2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/keyslot-manager.h>
33 #define DM_MSG_PREFIX "core"
36 * Cookies are numeric values sent with CHANGE and REMOVE
37 * uevents while resuming, removing or renaming the device.
39 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
40 #define DM_COOKIE_LENGTH 24
42 static const char *_name = DM_NAME;
44 static unsigned int major = 0;
45 static unsigned int _major = 0;
47 static DEFINE_IDR(_minor_idr);
49 static DEFINE_SPINLOCK(_minor_lock);
51 static void do_deferred_remove(struct work_struct *w);
53 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
55 static struct workqueue_struct *deferred_remove_workqueue;
57 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
58 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
60 void dm_issue_global_event(void)
62 atomic_inc(&dm_global_event_nr);
63 wake_up(&dm_global_eventq);
67 * One of these is allocated (on-stack) per original bio.
74 unsigned sector_count;
77 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
78 #define DM_IO_BIO_OFFSET \
79 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
81 void *dm_per_bio_data(struct bio *bio, size_t data_size)
83 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
84 if (!tio->inside_dm_io)
85 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
86 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
88 EXPORT_SYMBOL_GPL(dm_per_bio_data);
90 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
92 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
93 if (io->magic == DM_IO_MAGIC)
94 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
95 BUG_ON(io->magic != DM_TIO_MAGIC);
96 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
98 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
100 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
102 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
104 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
106 #define MINOR_ALLOCED ((void *)-1)
108 #define DM_NUMA_NODE NUMA_NO_NODE
109 static int dm_numa_node = DM_NUMA_NODE;
111 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
112 static int swap_bios = DEFAULT_SWAP_BIOS;
113 static int get_swap_bios(void)
115 int latch = READ_ONCE(swap_bios);
116 if (unlikely(latch <= 0))
117 latch = DEFAULT_SWAP_BIOS;
122 * For mempools pre-allocation at the table loading time.
124 struct dm_md_mempools {
126 struct bio_set io_bs;
129 struct table_device {
130 struct list_head list;
132 struct dm_dev dm_dev;
136 * Bio-based DM's mempools' reserved IOs set by the user.
138 #define RESERVED_BIO_BASED_IOS 16
139 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
141 static int __dm_get_module_param_int(int *module_param, int min, int max)
143 int param = READ_ONCE(*module_param);
144 int modified_param = 0;
145 bool modified = true;
148 modified_param = min;
149 else if (param > max)
150 modified_param = max;
155 (void)cmpxchg(module_param, param, modified_param);
156 param = modified_param;
162 unsigned __dm_get_module_param(unsigned *module_param,
163 unsigned def, unsigned max)
165 unsigned param = READ_ONCE(*module_param);
166 unsigned modified_param = 0;
169 modified_param = def;
170 else if (param > max)
171 modified_param = max;
173 if (modified_param) {
174 (void)cmpxchg(module_param, param, modified_param);
175 param = modified_param;
181 unsigned dm_get_reserved_bio_based_ios(void)
183 return __dm_get_module_param(&reserved_bio_based_ios,
184 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
186 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
188 static unsigned dm_get_numa_node(void)
190 return __dm_get_module_param_int(&dm_numa_node,
191 DM_NUMA_NODE, num_online_nodes() - 1);
194 static int __init local_init(void)
198 r = dm_uevent_init();
202 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
203 if (!deferred_remove_workqueue) {
205 goto out_uevent_exit;
209 r = register_blkdev(_major, _name);
211 goto out_free_workqueue;
219 destroy_workqueue(deferred_remove_workqueue);
226 static void local_exit(void)
228 flush_scheduled_work();
229 destroy_workqueue(deferred_remove_workqueue);
231 unregister_blkdev(_major, _name);
236 DMINFO("cleaned up");
239 static int (*_inits[])(void) __initdata = {
250 static void (*_exits[])(void) = {
261 static int __init dm_init(void)
263 const int count = ARRAY_SIZE(_inits);
267 for (i = 0; i < count; i++) {
282 static void __exit dm_exit(void)
284 int i = ARRAY_SIZE(_exits);
290 * Should be empty by this point.
292 idr_destroy(&_minor_idr);
296 * Block device functions
298 int dm_deleting_md(struct mapped_device *md)
300 return test_bit(DMF_DELETING, &md->flags);
303 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
305 struct mapped_device *md;
307 spin_lock(&_minor_lock);
309 md = bdev->bd_disk->private_data;
313 if (test_bit(DMF_FREEING, &md->flags) ||
314 dm_deleting_md(md)) {
320 atomic_inc(&md->open_count);
322 spin_unlock(&_minor_lock);
324 return md ? 0 : -ENXIO;
327 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
329 struct mapped_device *md;
331 spin_lock(&_minor_lock);
333 md = disk->private_data;
337 if (atomic_dec_and_test(&md->open_count) &&
338 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
339 queue_work(deferred_remove_workqueue, &deferred_remove_work);
343 spin_unlock(&_minor_lock);
346 int dm_open_count(struct mapped_device *md)
348 return atomic_read(&md->open_count);
352 * Guarantees nothing is using the device before it's deleted.
354 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
358 spin_lock(&_minor_lock);
360 if (dm_open_count(md)) {
363 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
364 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
367 set_bit(DMF_DELETING, &md->flags);
369 spin_unlock(&_minor_lock);
374 int dm_cancel_deferred_remove(struct mapped_device *md)
378 spin_lock(&_minor_lock);
380 if (test_bit(DMF_DELETING, &md->flags))
383 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
385 spin_unlock(&_minor_lock);
390 static void do_deferred_remove(struct work_struct *w)
392 dm_deferred_remove();
395 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
397 struct mapped_device *md = bdev->bd_disk->private_data;
399 return dm_get_geometry(md, geo);
402 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
403 struct block_device **bdev)
405 struct dm_target *tgt;
406 struct dm_table *map;
411 map = dm_get_live_table(md, srcu_idx);
412 if (!map || !dm_table_get_size(map))
415 /* We only support devices that have a single target */
416 if (dm_table_get_num_targets(map) != 1)
419 tgt = dm_table_get_target(map, 0);
420 if (!tgt->type->prepare_ioctl)
423 if (dm_suspended_md(md))
426 r = tgt->type->prepare_ioctl(tgt, bdev);
427 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
428 dm_put_live_table(md, *srcu_idx);
436 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
438 dm_put_live_table(md, srcu_idx);
441 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
442 unsigned int cmd, unsigned long arg)
444 struct mapped_device *md = bdev->bd_disk->private_data;
447 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
453 * Target determined this ioctl is being issued against a
454 * subset of the parent bdev; require extra privileges.
456 if (!capable(CAP_SYS_RAWIO)) {
458 "%s: sending ioctl %x to DM device without required privilege.",
465 if (!bdev->bd_disk->fops->ioctl)
468 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
470 dm_unprepare_ioctl(md, srcu_idx);
474 u64 dm_start_time_ns_from_clone(struct bio *bio)
476 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
477 struct dm_io *io = tio->io;
479 return jiffies_to_nsecs(io->start_time);
481 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
483 static void start_io_acct(struct dm_io *io)
485 struct mapped_device *md = io->md;
486 struct bio *bio = io->orig_bio;
488 io->start_time = bio_start_io_acct(bio);
489 if (unlikely(dm_stats_used(&md->stats)))
490 dm_stats_account_io(&md->stats, bio_data_dir(bio),
491 bio->bi_iter.bi_sector, bio_sectors(bio),
492 false, 0, &io->stats_aux);
495 static void end_io_acct(struct dm_io *io)
497 struct mapped_device *md = io->md;
498 struct bio *bio = io->orig_bio;
499 unsigned long duration = jiffies - io->start_time;
501 bio_end_io_acct(bio, io->start_time);
503 if (unlikely(dm_stats_used(&md->stats)))
504 dm_stats_account_io(&md->stats, bio_data_dir(bio),
505 bio->bi_iter.bi_sector, bio_sectors(bio),
506 true, duration, &io->stats_aux);
508 /* nudge anyone waiting on suspend queue */
509 if (unlikely(wq_has_sleeper(&md->wait)))
513 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
516 struct dm_target_io *tio;
519 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
523 tio = container_of(clone, struct dm_target_io, clone);
524 tio->inside_dm_io = true;
527 io = container_of(tio, struct dm_io, tio);
528 io->magic = DM_IO_MAGIC;
530 atomic_set(&io->io_count, 1);
533 spin_lock_init(&io->endio_lock);
540 static void free_io(struct mapped_device *md, struct dm_io *io)
542 bio_put(&io->tio.clone);
545 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
546 unsigned target_bio_nr, gfp_t gfp_mask)
548 struct dm_target_io *tio;
550 if (!ci->io->tio.io) {
551 /* the dm_target_io embedded in ci->io is available */
554 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
558 tio = container_of(clone, struct dm_target_io, clone);
559 tio->inside_dm_io = false;
562 tio->magic = DM_TIO_MAGIC;
565 tio->target_bio_nr = target_bio_nr;
570 static void free_tio(struct dm_target_io *tio)
572 if (tio->inside_dm_io)
574 bio_put(&tio->clone);
578 * Add the bio to the list of deferred io.
580 static void queue_io(struct mapped_device *md, struct bio *bio)
584 spin_lock_irqsave(&md->deferred_lock, flags);
585 bio_list_add(&md->deferred, bio);
586 spin_unlock_irqrestore(&md->deferred_lock, flags);
587 queue_work(md->wq, &md->work);
591 * Everyone (including functions in this file), should use this
592 * function to access the md->map field, and make sure they call
593 * dm_put_live_table() when finished.
595 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
597 *srcu_idx = srcu_read_lock(&md->io_barrier);
599 return srcu_dereference(md->map, &md->io_barrier);
602 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
604 srcu_read_unlock(&md->io_barrier, srcu_idx);
607 void dm_sync_table(struct mapped_device *md)
609 synchronize_srcu(&md->io_barrier);
610 synchronize_rcu_expedited();
614 * A fast alternative to dm_get_live_table/dm_put_live_table.
615 * The caller must not block between these two functions.
617 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
620 return rcu_dereference(md->map);
623 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
628 static char *_dm_claim_ptr = "I belong to device-mapper";
631 * Open a table device so we can use it as a map destination.
633 static int open_table_device(struct table_device *td, dev_t dev,
634 struct mapped_device *md)
636 struct block_device *bdev;
640 BUG_ON(td->dm_dev.bdev);
642 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
644 return PTR_ERR(bdev);
646 r = bd_link_disk_holder(bdev, dm_disk(md));
648 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
652 td->dm_dev.bdev = bdev;
653 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
658 * Close a table device that we've been using.
660 static void close_table_device(struct table_device *td, struct mapped_device *md)
662 if (!td->dm_dev.bdev)
665 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
666 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
667 put_dax(td->dm_dev.dax_dev);
668 td->dm_dev.bdev = NULL;
669 td->dm_dev.dax_dev = NULL;
672 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
675 struct table_device *td;
677 list_for_each_entry(td, l, list)
678 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
684 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
685 struct dm_dev **result)
688 struct table_device *td;
690 mutex_lock(&md->table_devices_lock);
691 td = find_table_device(&md->table_devices, dev, mode);
693 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
695 mutex_unlock(&md->table_devices_lock);
699 td->dm_dev.mode = mode;
700 td->dm_dev.bdev = NULL;
702 if ((r = open_table_device(td, dev, md))) {
703 mutex_unlock(&md->table_devices_lock);
708 format_dev_t(td->dm_dev.name, dev);
710 refcount_set(&td->count, 1);
711 list_add(&td->list, &md->table_devices);
713 refcount_inc(&td->count);
715 mutex_unlock(&md->table_devices_lock);
717 *result = &td->dm_dev;
721 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
723 struct table_device *td = container_of(d, struct table_device, dm_dev);
725 mutex_lock(&md->table_devices_lock);
726 if (refcount_dec_and_test(&td->count)) {
727 close_table_device(td, md);
731 mutex_unlock(&md->table_devices_lock);
734 static void free_table_devices(struct list_head *devices)
736 struct list_head *tmp, *next;
738 list_for_each_safe(tmp, next, devices) {
739 struct table_device *td = list_entry(tmp, struct table_device, list);
741 DMWARN("dm_destroy: %s still exists with %d references",
742 td->dm_dev.name, refcount_read(&td->count));
748 * Get the geometry associated with a dm device
750 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
758 * Set the geometry of a device.
760 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
762 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
764 if (geo->start > sz) {
765 DMWARN("Start sector is beyond the geometry limits.");
774 static int __noflush_suspending(struct mapped_device *md)
776 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
780 * Decrements the number of outstanding ios that a bio has been
781 * cloned into, completing the original io if necc.
783 void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
786 blk_status_t io_error;
788 struct mapped_device *md = io->md;
790 /* Push-back supersedes any I/O errors */
791 if (unlikely(error)) {
792 spin_lock_irqsave(&io->endio_lock, flags);
793 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
795 spin_unlock_irqrestore(&io->endio_lock, flags);
798 if (atomic_dec_and_test(&io->io_count)) {
800 if (io->status == BLK_STS_DM_REQUEUE) {
802 * Target requested pushing back the I/O.
804 spin_lock_irqsave(&md->deferred_lock, flags);
805 if (__noflush_suspending(md) &&
806 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
807 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
808 bio_list_add_head(&md->deferred, bio);
811 * noflush suspend was interrupted or this is
812 * a write to a zoned target.
814 io->status = BLK_STS_IOERR;
816 spin_unlock_irqrestore(&md->deferred_lock, flags);
819 io_error = io->status;
823 if (io_error == BLK_STS_DM_REQUEUE)
826 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
828 * Preflush done for flush with data, reissue
829 * without REQ_PREFLUSH.
831 bio->bi_opf &= ~REQ_PREFLUSH;
834 /* done with normal IO or empty flush */
836 bio->bi_status = io_error;
842 void disable_discard(struct mapped_device *md)
844 struct queue_limits *limits = dm_get_queue_limits(md);
846 /* device doesn't really support DISCARD, disable it */
847 limits->max_discard_sectors = 0;
848 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
851 void disable_write_same(struct mapped_device *md)
853 struct queue_limits *limits = dm_get_queue_limits(md);
855 /* device doesn't really support WRITE SAME, disable it */
856 limits->max_write_same_sectors = 0;
859 void disable_write_zeroes(struct mapped_device *md)
861 struct queue_limits *limits = dm_get_queue_limits(md);
863 /* device doesn't really support WRITE ZEROES, disable it */
864 limits->max_write_zeroes_sectors = 0;
867 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
869 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
872 static void clone_endio(struct bio *bio)
874 blk_status_t error = bio->bi_status;
875 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
876 struct dm_io *io = tio->io;
877 struct mapped_device *md = tio->io->md;
878 dm_endio_fn endio = tio->ti->type->end_io;
879 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
881 if (unlikely(error == BLK_STS_TARGET)) {
882 if (bio_op(bio) == REQ_OP_DISCARD &&
883 !q->limits.max_discard_sectors)
885 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
886 !q->limits.max_write_same_sectors)
887 disable_write_same(md);
888 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
889 !q->limits.max_write_zeroes_sectors)
890 disable_write_zeroes(md);
893 if (blk_queue_is_zoned(q))
894 dm_zone_endio(io, bio);
897 int r = endio(tio->ti, bio, &error);
899 case DM_ENDIO_REQUEUE:
901 * Requeuing writes to a sequential zone of a zoned
902 * target will break the sequential write pattern:
905 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
906 error = BLK_STS_IOERR;
908 error = BLK_STS_DM_REQUEUE;
912 case DM_ENDIO_INCOMPLETE:
913 /* The target will handle the io */
916 DMWARN("unimplemented target endio return value: %d", r);
921 if (unlikely(swap_bios_limit(tio->ti, bio))) {
922 struct mapped_device *md = io->md;
923 up(&md->swap_bios_semaphore);
927 dm_io_dec_pending(io, error);
931 * Return maximum size of I/O possible at the supplied sector up to the current
934 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
935 sector_t target_offset)
937 return ti->len - target_offset;
940 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
942 sector_t target_offset = dm_target_offset(ti, sector);
943 sector_t len = max_io_len_target_boundary(ti, target_offset);
947 * Does the target need to split IO even further?
948 * - varied (per target) IO splitting is a tenet of DM; this
949 * explains why stacked chunk_sectors based splitting via
950 * blk_max_size_offset() isn't possible here. So pass in
951 * ti->max_io_len to override stacked chunk_sectors.
953 if (ti->max_io_len) {
954 max_len = blk_max_size_offset(ti->table->md->queue,
955 target_offset, ti->max_io_len);
963 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
965 if (len > UINT_MAX) {
966 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
967 (unsigned long long)len, UINT_MAX);
968 ti->error = "Maximum size of target IO is too large";
972 ti->max_io_len = (uint32_t) len;
976 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
978 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
979 sector_t sector, int *srcu_idx)
980 __acquires(md->io_barrier)
982 struct dm_table *map;
983 struct dm_target *ti;
985 map = dm_get_live_table(md, srcu_idx);
989 ti = dm_table_find_target(map, sector);
996 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
997 long nr_pages, void **kaddr, pfn_t *pfn)
999 struct mapped_device *md = dax_get_private(dax_dev);
1000 sector_t sector = pgoff * PAGE_SECTORS;
1001 struct dm_target *ti;
1002 long len, ret = -EIO;
1005 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1009 if (!ti->type->direct_access)
1011 len = max_io_len(ti, sector) / PAGE_SECTORS;
1014 nr_pages = min(len, nr_pages);
1015 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1018 dm_put_live_table(md, srcu_idx);
1023 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1024 int blocksize, sector_t start, sector_t len)
1026 struct mapped_device *md = dax_get_private(dax_dev);
1027 struct dm_table *map;
1031 map = dm_get_live_table(md, &srcu_idx);
1035 ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1038 dm_put_live_table(md, srcu_idx);
1043 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1044 void *addr, size_t bytes, struct iov_iter *i)
1046 struct mapped_device *md = dax_get_private(dax_dev);
1047 sector_t sector = pgoff * PAGE_SECTORS;
1048 struct dm_target *ti;
1052 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1056 if (!ti->type->dax_copy_from_iter) {
1057 ret = copy_from_iter(addr, bytes, i);
1060 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1062 dm_put_live_table(md, srcu_idx);
1067 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1068 void *addr, size_t bytes, struct iov_iter *i)
1070 struct mapped_device *md = dax_get_private(dax_dev);
1071 sector_t sector = pgoff * PAGE_SECTORS;
1072 struct dm_target *ti;
1076 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1080 if (!ti->type->dax_copy_to_iter) {
1081 ret = copy_to_iter(addr, bytes, i);
1084 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1086 dm_put_live_table(md, srcu_idx);
1091 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1094 struct mapped_device *md = dax_get_private(dax_dev);
1095 sector_t sector = pgoff * PAGE_SECTORS;
1096 struct dm_target *ti;
1100 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1104 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1106 * ->zero_page_range() is mandatory dax operation. If we are
1107 * here, something is wrong.
1111 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1113 dm_put_live_table(md, srcu_idx);
1119 * A target may call dm_accept_partial_bio only from the map routine. It is
1120 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1121 * operations and REQ_OP_ZONE_APPEND (zone append writes).
1123 * dm_accept_partial_bio informs the dm that the target only wants to process
1124 * additional n_sectors sectors of the bio and the rest of the data should be
1125 * sent in a next bio.
1127 * A diagram that explains the arithmetics:
1128 * +--------------------+---------------+-------+
1130 * +--------------------+---------------+-------+
1132 * <-------------- *tio->len_ptr --------------->
1133 * <------- bi_size ------->
1136 * Region 1 was already iterated over with bio_advance or similar function.
1137 * (it may be empty if the target doesn't use bio_advance)
1138 * Region 2 is the remaining bio size that the target wants to process.
1139 * (it may be empty if region 1 is non-empty, although there is no reason
1141 * The target requires that region 3 is to be sent in the next bio.
1143 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1144 * the partially processed part (the sum of regions 1+2) must be the same for all
1145 * copies of the bio.
1147 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1149 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1150 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1152 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1153 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1154 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1155 BUG_ON(bi_size > *tio->len_ptr);
1156 BUG_ON(n_sectors > bi_size);
1158 *tio->len_ptr -= bi_size - n_sectors;
1159 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1161 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1163 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1165 mutex_lock(&md->swap_bios_lock);
1166 while (latch < md->swap_bios) {
1168 down(&md->swap_bios_semaphore);
1171 while (latch > md->swap_bios) {
1173 up(&md->swap_bios_semaphore);
1176 mutex_unlock(&md->swap_bios_lock);
1179 static blk_qc_t __map_bio(struct dm_target_io *tio)
1183 struct bio *clone = &tio->clone;
1184 struct dm_io *io = tio->io;
1185 struct dm_target *ti = tio->ti;
1186 blk_qc_t ret = BLK_QC_T_NONE;
1188 clone->bi_end_io = clone_endio;
1191 * Map the clone. If r == 0 we don't need to do
1192 * anything, the target has assumed ownership of
1195 dm_io_inc_pending(io);
1196 sector = clone->bi_iter.bi_sector;
1198 if (unlikely(swap_bios_limit(ti, clone))) {
1199 struct mapped_device *md = io->md;
1200 int latch = get_swap_bios();
1201 if (unlikely(latch != md->swap_bios))
1202 __set_swap_bios_limit(md, latch);
1203 down(&md->swap_bios_semaphore);
1207 * Check if the IO needs a special mapping due to zone append emulation
1208 * on zoned target. In this case, dm_zone_map_bio() calls the target
1211 if (dm_emulate_zone_append(io->md))
1212 r = dm_zone_map_bio(tio);
1214 r = ti->type->map(ti, clone);
1217 case DM_MAPIO_SUBMITTED:
1219 case DM_MAPIO_REMAPPED:
1220 /* the bio has been remapped so dispatch it */
1221 trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1222 ret = submit_bio_noacct(clone);
1225 if (unlikely(swap_bios_limit(ti, clone))) {
1226 struct mapped_device *md = io->md;
1227 up(&md->swap_bios_semaphore);
1230 dm_io_dec_pending(io, BLK_STS_IOERR);
1232 case DM_MAPIO_REQUEUE:
1233 if (unlikely(swap_bios_limit(ti, clone))) {
1234 struct mapped_device *md = io->md;
1235 up(&md->swap_bios_semaphore);
1238 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1241 DMWARN("unimplemented target map return value: %d", r);
1248 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1250 bio->bi_iter.bi_sector = sector;
1251 bio->bi_iter.bi_size = to_bytes(len);
1255 * Creates a bio that consists of range of complete bvecs.
1257 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1258 sector_t sector, unsigned len)
1260 struct bio *clone = &tio->clone;
1263 __bio_clone_fast(clone, bio);
1265 r = bio_crypt_clone(clone, bio, GFP_NOIO);
1269 if (bio_integrity(bio)) {
1270 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1271 !dm_target_passes_integrity(tio->ti->type))) {
1272 DMWARN("%s: the target %s doesn't support integrity data.",
1273 dm_device_name(tio->io->md),
1274 tio->ti->type->name);
1278 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1283 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1284 clone->bi_iter.bi_size = to_bytes(len);
1286 if (bio_integrity(bio))
1287 bio_integrity_trim(clone);
1292 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1293 struct dm_target *ti, unsigned num_bios)
1295 struct dm_target_io *tio;
1301 if (num_bios == 1) {
1302 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1303 bio_list_add(blist, &tio->clone);
1307 for (try = 0; try < 2; try++) {
1312 mutex_lock(&ci->io->md->table_devices_lock);
1313 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1314 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1318 bio_list_add(blist, &tio->clone);
1321 mutex_unlock(&ci->io->md->table_devices_lock);
1322 if (bio_nr == num_bios)
1325 while ((bio = bio_list_pop(blist))) {
1326 tio = container_of(bio, struct dm_target_io, clone);
1332 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1333 struct dm_target_io *tio, unsigned *len)
1335 struct bio *clone = &tio->clone;
1339 __bio_clone_fast(clone, ci->bio);
1341 bio_setup_sector(clone, ci->sector, *len);
1343 return __map_bio(tio);
1346 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1347 unsigned num_bios, unsigned *len)
1349 struct bio_list blist = BIO_EMPTY_LIST;
1351 struct dm_target_io *tio;
1353 alloc_multiple_bios(&blist, ci, ti, num_bios);
1355 while ((bio = bio_list_pop(&blist))) {
1356 tio = container_of(bio, struct dm_target_io, clone);
1357 (void) __clone_and_map_simple_bio(ci, tio, len);
1361 static int __send_empty_flush(struct clone_info *ci)
1363 unsigned target_nr = 0;
1364 struct dm_target *ti;
1365 struct bio flush_bio;
1368 * Use an on-stack bio for this, it's safe since we don't
1369 * need to reference it after submit. It's just used as
1370 * the basis for the clone(s).
1372 bio_init(&flush_bio, NULL, 0);
1373 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1374 bio_set_dev(&flush_bio, ci->io->md->disk->part0);
1376 ci->bio = &flush_bio;
1377 ci->sector_count = 0;
1379 BUG_ON(bio_has_data(ci->bio));
1380 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1381 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1383 bio_uninit(ci->bio);
1387 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1388 sector_t sector, unsigned *len)
1390 struct bio *bio = ci->bio;
1391 struct dm_target_io *tio;
1394 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1396 r = clone_bio(tio, bio, sector, *len);
1401 (void) __map_bio(tio);
1406 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1412 * Even though the device advertised support for this type of
1413 * request, that does not mean every target supports it, and
1414 * reconfiguration might also have changed that since the
1415 * check was performed.
1420 len = min_t(sector_t, ci->sector_count,
1421 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1423 __send_duplicate_bios(ci, ti, num_bios, &len);
1426 ci->sector_count -= len;
1431 static bool is_abnormal_io(struct bio *bio)
1435 switch (bio_op(bio)) {
1436 case REQ_OP_DISCARD:
1437 case REQ_OP_SECURE_ERASE:
1438 case REQ_OP_WRITE_SAME:
1439 case REQ_OP_WRITE_ZEROES:
1447 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1450 struct bio *bio = ci->bio;
1451 unsigned num_bios = 0;
1453 switch (bio_op(bio)) {
1454 case REQ_OP_DISCARD:
1455 num_bios = ti->num_discard_bios;
1457 case REQ_OP_SECURE_ERASE:
1458 num_bios = ti->num_secure_erase_bios;
1460 case REQ_OP_WRITE_SAME:
1461 num_bios = ti->num_write_same_bios;
1463 case REQ_OP_WRITE_ZEROES:
1464 num_bios = ti->num_write_zeroes_bios;
1470 *result = __send_changing_extent_only(ci, ti, num_bios);
1475 * Select the correct strategy for processing a non-flush bio.
1477 static int __split_and_process_non_flush(struct clone_info *ci)
1479 struct dm_target *ti;
1483 ti = dm_table_find_target(ci->map, ci->sector);
1487 if (__process_abnormal_io(ci, ti, &r))
1490 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1492 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1497 ci->sector_count -= len;
1502 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1503 struct dm_table *map, struct bio *bio)
1506 ci->io = alloc_io(md, bio);
1507 ci->sector = bio->bi_iter.bi_sector;
1510 #define __dm_part_stat_sub(part, field, subnd) \
1511 (part_stat_get(part, field) -= (subnd))
1514 * Entry point to split a bio into clones and submit them to the targets.
1516 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1517 struct dm_table *map, struct bio *bio)
1519 struct clone_info ci;
1520 blk_qc_t ret = BLK_QC_T_NONE;
1523 init_clone_info(&ci, md, map, bio);
1525 if (bio->bi_opf & REQ_PREFLUSH) {
1526 error = __send_empty_flush(&ci);
1527 /* dm_io_dec_pending submits any data associated with flush */
1528 } else if (op_is_zone_mgmt(bio_op(bio))) {
1530 ci.sector_count = 0;
1531 error = __split_and_process_non_flush(&ci);
1534 ci.sector_count = bio_sectors(bio);
1535 error = __split_and_process_non_flush(&ci);
1536 if (ci.sector_count && !error) {
1538 * Remainder must be passed to submit_bio_noacct()
1539 * so that it gets handled *after* bios already submitted
1540 * have been completely processed.
1541 * We take a clone of the original to store in
1542 * ci.io->orig_bio to be used by end_io_acct() and
1543 * for dec_pending to use for completion handling.
1545 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1546 GFP_NOIO, &md->queue->bio_split);
1547 ci.io->orig_bio = b;
1550 * Adjust IO stats for each split, otherwise upon queue
1551 * reentry there will be redundant IO accounting.
1552 * NOTE: this is a stop-gap fix, a proper fix involves
1553 * significant refactoring of DM core's bio splitting
1554 * (by eliminating DM's splitting and just using bio_split)
1557 __dm_part_stat_sub(dm_disk(md)->part0,
1558 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1562 trace_block_split(b, bio->bi_iter.bi_sector);
1563 ret = submit_bio_noacct(bio);
1567 /* drop the extra reference count */
1568 dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1572 static blk_qc_t dm_submit_bio(struct bio *bio)
1574 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1575 blk_qc_t ret = BLK_QC_T_NONE;
1577 struct dm_table *map;
1579 map = dm_get_live_table(md, &srcu_idx);
1580 if (unlikely(!map)) {
1581 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1582 dm_device_name(md));
1587 /* If suspended, queue this IO for later */
1588 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1589 if (bio->bi_opf & REQ_NOWAIT)
1590 bio_wouldblock_error(bio);
1591 else if (bio->bi_opf & REQ_RAHEAD)
1599 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1600 * otherwise associated queue_limits won't be imposed.
1602 if (is_abnormal_io(bio))
1603 blk_queue_split(&bio);
1605 ret = __split_and_process_bio(md, map, bio);
1607 dm_put_live_table(md, srcu_idx);
1611 /*-----------------------------------------------------------------
1612 * An IDR is used to keep track of allocated minor numbers.
1613 *---------------------------------------------------------------*/
1614 static void free_minor(int minor)
1616 spin_lock(&_minor_lock);
1617 idr_remove(&_minor_idr, minor);
1618 spin_unlock(&_minor_lock);
1622 * See if the device with a specific minor # is free.
1624 static int specific_minor(int minor)
1628 if (minor >= (1 << MINORBITS))
1631 idr_preload(GFP_KERNEL);
1632 spin_lock(&_minor_lock);
1634 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1636 spin_unlock(&_minor_lock);
1639 return r == -ENOSPC ? -EBUSY : r;
1643 static int next_free_minor(int *minor)
1647 idr_preload(GFP_KERNEL);
1648 spin_lock(&_minor_lock);
1650 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1652 spin_unlock(&_minor_lock);
1660 static const struct block_device_operations dm_blk_dops;
1661 static const struct block_device_operations dm_rq_blk_dops;
1662 static const struct dax_operations dm_dax_ops;
1664 static void dm_wq_work(struct work_struct *work);
1666 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1667 static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1669 dm_destroy_keyslot_manager(q->ksm);
1672 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1674 static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1677 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1679 static void cleanup_mapped_device(struct mapped_device *md)
1682 destroy_workqueue(md->wq);
1683 bioset_exit(&md->bs);
1684 bioset_exit(&md->io_bs);
1687 kill_dax(md->dax_dev);
1688 put_dax(md->dax_dev);
1693 spin_lock(&_minor_lock);
1694 md->disk->private_data = NULL;
1695 spin_unlock(&_minor_lock);
1696 del_gendisk(md->disk);
1700 dm_queue_destroy_keyslot_manager(md->queue);
1703 blk_cleanup_disk(md->disk);
1705 cleanup_srcu_struct(&md->io_barrier);
1707 mutex_destroy(&md->suspend_lock);
1708 mutex_destroy(&md->type_lock);
1709 mutex_destroy(&md->table_devices_lock);
1710 mutex_destroy(&md->swap_bios_lock);
1712 dm_mq_cleanup_mapped_device(md);
1713 dm_cleanup_zoned_dev(md);
1717 * Allocate and initialise a blank device with a given minor.
1719 static struct mapped_device *alloc_dev(int minor)
1721 int r, numa_node_id = dm_get_numa_node();
1722 struct mapped_device *md;
1725 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1727 DMWARN("unable to allocate device, out of memory.");
1731 if (!try_module_get(THIS_MODULE))
1732 goto bad_module_get;
1734 /* get a minor number for the dev */
1735 if (minor == DM_ANY_MINOR)
1736 r = next_free_minor(&minor);
1738 r = specific_minor(minor);
1742 r = init_srcu_struct(&md->io_barrier);
1744 goto bad_io_barrier;
1746 md->numa_node_id = numa_node_id;
1747 md->init_tio_pdu = false;
1748 md->type = DM_TYPE_NONE;
1749 mutex_init(&md->suspend_lock);
1750 mutex_init(&md->type_lock);
1751 mutex_init(&md->table_devices_lock);
1752 spin_lock_init(&md->deferred_lock);
1753 atomic_set(&md->holders, 1);
1754 atomic_set(&md->open_count, 0);
1755 atomic_set(&md->event_nr, 0);
1756 atomic_set(&md->uevent_seq, 0);
1757 INIT_LIST_HEAD(&md->uevent_list);
1758 INIT_LIST_HEAD(&md->table_devices);
1759 spin_lock_init(&md->uevent_lock);
1762 * default to bio-based until DM table is loaded and md->type
1763 * established. If request-based table is loaded: blk-mq will
1764 * override accordingly.
1766 md->disk = blk_alloc_disk(md->numa_node_id);
1769 md->queue = md->disk->queue;
1771 init_waitqueue_head(&md->wait);
1772 INIT_WORK(&md->work, dm_wq_work);
1773 init_waitqueue_head(&md->eventq);
1774 init_completion(&md->kobj_holder.completion);
1776 md->swap_bios = get_swap_bios();
1777 sema_init(&md->swap_bios_semaphore, md->swap_bios);
1778 mutex_init(&md->swap_bios_lock);
1780 md->disk->major = _major;
1781 md->disk->first_minor = minor;
1782 md->disk->minors = 1;
1783 md->disk->fops = &dm_blk_dops;
1784 md->disk->queue = md->queue;
1785 md->disk->private_data = md;
1786 sprintf(md->disk->disk_name, "dm-%d", minor);
1788 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1789 md->dax_dev = alloc_dax(md, md->disk->disk_name,
1791 if (IS_ERR(md->dax_dev))
1795 add_disk_no_queue_reg(md->disk);
1796 format_dev_t(md->name, MKDEV(_major, minor));
1798 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1802 dm_stats_init(&md->stats);
1804 /* Populate the mapping, nobody knows we exist yet */
1805 spin_lock(&_minor_lock);
1806 old_md = idr_replace(&_minor_idr, md, minor);
1807 spin_unlock(&_minor_lock);
1809 BUG_ON(old_md != MINOR_ALLOCED);
1814 cleanup_mapped_device(md);
1818 module_put(THIS_MODULE);
1824 static void unlock_fs(struct mapped_device *md);
1826 static void free_dev(struct mapped_device *md)
1828 int minor = MINOR(disk_devt(md->disk));
1832 cleanup_mapped_device(md);
1834 free_table_devices(&md->table_devices);
1835 dm_stats_cleanup(&md->stats);
1838 module_put(THIS_MODULE);
1842 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1844 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1847 if (dm_table_bio_based(t)) {
1849 * The md may already have mempools that need changing.
1850 * If so, reload bioset because front_pad may have changed
1851 * because a different table was loaded.
1853 bioset_exit(&md->bs);
1854 bioset_exit(&md->io_bs);
1856 } else if (bioset_initialized(&md->bs)) {
1858 * There's no need to reload with request-based dm
1859 * because the size of front_pad doesn't change.
1860 * Note for future: If you are to reload bioset,
1861 * prep-ed requests in the queue may refer
1862 * to bio from the old bioset, so you must walk
1863 * through the queue to unprep.
1869 bioset_initialized(&md->bs) ||
1870 bioset_initialized(&md->io_bs));
1872 ret = bioset_init_from_src(&md->bs, &p->bs);
1875 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1877 bioset_exit(&md->bs);
1879 /* mempool bind completed, no longer need any mempools in the table */
1880 dm_table_free_md_mempools(t);
1885 * Bind a table to the device.
1887 static void event_callback(void *context)
1889 unsigned long flags;
1891 struct mapped_device *md = (struct mapped_device *) context;
1893 spin_lock_irqsave(&md->uevent_lock, flags);
1894 list_splice_init(&md->uevent_list, &uevents);
1895 spin_unlock_irqrestore(&md->uevent_lock, flags);
1897 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1899 atomic_inc(&md->event_nr);
1900 wake_up(&md->eventq);
1901 dm_issue_global_event();
1905 * Returns old map, which caller must destroy.
1907 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1908 struct queue_limits *limits)
1910 struct dm_table *old_map;
1911 struct request_queue *q = md->queue;
1912 bool request_based = dm_table_request_based(t);
1916 lockdep_assert_held(&md->suspend_lock);
1918 size = dm_table_get_size(t);
1921 * Wipe any geometry if the size of the table changed.
1923 if (size != dm_get_size(md))
1924 memset(&md->geometry, 0, sizeof(md->geometry));
1926 if (!get_capacity(md->disk))
1927 set_capacity(md->disk, size);
1929 set_capacity_and_notify(md->disk, size);
1931 dm_table_event_callback(t, event_callback, md);
1934 * The queue hasn't been stopped yet, if the old table type wasn't
1935 * for request-based during suspension. So stop it to prevent
1936 * I/O mapping before resume.
1937 * This must be done before setting the queue restrictions,
1938 * because request-based dm may be run just after the setting.
1943 if (request_based) {
1945 * Leverage the fact that request-based DM targets are
1946 * immutable singletons - used to optimize dm_mq_queue_rq.
1948 md->immutable_target = dm_table_get_immutable_target(t);
1951 ret = __bind_mempools(md, t);
1953 old_map = ERR_PTR(ret);
1957 ret = dm_table_set_restrictions(t, q, limits);
1959 old_map = ERR_PTR(ret);
1963 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1964 rcu_assign_pointer(md->map, (void *)t);
1965 md->immutable_target_type = dm_table_get_immutable_target_type(t);
1975 * Returns unbound table for the caller to free.
1977 static struct dm_table *__unbind(struct mapped_device *md)
1979 struct dm_table *map = rcu_dereference_protected(md->map, 1);
1984 dm_table_event_callback(map, NULL, NULL);
1985 RCU_INIT_POINTER(md->map, NULL);
1992 * Constructor for a new device.
1994 int dm_create(int minor, struct mapped_device **result)
1997 struct mapped_device *md;
1999 md = alloc_dev(minor);
2003 r = dm_sysfs_init(md);
2014 * Functions to manage md->type.
2015 * All are required to hold md->type_lock.
2017 void dm_lock_md_type(struct mapped_device *md)
2019 mutex_lock(&md->type_lock);
2022 void dm_unlock_md_type(struct mapped_device *md)
2024 mutex_unlock(&md->type_lock);
2027 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2029 BUG_ON(!mutex_is_locked(&md->type_lock));
2033 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2038 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2040 return md->immutable_target_type;
2044 * The queue_limits are only valid as long as you have a reference
2047 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2049 BUG_ON(!atomic_read(&md->holders));
2050 return &md->queue->limits;
2052 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2055 * Setup the DM device's queue based on md's type
2057 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2060 struct queue_limits limits;
2061 enum dm_queue_mode type = dm_get_md_type(md);
2064 case DM_TYPE_REQUEST_BASED:
2065 md->disk->fops = &dm_rq_blk_dops;
2066 r = dm_mq_init_request_queue(md, t);
2068 DMERR("Cannot initialize queue for request-based dm mapped device");
2072 case DM_TYPE_BIO_BASED:
2073 case DM_TYPE_DAX_BIO_BASED:
2080 r = dm_calculate_queue_limits(t, &limits);
2082 DMERR("Cannot calculate initial queue limits");
2085 r = dm_table_set_restrictions(t, md->queue, &limits);
2089 blk_register_queue(md->disk);
2094 struct mapped_device *dm_get_md(dev_t dev)
2096 struct mapped_device *md;
2097 unsigned minor = MINOR(dev);
2099 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2102 spin_lock(&_minor_lock);
2104 md = idr_find(&_minor_idr, minor);
2105 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2106 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2112 spin_unlock(&_minor_lock);
2116 EXPORT_SYMBOL_GPL(dm_get_md);
2118 void *dm_get_mdptr(struct mapped_device *md)
2120 return md->interface_ptr;
2123 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2125 md->interface_ptr = ptr;
2128 void dm_get(struct mapped_device *md)
2130 atomic_inc(&md->holders);
2131 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2134 int dm_hold(struct mapped_device *md)
2136 spin_lock(&_minor_lock);
2137 if (test_bit(DMF_FREEING, &md->flags)) {
2138 spin_unlock(&_minor_lock);
2142 spin_unlock(&_minor_lock);
2145 EXPORT_SYMBOL_GPL(dm_hold);
2147 const char *dm_device_name(struct mapped_device *md)
2151 EXPORT_SYMBOL_GPL(dm_device_name);
2153 static void __dm_destroy(struct mapped_device *md, bool wait)
2155 struct dm_table *map;
2160 spin_lock(&_minor_lock);
2161 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2162 set_bit(DMF_FREEING, &md->flags);
2163 spin_unlock(&_minor_lock);
2165 blk_set_queue_dying(md->queue);
2168 * Take suspend_lock so that presuspend and postsuspend methods
2169 * do not race with internal suspend.
2171 mutex_lock(&md->suspend_lock);
2172 map = dm_get_live_table(md, &srcu_idx);
2173 if (!dm_suspended_md(md)) {
2174 dm_table_presuspend_targets(map);
2175 set_bit(DMF_SUSPENDED, &md->flags);
2176 set_bit(DMF_POST_SUSPENDING, &md->flags);
2177 dm_table_postsuspend_targets(map);
2179 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2180 dm_put_live_table(md, srcu_idx);
2181 mutex_unlock(&md->suspend_lock);
2184 * Rare, but there may be I/O requests still going to complete,
2185 * for example. Wait for all references to disappear.
2186 * No one should increment the reference count of the mapped_device,
2187 * after the mapped_device state becomes DMF_FREEING.
2190 while (atomic_read(&md->holders))
2192 else if (atomic_read(&md->holders))
2193 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2194 dm_device_name(md), atomic_read(&md->holders));
2197 dm_table_destroy(__unbind(md));
2201 void dm_destroy(struct mapped_device *md)
2203 __dm_destroy(md, true);
2206 void dm_destroy_immediate(struct mapped_device *md)
2208 __dm_destroy(md, false);
2211 void dm_put(struct mapped_device *md)
2213 atomic_dec(&md->holders);
2215 EXPORT_SYMBOL_GPL(dm_put);
2217 static bool md_in_flight_bios(struct mapped_device *md)
2220 struct block_device *part = dm_disk(md)->part0;
2223 for_each_possible_cpu(cpu) {
2224 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2225 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2231 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2237 prepare_to_wait(&md->wait, &wait, task_state);
2239 if (!md_in_flight_bios(md))
2242 if (signal_pending_state(task_state, current)) {
2249 finish_wait(&md->wait, &wait);
2254 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2258 if (!queue_is_mq(md->queue))
2259 return dm_wait_for_bios_completion(md, task_state);
2262 if (!blk_mq_queue_inflight(md->queue))
2265 if (signal_pending_state(task_state, current)) {
2277 * Process the deferred bios
2279 static void dm_wq_work(struct work_struct *work)
2281 struct mapped_device *md = container_of(work, struct mapped_device, work);
2284 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2285 spin_lock_irq(&md->deferred_lock);
2286 bio = bio_list_pop(&md->deferred);
2287 spin_unlock_irq(&md->deferred_lock);
2292 submit_bio_noacct(bio);
2296 static void dm_queue_flush(struct mapped_device *md)
2298 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2299 smp_mb__after_atomic();
2300 queue_work(md->wq, &md->work);
2304 * Swap in a new table, returning the old one for the caller to destroy.
2306 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2308 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2309 struct queue_limits limits;
2312 mutex_lock(&md->suspend_lock);
2314 /* device must be suspended */
2315 if (!dm_suspended_md(md))
2319 * If the new table has no data devices, retain the existing limits.
2320 * This helps multipath with queue_if_no_path if all paths disappear,
2321 * then new I/O is queued based on these limits, and then some paths
2324 if (dm_table_has_no_data_devices(table)) {
2325 live_map = dm_get_live_table_fast(md);
2327 limits = md->queue->limits;
2328 dm_put_live_table_fast(md);
2332 r = dm_calculate_queue_limits(table, &limits);
2339 map = __bind(md, table, &limits);
2340 dm_issue_global_event();
2343 mutex_unlock(&md->suspend_lock);
2348 * Functions to lock and unlock any filesystem running on the
2351 static int lock_fs(struct mapped_device *md)
2355 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2357 r = freeze_bdev(md->disk->part0);
2359 set_bit(DMF_FROZEN, &md->flags);
2363 static void unlock_fs(struct mapped_device *md)
2365 if (!test_bit(DMF_FROZEN, &md->flags))
2367 thaw_bdev(md->disk->part0);
2368 clear_bit(DMF_FROZEN, &md->flags);
2372 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2373 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2374 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2376 * If __dm_suspend returns 0, the device is completely quiescent
2377 * now. There is no request-processing activity. All new requests
2378 * are being added to md->deferred list.
2380 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2381 unsigned suspend_flags, unsigned int task_state,
2382 int dmf_suspended_flag)
2384 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2385 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2388 lockdep_assert_held(&md->suspend_lock);
2391 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2392 * This flag is cleared before dm_suspend returns.
2395 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2397 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2400 * This gets reverted if there's an error later and the targets
2401 * provide the .presuspend_undo hook.
2403 dm_table_presuspend_targets(map);
2406 * Flush I/O to the device.
2407 * Any I/O submitted after lock_fs() may not be flushed.
2408 * noflush takes precedence over do_lockfs.
2409 * (lock_fs() flushes I/Os and waits for them to complete.)
2411 if (!noflush && do_lockfs) {
2414 dm_table_presuspend_undo_targets(map);
2420 * Here we must make sure that no processes are submitting requests
2421 * to target drivers i.e. no one may be executing
2422 * __split_and_process_bio from dm_submit_bio.
2424 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2425 * we take the write lock. To prevent any process from reentering
2426 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2427 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2428 * flush_workqueue(md->wq).
2430 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2432 synchronize_srcu(&md->io_barrier);
2435 * Stop md->queue before flushing md->wq in case request-based
2436 * dm defers requests to md->wq from md->queue.
2438 if (dm_request_based(md))
2439 dm_stop_queue(md->queue);
2441 flush_workqueue(md->wq);
2444 * At this point no more requests are entering target request routines.
2445 * We call dm_wait_for_completion to wait for all existing requests
2448 r = dm_wait_for_completion(md, task_state);
2450 set_bit(dmf_suspended_flag, &md->flags);
2453 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2455 synchronize_srcu(&md->io_barrier);
2457 /* were we interrupted ? */
2461 if (dm_request_based(md))
2462 dm_start_queue(md->queue);
2465 dm_table_presuspend_undo_targets(map);
2466 /* pushback list is already flushed, so skip flush */
2473 * We need to be able to change a mapping table under a mounted
2474 * filesystem. For example we might want to move some data in
2475 * the background. Before the table can be swapped with
2476 * dm_bind_table, dm_suspend must be called to flush any in
2477 * flight bios and ensure that any further io gets deferred.
2480 * Suspend mechanism in request-based dm.
2482 * 1. Flush all I/Os by lock_fs() if needed.
2483 * 2. Stop dispatching any I/O by stopping the request_queue.
2484 * 3. Wait for all in-flight I/Os to be completed or requeued.
2486 * To abort suspend, start the request_queue.
2488 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2490 struct dm_table *map = NULL;
2494 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2496 if (dm_suspended_md(md)) {
2501 if (dm_suspended_internally_md(md)) {
2502 /* already internally suspended, wait for internal resume */
2503 mutex_unlock(&md->suspend_lock);
2504 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2510 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2512 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2516 set_bit(DMF_POST_SUSPENDING, &md->flags);
2517 dm_table_postsuspend_targets(map);
2518 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2521 mutex_unlock(&md->suspend_lock);
2525 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2528 int r = dm_table_resume_targets(map);
2536 * Flushing deferred I/Os must be done after targets are resumed
2537 * so that mapping of targets can work correctly.
2538 * Request-based dm is queueing the deferred I/Os in its request_queue.
2540 if (dm_request_based(md))
2541 dm_start_queue(md->queue);
2548 int dm_resume(struct mapped_device *md)
2551 struct dm_table *map = NULL;
2555 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2557 if (!dm_suspended_md(md))
2560 if (dm_suspended_internally_md(md)) {
2561 /* already internally suspended, wait for internal resume */
2562 mutex_unlock(&md->suspend_lock);
2563 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2569 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2570 if (!map || !dm_table_get_size(map))
2573 r = __dm_resume(md, map);
2577 clear_bit(DMF_SUSPENDED, &md->flags);
2579 mutex_unlock(&md->suspend_lock);
2585 * Internal suspend/resume works like userspace-driven suspend. It waits
2586 * until all bios finish and prevents issuing new bios to the target drivers.
2587 * It may be used only from the kernel.
2590 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2592 struct dm_table *map = NULL;
2594 lockdep_assert_held(&md->suspend_lock);
2596 if (md->internal_suspend_count++)
2597 return; /* nested internal suspend */
2599 if (dm_suspended_md(md)) {
2600 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2601 return; /* nest suspend */
2604 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2607 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2608 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2609 * would require changing .presuspend to return an error -- avoid this
2610 * until there is a need for more elaborate variants of internal suspend.
2612 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2613 DMF_SUSPENDED_INTERNALLY);
2615 set_bit(DMF_POST_SUSPENDING, &md->flags);
2616 dm_table_postsuspend_targets(map);
2617 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2620 static void __dm_internal_resume(struct mapped_device *md)
2622 BUG_ON(!md->internal_suspend_count);
2624 if (--md->internal_suspend_count)
2625 return; /* resume from nested internal suspend */
2627 if (dm_suspended_md(md))
2628 goto done; /* resume from nested suspend */
2631 * NOTE: existing callers don't need to call dm_table_resume_targets
2632 * (which may fail -- so best to avoid it for now by passing NULL map)
2634 (void) __dm_resume(md, NULL);
2637 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2638 smp_mb__after_atomic();
2639 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2642 void dm_internal_suspend_noflush(struct mapped_device *md)
2644 mutex_lock(&md->suspend_lock);
2645 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2646 mutex_unlock(&md->suspend_lock);
2648 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2650 void dm_internal_resume(struct mapped_device *md)
2652 mutex_lock(&md->suspend_lock);
2653 __dm_internal_resume(md);
2654 mutex_unlock(&md->suspend_lock);
2656 EXPORT_SYMBOL_GPL(dm_internal_resume);
2659 * Fast variants of internal suspend/resume hold md->suspend_lock,
2660 * which prevents interaction with userspace-driven suspend.
2663 void dm_internal_suspend_fast(struct mapped_device *md)
2665 mutex_lock(&md->suspend_lock);
2666 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2669 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2670 synchronize_srcu(&md->io_barrier);
2671 flush_workqueue(md->wq);
2672 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2674 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2676 void dm_internal_resume_fast(struct mapped_device *md)
2678 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2684 mutex_unlock(&md->suspend_lock);
2686 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2688 /*-----------------------------------------------------------------
2689 * Event notification.
2690 *---------------------------------------------------------------*/
2691 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2696 char udev_cookie[DM_COOKIE_LENGTH];
2697 char *envp[] = { udev_cookie, NULL };
2699 noio_flag = memalloc_noio_save();
2702 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2704 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2705 DM_COOKIE_ENV_VAR_NAME, cookie);
2706 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2710 memalloc_noio_restore(noio_flag);
2715 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2717 return atomic_add_return(1, &md->uevent_seq);
2720 uint32_t dm_get_event_nr(struct mapped_device *md)
2722 return atomic_read(&md->event_nr);
2725 int dm_wait_event(struct mapped_device *md, int event_nr)
2727 return wait_event_interruptible(md->eventq,
2728 (event_nr != atomic_read(&md->event_nr)));
2731 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2733 unsigned long flags;
2735 spin_lock_irqsave(&md->uevent_lock, flags);
2736 list_add(elist, &md->uevent_list);
2737 spin_unlock_irqrestore(&md->uevent_lock, flags);
2741 * The gendisk is only valid as long as you have a reference
2744 struct gendisk *dm_disk(struct mapped_device *md)
2748 EXPORT_SYMBOL_GPL(dm_disk);
2750 struct kobject *dm_kobject(struct mapped_device *md)
2752 return &md->kobj_holder.kobj;
2755 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2757 struct mapped_device *md;
2759 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2761 spin_lock(&_minor_lock);
2762 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2768 spin_unlock(&_minor_lock);
2773 int dm_suspended_md(struct mapped_device *md)
2775 return test_bit(DMF_SUSPENDED, &md->flags);
2778 static int dm_post_suspending_md(struct mapped_device *md)
2780 return test_bit(DMF_POST_SUSPENDING, &md->flags);
2783 int dm_suspended_internally_md(struct mapped_device *md)
2785 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2788 int dm_test_deferred_remove_flag(struct mapped_device *md)
2790 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2793 int dm_suspended(struct dm_target *ti)
2795 return dm_suspended_md(ti->table->md);
2797 EXPORT_SYMBOL_GPL(dm_suspended);
2799 int dm_post_suspending(struct dm_target *ti)
2801 return dm_post_suspending_md(ti->table->md);
2803 EXPORT_SYMBOL_GPL(dm_post_suspending);
2805 int dm_noflush_suspending(struct dm_target *ti)
2807 return __noflush_suspending(ti->table->md);
2809 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2811 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2812 unsigned integrity, unsigned per_io_data_size,
2813 unsigned min_pool_size)
2815 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2816 unsigned int pool_size = 0;
2817 unsigned int front_pad, io_front_pad;
2824 case DM_TYPE_BIO_BASED:
2825 case DM_TYPE_DAX_BIO_BASED:
2826 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2827 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2828 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2829 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2832 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2835 case DM_TYPE_REQUEST_BASED:
2836 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2837 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2838 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2844 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2848 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2854 dm_free_md_mempools(pools);
2859 void dm_free_md_mempools(struct dm_md_mempools *pools)
2864 bioset_exit(&pools->bs);
2865 bioset_exit(&pools->io_bs);
2877 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2880 struct mapped_device *md = bdev->bd_disk->private_data;
2881 struct dm_table *table;
2882 struct dm_target *ti;
2883 int ret = -ENOTTY, srcu_idx;
2885 table = dm_get_live_table(md, &srcu_idx);
2886 if (!table || !dm_table_get_size(table))
2889 /* We only support devices that have a single target */
2890 if (dm_table_get_num_targets(table) != 1)
2892 ti = dm_table_get_target(table, 0);
2895 if (!ti->type->iterate_devices)
2898 ret = ti->type->iterate_devices(ti, fn, data);
2900 dm_put_live_table(md, srcu_idx);
2905 * For register / unregister we need to manually call out to every path.
2907 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2908 sector_t start, sector_t len, void *data)
2910 struct dm_pr *pr = data;
2911 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2913 if (!ops || !ops->pr_register)
2915 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2918 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2929 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2930 if (ret && new_key) {
2931 /* unregister all paths if we failed to register any path */
2932 pr.old_key = new_key;
2935 pr.fail_early = false;
2936 dm_call_pr(bdev, __dm_pr_register, &pr);
2942 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2945 struct mapped_device *md = bdev->bd_disk->private_data;
2946 const struct pr_ops *ops;
2949 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2953 ops = bdev->bd_disk->fops->pr_ops;
2954 if (ops && ops->pr_reserve)
2955 r = ops->pr_reserve(bdev, key, type, flags);
2959 dm_unprepare_ioctl(md, srcu_idx);
2963 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2965 struct mapped_device *md = bdev->bd_disk->private_data;
2966 const struct pr_ops *ops;
2969 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2973 ops = bdev->bd_disk->fops->pr_ops;
2974 if (ops && ops->pr_release)
2975 r = ops->pr_release(bdev, key, type);
2979 dm_unprepare_ioctl(md, srcu_idx);
2983 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2984 enum pr_type type, bool abort)
2986 struct mapped_device *md = bdev->bd_disk->private_data;
2987 const struct pr_ops *ops;
2990 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2994 ops = bdev->bd_disk->fops->pr_ops;
2995 if (ops && ops->pr_preempt)
2996 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3000 dm_unprepare_ioctl(md, srcu_idx);
3004 static int dm_pr_clear(struct block_device *bdev, u64 key)
3006 struct mapped_device *md = bdev->bd_disk->private_data;
3007 const struct pr_ops *ops;
3010 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3014 ops = bdev->bd_disk->fops->pr_ops;
3015 if (ops && ops->pr_clear)
3016 r = ops->pr_clear(bdev, key);
3020 dm_unprepare_ioctl(md, srcu_idx);
3024 static const struct pr_ops dm_pr_ops = {
3025 .pr_register = dm_pr_register,
3026 .pr_reserve = dm_pr_reserve,
3027 .pr_release = dm_pr_release,
3028 .pr_preempt = dm_pr_preempt,
3029 .pr_clear = dm_pr_clear,
3032 static const struct block_device_operations dm_blk_dops = {
3033 .submit_bio = dm_submit_bio,
3034 .open = dm_blk_open,
3035 .release = dm_blk_close,
3036 .ioctl = dm_blk_ioctl,
3037 .getgeo = dm_blk_getgeo,
3038 .report_zones = dm_blk_report_zones,
3039 .pr_ops = &dm_pr_ops,
3040 .owner = THIS_MODULE
3043 static const struct block_device_operations dm_rq_blk_dops = {
3044 .open = dm_blk_open,
3045 .release = dm_blk_close,
3046 .ioctl = dm_blk_ioctl,
3047 .getgeo = dm_blk_getgeo,
3048 .pr_ops = &dm_pr_ops,
3049 .owner = THIS_MODULE
3052 static const struct dax_operations dm_dax_ops = {
3053 .direct_access = dm_dax_direct_access,
3054 .dax_supported = dm_dax_supported,
3055 .copy_from_iter = dm_dax_copy_from_iter,
3056 .copy_to_iter = dm_dax_copy_to_iter,
3057 .zero_page_range = dm_dax_zero_page_range,
3063 module_init(dm_init);
3064 module_exit(dm_exit);
3066 module_param(major, uint, 0);
3067 MODULE_PARM_DESC(major, "The major number of the device mapper");
3069 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3070 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3072 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3073 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3075 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3076 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3078 MODULE_DESCRIPTION(DM_NAME " driver");
3080 MODULE_LICENSE("GPL");