event_init_context(&cpuctx->ctx);
11069 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11070 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11071 cpuctx->ctx.pmu = pmu;
11072 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11074 __perf_mux_hrtimer_init(cpuctx, cpu);
11076 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11077 cpuctx->heap = cpuctx->heap_default;
11081 if (!pmu->start_txn) {
11082 if (pmu->pmu_enable) {
11084 * If we have pmu_enable/pmu_disable calls, install
11085 * transaction stubs that use that to try and batch
11086 * hardware accesses.
11088 pmu->start_txn = perf_pmu_start_txn;
11089 pmu->commit_txn = perf_pmu_commit_txn;
11090 pmu->cancel_txn = perf_pmu_cancel_txn;
11092 pmu->start_txn = perf_pmu_nop_txn;
11093 pmu->commit_txn = perf_pmu_nop_int;
11094 pmu->cancel_txn = perf_pmu_nop_void;
11098 if (!pmu->pmu_enable) {
11099 pmu->pmu_enable = perf_pmu_nop_void;
11100 pmu->pmu_disable = perf_pmu_nop_void;
11103 if (!pmu->check_period)
11104 pmu->check_period = perf_event_nop_int;
11106 if (!pmu->event_idx)
11107 pmu->event_idx = perf_event_idx_default;
11110 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11111 * since these cannot be in the IDR. This way the linear search
11112 * is fast, provided a valid software event is provided.
11114 if (type == PERF_TYPE_SOFTWARE || !name)
11115 list_add_rcu(&pmu->entry, &pmus);
11117 list_add_tail_rcu(&pmu->entry, &pmus);
11119 atomic_set(&pmu->exclusive_cnt, 0);
11122 mutex_unlock(&pmus_lock);
11127 device_del(pmu->dev);
11128 put_device(pmu->dev);
11131 if (pmu->type != PERF_TYPE_SOFTWARE)
11132 idr_remove(&pmu_idr, pmu->type);
11135 free_percpu(pmu->pmu_disable_count);
11138 EXPORT_SYMBOL_GPL(perf_pmu_register);
11140 void perf_pmu_unregister(struct pmu *pmu)
11142 mutex_lock(&pmus_lock);
11143 list_del_rcu(&pmu->entry);
11146 * We dereference the pmu list under both SRCU and regular RCU, so
11147 * synchronize against both of those.
11149 synchronize_srcu(&pmus_srcu);
11152 free_percpu(pmu->pmu_disable_count);
11153 if (pmu->type != PERF_TYPE_SOFTWARE)
11154 idr_remove(&pmu_idr, pmu->type);
11155 if (pmu_bus_running) {
11156 if (pmu->nr_addr_filters)
11157 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11158 device_del(pmu->dev);
11159 put_device(pmu->dev);
11161 free_pmu_context(pmu);
11162 mutex_unlock(&pmus_lock);
11164 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11166 static inline bool has_extended_regs(struct perf_event *event)
11168 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11169 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11172 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11174 struct perf_event_context *ctx = NULL;
11177 if (!try_module_get(pmu->module))
11181 * A number of pmu->event_init() methods iterate the sibling_list to,
11182 * for example, validate if the group fits on the PMU. Therefore,
11183 * if this is a sibling event, acquire the ctx->mutex to protect
11184 * the sibling_list.
11186 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11188 * This ctx->mutex can nest when we're called through
11189 * inheritance. See the perf_event_ctx_lock_nested() comment.
11191 ctx = perf_event_ctx_lock_nested(event->group_leader,
11192 SINGLE_DEPTH_NESTING);
11197 ret = pmu->event_init(event);
11200 perf_event_ctx_unlock(event->group_leader, ctx);
11203 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11204 has_extended_regs(event))
11207 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11208 event_has_any_exclude_flag(event))
11211 if (ret && event->destroy)
11212 event->destroy(event);
11216 module_put(pmu->module);
11221 static struct pmu *perf_init_event(struct perf_event *event)
11223 bool extended_type = false;
11224 int idx, type, ret;
11227 idx = srcu_read_lock(&pmus_srcu);
11229 /* Try parent's PMU first: */
11230 if (event->parent && event->parent->pmu) {
11231 pmu = event->parent->pmu;
11232 ret = perf_try_init_event(pmu, event);
11238 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11239 * are often aliases for PERF_TYPE_RAW.
11241 type = event->attr.type;
11242 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11243 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11245 type = PERF_TYPE_RAW;
11247 extended_type = true;
11248 event->attr.config &= PERF_HW_EVENT_MASK;
11254 pmu = idr_find(&pmu_idr, type);
11257 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11258 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11261 ret = perf_try_init_event(pmu, event);
11262 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11263 type = event->attr.type;
11268 pmu = ERR_PTR(ret);
11273 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11274 ret = perf_try_init_event(pmu, event);
11278 if (ret != -ENOENT) {
11279 pmu = ERR_PTR(ret);
11284 pmu = ERR_PTR(-ENOENT);
11286 srcu_read_unlock(&pmus_srcu, idx);
11291 static void attach_sb_event(struct perf_event *event)
11293 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11295 raw_spin_lock(&pel->lock);
11296 list_add_rcu(&event->sb_list, &pel->list);
11297 raw_spin_unlock(&pel->lock);
11301 * We keep a list of all !task (and therefore per-cpu) events
11302 * that need to receive side-band records.
11304 * This avoids having to scan all the various PMU per-cpu contexts
11305 * looking for them.
11307 static void account_pmu_sb_event(struct perf_event *event)
11309 if (is_sb_event(event))
11310 attach_sb_event(event);
11313 static void account_event_cpu(struct perf_event *event, int cpu)
11318 if (is_cgroup_event(event))
11319 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11322 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11323 static void account_freq_event_nohz(void)
11325 #ifdef CONFIG_NO_HZ_FULL
11326 /* Lock so we don't race with concurrent unaccount */
11327 spin_lock(&nr_freq_lock);
11328 if (atomic_inc_return(&nr_freq_events) == 1)
11329 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11330 spin_unlock(&nr_freq_lock);
11334 static void account_freq_event(void)
11336 if (tick_nohz_full_enabled())
11337 account_freq_event_nohz();
11339 atomic_inc(&nr_freq_events);
11343 static void account_event(struct perf_event *event)
11350 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11352 if (event->attr.mmap || event->attr.mmap_data)
11353 atomic_inc(&nr_mmap_events);
11354 if (event->attr.build_id)
11355 atomic_inc(&nr_build_id_events);
11356 if (event->attr.comm)
11357 atomic_inc(&nr_comm_events);
11358 if (event->attr.namespaces)
11359 atomic_inc(&nr_namespaces_events);
11360 if (event->attr.cgroup)
11361 atomic_inc(&nr_cgroup_events);
11362 if (event->attr.task)
11363 atomic_inc(&nr_task_events);
11364 if (event->attr.freq)
11365 account_freq_event();
11366 if (event->attr.context_switch) {
11367 atomic_inc(&nr_switch_events);
11370 if (has_branch_stack(event))
11372 if (is_cgroup_event(event))
11374 if (event->attr.ksymbol)
11375 atomic_inc(&nr_ksymbol_events);
11376 if (event->attr.bpf_event)
11377 atomic_inc(&nr_bpf_events);
11378 if (event->attr.text_poke)
11379 atomic_inc(&nr_text_poke_events);
11383 * We need the mutex here because static_branch_enable()
11384 * must complete *before* the perf_sched_count increment
11387 if (atomic_inc_not_zero(&perf_sched_count))
11390 mutex_lock(&perf_sched_mutex);
11391 if (!atomic_read(&perf_sched_count)) {
11392 static_branch_enable(&perf_sched_events);
11394 * Guarantee that all CPUs observe they key change and
11395 * call the perf scheduling hooks before proceeding to
11396 * install events that need them.
11401 * Now that we have waited for the sync_sched(), allow further
11402 * increments to by-pass the mutex.
11404 atomic_inc(&perf_sched_count);
11405 mutex_unlock(&perf_sched_mutex);
11409 account_event_cpu(event, event->cpu);
11411 account_pmu_sb_event(event);
11415 * Allocate and initialize an event structure
11417 static struct perf_event *
11418 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11419 struct task_struct *task,
11420 struct perf_event *group_leader,
11421 struct perf_event *parent_event,
11422 perf_overflow_handler_t overflow_handler,
11423 void *context, int cgroup_fd)
11426 struct perf_event *event;
11427 struct hw_perf_event *hwc;
11428 long err = -EINVAL;
11431 if ((unsigned)cpu >= nr_cpu_ids) {
11432 if (!task || cpu != -1)
11433 return ERR_PTR(-EINVAL);
11435 if (attr->sigtrap && !task) {
11436 /* Requires a task: avoid signalling random tasks. */
11437 return ERR_PTR(-EINVAL);
11440 node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11441 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11444 return ERR_PTR(-ENOMEM);
11447 * Single events are their own group leaders, with an
11448 * empty sibling list:
11451 group_leader = event;
11453 mutex_init(&event->child_mutex);
11454 INIT_LIST_HEAD(&event->child_list);
11456 INIT_LIST_HEAD(&event->event_entry);
11457 INIT_LIST_HEAD(&event->sibling_list);
11458 INIT_LIST_HEAD(&event->active_list);
11459 init_event_group(event);
11460 INIT_LIST_HEAD(&event->rb_entry);
11461 INIT_LIST_HEAD(&event->active_entry);
11462 INIT_LIST_HEAD(&event->addr_filters.list);
11463 INIT_HLIST_NODE(&event->hlist_entry);
11466 init_waitqueue_head(&event->waitq);
11467 event->pending_disable = -1;
11468 init_irq_work(&event->pending, perf_pending_event);
11470 mutex_init(&event->mmap_mutex);
11471 raw_spin_lock_init(&event->addr_filters.lock);
11473 atomic_long_set(&event->refcount, 1);
11475 event->attr = *attr;
11476 event->group_leader = group_leader;
11480 event->parent = parent_event;
11482 event->ns = get_pid_ns(task_active_pid_ns(current));
11483 event->id = atomic64_inc_return(&perf_event_id);
11485 event->state = PERF_EVENT_STATE_INACTIVE;
11487 if (event->attr.sigtrap)
11488 atomic_set(&event->event_limit, 1);
11491 event->attach_state = PERF_ATTACH_TASK;
11493 * XXX pmu::event_init needs to know what task to account to
11494 * and we cannot use the ctx information because we need the
11495 * pmu before we get a ctx.
11497 event->hw.target = get_task_struct(task);
11500 event->clock = &local_clock;
11502 event->clock = parent_event->clock;
11504 if (!overflow_handler && parent_event) {
11505 overflow_handler = parent_event->overflow_handler;
11506 context = parent_event->overflow_handler_context;
11507 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11508 if (overflow_handler == bpf_overflow_handler) {
11509 struct bpf_prog *prog = parent_event->prog;
11511 bpf_prog_inc(prog);
11512 event->prog = prog;
11513 event->orig_overflow_handler =
11514 parent_event->orig_overflow_handler;
11519 if (overflow_handler) {
11520 event->overflow_handler = overflow_handler;
11521 event->overflow_handler_context = context;
11522 } else if (is_write_backward(event)){
11523 event->overflow_handler = perf_event_output_backward;
11524 event->overflow_handler_context = NULL;
11526 event->overflow_handler = perf_event_output_forward;
11527 event->overflow_handler_context = NULL;
11530 perf_event__state_init(event);
11535 hwc->sample_period = attr->sample_period;
11536 if (attr->freq && attr->sample_freq)
11537 hwc->sample_period = 1;
11538 hwc->last_period = hwc->sample_period;
11540 local64_set(&hwc->period_left, hwc->sample_period);
11543 * We currently do not support PERF_SAMPLE_READ on inherited events.
11544 * See perf_output_read().
11546 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11549 if (!has_branch_stack(event))
11550 event->attr.branch_sample_type = 0;
11552 pmu = perf_init_event(event);
11554 err = PTR_ERR(pmu);
11559 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11560 * be different on other CPUs in the uncore mask.
11562 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11567 if (event->attr.aux_output &&
11568 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11573 if (cgroup_fd != -1) {
11574 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11579 err = exclusive_event_init(event);
11583 if (has_addr_filter(event)) {
11584 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11585 sizeof(struct perf_addr_filter_range),
11587 if (!event->addr_filter_ranges) {
11593 * Clone the parent's vma offsets: they are valid until exec()
11594 * even if the mm is not shared with the parent.
11596 if (event->parent) {
11597 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11599 raw_spin_lock_irq(&ifh->lock);
11600 memcpy(event->addr_filter_ranges,
11601 event->parent->addr_filter_ranges,
11602 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11603 raw_spin_unlock_irq(&ifh->lock);
11606 /* force hw sync on the address filters */
11607 event->addr_filters_gen = 1;
11610 if (!event->parent) {
11611 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11612 err = get_callchain_buffers(attr->sample_max_stack);
11614 goto err_addr_filters;
11618 err = security_perf_event_alloc(event);
11620 goto err_callchain_buffer;
11622 /* symmetric to unaccount_event() in _free_event() */
11623 account_event(event);
11627 err_callchain_buffer:
11628 if (!event->parent) {
11629 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11630 put_callchain_buffers();
11633 kfree(event->addr_filter_ranges);
11636 exclusive_event_destroy(event);
11639 if (is_cgroup_event(event))
11640 perf_detach_cgroup(event);
11641 if (event->destroy)
11642 event->destroy(event);
11643 module_put(pmu->module);
11646 put_pid_ns(event->ns);
11647 if (event->hw.target)
11648 put_task_struct(event->hw.target);
11649 kmem_cache_free(perf_event_cache, event);
11651 return ERR_PTR(err);
11654 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11655 struct perf_event_attr *attr)
11660 /* Zero the full structure, so that a short copy will be nice. */
11661 memset(attr, 0, sizeof(*attr));
11663 ret = get_user(size, &uattr->size);
11667 /* ABI compatibility quirk: */
11669 size = PERF_ATTR_SIZE_VER0;
11670 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11673 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11682 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11685 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11688 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11691 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11692 u64 mask = attr->branch_sample_type;
11694 /* only using defined bits */
11695 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11698 /* at least one branch bit must be set */
11699 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11702 /* propagate priv level, when not set for branch */
11703 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11705 /* exclude_kernel checked on syscall entry */
11706 if (!attr->exclude_kernel)
11707 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11709 if (!attr->exclude_user)
11710 mask |= PERF_SAMPLE_BRANCH_USER;
11712 if (!attr->exclude_hv)
11713 mask |= PERF_SAMPLE_BRANCH_HV;
11715 * adjust user setting (for HW filter setup)
11717 attr->branch_sample_type = mask;
11719 /* privileged levels capture (kernel, hv): check permissions */
11720 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11721 ret = perf_allow_kernel(attr);
11727 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11728 ret = perf_reg_validate(attr->sample_regs_user);
11733 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11734 if (!arch_perf_have_user_stack_dump())
11738 * We have __u32 type for the size, but so far
11739 * we can only use __u16 as maximum due to the
11740 * __u16 sample size limit.
11742 if (attr->sample_stack_user >= USHRT_MAX)
11744 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11748 if (!attr->sample_max_stack)
11749 attr->sample_max_stack = sysctl_perf_event_max_stack;
11751 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11752 ret = perf_reg_validate(attr->sample_regs_intr);
11754 #ifndef CONFIG_CGROUP_PERF
11755 if (attr->sample_type & PERF_SAMPLE_CGROUP)
11758 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11759 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11762 if (!attr->inherit && attr->inherit_thread)
11765 if (attr->remove_on_exec && attr->enable_on_exec)
11768 if (attr->sigtrap && !attr->remove_on_exec)
11775 put_user(sizeof(*attr), &uattr->size);
11781 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11783 struct perf_buffer *rb = NULL;
11789 /* don't allow circular references */
11790 if (event == output_event)
11794 * Don't allow cross-cpu buffers
11796 if (output_event->cpu != event->cpu)
11800 * If its not a per-cpu rb, it must be the same task.
11802 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11806 * Mixing clocks in the same buffer is trouble you don't need.
11808 if (output_event->clock != event->clock)
11812 * Either writing ring buffer from beginning or from end.
11813 * Mixing is not allowed.
11815 if (is_write_backward(output_event) != is_write_backward(event))
11819 * If both events generate aux data, they must be on the same PMU
11821 if (has_aux(event) && has_aux(output_event) &&
11822 event->pmu != output_event->pmu)
11826 mutex_lock(&event->mmap_mutex);
11827 /* Can't redirect output if we've got an active mmap() */
11828 if (atomic_read(&event->mmap_count))
11831 if (output_event) {
11832 /* get the rb we want to redirect to */
11833 rb = ring_buffer_get(output_event);
11838 ring_buffer_attach(event, rb);
11842 mutex_unlock(&event->mmap_mutex);
11848 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11854 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11857 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11859 bool nmi_safe = false;
11862 case CLOCK_MONOTONIC:
11863 event->clock = &ktime_get_mono_fast_ns;
11867 case CLOCK_MONOTONIC_RAW:
11868 event->clock = &ktime_get_raw_fast_ns;
11872 case CLOCK_REALTIME:
11873 event->clock = &ktime_get_real_ns;
11876 case CLOCK_BOOTTIME:
11877 event->clock = &ktime_get_boottime_ns;
11881 event->clock = &ktime_get_clocktai_ns;
11888 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11895 * Variation on perf_event_ctx_lock_nested(), except we take two context
11898 static struct perf_event_context *
11899 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11900 struct perf_event_context *ctx)
11902 struct perf_event_context *gctx;
11906 gctx = READ_ONCE(group_leader->ctx);
11907 if (!refcount_inc_not_zero(&gctx->refcount)) {
11913 mutex_lock_double(&gctx->mutex, &ctx->mutex);
11915 if (group_leader->ctx != gctx) {
11916 mutex_unlock(&ctx->mutex);
11917 mutex_unlock(&gctx->mutex);
11926 * sys_perf_event_open - open a performance event, associate it to a task/cpu
11928 * @attr_uptr: event_id type attributes for monitoring/sampling
11931 * @group_fd: group leader event fd
11933 SYSCALL_DEFINE5(perf_event_open,
11934 struct perf_event_attr __user *, attr_uptr,
11935 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11937 struct perf_event *group_leader = NULL, *output_event = NULL;
11938 struct perf_event *event, *sibling;
11939 struct perf_event_attr attr;
11940 struct perf_event_context *ctx, *gctx;
11941 struct file *event_file = NULL;
11942 struct fd group = {NULL, 0};
11943 struct task_struct *task = NULL;
11946 int move_group = 0;
11948 int f_flags = O_RDWR;
11949 int cgroup_fd = -1;
11951 /* for future expandability... */
11952 if (flags & ~PERF_FLAG_ALL)
11955 /* Do we allow access to perf_event_open(2) ? */
11956 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11960 err = perf_copy_attr(attr_uptr, &attr);
11964 if (!attr.exclude_kernel) {
11965 err = perf_allow_kernel(&attr);
11970 if (attr.namespaces) {
11971 if (!perfmon_capable())
11976 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11979 if (attr.sample_period & (1ULL << 63))
11983 /* Only privileged users can get physical addresses */
11984 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11985 err = perf_allow_kernel(&attr);
11990 /* REGS_INTR can leak data, lockdown must prevent this */
11991 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
11992 err = security_locked_down(LOCKDOWN_PERF);
11998 * In cgroup mode, the pid argument is used to pass the fd
11999 * opened to the cgroup directory in cgroupfs. The cpu argument
12000 * designates the cpu on which to monitor threads from that
12003 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12006 if (flags & PERF_FLAG_FD_CLOEXEC)
12007 f_flags |= O_CLOEXEC;
12009 event_fd = get_unused_fd_flags(f_flags);
12013 if (group_fd != -1) {
12014 err = perf_fget_light(group_fd, &group);
12017 group_leader = group.file->private_data;
12018 if (flags & PERF_FLAG_FD_OUTPUT)
12019 output_event = group_leader;
12020 if (flags & PERF_FLAG_FD_NO_GROUP)
12021 group_leader = NULL;
12024 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12025 task = find_lively_task_by_vpid(pid);
12026 if (IS_ERR(task)) {
12027 err = PTR_ERR(task);
12032 if (task && group_leader &&
12033 group_leader->attr.inherit != attr.inherit) {
12038 if (flags & PERF_FLAG_PID_CGROUP)
12041 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12042 NULL, NULL, cgroup_fd);
12043 if (IS_ERR(event)) {
12044 err = PTR_ERR(event);
12048 if (is_sampling_event(event)) {
12049 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12056 * Special case software events and allow them to be part of
12057 * any hardware group.
12061 if (attr.use_clockid) {
12062 err = perf_event_set_clock(event, attr.clockid);
12067 if (pmu->task_ctx_nr == perf_sw_context)
12068 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12070 if (group_leader) {
12071 if (is_software_event(event) &&
12072 !in_software_context(group_leader)) {
12074 * If the event is a sw event, but the group_leader
12075 * is on hw context.
12077 * Allow the addition of software events to hw
12078 * groups, this is safe because software events
12079 * never fail to schedule.
12081 pmu = group_leader->ctx->pmu;
12082 } else if (!is_software_event(event) &&
12083 is_software_event(group_leader) &&
12084 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12086 * In case the group is a pure software group, and we
12087 * try to add a hardware event, move the whole group to
12088 * the hardware context.
12095 * Get the target context (task or percpu):
12097 ctx = find_get_context(pmu, task, event);
12099 err = PTR_ERR(ctx);
12104 * Look up the group leader (we will attach this event to it):
12106 if (group_leader) {
12110 * Do not allow a recursive hierarchy (this new sibling
12111 * becoming part of another group-sibling):
12113 if (group_leader->group_leader != group_leader)
12116 /* All events in a group should have the same clock */
12117 if (group_leader->clock != event->clock)
12121 * Make sure we're both events for the same CPU;
12122 * grouping events for different CPUs is broken; since
12123 * you can never concurrently schedule them anyhow.
12125 if (group_leader->cpu != event->cpu)
12129 * Make sure we're both on the same task, or both
12132 if (group_leader->ctx->task != ctx->task)
12136 * Do not allow to attach to a group in a different task
12137 * or CPU context. If we're moving SW events, we'll fix
12138 * this up later, so allow that.
12140 if (!move_group && group_leader->ctx != ctx)
12144 * Only a group leader can be exclusive or pinned
12146 if (attr.exclusive || attr.pinned)
12150 if (output_event) {
12151 err = perf_event_set_output(event, output_event);
12156 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12158 if (IS_ERR(event_file)) {
12159 err = PTR_ERR(event_file);
12165 err = down_read_interruptible(&task->signal->exec_update_lock);
12170 * Preserve ptrace permission check for backwards compatibility.
12172 * We must hold exec_update_lock across this and any potential
12173 * perf_install_in_context() call for this new event to
12174 * serialize against exec() altering our credentials (and the
12175 * perf_event_exit_task() that could imply).
12178 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
12183 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12185 if (gctx->task == TASK_TOMBSTONE) {
12191 * Check if we raced against another sys_perf_event_open() call
12192 * moving the software group underneath us.
12194 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12196 * If someone moved the group out from under us, check
12197 * if this new event wound up on the same ctx, if so
12198 * its the regular !move_group case, otherwise fail.
12204 perf_event_ctx_unlock(group_leader, gctx);
12210 * Failure to create exclusive events returns -EBUSY.
12213 if (!exclusive_event_installable(group_leader, ctx))
12216 for_each_sibling_event(sibling, group_leader) {
12217 if (!exclusive_event_installable(sibling, ctx))
12221 mutex_lock(&ctx->mutex);
12224 if (ctx->task == TASK_TOMBSTONE) {
12229 if (!perf_event_validate_size(event)) {
12236 * Check if the @cpu we're creating an event for is online.
12238 * We use the perf_cpu_context::ctx::mutex to serialize against
12239 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12241 struct perf_cpu_context *cpuctx =
12242 container_of(ctx, struct perf_cpu_context, ctx);
12244 if (!cpuctx->online) {
12250 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12256 * Must be under the same ctx::mutex as perf_install_in_context(),
12257 * because we need to serialize with concurrent event creation.
12259 if (!exclusive_event_installable(event, ctx)) {
12264 WARN_ON_ONCE(ctx->parent_ctx);
12267 * This is the point on no return; we cannot fail hereafter. This is
12268 * where we start modifying current state.
12273 * See perf_event_ctx_lock() for comments on the details
12274 * of swizzling perf_event::ctx.
12276 perf_remove_from_context(group_leader, 0);
12279 for_each_sibling_event(sibling, group_leader) {
12280 perf_remove_from_context(sibling, 0);
12285 * Wait for everybody to stop referencing the events through
12286 * the old lists, before installing it on new lists.
12291 * Install the group siblings before the group leader.
12293 * Because a group leader will try and install the entire group
12294 * (through the sibling list, which is still in-tact), we can
12295 * end up with siblings installed in the wrong context.
12297 * By installing siblings first we NO-OP because they're not
12298 * reachable through the group lists.
12300 for_each_sibling_event(sibling, group_leader) {
12301 perf_event__state_init(sibling);
12302 perf_install_in_context(ctx, sibling, sibling->cpu);
12307 * Removing from the context ends up with disabled
12308 * event. What we want here is event in the initial
12309 * startup state, ready to be add into new context.
12311 perf_event__state_init(group_leader);
12312 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12317 * Precalculate sample_data sizes; do while holding ctx::mutex such
12318 * that we're serialized against further additions and before
12319 * perf_install_in_context() which is the point the event is active and
12320 * can use these values.
12322 perf_event__header_size(event);
12323 perf_event__id_header_size(event);
12325 event->owner = current;
12327 perf_install_in_context(ctx, event, event->cpu);
12328 perf_unpin_context(ctx);
12331 perf_event_ctx_unlock(group_leader, gctx);
12332 mutex_unlock(&ctx->mutex);
12335 up_read(&task->signal->exec_update_lock);
12336 put_task_struct(task);
12339 mutex_lock(¤t->perf_event_mutex);
12340 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
12341 mutex_unlock(¤t->perf_event_mutex);
12344 * Drop the reference on the group_event after placing the
12345 * new event on the sibling_list. This ensures destruction
12346 * of the group leader will find the pointer to itself in
12347 * perf_group_detach().
12350 fd_install(event_fd, event_file);
12355 perf_event_ctx_unlock(group_leader, gctx);
12356 mutex_unlock(&ctx->mutex);
12359 up_read(&task->signal->exec_update_lock);
12363 perf_unpin_context(ctx);
12367 * If event_file is set, the fput() above will have called ->release()
12368 * and that will take care of freeing the event.
12374 put_task_struct(task);
12378 put_unused_fd(event_fd);
12383 * perf_event_create_kernel_counter
12385 * @attr: attributes of the counter to create
12386 * @cpu: cpu in which the counter is bound
12387 * @task: task to profile (NULL for percpu)
12389 struct perf_event *
12390 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12391 struct task_struct *task,
12392 perf_overflow_handler_t overflow_handler,
12395 struct perf_event_context *ctx;
12396 struct perf_event *event;
12400 * Grouping is not supported for kernel events, neither is 'AUX',
12401 * make sure the caller's intentions are adjusted.
12403 if (attr->aux_output)
12404 return ERR_PTR(-EINVAL);
12406 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12407 overflow_handler, context, -1);
12408 if (IS_ERR(event)) {
12409 err = PTR_ERR(event);
12413 /* Mark owner so we could distinguish it from user events. */
12414 event->owner = TASK_TOMBSTONE;
12417 * Get the target context (task or percpu):
12419 ctx = find_get_context(event->pmu, task, event);
12421 err = PTR_ERR(ctx);
12425 WARN_ON_ONCE(ctx->parent_ctx);
12426 mutex_lock(&ctx->mutex);
12427 if (ctx->task == TASK_TOMBSTONE) {
12434 * Check if the @cpu we're creating an event for is online.
12436 * We use the perf_cpu_context::ctx::mutex to serialize against
12437 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12439 struct perf_cpu_context *cpuctx =
12440 container_of(ctx, struct perf_cpu_context, ctx);
12441 if (!cpuctx->online) {
12447 if (!exclusive_event_installable(event, ctx)) {
12452 perf_install_in_context(ctx, event, event->cpu);
12453 perf_unpin_context(ctx);
12454 mutex_unlock(&ctx->mutex);
12459 mutex_unlock(&ctx->mutex);
12460 perf_unpin_context(ctx);
12465 return ERR_PTR(err);
12467 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12469 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12471 struct perf_event_context *src_ctx;
12472 struct perf_event_context *dst_ctx;
12473 struct perf_event *event, *tmp;
12476 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12477 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12480 * See perf_event_ctx_lock() for comments on the details
12481 * of swizzling perf_event::ctx.
12483 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12484 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12486 perf_remove_from_context(event, 0);
12487 unaccount_event_cpu(event, src_cpu);
12489 list_add(&event->migrate_entry, &events);
12493 * Wait for the events to quiesce before re-instating them.
12498 * Re-instate events in 2 passes.
12500 * Skip over group leaders and only install siblings on this first
12501 * pass, siblings will not get enabled without a leader, however a
12502 * leader will enable its siblings, even if those are still on the old
12505 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12506 if (event->group_leader == event)
12509 list_del(&event->migrate_entry);
12510 if (event->state >= PERF_EVENT_STATE_OFF)
12511 event->state = PERF_EVENT_STATE_INACTIVE;
12512 account_event_cpu(event, dst_cpu);
12513 perf_install_in_context(dst_ctx, event, dst_cpu);
12518 * Once all the siblings are setup properly, install the group leaders
12521 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12522 list_del(&event->migrate_entry);
12523 if (event->state >= PERF_EVENT_STATE_OFF)
12524 event->state = PERF_EVENT_STATE_INACTIVE;
12525 account_event_cpu(event, dst_cpu);
12526 perf_install_in_context(dst_ctx, event, dst_cpu);
12529 mutex_unlock(&dst_ctx->mutex);
12530 mutex_unlock(&src_ctx->mutex);
12532 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12534 static void sync_child_event(struct perf_event *child_event)
12536 struct perf_event *parent_event = child_event->parent;
12539 if (child_event->attr.inherit_stat) {
12540 struct task_struct *task = child_event->ctx->task;
12542 if (task && task != TASK_TOMBSTONE)
12543 perf_event_read_event(child_event, task);
12546 child_val = perf_event_count(child_event);
12549 * Add back the child's count to the parent's count:
12551 atomic64_add(child_val, &parent_event->child_count);
12552 atomic64_add(child_event->total_time_enabled,
12553 &parent_event->child_total_time_enabled);
12554 atomic64_add(child_event->total_time_running,
12555 &parent_event->child_total_time_running);
12559 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12561 struct perf_event *parent_event = event->parent;
12562 unsigned long detach_flags = 0;
12564 if (parent_event) {
12566 * Do not destroy the 'original' grouping; because of the
12567 * context switch optimization the original events could've
12568 * ended up in a random child task.
12570 * If we were to destroy the original group, all group related
12571 * operations would cease to function properly after this
12572 * random child dies.
12574 * Do destroy all inherited groups, we don't care about those
12575 * and being thorough is better.
12577 detach_flags = DETACH_GROUP | DETACH_CHILD;
12578 mutex_lock(&parent_event->child_mutex);
12581 perf_remove_from_context(event, detach_flags);
12583 raw_spin_lock_irq(&ctx->lock);
12584 if (event->state > PERF_EVENT_STATE_EXIT)
12585 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12586 raw_spin_unlock_irq(&ctx->lock);
12589 * Child events can be freed.
12591 if (parent_event) {
12592 mutex_unlock(&parent_event->child_mutex);
12594 * Kick perf_poll() for is_event_hup();
12596 perf_event_wakeup(parent_event);
12598 put_event(parent_event);
12603 * Parent events are governed by their filedesc, retain them.
12605 perf_event_wakeup(event);
12608 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12610 struct perf_event_context *child_ctx, *clone_ctx = NULL;
12611 struct perf_event *child_event, *next;
12613 WARN_ON_ONCE(child != current);
12615 child_ctx = perf_pin_task_context(child, ctxn);
12620 * In order to reduce the amount of tricky in ctx tear-down, we hold
12621 * ctx::mutex over the entire thing. This serializes against almost
12622 * everything that wants to access the ctx.
12624 * The exception is sys_perf_event_open() /
12625 * perf_event_create_kernel_count() which does find_get_context()
12626 * without ctx::mutex (it cannot because of the move_group double mutex
12627 * lock thing). See the comments in perf_install_in_context().
12629 mutex_lock(&child_ctx->mutex);
12632 * In a single ctx::lock section, de-schedule the events and detach the
12633 * context from the task such that we cannot ever get it scheduled back
12636 raw_spin_lock_irq(&child_ctx->lock);
12637 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12640 * Now that the context is inactive, destroy the task <-> ctx relation
12641 * and mark the context dead.
12643 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12644 put_ctx(child_ctx); /* cannot be last */
12645 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12646 put_task_struct(current); /* cannot be last */
12648 clone_ctx = unclone_ctx(child_ctx);
12649 raw_spin_unlock_irq(&child_ctx->lock);
12652 put_ctx(clone_ctx);
12655 * Report the task dead after unscheduling the events so that we
12656 * won't get any samples after PERF_RECORD_EXIT. We can however still
12657 * get a few PERF_RECORD_READ events.
12659 perf_event_task(child, child_ctx, 0);
12661 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12662 perf_event_exit_event(child_event, child_ctx);
12664 mutex_unlock(&child_ctx->mutex);
12666 put_ctx(child_ctx);
12670 * When a child task exits, feed back event values to parent events.
12672 * Can be called with exec_update_lock held when called from
12673 * setup_new_exec().
12675 void perf_event_exit_task(struct task_struct *child)
12677 struct perf_event *event, *tmp;
12680 mutex_lock(&child->perf_event_mutex);
12681 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12683 list_del_init(&event->owner_entry);
12686 * Ensure the list deletion is visible before we clear
12687 * the owner, closes a race against perf_release() where
12688 * we need to serialize on the owner->perf_event_mutex.
12690 smp_store_release(&event->owner, NULL);
12692 mutex_unlock(&child->perf_event_mutex);
12694 for_each_task_context_nr(ctxn)
12695 perf_event_exit_task_context(child, ctxn);
12698 * The perf_event_exit_task_context calls perf_event_task
12699 * with child's task_ctx, which generates EXIT events for
12700 * child contexts and sets child->perf_event_ctxp[] to NULL.
12701 * At this point we need to send EXIT events to cpu contexts.
12703 perf_event_task(child, NULL, 0);
12706 static void perf_free_event(struct perf_event *event,
12707 struct perf_event_context *ctx)
12709 struct perf_event *parent = event->parent;
12711 if (WARN_ON_ONCE(!parent))
12714 mutex_lock(&parent->child_mutex);
12715 list_del_init(&event->child_list);
12716 mutex_unlock(&parent->child_mutex);
12720 raw_spin_lock_irq(&ctx->lock);
12721 perf_group_detach(event);
12722 list_del_event(event, ctx);
12723 raw_spin_unlock_irq(&ctx->lock);
12728 * Free a context as created by inheritance by perf_event_init_task() below,
12729 * used by fork() in case of fail.
12731 * Even though the task has never lived, the context and events have been
12732 * exposed through the child_list, so we must take care tearing it all down.
12734 void perf_event_free_task(struct task_struct *task)
12736 struct perf_event_context *ctx;
12737 struct perf_event *event, *tmp;
12740 for_each_task_context_nr(ctxn) {
12741 ctx = task->perf_event_ctxp[ctxn];
12745 mutex_lock(&ctx->mutex);
12746 raw_spin_lock_irq(&ctx->lock);
12748 * Destroy the task <-> ctx relation and mark the context dead.
12750 * This is important because even though the task hasn't been
12751 * exposed yet the context has been (through child_list).
12753 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12754 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12755 put_task_struct(task); /* cannot be last */
12756 raw_spin_unlock_irq(&ctx->lock);
12758 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12759 perf_free_event(event, ctx);
12761 mutex_unlock(&ctx->mutex);
12764 * perf_event_release_kernel() could've stolen some of our
12765 * child events and still have them on its free_list. In that
12766 * case we must wait for these events to have been freed (in
12767 * particular all their references to this task must've been
12770 * Without this copy_process() will unconditionally free this
12771 * task (irrespective of its reference count) and
12772 * _free_event()'s put_task_struct(event->hw.target) will be a
12775 * Wait for all events to drop their context reference.
12777 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12778 put_ctx(ctx); /* must be last */
12782 void perf_event_delayed_put(struct task_struct *task)
12786 for_each_task_context_nr(ctxn)
12787 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12790 struct file *perf_event_get(unsigned int fd)
12792 struct file *file = fget(fd);
12794 return ERR_PTR(-EBADF);
12796 if (file->f_op != &perf_fops) {
12798 return ERR_PTR(-EBADF);
12804 const struct perf_event *perf_get_event(struct file *file)
12806 if (file->f_op != &perf_fops)
12807 return ERR_PTR(-EINVAL);
12809 return file->private_data;
12812 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12815 return ERR_PTR(-EINVAL);
12817 return &event->attr;
12821 * Inherit an event from parent task to child task.
12824 * - valid pointer on success
12825 * - NULL for orphaned events
12826 * - IS_ERR() on error
12828 static struct perf_event *
12829 inherit_event(struct perf_event *parent_event,
12830 struct task_struct *parent,
12831 struct perf_event_context *parent_ctx,
12832 struct task_struct *child,
12833 struct perf_event *group_leader,
12834 struct perf_event_context *child_ctx)
12836 enum perf_event_state parent_state = parent_event->state;
12837 struct perf_event *child_event;
12838 unsigned long flags;
12841 * Instead of creating recursive hierarchies of events,
12842 * we link inherited events back to the original parent,
12843 * which has a filp for sure, which we use as the reference
12846 if (parent_event->parent)
12847 parent_event = parent_event->parent;
12849 child_event = perf_event_alloc(&parent_event->attr,
12852 group_leader, parent_event,
12854 if (IS_ERR(child_event))
12855 return child_event;
12858 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12859 !child_ctx->task_ctx_data) {
12860 struct pmu *pmu = child_event->pmu;
12862 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12863 if (!child_ctx->task_ctx_data) {
12864 free_event(child_event);
12865 return ERR_PTR(-ENOMEM);
12870 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12871 * must be under the same lock in order to serialize against
12872 * perf_event_release_kernel(), such that either we must observe
12873 * is_orphaned_event() or they will observe us on the child_list.
12875 mutex_lock(&parent_event->child_mutex);
12876 if (is_orphaned_event(parent_event) ||
12877 !atomic_long_inc_not_zero(&parent_event->refcount)) {
12878 mutex_unlock(&parent_event->child_mutex);
12879 /* task_ctx_data is freed with child_ctx */
12880 free_event(child_event);
12884 get_ctx(child_ctx);
12887 * Make the child state follow the state of the parent event,
12888 * not its attr.disabled bit. We hold the parent's mutex,
12889 * so we won't race with perf_event_{en, dis}able_family.
12891 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12892 child_event->state = PERF_EVENT_STATE_INACTIVE;
12894 child_event->state = PERF_EVENT_STATE_OFF;
12896 if (parent_event->attr.freq) {
12897 u64 sample_period = parent_event->hw.sample_period;
12898 struct hw_perf_event *hwc = &child_event->hw;
12900 hwc->sample_period = sample_period;
12901 hwc->last_period = sample_period;
12903 local64_set(&hwc->period_left, sample_period);
12906 child_event->ctx = child_ctx;
12907 child_event->overflow_handler = parent_event->overflow_handler;
12908 child_event->overflow_handler_context
12909 = parent_event->overflow_handler_context;
12912 * Precalculate sample_data sizes
12914 perf_event__header_size(child_event);
12915 perf_event__id_header_size(child_event);
12918 * Link it up in the child's context:
12920 raw_spin_lock_irqsave(&child_ctx->lock, flags);
12921 add_event_to_ctx(child_event, child_ctx);
12922 child_event->attach_state |= PERF_ATTACH_CHILD;
12923 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12926 * Link this into the parent event's child list
12928 list_add_tail(&child_event->child_list, &parent_event->child_list);
12929 mutex_unlock(&parent_event->child_mutex);
12931 return child_event;
12935 * Inherits an event group.
12937 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12938 * This matches with perf_event_release_kernel() removing all child events.
12944 static int inherit_group(struct perf_event *parent_event,
12945 struct task_struct *parent,
12946 struct perf_event_context *parent_ctx,
12947 struct task_struct *child,
12948 struct perf_event_context *child_ctx)
12950 struct perf_event *leader;
12951 struct perf_event *sub;
12952 struct perf_event *child_ctr;
12954 leader = inherit_event(parent_event, parent, parent_ctx,
12955 child, NULL, child_ctx);
12956 if (IS_ERR(leader))
12957 return PTR_ERR(leader);
12959 * @leader can be NULL here because of is_orphaned_event(). In this
12960 * case inherit_event() will create individual events, similar to what
12961 * perf_group_detach() would do anyway.
12963 for_each_sibling_event(sub, parent_event) {
12964 child_ctr = inherit_event(sub, parent, parent_ctx,
12965 child, leader, child_ctx);
12966 if (IS_ERR(child_ctr))
12967 return PTR_ERR(child_ctr);
12969 if (sub->aux_event == parent_event && child_ctr &&
12970 !perf_get_aux_event(child_ctr, leader))
12977 * Creates the child task context and tries to inherit the event-group.
12979 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12980 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12981 * consistent with perf_event_release_kernel() removing all child events.
12988 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12989 struct perf_event_context *parent_ctx,
12990 struct task_struct *child, int ctxn,
12991 u64 clone_flags, int *inherited_all)
12994 struct perf_event_context *child_ctx;
12996 if (!event->attr.inherit ||
12997 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
12998 /* Do not inherit if sigtrap and signal handlers were cleared. */
12999 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13000 *inherited_all = 0;
13004 child_ctx = child->perf_event_ctxp[ctxn];
13007 * This is executed from the parent task context, so
13008 * inherit events that have been marked for cloning.
13009 * First allocate and initialize a context for the
13012 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13016 child->perf_event_ctxp[ctxn] = child_ctx;
13019 ret = inherit_group(event, parent, parent_ctx,
13023 *inherited_all = 0;
13029 * Initialize the perf_event context in task_struct
13031 static int perf_event_init_context(struct task_struct *child, int ctxn,
13034 struct perf_event_context *child_ctx, *parent_ctx;
13035 struct perf_event_context *cloned_ctx;
13036 struct perf_event *event;
13037 struct task_struct *parent = current;
13038 int inherited_all = 1;
13039 unsigned long flags;
13042 if (likely(!parent->perf_event_ctxp[ctxn]))
13046 * If the parent's context is a clone, pin it so it won't get
13047 * swapped under us.
13049 parent_ctx = perf_pin_task_context(parent, ctxn);
13054 * No need to check if parent_ctx != NULL here; since we saw
13055 * it non-NULL earlier, the only reason for it to become NULL
13056 * is if we exit, and since we're currently in the middle of
13057 * a fork we can't be exiting at the same time.
13061 * Lock the parent list. No need to lock the child - not PID
13062 * hashed yet and not running, so nobody can access it.
13064 mutex_lock(&parent_ctx->mutex);
13067 * We dont have to disable NMIs - we are only looking at
13068 * the list, not manipulating it:
13070 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13071 ret = inherit_task_group(event, parent, parent_ctx,
13072 child, ctxn, clone_flags,
13079 * We can't hold ctx->lock when iterating the ->flexible_group list due
13080 * to allocations, but we need to prevent rotation because
13081 * rotate_ctx() will change the list from interrupt context.
13083 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13084 parent_ctx->rotate_disable = 1;
13085 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13087 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13088 ret = inherit_task_group(event, parent, parent_ctx,
13089 child, ctxn, clone_flags,
13095 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13096 parent_ctx->rotate_disable = 0;
13098 child_ctx = child->perf_event_ctxp[ctxn];
13100 if (child_ctx && inherited_all) {
13102 * Mark the child context as a clone of the parent
13103 * context, or of whatever the parent is a clone of.
13105 * Note that if the parent is a clone, the holding of
13106 * parent_ctx->lock avoids it from being uncloned.
13108 cloned_ctx = parent_ctx->parent_ctx;
13110 child_ctx->parent_ctx = cloned_ctx;
13111 child_ctx->parent_gen = parent_ctx->parent_gen;
13113 child_ctx->parent_ctx = parent_ctx;
13114 child_ctx->parent_gen = parent_ctx->generation;
13116 get_ctx(child_ctx->parent_ctx);
13119 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13121 mutex_unlock(&parent_ctx->mutex);
13123 perf_unpin_context(parent_ctx);
13124 put_ctx(parent_ctx);
13130 * Initialize the perf_event context in task_struct
13132 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13136 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13137 mutex_init(&child->perf_event_mutex);
13138 INIT_LIST_HEAD(&child->perf_event_list);
13140 for_each_task_context_nr(ctxn) {
13141 ret = perf_event_init_context(child, ctxn, clone_flags);
13143 perf_event_free_task(child);
13151 static void __init perf_event_init_all_cpus(void)
13153 struct swevent_htable *swhash;
13156 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13158 for_each_possible_cpu(cpu) {
13159 swhash = &per_cpu(swevent_htable, cpu);
13160 mutex_init(&swhash->hlist_mutex);
13161 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13163 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13164 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13166 #ifdef CONFIG_CGROUP_PERF
13167 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13169 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13173 static void perf_swevent_init_cpu(unsigned int cpu)
13175 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13177 mutex_lock(&swhash->hlist_mutex);
13178 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13179 struct swevent_hlist *hlist;
13181 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13183 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13185 mutex_unlock(&swhash->hlist_mutex);
13188 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13189 static void __perf_event_exit_context(void *__info)
13191 struct perf_event_context *ctx = __info;
13192 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13193 struct perf_event *event;
13195 raw_spin_lock(&ctx->lock);
13196 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13197 list_for_each_entry(event, &ctx->event_list, event_entry)
13198 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13199 raw_spin_unlock(&ctx->lock);
13202 static void perf_event_exit_cpu_context(int cpu)
13204 struct perf_cpu_context *cpuctx;
13205 struct perf_event_context *ctx;
13208 mutex_lock(&pmus_lock);
13209 list_for_each_entry(pmu, &pmus, entry) {
13210 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13211 ctx = &cpuctx->ctx;
13213 mutex_lock(&ctx->mutex);
13214 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13215 cpuctx->online = 0;
13216 mutex_unlock(&ctx->mutex);
13218 cpumask_clear_cpu(cpu, perf_online_mask);
13219 mutex_unlock(&pmus_lock);
13223 static void perf_event_exit_cpu_context(int cpu) { }
13227 int perf_event_init_cpu(unsigned int cpu)
13229 struct perf_cpu_context *cpuctx;
13230 struct perf_event_context *ctx;
13233 perf_swevent_init_cpu(cpu);
13235 mutex_lock(&pmus_lock);
13236 cpumask_set_cpu(cpu, perf_online_mask);
13237 list_for_each_entry(pmu, &pmus, entry) {
13238 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13239 ctx = &cpuctx->ctx;
13241 mutex_lock(&ctx->mutex);
13242 cpuctx->online = 1;
13243 mutex_unlock(&ctx->mutex);
13245 mutex_unlock(&pmus_lock);
13250 int perf_event_exit_cpu(unsigned int cpu)
13252 perf_event_exit_cpu_context(cpu);
13257 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13261 for_each_online_cpu(cpu)
13262 perf_event_exit_cpu(cpu);
13268 * Run the perf reboot notifier at the very last possible moment so that
13269 * the generic watchdog code runs as long as possible.
13271 static struct notifier_block perf_reboot_notifier = {
13272 .notifier_call = perf_reboot,
13273 .priority = INT_MIN,
13276 void __init perf_event_init(void)
13280 idr_init(&pmu_idr);
13282 perf_event_init_all_cpus();
13283 init_srcu_struct(&pmus_srcu);
13284 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13285 perf_pmu_register(&perf_cpu_clock, NULL, -1);
13286 perf_pmu_register(&perf_task_clock, NULL, -1);
13287 perf_tp_register();
13288 perf_event_init_cpu(smp_processor_id());
13289 register_reboot_notifier(&perf_reboot_notifier);
13291 ret = init_hw_breakpoint();
13292 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13294 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13297 * Build time assertion that we keep the data_head at the intended
13298 * location. IOW, validation we got the __reserved[] size right.
13300 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13304 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13307 struct perf_pmu_events_attr *pmu_attr =
13308 container_of(attr, struct perf_pmu_events_attr, attr);
13310 if (pmu_attr->event_str)
13311 return sprintf(page, "%s\n", pmu_attr->event_str);
13315 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13317 static int __init perf_event_sysfs_init(void)
13322 mutex_lock(&pmus_lock);
13324 ret = bus_register(&pmu_bus);
13328 list_for_each_entry(pmu, &pmus, entry) {
13329 if (!pmu->name || pmu->type < 0)
13332 ret = pmu_dev_alloc(pmu);
13333 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13335 pmu_bus_running = 1;
13339 mutex_unlock(&pmus_lock);
13343 device_initcall(perf_event_sysfs_init);
13345 #ifdef CONFIG_CGROUP_PERF
13346 static struct cgroup_subsys_state *
13347 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13349 struct perf_cgroup *jc;
13351 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13353 return ERR_PTR(-ENOMEM);
13355 jc->info = alloc_percpu(struct perf_cgroup_info);
13358 return ERR_PTR(-ENOMEM);
13364 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13366 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13368 free_percpu(jc->info);
13372 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13374 perf_event_cgroup(css->cgroup);
13378 static int __perf_cgroup_move(void *info)
13380 struct task_struct *task = info;
13382 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13387 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13389 struct task_struct *task;
13390 struct cgroup_subsys_state *css;
13392 cgroup_taskset_for_each(task, css, tset)
13393 task_function_call(task, __perf_cgroup_move, task);
13396 struct cgroup_subsys perf_event_cgrp_subsys = {
13397 .css_alloc = perf_cgroup_css_alloc,
13398 .css_free = perf_cgroup_css_free,
13399 .css_online = perf_cgroup_css_online,
13400 .attach = perf_cgroup_attach,
13402 * Implicitly enable on dfl hierarchy so that perf events can
13403 * always be filtered by cgroup2 path as long as perf_event
13404 * controller is not mounted on a legacy hierarchy.
13406 .implicit_on_dfl = true,
13409 #endif /* CONFIG_CGROUP_PERF */