1 // SPDX-License-Identifier: GPL-2.0
3 * Interrupt request handling routines. On the
4 * Sparc the IRQs are basically 'cast in stone'
5 * and you are supposed to probe the prom's device
6 * node trees to find out who's got which IRQ.
15 #include <linux/kernel_stat.h>
16 #include <linux/seq_file.h>
17 #include <linux/export.h>
19 #include <asm/cacheflush.h>
20 #include <asm/cpudata.h>
21 #include <asm/setup.h>
28 /* platform specific irq setup */
29 struct sparc_config sparc_config;
31 unsigned long arch_local_irq_save(void)
41 : "=&r" (retval), "=r" (tmp)
47 EXPORT_SYMBOL(arch_local_irq_save);
49 void arch_local_irq_enable(void)
62 EXPORT_SYMBOL(arch_local_irq_enable);
64 void arch_local_irq_restore(unsigned long old_psr)
72 "wr %0, %2, %%psr\n\t"
75 : "i" (PSR_PIL), "r" (old_psr)
78 EXPORT_SYMBOL(arch_local_irq_restore);
83 * IRQ numbers.. These are no longer restricted to 15..
85 * this is done to enable SBUS cards and onboard IO to be masked
86 * correctly. using the interrupt level isn't good enough.
89 * A device interrupting at sbus level6 and the Floppy both come in
90 * at IRQ11, but enabling and disabling them requires writing to
91 * different bits in the SLAVIO/SEC.
93 * As a result of these changes sun4m machines could now support
94 * directed CPU interrupts using the existing enable/disable irq code
97 * Sun4d complicates things even further. IRQ numbers are arbitrary
98 * 32-bit values in that case. Since this is similar to sparc64,
99 * we adopt a virtual IRQ numbering scheme as is done there.
100 * Virutal interrupt numbers are allocated by build_irq(). So NR_IRQS
101 * just becomes a limit of how many interrupt sources we can handle in
102 * a single system. Even fully loaded SS2000 machines top off at
103 * about 32 interrupt sources or so, therefore a NR_IRQS value of 64
104 * is more than enough.
106 * We keep a map of per-PIL enable interrupts. These get wired
107 * up via the irq_chip->startup() method which gets invoked by
108 * the generic IRQ layer during request_irq().
112 /* Table of allocated irqs. Unused entries has irq == 0 */
113 static struct irq_bucket irq_table[NR_IRQS];
114 /* Protect access to irq_table */
115 static DEFINE_SPINLOCK(irq_table_lock);
117 /* Map between the irq identifier used in hw to the irq_bucket. */
118 struct irq_bucket *irq_map[SUN4D_MAX_IRQ];
119 /* Protect access to irq_map */
120 static DEFINE_SPINLOCK(irq_map_lock);
122 /* Allocate a new irq from the irq_table */
123 unsigned int irq_alloc(unsigned int real_irq, unsigned int pil)
128 spin_lock_irqsave(&irq_table_lock, flags);
129 for (i = 1; i < NR_IRQS; i++) {
130 if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil)
134 for (i = 1; i < NR_IRQS; i++) {
135 if (!irq_table[i].irq)
140 irq_table[i].real_irq = real_irq;
141 irq_table[i].irq = i;
142 irq_table[i].pil = pil;
144 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
148 spin_unlock_irqrestore(&irq_table_lock, flags);
153 /* Based on a single pil handler_irq may need to call several
154 * interrupt handlers. Use irq_map as entry to irq_table,
155 * and let each entry in irq_table point to the next entry.
157 void irq_link(unsigned int irq)
159 struct irq_bucket *p;
163 BUG_ON(irq >= NR_IRQS);
165 spin_lock_irqsave(&irq_map_lock, flags);
169 BUG_ON(pil >= SUN4D_MAX_IRQ);
170 p->next = irq_map[pil];
173 spin_unlock_irqrestore(&irq_map_lock, flags);
176 void irq_unlink(unsigned int irq)
178 struct irq_bucket *p, **pnext;
181 BUG_ON(irq >= NR_IRQS);
183 spin_lock_irqsave(&irq_map_lock, flags);
186 BUG_ON(p->pil >= SUN4D_MAX_IRQ);
187 pnext = &irq_map[p->pil];
189 pnext = &(*pnext)->next;
192 spin_unlock_irqrestore(&irq_map_lock, flags);
196 /* /proc/interrupts printing */
197 int arch_show_interrupts(struct seq_file *p, int prec)
202 seq_printf(p, "RES: ");
203 for_each_online_cpu(j)
204 seq_printf(p, "%10u ", cpu_data(j).irq_resched_count);
205 seq_printf(p, " IPI rescheduling interrupts\n");
206 seq_printf(p, "CAL: ");
207 for_each_online_cpu(j)
208 seq_printf(p, "%10u ", cpu_data(j).irq_call_count);
209 seq_printf(p, " IPI function call interrupts\n");
211 seq_printf(p, "NMI: ");
212 for_each_online_cpu(j)
213 seq_printf(p, "%10u ", cpu_data(j).counter);
214 seq_printf(p, " Non-maskable interrupts\n");
218 void handler_irq(unsigned int pil, struct pt_regs *regs)
220 struct pt_regs *old_regs;
221 struct irq_bucket *p;
224 old_regs = set_irq_regs(regs);
229 struct irq_bucket *next = p->next;
231 generic_handle_irq(p->irq);
235 set_irq_regs(old_regs);
238 #if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE)
239 static unsigned int floppy_irq;
241 int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler)
243 unsigned int cpu_irq;
247 err = request_irq(irq, irq_handler, 0, "floppy", NULL);
251 /* Save for later use in floppy interrupt handler */
254 cpu_irq = (irq & (NR_IRQS - 1));
256 /* Dork with trap table if we get this far. */
257 #define INSTANTIATE(table) \
258 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \
259 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \
260 SPARC_BRANCH((unsigned long) floppy_hardint, \
261 (unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\
262 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \
263 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP;
265 INSTANTIATE(sparc_ttable)
267 #if defined CONFIG_SMP
268 if (sparc_cpu_model != sparc_leon) {
269 struct tt_entry *trap_table;
271 trap_table = &trapbase_cpu1;
272 INSTANTIATE(trap_table)
273 trap_table = &trapbase_cpu2;
274 INSTANTIATE(trap_table)
275 trap_table = &trapbase_cpu3;
276 INSTANTIATE(trap_table)
281 * XXX Correct thing whould be to flush only I- and D-cache lines
282 * which contain the handler in question. But as of time of the
283 * writing we have no CPU-neutral interface to fine-grained flushes.
288 EXPORT_SYMBOL(sparc_floppy_request_irq);
291 * These variables are used to access state from the assembler
292 * interrupt handler, floppy_hardint, so we cannot put these in
293 * the floppy driver image because that would not work in the
296 volatile unsigned char *fdc_status;
297 EXPORT_SYMBOL(fdc_status);
300 EXPORT_SYMBOL(pdma_vaddr);
302 unsigned long pdma_size;
303 EXPORT_SYMBOL(pdma_size);
305 volatile int doing_pdma;
306 EXPORT_SYMBOL(doing_pdma);
309 EXPORT_SYMBOL(pdma_base);
311 unsigned long pdma_areasize;
312 EXPORT_SYMBOL(pdma_areasize);
314 /* Use the generic irq support to call floppy_interrupt
315 * which was setup using request_irq() in sparc_floppy_request_irq().
316 * We only have one floppy interrupt so we do not need to check
317 * for additional handlers being wired up by irq_link()
319 void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs)
321 struct pt_regs *old_regs;
323 old_regs = set_irq_regs(regs);
325 generic_handle_irq(floppy_irq);
327 set_irq_regs(old_regs);
332 * This could probably be made indirect too and assigned in the CPU
333 * bits of the code. That would be much nicer I think and would also
334 * fit in with the idea of being able to tune your kernel for your machine
335 * by removing unrequired machine and device support.
339 void __init init_IRQ(void)
341 switch (sparc_cpu_model) {
345 sun4m_pci_init_IRQ();
359 prom_printf("Cannot initialize IRQs on this Sun machine...");