2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
10 * Handle hardware traps and faults.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
38 #include <linux/smp.h>
40 #include <linux/hardirq.h>
41 #include <linux/atomic.h>
42 #include <linux/ioasid.h>
44 #include <asm/stacktrace.h>
45 #include <asm/processor.h>
46 #include <asm/debugreg.h>
47 #include <asm/realmode.h>
48 #include <asm/text-patching.h>
49 #include <asm/ftrace.h>
50 #include <asm/traps.h>
52 #include <asm/fpu/api.h>
54 #include <asm/cpu_entry_area.h>
56 #include <asm/fixmap.h>
57 #include <asm/mach_traps.h>
58 #include <asm/alternative.h>
59 #include <asm/fpu/xstate.h>
63 #include <asm/insn-eval.h>
69 #include <asm/x86_init.h>
70 #include <asm/proto.h>
72 #include <asm/processor-flags.h>
73 #include <asm/setup.h>
74 #include <asm/proto.h>
77 DECLARE_BITMAP(system_vectors, NR_VECTORS);
79 static inline void cond_local_irq_enable(struct pt_regs *regs)
81 if (regs->flags & X86_EFLAGS_IF)
85 static inline void cond_local_irq_disable(struct pt_regs *regs)
87 if (regs->flags & X86_EFLAGS_IF)
91 __always_inline int is_valid_bugaddr(unsigned long addr)
93 if (addr < TASK_SIZE_MAX)
97 * We got #UD, if the text isn't readable we'd have gotten
98 * a different exception.
100 return *(unsigned short *)addr == INSN_UD2;
103 static nokprobe_inline int
104 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
105 struct pt_regs *regs, long error_code)
107 if (v8086_mode(regs)) {
109 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
110 * On nmi (interrupt 2), do_trap should not be called.
112 if (trapnr < X86_TRAP_UD) {
113 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
117 } else if (!user_mode(regs)) {
118 if (fixup_exception(regs, trapnr, error_code, 0))
121 tsk->thread.error_code = error_code;
122 tsk->thread.trap_nr = trapnr;
123 die(str, regs, error_code);
125 if (fixup_vdso_exception(regs, trapnr, error_code, 0))
130 * We want error_code and trap_nr set for userspace faults and
131 * kernelspace faults which result in die(), but not
132 * kernelspace faults which are fixed up. die() gives the
133 * process no chance to handle the signal and notice the
134 * kernel fault information, so that won't result in polluting
135 * the information about previously queued, but not yet
136 * delivered, faults. See also exc_general_protection below.
138 tsk->thread.error_code = error_code;
139 tsk->thread.trap_nr = trapnr;
144 static void show_signal(struct task_struct *tsk, int signr,
145 const char *type, const char *desc,
146 struct pt_regs *regs, long error_code)
148 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
149 printk_ratelimit()) {
150 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
151 tsk->comm, task_pid_nr(tsk), type, desc,
152 regs->ip, regs->sp, error_code);
153 print_vma_addr(KERN_CONT " in ", regs->ip);
159 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
160 long error_code, int sicode, void __user *addr)
162 struct task_struct *tsk = current;
164 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
167 show_signal(tsk, signr, "trap ", str, regs, error_code);
172 force_sig_fault(signr, sicode, addr);
174 NOKPROBE_SYMBOL(do_trap);
176 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
177 unsigned long trapnr, int signr, int sicode, void __user *addr)
179 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
181 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
183 cond_local_irq_enable(regs);
184 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
185 cond_local_irq_disable(regs);
190 * Posix requires to provide the address of the faulting instruction for
191 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
193 * This address is usually regs->ip, but when an uprobe moved the code out
194 * of line then regs->ip points to the XOL code which would confuse
195 * anything which analyzes the fault address vs. the unmodified binary. If
196 * a trap happened in XOL code then uprobe maps regs->ip back to the
197 * original instruction address.
199 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
201 return (void __user *)uprobe_get_trap_addr(regs);
204 DEFINE_IDTENTRY(exc_divide_error)
206 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
207 FPE_INTDIV, error_get_trap_addr(regs));
210 DEFINE_IDTENTRY(exc_overflow)
212 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
215 #ifdef CONFIG_X86_KERNEL_IBT
217 static __ro_after_init bool ibt_fatal = true;
219 extern void ibt_selftest_ip(void); /* code label defined in asm below */
222 CP_EC = (1 << 15) - 1,
233 DEFINE_IDTENTRY_ERRORCODE(exc_control_protection)
235 if (!cpu_feature_enabled(X86_FEATURE_IBT)) {
236 pr_err("Unexpected #CP\n");
240 if (WARN_ON_ONCE(user_mode(regs) || (error_code & CP_EC) != CP_ENDBR))
243 if (unlikely(regs->ip == (unsigned long)&ibt_selftest_ip)) {
248 pr_err("Missing ENDBR: %pS\n", (void *)instruction_pointer(regs));
250 printk(KERN_DEFAULT CUT_HERE);
251 __warn(__FILE__, __LINE__, (void *)regs->ip, TAINT_WARN, regs, NULL);
257 /* Must be noinline to ensure uniqueness of ibt_selftest_ip. */
258 noinline bool ibt_selftest(void)
262 asm (" lea ibt_selftest_ip(%%rip), %%rax\n\t"
263 ANNOTATE_RETPOLINE_SAFE
265 "ibt_selftest_ip:\n\t"
270 : "=a" (ret) : : "memory");
275 static int __init ibt_setup(char *str)
277 if (!strcmp(str, "off"))
278 setup_clear_cpu_cap(X86_FEATURE_IBT);
280 if (!strcmp(str, "warn"))
286 __setup("ibt=", ibt_setup);
288 #endif /* CONFIG_X86_KERNEL_IBT */
290 #ifdef CONFIG_X86_F00F_BUG
291 void handle_invalid_op(struct pt_regs *regs)
293 static inline void handle_invalid_op(struct pt_regs *regs)
296 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
297 ILL_ILLOPN, error_get_trap_addr(regs));
300 static noinstr bool handle_bug(struct pt_regs *regs)
302 bool handled = false;
304 if (!is_valid_bugaddr(regs->ip))
308 * All lies, just get the WARN/BUG out.
310 instrumentation_begin();
312 * Since we're emulating a CALL with exceptions, restore the interrupt
313 * state to what it was at the exception site.
315 if (regs->flags & X86_EFLAGS_IF)
316 raw_local_irq_enable();
317 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
318 handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
322 if (regs->flags & X86_EFLAGS_IF)
323 raw_local_irq_disable();
324 instrumentation_end();
329 DEFINE_IDTENTRY_RAW(exc_invalid_op)
331 irqentry_state_t state;
334 * We use UD2 as a short encoding for 'CALL __WARN', as such
335 * handle it before exception entry to avoid recursive WARN
336 * in case exception entry is the one triggering WARNs.
338 if (!user_mode(regs) && handle_bug(regs))
341 state = irqentry_enter(regs);
342 instrumentation_begin();
343 handle_invalid_op(regs);
344 instrumentation_end();
345 irqentry_exit(regs, state);
348 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
350 do_error_trap(regs, 0, "coprocessor segment overrun",
351 X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
354 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
356 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
360 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
362 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
366 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
368 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
372 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
374 char *str = "alignment check";
376 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
379 if (!user_mode(regs))
380 die("Split lock detected\n", regs, error_code);
384 if (handle_user_split_lock(regs, error_code))
387 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
388 error_code, BUS_ADRALN, NULL);
394 #ifdef CONFIG_VMAP_STACK
395 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
396 unsigned long fault_address,
397 struct stack_info *info)
399 const char *name = stack_type_name(info->type);
401 printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
402 name, (void *)fault_address, info->begin, info->end);
404 die("stack guard page", regs, 0);
406 /* Be absolutely certain we don't return. */
407 panic("%s stack guard hit", name);
412 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
414 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
415 * SDM's warnings about double faults being unrecoverable, returning works as
416 * expected. Presumably what the SDM actually means is that the CPU may get
417 * the register state wrong on entry, so returning could be a bad idea.
419 * Various CPU engineers have promised that double faults due to an IRET fault
420 * while the stack is read-only are, in fact, recoverable.
422 * On x86_32, this is entered through a task gate, and regs are synthesized
423 * from the TSS. Returning is, in principle, okay, but changes to regs will
424 * be lost. If, for some reason, we need to return to a context with modified
425 * regs, the shim code could be adjusted to synchronize the registers.
427 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
428 * to be read before doing anything else.
430 DEFINE_IDTENTRY_DF(exc_double_fault)
432 static const char str[] = "double fault";
433 struct task_struct *tsk = current;
435 #ifdef CONFIG_VMAP_STACK
436 unsigned long address = read_cr2();
437 struct stack_info info;
440 #ifdef CONFIG_X86_ESPFIX64
441 extern unsigned char native_irq_return_iret[];
444 * If IRET takes a non-IST fault on the espfix64 stack, then we
445 * end up promoting it to a doublefault. In that case, take
446 * advantage of the fact that we're not using the normal (TSS.sp0)
447 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
448 * and then modify our own IRET frame so that, when we return,
449 * we land directly at the #GP(0) vector with the stack already
450 * set up according to its expectations.
452 * The net result is that our #GP handler will think that we
453 * entered from usermode with the bad user context.
455 * No need for nmi_enter() here because we don't use RCU.
457 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
458 regs->cs == __KERNEL_CS &&
459 regs->ip == (unsigned long)native_irq_return_iret)
461 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
462 unsigned long *p = (unsigned long *)regs->sp;
465 * regs->sp points to the failing IRET frame on the
466 * ESPFIX64 stack. Copy it to the entry stack. This fills
467 * in gpregs->ss through gpregs->ip.
472 gpregs->flags = p[2];
475 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
478 * Adjust our frame so that we return straight to the #GP
479 * vector with the expected RSP value. This is safe because
480 * we won't enable interrupts or schedule before we invoke
481 * general_protection, so nothing will clobber the stack
482 * frame we just set up.
484 * We will enter general_protection with kernel GSBASE,
485 * which is what the stub expects, given that the faulting
486 * RIP will be the IRET instruction.
488 regs->ip = (unsigned long)asm_exc_general_protection;
489 regs->sp = (unsigned long)&gpregs->orig_ax;
495 irqentry_nmi_enter(regs);
496 instrumentation_begin();
497 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
499 tsk->thread.error_code = error_code;
500 tsk->thread.trap_nr = X86_TRAP_DF;
502 #ifdef CONFIG_VMAP_STACK
504 * If we overflow the stack into a guard page, the CPU will fail
505 * to deliver #PF and will send #DF instead. Similarly, if we
506 * take any non-IST exception while too close to the bottom of
507 * the stack, the processor will get a page fault while
508 * delivering the exception and will generate a double fault.
510 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
511 * Page-Fault Exception (#PF):
513 * Processors update CR2 whenever a page fault is detected. If a
514 * second page fault occurs while an earlier page fault is being
515 * delivered, the faulting linear address of the second fault will
516 * overwrite the contents of CR2 (replacing the previous
517 * address). These updates to CR2 occur even if the page fault
518 * results in a double fault or occurs during the delivery of a
521 * The logic below has a small possibility of incorrectly diagnosing
522 * some errors as stack overflows. For example, if the IDT or GDT
523 * gets corrupted such that #GP delivery fails due to a bad descriptor
524 * causing #GP and we hit this condition while CR2 coincidentally
525 * points to the stack guard page, we'll think we overflowed the
526 * stack. Given that we're going to panic one way or another
527 * if this happens, this isn't necessarily worth fixing.
529 * If necessary, we could improve the test by only diagnosing
530 * a stack overflow if the saved RSP points within 47 bytes of
531 * the bottom of the stack: if RSP == tsk_stack + 48 and we
532 * take an exception, the stack is already aligned and there
533 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
534 * possible error code, so a stack overflow would *not* double
535 * fault. With any less space left, exception delivery could
536 * fail, and, as a practical matter, we've overflowed the
537 * stack even if the actual trigger for the double fault was
540 if (get_stack_guard_info((void *)address, &info))
541 handle_stack_overflow(regs, address, &info);
544 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
545 die("double fault", regs, error_code);
546 panic("Machine halted.");
547 instrumentation_end();
550 DEFINE_IDTENTRY(exc_bounds)
552 if (notify_die(DIE_TRAP, "bounds", regs, 0,
553 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
555 cond_local_irq_enable(regs);
557 if (!user_mode(regs))
558 die("bounds", regs, 0);
560 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
562 cond_local_irq_disable(regs);
565 enum kernel_gp_hint {
572 * When an uncaught #GP occurs, try to determine the memory address accessed by
573 * the instruction and return that address to the caller. Also, try to figure
574 * out whether any part of the access to that address was non-canonical.
576 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
579 u8 insn_buf[MAX_INSN_SIZE];
583 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
587 ret = insn_decode_kernel(&insn, insn_buf);
591 *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
598 * - the operand is not in the kernel half
599 * - the last byte of the operand is not in the user canonical half
601 if (*addr < ~__VIRTUAL_MASK &&
602 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
603 return GP_NON_CANONICAL;
609 #define GPFSTR "general protection fault"
611 static bool fixup_iopl_exception(struct pt_regs *regs)
613 struct thread_struct *t = ¤t->thread;
617 if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
620 if (insn_get_effective_ip(regs, &ip))
623 if (get_user(byte, (const char __user *)ip))
626 if (byte != 0xfa && byte != 0xfb)
629 if (!t->iopl_warn && printk_ratelimit()) {
630 pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
631 current->comm, task_pid_nr(current), ip);
632 print_vma_addr(KERN_CONT " in ", ip);
642 * The unprivileged ENQCMD instruction generates #GPs if the
643 * IA32_PASID MSR has not been populated. If possible, populate
644 * the MSR from a PASID previously allocated to the mm.
646 static bool try_fixup_enqcmd_gp(void)
648 #ifdef CONFIG_IOMMU_SVA
652 * MSR_IA32_PASID is managed using XSAVE. Directly
653 * writing to the MSR is only possible when fpregs
654 * are valid and the fpstate is not. This is
655 * guaranteed when handling a userspace exception
656 * in *before* interrupts are re-enabled.
658 lockdep_assert_irqs_disabled();
661 * Hardware without ENQCMD will not generate
662 * #GPs that can be fixed up here.
664 if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
667 pasid = current->mm->pasid;
670 * If the mm has not been allocated a
671 * PASID, the #GP can not be fixed up.
673 if (!pasid_valid(pasid))
677 * Did this thread already have its PASID activated?
678 * If so, the #GP must be from something else.
680 if (current->pasid_activated)
683 wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
684 current->pasid_activated = 1;
692 static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
693 unsigned long error_code, const char *str)
695 if (fixup_exception(regs, trapnr, error_code, 0))
698 current->thread.error_code = error_code;
699 current->thread.trap_nr = trapnr;
702 * To be potentially processing a kprobe fault and to trust the result
703 * from kprobe_running(), we have to be non-preemptible.
705 if (!preemptible() && kprobe_running() &&
706 kprobe_fault_handler(regs, trapnr))
709 return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
712 static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
713 unsigned long error_code, const char *str)
715 current->thread.error_code = error_code;
716 current->thread.trap_nr = trapnr;
717 show_signal(current, SIGSEGV, "", str, regs, error_code);
721 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
723 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
724 enum kernel_gp_hint hint = GP_NO_HINT;
725 unsigned long gp_addr;
727 if (user_mode(regs) && try_fixup_enqcmd_gp())
730 cond_local_irq_enable(regs);
732 if (static_cpu_has(X86_FEATURE_UMIP)) {
733 if (user_mode(regs) && fixup_umip_exception(regs))
737 if (v8086_mode(regs)) {
739 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
744 if (user_mode(regs)) {
745 if (fixup_iopl_exception(regs))
748 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
751 gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
755 if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc))
759 snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
761 hint = get_kernel_gp_address(regs, &gp_addr);
763 if (hint != GP_NO_HINT)
764 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
765 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
766 : "maybe for address",
770 * KASAN is interested only in the non-canonical case, clear it
773 if (hint != GP_NON_CANONICAL)
776 die_addr(desc, regs, error_code, gp_addr);
779 cond_local_irq_disable(regs);
782 static bool do_int3(struct pt_regs *regs)
786 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
787 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
788 SIGTRAP) == NOTIFY_STOP)
790 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
792 #ifdef CONFIG_KPROBES
793 if (kprobe_int3_handler(regs))
796 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
798 return res == NOTIFY_STOP;
800 NOKPROBE_SYMBOL(do_int3);
802 static void do_int3_user(struct pt_regs *regs)
807 cond_local_irq_enable(regs);
808 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
809 cond_local_irq_disable(regs);
812 DEFINE_IDTENTRY_RAW(exc_int3)
815 * poke_int3_handler() is completely self contained code; it does (and
816 * must) *NOT* call out to anything, lest it hits upon yet another
819 if (poke_int3_handler(regs))
823 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
824 * and therefore can trigger INT3, hence poke_int3_handler() must
825 * be done before. If the entry came from kernel mode, then use
826 * nmi_enter() because the INT3 could have been hit in any context
829 if (user_mode(regs)) {
830 irqentry_enter_from_user_mode(regs);
831 instrumentation_begin();
833 instrumentation_end();
834 irqentry_exit_to_user_mode(regs);
836 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
838 instrumentation_begin();
840 die("int3", regs, 0);
841 instrumentation_end();
842 irqentry_nmi_exit(regs, irq_state);
848 * Help handler running on a per-cpu (IST or entry trampoline) stack
849 * to switch to the normal thread stack if the interrupted code was in
850 * user mode. The actual stack switch is done in entry_64.S
852 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
854 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
860 #ifdef CONFIG_AMD_MEM_ENCRYPT
861 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
863 unsigned long sp, *stack;
864 struct stack_info info;
865 struct pt_regs *regs_ret;
868 * In the SYSCALL entry path the RSP value comes from user-space - don't
869 * trust it and switch to the current kernel stack
871 if (ip_within_syscall_gap(regs)) {
872 sp = this_cpu_read(cpu_current_top_of_stack);
877 * From here on the RSP value is trusted. Now check whether entry
878 * happened from a safe stack. Not safe are the entry or unknown stacks,
879 * use the fall-back stack instead in this case.
882 stack = (unsigned long *)sp;
884 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
885 info.type > STACK_TYPE_EXCEPTION_LAST)
886 sp = __this_cpu_ist_top_va(VC2);
890 * Found a safe stack - switch to it as if the entry didn't happen via
891 * IST stack. The code below only copies pt_regs, the real switch happens
894 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
896 regs_ret = (struct pt_regs *)sp;
903 asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
905 struct pt_regs tmp, *new_stack;
908 * This is called from entry_64.S early in handling a fault
909 * caused by a bad iret to user mode. To handle the fault
910 * correctly, we want to move our stack frame to where it would
911 * be had we entered directly on the entry stack (rather than
912 * just below the IRET frame) and we want to pretend that the
913 * exception came from the IRET target.
915 new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
917 /* Copy the IRET target to the temporary storage. */
918 __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
920 /* Copy the remainder of the stack from the current stack. */
921 __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
923 /* Update the entry stack */
924 __memcpy(new_stack, &tmp, sizeof(tmp));
926 BUG_ON(!user_mode(new_stack));
931 static bool is_sysenter_singlestep(struct pt_regs *regs)
934 * We don't try for precision here. If we're anywhere in the region of
935 * code that can be single-stepped in the SYSENTER entry path, then
936 * assume that this is a useless single-step trap due to SYSENTER
937 * being invoked with TF set. (We don't know in advance exactly
938 * which instructions will be hit because BTF could plausibly
942 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
943 (unsigned long)__end_SYSENTER_singlestep_region -
944 (unsigned long)__begin_SYSENTER_singlestep_region;
945 #elif defined(CONFIG_IA32_EMULATION)
946 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
947 (unsigned long)__end_entry_SYSENTER_compat -
948 (unsigned long)entry_SYSENTER_compat;
954 static __always_inline unsigned long debug_read_clear_dr6(void)
959 * The Intel SDM says:
961 * Certain debug exceptions may clear bits 0-3. The remaining
962 * contents of the DR6 register are never cleared by the
963 * processor. To avoid confusion in identifying debug
964 * exceptions, debug handlers should clear the register before
965 * returning to the interrupted task.
967 * Keep it simple: clear DR6 immediately.
969 get_debugreg(dr6, 6);
970 set_debugreg(DR6_RESERVED, 6);
971 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
977 * Our handling of the processor debug registers is non-trivial.
978 * We do not clear them on entry and exit from the kernel. Therefore
979 * it is possible to get a watchpoint trap here from inside the kernel.
980 * However, the code in ./ptrace.c has ensured that the user can
981 * only set watchpoints on userspace addresses. Therefore the in-kernel
982 * watchpoint trap can only occur in code which is reading/writing
983 * from user space. Such code must not hold kernel locks (since it
984 * can equally take a page fault), therefore it is safe to call
985 * force_sig_info even though that claims and releases locks.
987 * Code in ./signal.c ensures that the debug control register
988 * is restored before we deliver any signal, and therefore that
989 * user code runs with the correct debug control register even though
992 * Being careful here means that we don't have to be as careful in a
993 * lot of more complicated places (task switching can be a bit lazy
994 * about restoring all the debug state, and ptrace doesn't have to
995 * find every occurrence of the TF bit that could be saved away even
998 * May run on IST stack.
1001 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
1004 * Notifiers will clear bits in @dr6 to indicate the event has been
1005 * consumed - hw_breakpoint_handler(), single_stop_cont().
1007 * Notifiers will set bits in @virtual_dr6 to indicate the desire
1008 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
1010 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
1016 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
1020 * Disable breakpoints during exception handling; recursive exceptions
1021 * are exceedingly 'fun'.
1023 * Since this function is NOKPROBE, and that also applies to
1024 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
1025 * HW_BREAKPOINT_W on our stack)
1027 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
1028 * includes the entry stack is excluded for everything.
1030 unsigned long dr7 = local_db_save();
1031 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
1032 instrumentation_begin();
1035 * If something gets miswired and we end up here for a user mode
1036 * #DB, we will malfunction.
1038 WARN_ON_ONCE(user_mode(regs));
1040 if (test_thread_flag(TIF_BLOCKSTEP)) {
1042 * The SDM says "The processor clears the BTF flag when it
1043 * generates a debug exception." but PTRACE_BLOCKSTEP requested
1044 * it for userspace, but we just took a kernel #DB, so re-set
1047 unsigned long debugctl;
1049 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1050 debugctl |= DEBUGCTLMSR_BTF;
1051 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1055 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
1056 * watchpoint at the same time then that will still be handled.
1058 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
1062 * The kernel doesn't use INT1
1067 if (notify_debug(regs, &dr6))
1071 * The kernel doesn't use TF single-step outside of:
1073 * - Kprobes, consumed through kprobe_debug_handler()
1074 * - KGDB, consumed through notify_debug()
1076 * So if we get here with DR_STEP set, something is wonky.
1078 * A known way to trigger this is through QEMU's GDB stub,
1079 * which leaks #DB into the guest and causes IST recursion.
1081 if (WARN_ON_ONCE(dr6 & DR_STEP))
1082 regs->flags &= ~X86_EFLAGS_TF;
1084 instrumentation_end();
1085 irqentry_nmi_exit(regs, irq_state);
1087 local_db_restore(dr7);
1090 static __always_inline void exc_debug_user(struct pt_regs *regs,
1096 * If something gets miswired and we end up here for a kernel mode
1097 * #DB, we will malfunction.
1099 WARN_ON_ONCE(!user_mode(regs));
1102 * NB: We can't easily clear DR7 here because
1103 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1104 * user memory, etc. This means that a recursive #DB is possible. If
1105 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1106 * Since we're not on the IST stack right now, everything will be
1110 irqentry_enter_from_user_mode(regs);
1111 instrumentation_begin();
1114 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1115 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1117 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1118 * even if it is not the result of PTRACE_SINGLESTEP.
1120 current->thread.virtual_dr6 = (dr6 & DR_STEP);
1123 * The SDM says "The processor clears the BTF flag when it
1124 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
1125 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1127 clear_thread_flag(TIF_BLOCKSTEP);
1130 * If dr6 has no reason to give us about the origin of this trap,
1131 * then it's very likely the result of an icebp/int01 trap.
1132 * User wants a sigtrap for that.
1136 if (notify_debug(regs, &dr6))
1139 /* It's safe to allow irq's after DR6 has been saved */
1142 if (v8086_mode(regs)) {
1143 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1147 /* #DB for bus lock can only be triggered from userspace. */
1148 if (dr6 & DR_BUS_LOCK)
1149 handle_bus_lock(regs);
1151 /* Add the virtual_dr6 bits for signals. */
1152 dr6 |= current->thread.virtual_dr6;
1153 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1154 send_sigtrap(regs, 0, get_si_code(dr6));
1157 local_irq_disable();
1159 instrumentation_end();
1160 irqentry_exit_to_user_mode(regs);
1163 #ifdef CONFIG_X86_64
1164 /* IST stack entry */
1165 DEFINE_IDTENTRY_DEBUG(exc_debug)
1167 exc_debug_kernel(regs, debug_read_clear_dr6());
1170 /* User entry, runs on regular task stack */
1171 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1173 exc_debug_user(regs, debug_read_clear_dr6());
1176 /* 32 bit does not have separate entry points. */
1177 DEFINE_IDTENTRY_RAW(exc_debug)
1179 unsigned long dr6 = debug_read_clear_dr6();
1181 if (user_mode(regs))
1182 exc_debug_user(regs, dr6);
1184 exc_debug_kernel(regs, dr6);
1189 * Note that we play around with the 'TS' bit in an attempt to get
1190 * the correct behaviour even in the presence of the asynchronous
1193 static void math_error(struct pt_regs *regs, int trapnr)
1195 struct task_struct *task = current;
1196 struct fpu *fpu = &task->thread.fpu;
1198 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1201 cond_local_irq_enable(regs);
1203 if (!user_mode(regs)) {
1204 if (fixup_exception(regs, trapnr, 0, 0))
1207 task->thread.error_code = 0;
1208 task->thread.trap_nr = trapnr;
1210 if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1211 SIGFPE) != NOTIFY_STOP)
1217 * Synchronize the FPU register state to the memory register state
1218 * if necessary. This allows the exception handler to inspect it.
1220 fpu_sync_fpstate(fpu);
1222 task->thread.trap_nr = trapnr;
1223 task->thread.error_code = 0;
1225 si_code = fpu__exception_code(fpu, trapnr);
1226 /* Retry when we get spurious exceptions: */
1230 if (fixup_vdso_exception(regs, trapnr, 0, 0))
1233 force_sig_fault(SIGFPE, si_code,
1234 (void __user *)uprobe_get_trap_addr(regs));
1236 cond_local_irq_disable(regs);
1239 DEFINE_IDTENTRY(exc_coprocessor_error)
1241 math_error(regs, X86_TRAP_MF);
1244 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1246 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1247 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1248 if (!static_cpu_has(X86_FEATURE_XMM)) {
1249 __exc_general_protection(regs, 0);
1253 math_error(regs, X86_TRAP_XF);
1256 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1259 * This addresses a Pentium Pro Erratum:
1261 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1262 * Virtual Wire mode implemented through the local APIC, an
1263 * interrupt vector of 0Fh (Intel reserved encoding) may be
1264 * generated by the local APIC (Int 15). This vector may be
1265 * generated upon receipt of a spurious interrupt (an interrupt
1266 * which is removed before the system receives the INTA sequence)
1267 * instead of the programmed 8259 spurious interrupt vector.
1269 * IMPLICATION: The spurious interrupt vector programmed in the
1270 * 8259 is normally handled by an operating system's spurious
1271 * interrupt handler. However, a vector of 0Fh is unknown to some
1272 * operating systems, which would crash if this erratum occurred.
1274 * In theory this could be limited to 32bit, but the handler is not
1275 * hurting and who knows which other CPUs suffer from this.
1279 static bool handle_xfd_event(struct pt_regs *regs)
1284 if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1287 rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1291 wrmsrl(MSR_IA32_XFD_ERR, 0);
1293 /* Die if that happens in kernel space */
1294 if (WARN_ON(!user_mode(regs)))
1299 err = xfd_enable_feature(xfd_err);
1303 force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1310 local_irq_disable();
1314 DEFINE_IDTENTRY(exc_device_not_available)
1316 unsigned long cr0 = read_cr0();
1318 if (handle_xfd_event(regs))
1321 #ifdef CONFIG_MATH_EMULATION
1322 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1323 struct math_emu_info info = { };
1325 cond_local_irq_enable(regs);
1328 math_emulate(&info);
1330 cond_local_irq_disable(regs);
1335 /* This should not happen. */
1336 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1337 /* Try to fix it up and carry on. */
1338 write_cr0(cr0 & ~X86_CR0_TS);
1341 * Something terrible happened, and we're better off trying
1342 * to kill the task than getting stuck in a never-ending
1343 * loop of #NM faults.
1345 die("unexpected #NM exception", regs, 0);
1349 #ifdef CONFIG_INTEL_TDX_GUEST
1351 #define VE_FAULT_STR "VE fault"
1353 static void ve_raise_fault(struct pt_regs *regs, long error_code)
1355 if (user_mode(regs)) {
1356 gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1360 if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code, VE_FAULT_STR))
1363 die_addr(VE_FAULT_STR, regs, error_code, 0);
1367 * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1368 * specific guest actions which may happen in either user space or the
1371 * * Specific instructions (WBINVD, for example)
1372 * * Specific MSR accesses
1373 * * Specific CPUID leaf accesses
1374 * * Access to specific guest physical addresses
1376 * In the settings that Linux will run in, virtualization exceptions are
1377 * never generated on accesses to normal, TD-private memory that has been
1378 * accepted (by BIOS or with tdx_enc_status_changed()).
1380 * Syscall entry code has a critical window where the kernel stack is not
1381 * yet set up. Any exception in this window leads to hard to debug issues
1382 * and can be exploited for privilege escalation. Exceptions in the NMI
1383 * entry code also cause issues. Returning from the exception handler with
1384 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1386 * For these reasons, the kernel avoids #VEs during the syscall gap and
1387 * the NMI entry code. Entry code paths do not access TD-shared memory,
1388 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1389 * that might generate #VE. VMM can remove memory from TD at any point,
1390 * but access to unaccepted (or missing) private memory leads to VM
1391 * termination, not to #VE.
1393 * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1394 * handlers once the kernel is ready to deal with nested NMIs.
1396 * During #VE delivery, all interrupts, including NMIs, are blocked until
1397 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1400 * If a guest kernel action which would normally cause a #VE occurs in
1401 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1402 * exception) is delivered to the guest which will result in an oops.
1404 * The entry code has been audited carefully for following these expectations.
1405 * Changes in the entry code have to be audited for correctness vs. this
1406 * aspect. Similarly to #PF, #VE in these places will expose kernel to
1407 * privilege escalation or may lead to random crashes.
1409 DEFINE_IDTENTRY(exc_virtualization_exception)
1414 * NMIs/Machine-checks/Interrupts will be in a disabled state
1415 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1416 * info cannot be overwritten by a nested #VE.
1418 tdx_get_ve_info(&ve);
1420 cond_local_irq_enable(regs);
1423 * If tdx_handle_virt_exception() could not process
1424 * it successfully, treat it as #GP(0) and handle it.
1426 if (!tdx_handle_virt_exception(regs, &ve))
1427 ve_raise_fault(regs, 0);
1429 cond_local_irq_disable(regs);
1434 #ifdef CONFIG_X86_32
1435 DEFINE_IDTENTRY_SW(iret_error)
1438 if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1439 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1440 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1441 ILL_BADSTK, (void __user *)NULL);
1443 local_irq_disable();
1447 void __init trap_init(void)
1449 /* Init cpu_entry_area before IST entries are set up */
1450 setup_cpu_entry_areas();
1452 /* Init GHCB memory pages when running as an SEV-ES guest */
1453 sev_es_init_vc_handling();
1455 /* Initialize TSS before setting up traps so ISTs work */
1456 cpu_init_exception_handling();
1457 /* Setup traps as cpu_init() might #GP */