2 * intel_pstate.c: Native P state management for Intel processors
4 * (C) Copyright 2012 Intel Corporation
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
29 #include <linux/acpi.h>
30 #include <linux/vmalloc.h>
31 #include <trace/events/power.h>
33 #include <asm/div64.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
39 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60 static inline int32_t mul_fp(int32_t x, int32_t y)
62 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
65 static inline int32_t div_fp(s64 x, s64 y)
67 return div64_s64((int64_t)x << FRAC_BITS, y);
70 static inline int ceiling_fp(int32_t x)
75 mask = (1 << FRAC_BITS) - 1;
81 static inline int32_t percent_fp(int percent)
83 return div_fp(percent, 100);
86 static inline u64 mul_ext_fp(u64 x, u64 y)
88 return (x * y) >> EXT_FRAC_BITS;
91 static inline u64 div_ext_fp(u64 x, u64 y)
93 return div64_u64(x << EXT_FRAC_BITS, y);
96 static inline int32_t percent_ext_fp(int percent)
98 return div_ext_fp(percent, 100);
102 * struct sample - Store performance sample
103 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
104 * performance during last sample period
105 * @busy_scaled: Scaled busy value which is used to calculate next
106 * P state. This can be different than core_avg_perf
107 * to account for cpu idle period
108 * @aperf: Difference of actual performance frequency clock count
109 * read from APERF MSR between last and current sample
110 * @mperf: Difference of maximum performance frequency clock count
111 * read from MPERF MSR between last and current sample
112 * @tsc: Difference of time stamp counter between last and
114 * @time: Current time from scheduler
116 * This structure is used in the cpudata structure to store performance sample
117 * data for choosing next P State.
120 int32_t core_avg_perf;
129 * struct pstate_data - Store P state data
130 * @current_pstate: Current requested P state
131 * @min_pstate: Min P state possible for this platform
132 * @max_pstate: Max P state possible for this platform
133 * @max_pstate_physical:This is physical Max P state for a processor
134 * This can be higher than the max_pstate which can
135 * be limited by platform thermal design power limits
136 * @scaling: Scaling factor to convert frequency to cpufreq
138 * @turbo_pstate: Max Turbo P state possible for this platform
139 * @max_freq: @max_pstate frequency in cpufreq units
140 * @turbo_freq: @turbo_pstate frequency in cpufreq units
142 * Stores the per cpu model P state limits and current P state.
148 int max_pstate_physical;
151 unsigned int max_freq;
152 unsigned int turbo_freq;
156 * struct vid_data - Stores voltage information data
157 * @min: VID data for this platform corresponding to
159 * @max: VID data corresponding to the highest P State.
160 * @turbo: VID data for turbo P state
161 * @ratio: Ratio of (vid max - vid min) /
162 * (max P state - Min P State)
164 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
165 * This data is used in Atom platforms, where in addition to target P state,
166 * the voltage data needs to be specified to select next P State.
176 * struct global_params - Global parameters, mostly tunable via sysfs.
177 * @no_turbo: Whether or not to use turbo P-states.
178 * @turbo_disabled: Whethet or not turbo P-states are available at all,
179 * based on the MSR_IA32_MISC_ENABLE value and whether or
180 * not the maximum reported turbo P-state is different from
181 * the maximum reported non-turbo one.
182 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq.
183 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
185 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
188 struct global_params {
191 bool turbo_disabled_mf;
197 * struct cpudata - Per CPU instance data storage
198 * @cpu: CPU number for this instance data
199 * @policy: CPUFreq policy value
200 * @update_util: CPUFreq utility callback information
201 * @update_util_set: CPUFreq utility callback is set
202 * @iowait_boost: iowait-related boost fraction
203 * @last_update: Time of the last update.
204 * @pstate: Stores P state limits for this CPU
205 * @vid: Stores VID limits for this CPU
206 * @last_sample_time: Last Sample time
207 * @aperf_mperf_shift: Number of clock cycles after aperf, merf is incremented
208 * This shift is a multiplier to mperf delta to
209 * calculate CPU busy.
210 * @prev_aperf: Last APERF value read from APERF MSR
211 * @prev_mperf: Last MPERF value read from MPERF MSR
212 * @prev_tsc: Last timestamp counter (TSC) value
213 * @prev_cummulative_iowait: IO Wait time difference from last and
215 * @sample: Storage for storing last Sample data
216 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
217 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
218 * @acpi_perf_data: Stores ACPI perf information read from _PSS
219 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
220 * @epp_powersave: Last saved HWP energy performance preference
221 * (EPP) or energy performance bias (EPB),
222 * when policy switched to performance
223 * @epp_policy: Last saved policy used to set EPP/EPB
224 * @epp_default: Power on default HWP energy performance
226 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
228 * @hwp_req_cached: Cached value of the last HWP Request MSR
229 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
230 * @last_io_update: Last time when IO wake flag was set
231 * @sched_flags: Store scheduler flags for possible cross CPU update
232 * @hwp_boost_min: Last HWP boosted min performance
234 * This structure stores per CPU instance data for all CPUs.
240 struct update_util_data update_util;
241 bool update_util_set;
243 struct pstate_data pstate;
247 u64 last_sample_time;
248 u64 aperf_mperf_shift;
252 u64 prev_cummulative_iowait;
253 struct sample sample;
254 int32_t min_perf_ratio;
255 int32_t max_perf_ratio;
257 struct acpi_processor_performance acpi_perf_data;
258 bool valid_pss_table;
260 unsigned int iowait_boost;
268 unsigned int sched_flags;
272 static struct cpudata **all_cpu_data;
275 * struct pstate_funcs - Per CPU model specific callbacks
276 * @get_max: Callback to get maximum non turbo effective P state
277 * @get_max_physical: Callback to get maximum non turbo physical P state
278 * @get_min: Callback to get minimum P state
279 * @get_turbo: Callback to get turbo P state
280 * @get_scaling: Callback to get frequency scaling factor
281 * @get_val: Callback to convert P state to actual MSR write value
282 * @get_vid: Callback to get VID data for Atom platforms
284 * Core and Atom CPU models have different way to get P State limits. This
285 * structure is used to store those callbacks.
287 struct pstate_funcs {
288 int (*get_max)(void);
289 int (*get_max_physical)(void);
290 int (*get_min)(void);
291 int (*get_turbo)(void);
292 int (*get_scaling)(void);
293 int (*get_aperf_mperf_shift)(void);
294 u64 (*get_val)(struct cpudata*, int pstate);
295 void (*get_vid)(struct cpudata *);
298 static struct pstate_funcs pstate_funcs __read_mostly;
300 static int hwp_active __read_mostly;
301 static int hwp_mode_bdw __read_mostly;
302 static bool per_cpu_limits __read_mostly;
303 static bool hwp_boost __read_mostly;
305 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
308 static bool acpi_ppc;
311 static struct global_params global;
313 static DEFINE_MUTEX(intel_pstate_driver_lock);
314 static DEFINE_MUTEX(intel_pstate_limits_lock);
318 static bool intel_pstate_acpi_pm_profile_server(void)
320 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
321 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
327 static bool intel_pstate_get_ppc_enable_status(void)
329 if (intel_pstate_acpi_pm_profile_server())
335 #ifdef CONFIG_ACPI_CPPC_LIB
337 /* The work item is needed to avoid CPU hotplug locking issues */
338 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
340 sched_set_itmt_support();
343 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
345 static void intel_pstate_set_itmt_prio(int cpu)
347 struct cppc_perf_caps cppc_perf;
348 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
351 ret = cppc_get_perf_caps(cpu, &cppc_perf);
356 * The priorities can be set regardless of whether or not
357 * sched_set_itmt_support(true) has been called and it is valid to
358 * update them at any time after it has been called.
360 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
362 if (max_highest_perf <= min_highest_perf) {
363 if (cppc_perf.highest_perf > max_highest_perf)
364 max_highest_perf = cppc_perf.highest_perf;
366 if (cppc_perf.highest_perf < min_highest_perf)
367 min_highest_perf = cppc_perf.highest_perf;
369 if (max_highest_perf > min_highest_perf) {
371 * This code can be run during CPU online under the
372 * CPU hotplug locks, so sched_set_itmt_support()
373 * cannot be called from here. Queue up a work item
376 schedule_work(&sched_itmt_work);
381 static int intel_pstate_get_cppc_guranteed(int cpu)
383 struct cppc_perf_caps cppc_perf;
386 ret = cppc_get_perf_caps(cpu, &cppc_perf);
390 if (cppc_perf.guaranteed_perf)
391 return cppc_perf.guaranteed_perf;
393 return cppc_perf.nominal_perf;
396 #else /* CONFIG_ACPI_CPPC_LIB */
397 static void intel_pstate_set_itmt_prio(int cpu)
400 #endif /* CONFIG_ACPI_CPPC_LIB */
402 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
409 intel_pstate_set_itmt_prio(policy->cpu);
413 if (!intel_pstate_get_ppc_enable_status())
416 cpu = all_cpu_data[policy->cpu];
418 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
424 * Check if the control value in _PSS is for PERF_CTL MSR, which should
425 * guarantee that the states returned by it map to the states in our
428 if (cpu->acpi_perf_data.control_register.space_id !=
429 ACPI_ADR_SPACE_FIXED_HARDWARE)
433 * If there is only one entry _PSS, simply ignore _PSS and continue as
434 * usual without taking _PSS into account
436 if (cpu->acpi_perf_data.state_count < 2)
439 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
440 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
441 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
442 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
443 (u32) cpu->acpi_perf_data.states[i].core_frequency,
444 (u32) cpu->acpi_perf_data.states[i].power,
445 (u32) cpu->acpi_perf_data.states[i].control);
449 * The _PSS table doesn't contain whole turbo frequency range.
450 * This just contains +1 MHZ above the max non turbo frequency,
451 * with control value corresponding to max turbo ratio. But
452 * when cpufreq set policy is called, it will call with this
453 * max frequency, which will cause a reduced performance as
454 * this driver uses real max turbo frequency as the max
455 * frequency. So correct this frequency in _PSS table to
456 * correct max turbo frequency based on the turbo state.
457 * Also need to convert to MHz as _PSS freq is in MHz.
459 if (!global.turbo_disabled)
460 cpu->acpi_perf_data.states[0].core_frequency =
461 policy->cpuinfo.max_freq / 1000;
462 cpu->valid_pss_table = true;
463 pr_debug("_PPC limits will be enforced\n");
468 cpu->valid_pss_table = false;
469 acpi_processor_unregister_performance(policy->cpu);
472 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
476 cpu = all_cpu_data[policy->cpu];
477 if (!cpu->valid_pss_table)
480 acpi_processor_unregister_performance(policy->cpu);
482 #else /* CONFIG_ACPI */
483 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
487 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
491 static inline bool intel_pstate_acpi_pm_profile_server(void)
495 #endif /* CONFIG_ACPI */
497 #ifndef CONFIG_ACPI_CPPC_LIB
498 static int intel_pstate_get_cppc_guranteed(int cpu)
502 #endif /* CONFIG_ACPI_CPPC_LIB */
504 static inline void update_turbo_state(void)
509 cpu = all_cpu_data[0];
510 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
511 global.turbo_disabled =
512 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
513 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
516 static int min_perf_pct_min(void)
518 struct cpudata *cpu = all_cpu_data[0];
519 int turbo_pstate = cpu->pstate.turbo_pstate;
521 return turbo_pstate ?
522 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
525 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
530 if (!boot_cpu_has(X86_FEATURE_EPB))
533 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
537 return (s16)(epb & 0x0f);
540 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
544 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
546 * When hwp_req_data is 0, means that caller didn't read
547 * MSR_HWP_REQUEST, so need to read and get EPP.
550 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
555 epp = (hwp_req_data >> 24) & 0xff;
557 /* When there is no EPP present, HWP uses EPB settings */
558 epp = intel_pstate_get_epb(cpu_data);
564 static int intel_pstate_set_epb(int cpu, s16 pref)
569 if (!boot_cpu_has(X86_FEATURE_EPB))
572 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
576 epb = (epb & ~0x0f) | pref;
577 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
583 * EPP/EPB display strings corresponding to EPP index in the
584 * energy_perf_strings[]
586 *-------------------------------------
589 * 2 balance_performance
593 static const char * const energy_perf_strings[] = {
596 "balance_performance",
601 static const unsigned int epp_values[] = {
603 HWP_EPP_BALANCE_PERFORMANCE,
604 HWP_EPP_BALANCE_POWERSAVE,
608 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
613 epp = intel_pstate_get_epp(cpu_data, 0);
617 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
618 if (epp == HWP_EPP_PERFORMANCE)
620 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
622 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
626 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
629 * 0x00-0x03 : Performance
630 * 0x04-0x07 : Balance performance
631 * 0x08-0x0B : Balance power
633 * The EPB is a 4 bit value, but our ranges restrict the
634 * value which can be set. Here only using top two bits
637 index = (epp >> 2) + 1;
643 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
650 epp = cpu_data->epp_default;
652 mutex_lock(&intel_pstate_limits_lock);
654 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
657 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
661 value &= ~GENMASK_ULL(31, 24);
664 epp = epp_values[pref_index - 1];
666 value |= (u64)epp << 24;
667 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
670 epp = (pref_index - 1) << 2;
671 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
674 mutex_unlock(&intel_pstate_limits_lock);
679 static ssize_t show_energy_performance_available_preferences(
680 struct cpufreq_policy *policy, char *buf)
685 while (energy_perf_strings[i] != NULL)
686 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
688 ret += sprintf(&buf[ret], "\n");
693 cpufreq_freq_attr_ro(energy_performance_available_preferences);
695 static ssize_t store_energy_performance_preference(
696 struct cpufreq_policy *policy, const char *buf, size_t count)
698 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
699 char str_preference[21];
702 ret = sscanf(buf, "%20s", str_preference);
706 ret = match_string(energy_perf_strings, -1, str_preference);
710 intel_pstate_set_energy_pref_index(cpu_data, ret);
714 static ssize_t show_energy_performance_preference(
715 struct cpufreq_policy *policy, char *buf)
717 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
720 preference = intel_pstate_get_energy_pref_index(cpu_data);
724 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
727 cpufreq_freq_attr_rw(energy_performance_preference);
729 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
735 ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
737 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
738 ratio = HWP_GUARANTEED_PERF(cap);
741 cpu = all_cpu_data[policy->cpu];
743 return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
746 cpufreq_freq_attr_ro(base_frequency);
748 static struct freq_attr *hwp_cpufreq_attrs[] = {
749 &energy_performance_preference,
750 &energy_performance_available_preferences,
755 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
760 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
761 WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
763 *current_max = HWP_GUARANTEED_PERF(cap);
765 *current_max = HWP_HIGHEST_PERF(cap);
767 *phy_max = HWP_HIGHEST_PERF(cap);
770 static void intel_pstate_hwp_set(unsigned int cpu)
772 struct cpudata *cpu_data = all_cpu_data[cpu];
777 max = cpu_data->max_perf_ratio;
778 min = cpu_data->min_perf_ratio;
780 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
783 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
785 value &= ~HWP_MIN_PERF(~0L);
786 value |= HWP_MIN_PERF(min);
788 value &= ~HWP_MAX_PERF(~0L);
789 value |= HWP_MAX_PERF(max);
791 if (cpu_data->epp_policy == cpu_data->policy)
794 cpu_data->epp_policy = cpu_data->policy;
796 if (cpu_data->epp_saved >= 0) {
797 epp = cpu_data->epp_saved;
798 cpu_data->epp_saved = -EINVAL;
802 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
803 epp = intel_pstate_get_epp(cpu_data, value);
804 cpu_data->epp_powersave = epp;
805 /* If EPP read was failed, then don't try to write */
811 /* skip setting EPP, when saved value is invalid */
812 if (cpu_data->epp_powersave < 0)
816 * No need to restore EPP when it is not zero. This
818 * - Policy is not changed
819 * - user has manually changed
820 * - Error reading EPB
822 epp = intel_pstate_get_epp(cpu_data, value);
826 epp = cpu_data->epp_powersave;
829 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
830 value &= ~GENMASK_ULL(31, 24);
831 value |= (u64)epp << 24;
833 intel_pstate_set_epb(cpu, epp);
836 WRITE_ONCE(cpu_data->hwp_req_cached, value);
837 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
840 static void intel_pstate_hwp_force_min_perf(int cpu)
845 value = all_cpu_data[cpu]->hwp_req_cached;
846 value &= ~GENMASK_ULL(31, 0);
847 min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
849 /* Set hwp_max = hwp_min */
850 value |= HWP_MAX_PERF(min_perf);
851 value |= HWP_MIN_PERF(min_perf);
853 /* Set EPP/EPB to min */
854 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
855 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
857 intel_pstate_set_epb(cpu, HWP_EPP_BALANCE_POWERSAVE);
859 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
862 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
864 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
869 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
874 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
876 static int intel_pstate_resume(struct cpufreq_policy *policy)
881 mutex_lock(&intel_pstate_limits_lock);
883 if (policy->cpu == 0)
884 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
886 all_cpu_data[policy->cpu]->epp_policy = 0;
887 intel_pstate_hwp_set(policy->cpu);
889 mutex_unlock(&intel_pstate_limits_lock);
894 static void intel_pstate_update_policies(void)
898 for_each_possible_cpu(cpu)
899 cpufreq_update_policy(cpu);
902 static void intel_pstate_update_max_freq(unsigned int cpu)
904 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
905 struct cpufreq_policy new_policy;
906 struct cpudata *cpudata;
911 cpudata = all_cpu_data[cpu];
912 policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
913 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
915 memcpy(&new_policy, policy, sizeof(*policy));
916 new_policy.max = min(policy->user_policy.max, policy->cpuinfo.max_freq);
917 new_policy.min = min(policy->user_policy.min, new_policy.max);
919 cpufreq_set_policy(policy, &new_policy);
921 cpufreq_cpu_release(policy);
924 static void intel_pstate_update_limits(unsigned int cpu)
926 mutex_lock(&intel_pstate_driver_lock);
928 update_turbo_state();
930 * If turbo has been turned on or off globally, policy limits for
931 * all CPUs need to be updated to reflect that.
933 if (global.turbo_disabled_mf != global.turbo_disabled) {
934 global.turbo_disabled_mf = global.turbo_disabled;
935 for_each_possible_cpu(cpu)
936 intel_pstate_update_max_freq(cpu);
938 cpufreq_update_policy(cpu);
941 mutex_unlock(&intel_pstate_driver_lock);
944 /************************** sysfs begin ************************/
945 #define show_one(file_name, object) \
946 static ssize_t show_##file_name \
947 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
949 return sprintf(buf, "%u\n", global.object); \
952 static ssize_t intel_pstate_show_status(char *buf);
953 static int intel_pstate_update_status(const char *buf, size_t size);
955 static ssize_t show_status(struct kobject *kobj,
956 struct kobj_attribute *attr, char *buf)
960 mutex_lock(&intel_pstate_driver_lock);
961 ret = intel_pstate_show_status(buf);
962 mutex_unlock(&intel_pstate_driver_lock);
967 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
968 const char *buf, size_t count)
970 char *p = memchr(buf, '\n', count);
973 mutex_lock(&intel_pstate_driver_lock);
974 ret = intel_pstate_update_status(buf, p ? p - buf : count);
975 mutex_unlock(&intel_pstate_driver_lock);
977 return ret < 0 ? ret : count;
980 static ssize_t show_turbo_pct(struct kobject *kobj,
981 struct kobj_attribute *attr, char *buf)
984 int total, no_turbo, turbo_pct;
987 mutex_lock(&intel_pstate_driver_lock);
989 if (!intel_pstate_driver) {
990 mutex_unlock(&intel_pstate_driver_lock);
994 cpu = all_cpu_data[0];
996 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
997 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
998 turbo_fp = div_fp(no_turbo, total);
999 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1001 mutex_unlock(&intel_pstate_driver_lock);
1003 return sprintf(buf, "%u\n", turbo_pct);
1006 static ssize_t show_num_pstates(struct kobject *kobj,
1007 struct kobj_attribute *attr, char *buf)
1009 struct cpudata *cpu;
1012 mutex_lock(&intel_pstate_driver_lock);
1014 if (!intel_pstate_driver) {
1015 mutex_unlock(&intel_pstate_driver_lock);
1019 cpu = all_cpu_data[0];
1020 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1022 mutex_unlock(&intel_pstate_driver_lock);
1024 return sprintf(buf, "%u\n", total);
1027 static ssize_t show_no_turbo(struct kobject *kobj,
1028 struct kobj_attribute *attr, char *buf)
1032 mutex_lock(&intel_pstate_driver_lock);
1034 if (!intel_pstate_driver) {
1035 mutex_unlock(&intel_pstate_driver_lock);
1039 update_turbo_state();
1040 if (global.turbo_disabled)
1041 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1043 ret = sprintf(buf, "%u\n", global.no_turbo);
1045 mutex_unlock(&intel_pstate_driver_lock);
1050 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1051 const char *buf, size_t count)
1056 ret = sscanf(buf, "%u", &input);
1060 mutex_lock(&intel_pstate_driver_lock);
1062 if (!intel_pstate_driver) {
1063 mutex_unlock(&intel_pstate_driver_lock);
1067 mutex_lock(&intel_pstate_limits_lock);
1069 update_turbo_state();
1070 if (global.turbo_disabled) {
1071 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1072 mutex_unlock(&intel_pstate_limits_lock);
1073 mutex_unlock(&intel_pstate_driver_lock);
1077 global.no_turbo = clamp_t(int, input, 0, 1);
1079 if (global.no_turbo) {
1080 struct cpudata *cpu = all_cpu_data[0];
1081 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1083 /* Squash the global minimum into the permitted range. */
1084 if (global.min_perf_pct > pct)
1085 global.min_perf_pct = pct;
1088 mutex_unlock(&intel_pstate_limits_lock);
1090 intel_pstate_update_policies();
1092 mutex_unlock(&intel_pstate_driver_lock);
1097 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1098 const char *buf, size_t count)
1103 ret = sscanf(buf, "%u", &input);
1107 mutex_lock(&intel_pstate_driver_lock);
1109 if (!intel_pstate_driver) {
1110 mutex_unlock(&intel_pstate_driver_lock);
1114 mutex_lock(&intel_pstate_limits_lock);
1116 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1118 mutex_unlock(&intel_pstate_limits_lock);
1120 intel_pstate_update_policies();
1122 mutex_unlock(&intel_pstate_driver_lock);
1127 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1128 const char *buf, size_t count)
1133 ret = sscanf(buf, "%u", &input);
1137 mutex_lock(&intel_pstate_driver_lock);
1139 if (!intel_pstate_driver) {
1140 mutex_unlock(&intel_pstate_driver_lock);
1144 mutex_lock(&intel_pstate_limits_lock);
1146 global.min_perf_pct = clamp_t(int, input,
1147 min_perf_pct_min(), global.max_perf_pct);
1149 mutex_unlock(&intel_pstate_limits_lock);
1151 intel_pstate_update_policies();
1153 mutex_unlock(&intel_pstate_driver_lock);
1158 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1159 struct kobj_attribute *attr, char *buf)
1161 return sprintf(buf, "%u\n", hwp_boost);
1164 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1165 struct kobj_attribute *b,
1166 const char *buf, size_t count)
1171 ret = kstrtouint(buf, 10, &input);
1175 mutex_lock(&intel_pstate_driver_lock);
1176 hwp_boost = !!input;
1177 intel_pstate_update_policies();
1178 mutex_unlock(&intel_pstate_driver_lock);
1183 show_one(max_perf_pct, max_perf_pct);
1184 show_one(min_perf_pct, min_perf_pct);
1186 define_one_global_rw(status);
1187 define_one_global_rw(no_turbo);
1188 define_one_global_rw(max_perf_pct);
1189 define_one_global_rw(min_perf_pct);
1190 define_one_global_ro(turbo_pct);
1191 define_one_global_ro(num_pstates);
1192 define_one_global_rw(hwp_dynamic_boost);
1194 static struct attribute *intel_pstate_attributes[] = {
1202 static const struct attribute_group intel_pstate_attr_group = {
1203 .attrs = intel_pstate_attributes,
1206 static void __init intel_pstate_sysfs_expose_params(void)
1208 struct kobject *intel_pstate_kobject;
1211 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1212 &cpu_subsys.dev_root->kobj);
1213 if (WARN_ON(!intel_pstate_kobject))
1216 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1221 * If per cpu limits are enforced there are no global limits, so
1222 * return without creating max/min_perf_pct attributes
1227 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1230 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1234 rc = sysfs_create_file(intel_pstate_kobject,
1235 &hwp_dynamic_boost.attr);
1239 /************************** sysfs end ************************/
1241 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1243 /* First disable HWP notification interrupt as we don't process them */
1244 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1245 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1247 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1248 cpudata->epp_policy = 0;
1249 if (cpudata->epp_default == -EINVAL)
1250 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1253 #define MSR_IA32_POWER_CTL_BIT_EE 19
1255 /* Disable energy efficiency optimization */
1256 static void intel_pstate_disable_ee(int cpu)
1261 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1265 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1266 pr_info("Disabling energy efficiency optimization\n");
1267 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1268 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1272 static int atom_get_min_pstate(void)
1276 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1277 return (value >> 8) & 0x7F;
1280 static int atom_get_max_pstate(void)
1284 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1285 return (value >> 16) & 0x7F;
1288 static int atom_get_turbo_pstate(void)
1292 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1293 return value & 0x7F;
1296 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1302 val = (u64)pstate << 8;
1303 if (global.no_turbo && !global.turbo_disabled)
1304 val |= (u64)1 << 32;
1306 vid_fp = cpudata->vid.min + mul_fp(
1307 int_tofp(pstate - cpudata->pstate.min_pstate),
1308 cpudata->vid.ratio);
1310 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1311 vid = ceiling_fp(vid_fp);
1313 if (pstate > cpudata->pstate.max_pstate)
1314 vid = cpudata->vid.turbo;
1319 static int silvermont_get_scaling(void)
1323 /* Defined in Table 35-6 from SDM (Sept 2015) */
1324 static int silvermont_freq_table[] = {
1325 83300, 100000, 133300, 116700, 80000};
1327 rdmsrl(MSR_FSB_FREQ, value);
1331 return silvermont_freq_table[i];
1334 static int airmont_get_scaling(void)
1338 /* Defined in Table 35-10 from SDM (Sept 2015) */
1339 static int airmont_freq_table[] = {
1340 83300, 100000, 133300, 116700, 80000,
1341 93300, 90000, 88900, 87500};
1343 rdmsrl(MSR_FSB_FREQ, value);
1347 return airmont_freq_table[i];
1350 static void atom_get_vid(struct cpudata *cpudata)
1354 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1355 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1356 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1357 cpudata->vid.ratio = div_fp(
1358 cpudata->vid.max - cpudata->vid.min,
1359 int_tofp(cpudata->pstate.max_pstate -
1360 cpudata->pstate.min_pstate));
1362 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1363 cpudata->vid.turbo = value & 0x7f;
1366 static int core_get_min_pstate(void)
1370 rdmsrl(MSR_PLATFORM_INFO, value);
1371 return (value >> 40) & 0xFF;
1374 static int core_get_max_pstate_physical(void)
1378 rdmsrl(MSR_PLATFORM_INFO, value);
1379 return (value >> 8) & 0xFF;
1382 static int core_get_tdp_ratio(u64 plat_info)
1384 /* Check how many TDP levels present */
1385 if (plat_info & 0x600000000) {
1391 /* Get the TDP level (0, 1, 2) to get ratios */
1392 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1396 /* TDP MSR are continuous starting at 0x648 */
1397 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1398 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1402 /* For level 1 and 2, bits[23:16] contain the ratio */
1403 if (tdp_ctrl & 0x03)
1406 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1407 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1409 return (int)tdp_ratio;
1415 static int core_get_max_pstate(void)
1423 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1424 max_pstate = (plat_info >> 8) & 0xFF;
1426 tdp_ratio = core_get_tdp_ratio(plat_info);
1431 /* Turbo activation ratio is not used on HWP platforms */
1435 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1439 /* Do some sanity checking for safety */
1440 tar_levels = tar & 0xff;
1441 if (tdp_ratio - 1 == tar_levels) {
1442 max_pstate = tar_levels;
1443 pr_debug("max_pstate=TAC %x\n", max_pstate);
1450 static int core_get_turbo_pstate(void)
1455 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1456 nont = core_get_max_pstate();
1457 ret = (value) & 255;
1463 static inline int core_get_scaling(void)
1468 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1472 val = (u64)pstate << 8;
1473 if (global.no_turbo && !global.turbo_disabled)
1474 val |= (u64)1 << 32;
1479 static int knl_get_aperf_mperf_shift(void)
1484 static int knl_get_turbo_pstate(void)
1489 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1490 nont = core_get_max_pstate();
1491 ret = (((value) >> 8) & 0xFF);
1497 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1499 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1500 cpu->pstate.current_pstate = pstate;
1502 * Generally, there is no guarantee that this code will always run on
1503 * the CPU being updated, so force the register update to run on the
1506 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1507 pstate_funcs.get_val(cpu, pstate));
1510 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1512 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1515 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1517 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1519 update_turbo_state();
1520 intel_pstate_set_pstate(cpu, pstate);
1523 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1525 cpu->pstate.min_pstate = pstate_funcs.get_min();
1526 cpu->pstate.max_pstate = pstate_funcs.get_max();
1527 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1528 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1529 cpu->pstate.scaling = pstate_funcs.get_scaling();
1530 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1532 if (hwp_active && !hwp_mode_bdw) {
1533 unsigned int phy_max, current_max;
1535 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, ¤t_max);
1536 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1538 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1541 if (pstate_funcs.get_aperf_mperf_shift)
1542 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1544 if (pstate_funcs.get_vid)
1545 pstate_funcs.get_vid(cpu);
1547 intel_pstate_set_min_pstate(cpu);
1551 * Long hold time will keep high perf limits for long time,
1552 * which negatively impacts perf/watt for some workloads,
1553 * like specpower. 3ms is based on experiements on some
1556 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1558 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1560 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1561 u32 max_limit = (hwp_req & 0xff00) >> 8;
1562 u32 min_limit = (hwp_req & 0xff);
1566 * Cases to consider (User changes via sysfs or boot time):
1567 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1569 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1570 * Should result in one level boost only for P0.
1571 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1572 * Should result in two level boost:
1573 * (min + p1)/2 and P1.
1574 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1575 * Should result in three level boost:
1576 * (min + p1)/2, P1 and P0.
1579 /* If max and min are equal or already at max, nothing to boost */
1580 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1583 if (!cpu->hwp_boost_min)
1584 cpu->hwp_boost_min = min_limit;
1586 /* level at half way mark between min and guranteed */
1587 boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1589 if (cpu->hwp_boost_min < boost_level1)
1590 cpu->hwp_boost_min = boost_level1;
1591 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1592 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1593 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1594 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1595 cpu->hwp_boost_min = max_limit;
1599 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1600 wrmsrl(MSR_HWP_REQUEST, hwp_req);
1601 cpu->last_update = cpu->sample.time;
1604 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1606 if (cpu->hwp_boost_min) {
1609 /* Check if we are idle for hold time to boost down */
1610 expired = time_after64(cpu->sample.time, cpu->last_update +
1611 hwp_boost_hold_time_ns);
1613 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1614 cpu->hwp_boost_min = 0;
1617 cpu->last_update = cpu->sample.time;
1620 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1623 cpu->sample.time = time;
1625 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1628 cpu->sched_flags = 0;
1630 * Set iowait_boost flag and update time. Since IO WAIT flag
1631 * is set all the time, we can't just conclude that there is
1632 * some IO bound activity is scheduled on this CPU with just
1633 * one occurrence. If we receive at least two in two
1634 * consecutive ticks, then we treat as boost candidate.
1636 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1639 cpu->last_io_update = time;
1642 intel_pstate_hwp_boost_up(cpu);
1645 intel_pstate_hwp_boost_down(cpu);
1649 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1650 u64 time, unsigned int flags)
1652 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1654 cpu->sched_flags |= flags;
1656 if (smp_processor_id() == cpu->cpu)
1657 intel_pstate_update_util_hwp_local(cpu, time);
1660 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1662 struct sample *sample = &cpu->sample;
1664 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1667 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1670 unsigned long flags;
1673 local_irq_save(flags);
1674 rdmsrl(MSR_IA32_APERF, aperf);
1675 rdmsrl(MSR_IA32_MPERF, mperf);
1677 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1678 local_irq_restore(flags);
1681 local_irq_restore(flags);
1683 cpu->last_sample_time = cpu->sample.time;
1684 cpu->sample.time = time;
1685 cpu->sample.aperf = aperf;
1686 cpu->sample.mperf = mperf;
1687 cpu->sample.tsc = tsc;
1688 cpu->sample.aperf -= cpu->prev_aperf;
1689 cpu->sample.mperf -= cpu->prev_mperf;
1690 cpu->sample.tsc -= cpu->prev_tsc;
1692 cpu->prev_aperf = aperf;
1693 cpu->prev_mperf = mperf;
1694 cpu->prev_tsc = tsc;
1696 * First time this function is invoked in a given cycle, all of the
1697 * previous sample data fields are equal to zero or stale and they must
1698 * be populated with meaningful numbers for things to work, so assume
1699 * that sample.time will always be reset before setting the utilization
1700 * update hook and make the caller skip the sample then.
1702 if (cpu->last_sample_time) {
1703 intel_pstate_calc_avg_perf(cpu);
1709 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1711 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1714 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1716 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1717 cpu->sample.core_avg_perf);
1720 static inline int32_t get_target_pstate(struct cpudata *cpu)
1722 struct sample *sample = &cpu->sample;
1724 int target, avg_pstate;
1726 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1729 if (busy_frac < cpu->iowait_boost)
1730 busy_frac = cpu->iowait_boost;
1732 sample->busy_scaled = busy_frac * 100;
1734 target = global.no_turbo || global.turbo_disabled ?
1735 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1736 target += target >> 2;
1737 target = mul_fp(target, busy_frac);
1738 if (target < cpu->pstate.min_pstate)
1739 target = cpu->pstate.min_pstate;
1742 * If the average P-state during the previous cycle was higher than the
1743 * current target, add 50% of the difference to the target to reduce
1744 * possible performance oscillations and offset possible performance
1745 * loss related to moving the workload from one CPU to another within
1748 avg_pstate = get_avg_pstate(cpu);
1749 if (avg_pstate > target)
1750 target += (avg_pstate - target) >> 1;
1755 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1757 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1758 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1760 return clamp_t(int, pstate, min_pstate, max_pstate);
1763 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1765 if (pstate == cpu->pstate.current_pstate)
1768 cpu->pstate.current_pstate = pstate;
1769 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1772 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1774 int from = cpu->pstate.current_pstate;
1775 struct sample *sample;
1778 update_turbo_state();
1780 target_pstate = get_target_pstate(cpu);
1781 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1782 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1783 intel_pstate_update_pstate(cpu, target_pstate);
1785 sample = &cpu->sample;
1786 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1787 fp_toint(sample->busy_scaled),
1789 cpu->pstate.current_pstate,
1793 get_avg_frequency(cpu),
1794 fp_toint(cpu->iowait_boost * 100));
1797 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1800 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1803 /* Don't allow remote callbacks */
1804 if (smp_processor_id() != cpu->cpu)
1807 delta_ns = time - cpu->last_update;
1808 if (flags & SCHED_CPUFREQ_IOWAIT) {
1809 /* Start over if the CPU may have been idle. */
1810 if (delta_ns > TICK_NSEC) {
1811 cpu->iowait_boost = ONE_EIGHTH_FP;
1812 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1813 cpu->iowait_boost <<= 1;
1814 if (cpu->iowait_boost > int_tofp(1))
1815 cpu->iowait_boost = int_tofp(1);
1817 cpu->iowait_boost = ONE_EIGHTH_FP;
1819 } else if (cpu->iowait_boost) {
1820 /* Clear iowait_boost if the CPU may have been idle. */
1821 if (delta_ns > TICK_NSEC)
1822 cpu->iowait_boost = 0;
1824 cpu->iowait_boost >>= 1;
1826 cpu->last_update = time;
1827 delta_ns = time - cpu->sample.time;
1828 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1831 if (intel_pstate_sample(cpu, time))
1832 intel_pstate_adjust_pstate(cpu);
1835 static struct pstate_funcs core_funcs = {
1836 .get_max = core_get_max_pstate,
1837 .get_max_physical = core_get_max_pstate_physical,
1838 .get_min = core_get_min_pstate,
1839 .get_turbo = core_get_turbo_pstate,
1840 .get_scaling = core_get_scaling,
1841 .get_val = core_get_val,
1844 static const struct pstate_funcs silvermont_funcs = {
1845 .get_max = atom_get_max_pstate,
1846 .get_max_physical = atom_get_max_pstate,
1847 .get_min = atom_get_min_pstate,
1848 .get_turbo = atom_get_turbo_pstate,
1849 .get_val = atom_get_val,
1850 .get_scaling = silvermont_get_scaling,
1851 .get_vid = atom_get_vid,
1854 static const struct pstate_funcs airmont_funcs = {
1855 .get_max = atom_get_max_pstate,
1856 .get_max_physical = atom_get_max_pstate,
1857 .get_min = atom_get_min_pstate,
1858 .get_turbo = atom_get_turbo_pstate,
1859 .get_val = atom_get_val,
1860 .get_scaling = airmont_get_scaling,
1861 .get_vid = atom_get_vid,
1864 static const struct pstate_funcs knl_funcs = {
1865 .get_max = core_get_max_pstate,
1866 .get_max_physical = core_get_max_pstate_physical,
1867 .get_min = core_get_min_pstate,
1868 .get_turbo = knl_get_turbo_pstate,
1869 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1870 .get_scaling = core_get_scaling,
1871 .get_val = core_get_val,
1874 #define ICPU(model, policy) \
1875 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1876 (unsigned long)&policy }
1878 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1879 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs),
1880 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs),
1881 ICPU(INTEL_FAM6_ATOM_SILVERMONT, silvermont_funcs),
1882 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs),
1883 ICPU(INTEL_FAM6_HASWELL_CORE, core_funcs),
1884 ICPU(INTEL_FAM6_BROADWELL_CORE, core_funcs),
1885 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs),
1886 ICPU(INTEL_FAM6_HASWELL_X, core_funcs),
1887 ICPU(INTEL_FAM6_HASWELL_ULT, core_funcs),
1888 ICPU(INTEL_FAM6_HASWELL_GT3E, core_funcs),
1889 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_funcs),
1890 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs),
1891 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_funcs),
1892 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1893 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1894 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1895 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs),
1896 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs),
1897 ICPU(INTEL_FAM6_ATOM_GOLDMONT, core_funcs),
1898 ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS, core_funcs),
1899 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1902 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1904 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1905 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1906 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1907 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1911 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1912 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1916 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1917 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1918 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1922 static int intel_pstate_init_cpu(unsigned int cpunum)
1924 struct cpudata *cpu;
1926 cpu = all_cpu_data[cpunum];
1929 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1933 all_cpu_data[cpunum] = cpu;
1935 cpu->epp_default = -EINVAL;
1936 cpu->epp_powersave = -EINVAL;
1937 cpu->epp_saved = -EINVAL;
1940 cpu = all_cpu_data[cpunum];
1945 const struct x86_cpu_id *id;
1947 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1949 intel_pstate_disable_ee(cpunum);
1951 intel_pstate_hwp_enable(cpu);
1953 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1954 if (id && intel_pstate_acpi_pm_profile_server())
1958 intel_pstate_get_cpu_pstates(cpu);
1960 pr_debug("controlling: cpu %d\n", cpunum);
1965 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1967 struct cpudata *cpu = all_cpu_data[cpu_num];
1969 if (hwp_active && !hwp_boost)
1972 if (cpu->update_util_set)
1975 /* Prevent intel_pstate_update_util() from using stale data. */
1976 cpu->sample.time = 0;
1977 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1979 intel_pstate_update_util_hwp :
1980 intel_pstate_update_util));
1981 cpu->update_util_set = true;
1984 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1986 struct cpudata *cpu_data = all_cpu_data[cpu];
1988 if (!cpu_data->update_util_set)
1991 cpufreq_remove_update_util_hook(cpu);
1992 cpu_data->update_util_set = false;
1996 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1998 return global.turbo_disabled || global.no_turbo ?
1999 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2002 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2003 struct cpudata *cpu)
2005 int max_freq = intel_pstate_get_max_freq(cpu);
2006 int32_t max_policy_perf, min_policy_perf;
2007 int max_state, turbo_max;
2010 * HWP needs some special consideration, because on BDX the
2011 * HWP_REQUEST uses abstract value to represent performance
2012 * rather than pure ratios.
2015 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2017 max_state = global.no_turbo || global.turbo_disabled ?
2018 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2019 turbo_max = cpu->pstate.turbo_pstate;
2022 max_policy_perf = max_state * policy->max / max_freq;
2023 if (policy->max == policy->min) {
2024 min_policy_perf = max_policy_perf;
2026 min_policy_perf = max_state * policy->min / max_freq;
2027 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2028 0, max_policy_perf);
2031 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2032 policy->cpu, max_state,
2033 min_policy_perf, max_policy_perf);
2035 /* Normalize user input to [min_perf, max_perf] */
2036 if (per_cpu_limits) {
2037 cpu->min_perf_ratio = min_policy_perf;
2038 cpu->max_perf_ratio = max_policy_perf;
2040 int32_t global_min, global_max;
2042 /* Global limits are in percent of the maximum turbo P-state. */
2043 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2044 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2045 global_min = clamp_t(int32_t, global_min, 0, global_max);
2047 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2048 global_min, global_max);
2050 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2051 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2052 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2053 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2055 /* Make sure min_perf <= max_perf */
2056 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2057 cpu->max_perf_ratio);
2060 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2061 cpu->max_perf_ratio,
2062 cpu->min_perf_ratio);
2065 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2067 struct cpudata *cpu;
2069 if (!policy->cpuinfo.max_freq)
2072 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2073 policy->cpuinfo.max_freq, policy->max);
2075 cpu = all_cpu_data[policy->cpu];
2076 cpu->policy = policy->policy;
2078 mutex_lock(&intel_pstate_limits_lock);
2080 intel_pstate_update_perf_limits(policy, cpu);
2082 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2084 * NOHZ_FULL CPUs need this as the governor callback may not
2085 * be invoked on them.
2087 intel_pstate_clear_update_util_hook(policy->cpu);
2088 intel_pstate_max_within_limits(cpu);
2090 intel_pstate_set_update_util_hook(policy->cpu);
2095 * When hwp_boost was active before and dynamically it
2096 * was turned off, in that case we need to clear the
2100 intel_pstate_clear_update_util_hook(policy->cpu);
2101 intel_pstate_hwp_set(policy->cpu);
2104 mutex_unlock(&intel_pstate_limits_lock);
2109 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2110 struct cpudata *cpu)
2113 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2114 policy->max < policy->cpuinfo.max_freq &&
2115 policy->max > cpu->pstate.max_freq) {
2116 pr_debug("policy->max > max non turbo frequency\n");
2117 policy->max = policy->cpuinfo.max_freq;
2121 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2123 struct cpudata *cpu = all_cpu_data[policy->cpu];
2125 update_turbo_state();
2126 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2127 intel_pstate_get_max_freq(cpu));
2129 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2130 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2133 intel_pstate_adjust_policy_max(policy, cpu);
2138 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2140 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2143 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2145 pr_debug("CPU %d exiting\n", policy->cpu);
2147 intel_pstate_clear_update_util_hook(policy->cpu);
2149 intel_pstate_hwp_save_state(policy);
2150 intel_pstate_hwp_force_min_perf(policy->cpu);
2152 intel_cpufreq_stop_cpu(policy);
2156 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2158 intel_pstate_exit_perf_limits(policy);
2160 policy->fast_switch_possible = false;
2165 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2167 struct cpudata *cpu;
2170 rc = intel_pstate_init_cpu(policy->cpu);
2174 cpu = all_cpu_data[policy->cpu];
2176 cpu->max_perf_ratio = 0xFF;
2177 cpu->min_perf_ratio = 0;
2179 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2180 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2182 /* cpuinfo and default policy values */
2183 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2184 update_turbo_state();
2185 global.turbo_disabled_mf = global.turbo_disabled;
2186 policy->cpuinfo.max_freq = global.turbo_disabled ?
2187 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2188 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2191 unsigned int max_freq;
2193 max_freq = global.turbo_disabled ?
2194 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2195 if (max_freq < policy->cpuinfo.max_freq)
2196 policy->cpuinfo.max_freq = max_freq;
2199 intel_pstate_init_acpi_perf_limits(policy);
2201 policy->fast_switch_possible = true;
2206 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2208 int ret = __intel_pstate_cpu_init(policy);
2213 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2214 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2216 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2221 static struct cpufreq_driver intel_pstate = {
2222 .flags = CPUFREQ_CONST_LOOPS,
2223 .verify = intel_pstate_verify_policy,
2224 .setpolicy = intel_pstate_set_policy,
2225 .suspend = intel_pstate_hwp_save_state,
2226 .resume = intel_pstate_resume,
2227 .init = intel_pstate_cpu_init,
2228 .exit = intel_pstate_cpu_exit,
2229 .stop_cpu = intel_pstate_stop_cpu,
2230 .update_limits = intel_pstate_update_limits,
2231 .name = "intel_pstate",
2234 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2236 struct cpudata *cpu = all_cpu_data[policy->cpu];
2238 update_turbo_state();
2239 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2240 intel_pstate_get_max_freq(cpu));
2242 intel_pstate_adjust_policy_max(policy, cpu);
2244 intel_pstate_update_perf_limits(policy, cpu);
2249 /* Use of trace in passive mode:
2251 * In passive mode the trace core_busy field (also known as the
2252 * performance field, and lablelled as such on the graphs; also known as
2253 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2254 * driver call was via the normal or fast switch path. Various graphs
2255 * output from the intel_pstate_tracer.py utility that include core_busy
2256 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2257 * so we use 10 to indicate the the normal path through the driver, and
2258 * 90 to indicate the fast switch path through the driver.
2259 * The scaled_busy field is not used, and is set to 0.
2262 #define INTEL_PSTATE_TRACE_TARGET 10
2263 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2265 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2267 struct sample *sample;
2269 if (!trace_pstate_sample_enabled())
2272 if (!intel_pstate_sample(cpu, ktime_get()))
2275 sample = &cpu->sample;
2276 trace_pstate_sample(trace_type,
2279 cpu->pstate.current_pstate,
2283 get_avg_frequency(cpu),
2284 fp_toint(cpu->iowait_boost * 100));
2287 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2288 unsigned int target_freq,
2289 unsigned int relation)
2291 struct cpudata *cpu = all_cpu_data[policy->cpu];
2292 struct cpufreq_freqs freqs;
2293 int target_pstate, old_pstate;
2295 update_turbo_state();
2297 freqs.old = policy->cur;
2298 freqs.new = target_freq;
2300 cpufreq_freq_transition_begin(policy, &freqs);
2302 case CPUFREQ_RELATION_L:
2303 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2305 case CPUFREQ_RELATION_H:
2306 target_pstate = freqs.new / cpu->pstate.scaling;
2309 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2312 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2313 old_pstate = cpu->pstate.current_pstate;
2314 if (target_pstate != cpu->pstate.current_pstate) {
2315 cpu->pstate.current_pstate = target_pstate;
2316 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2317 pstate_funcs.get_val(cpu, target_pstate));
2319 freqs.new = target_pstate * cpu->pstate.scaling;
2320 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2321 cpufreq_freq_transition_end(policy, &freqs, false);
2326 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2327 unsigned int target_freq)
2329 struct cpudata *cpu = all_cpu_data[policy->cpu];
2330 int target_pstate, old_pstate;
2332 update_turbo_state();
2334 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2335 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2336 old_pstate = cpu->pstate.current_pstate;
2337 intel_pstate_update_pstate(cpu, target_pstate);
2338 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2339 return target_pstate * cpu->pstate.scaling;
2342 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2344 int ret = __intel_pstate_cpu_init(policy);
2349 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2350 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2351 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2352 policy->cur = policy->cpuinfo.min_freq;
2357 static struct cpufreq_driver intel_cpufreq = {
2358 .flags = CPUFREQ_CONST_LOOPS,
2359 .verify = intel_cpufreq_verify_policy,
2360 .target = intel_cpufreq_target,
2361 .fast_switch = intel_cpufreq_fast_switch,
2362 .init = intel_cpufreq_cpu_init,
2363 .exit = intel_pstate_cpu_exit,
2364 .stop_cpu = intel_cpufreq_stop_cpu,
2365 .update_limits = intel_pstate_update_limits,
2366 .name = "intel_cpufreq",
2369 static struct cpufreq_driver *default_driver = &intel_pstate;
2371 static void intel_pstate_driver_cleanup(void)
2376 for_each_online_cpu(cpu) {
2377 if (all_cpu_data[cpu]) {
2378 if (intel_pstate_driver == &intel_pstate)
2379 intel_pstate_clear_update_util_hook(cpu);
2381 kfree(all_cpu_data[cpu]);
2382 all_cpu_data[cpu] = NULL;
2386 intel_pstate_driver = NULL;
2389 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2393 memset(&global, 0, sizeof(global));
2394 global.max_perf_pct = 100;
2396 intel_pstate_driver = driver;
2397 ret = cpufreq_register_driver(intel_pstate_driver);
2399 intel_pstate_driver_cleanup();
2403 global.min_perf_pct = min_perf_pct_min();
2408 static int intel_pstate_unregister_driver(void)
2413 cpufreq_unregister_driver(intel_pstate_driver);
2414 intel_pstate_driver_cleanup();
2419 static ssize_t intel_pstate_show_status(char *buf)
2421 if (!intel_pstate_driver)
2422 return sprintf(buf, "off\n");
2424 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2425 "active" : "passive");
2428 static int intel_pstate_update_status(const char *buf, size_t size)
2432 if (size == 3 && !strncmp(buf, "off", size))
2433 return intel_pstate_driver ?
2434 intel_pstate_unregister_driver() : -EINVAL;
2436 if (size == 6 && !strncmp(buf, "active", size)) {
2437 if (intel_pstate_driver) {
2438 if (intel_pstate_driver == &intel_pstate)
2441 ret = intel_pstate_unregister_driver();
2446 return intel_pstate_register_driver(&intel_pstate);
2449 if (size == 7 && !strncmp(buf, "passive", size)) {
2450 if (intel_pstate_driver) {
2451 if (intel_pstate_driver == &intel_cpufreq)
2454 ret = intel_pstate_unregister_driver();
2459 return intel_pstate_register_driver(&intel_cpufreq);
2465 static int no_load __initdata;
2466 static int no_hwp __initdata;
2467 static int hwp_only __initdata;
2468 static unsigned int force_load __initdata;
2470 static int __init intel_pstate_msrs_not_valid(void)
2472 if (!pstate_funcs.get_max() ||
2473 !pstate_funcs.get_min() ||
2474 !pstate_funcs.get_turbo())
2480 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2482 pstate_funcs.get_max = funcs->get_max;
2483 pstate_funcs.get_max_physical = funcs->get_max_physical;
2484 pstate_funcs.get_min = funcs->get_min;
2485 pstate_funcs.get_turbo = funcs->get_turbo;
2486 pstate_funcs.get_scaling = funcs->get_scaling;
2487 pstate_funcs.get_val = funcs->get_val;
2488 pstate_funcs.get_vid = funcs->get_vid;
2489 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2494 static bool __init intel_pstate_no_acpi_pss(void)
2498 for_each_possible_cpu(i) {
2500 union acpi_object *pss;
2501 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2502 struct acpi_processor *pr = per_cpu(processors, i);
2507 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2508 if (ACPI_FAILURE(status))
2511 pss = buffer.pointer;
2512 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2520 pr_debug("ACPI _PSS not found\n");
2524 static bool __init intel_pstate_no_acpi_pcch(void)
2529 status = acpi_get_handle(NULL, "\\_SB", &handle);
2530 if (ACPI_FAILURE(status))
2533 if (acpi_has_method(handle, "PCCH"))
2537 pr_debug("ACPI PCCH not found\n");
2541 static bool __init intel_pstate_has_acpi_ppc(void)
2545 for_each_possible_cpu(i) {
2546 struct acpi_processor *pr = per_cpu(processors, i);
2550 if (acpi_has_method(pr->handle, "_PPC"))
2553 pr_debug("ACPI _PPC not found\n");
2562 /* Hardware vendor-specific info that has its own power management modes */
2563 static struct acpi_platform_list plat_info[] __initdata = {
2564 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2565 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2566 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2567 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2568 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2569 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2570 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2571 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2572 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2573 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2574 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2575 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2576 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2577 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2578 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2582 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2584 const struct x86_cpu_id *id;
2588 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2590 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2591 if (misc_pwr & (1 << 8)) {
2592 pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2597 idx = acpi_match_platform_list(plat_info);
2601 switch (plat_info[idx].data) {
2603 if (!intel_pstate_no_acpi_pss())
2606 return intel_pstate_no_acpi_pcch();
2608 return intel_pstate_has_acpi_ppc() && !force_load;
2614 static void intel_pstate_request_control_from_smm(void)
2617 * It may be unsafe to request P-states control from SMM if _PPC support
2618 * has not been enabled.
2621 acpi_processor_pstate_control();
2623 #else /* CONFIG_ACPI not enabled */
2624 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2625 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2626 static inline void intel_pstate_request_control_from_smm(void) {}
2627 #endif /* CONFIG_ACPI */
2629 #define INTEL_PSTATE_HWP_BROADWELL 0x01
2631 #define ICPU_HWP(model, hwp_mode) \
2632 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2634 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2635 ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2636 ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2637 ICPU_HWP(X86_MODEL_ANY, 0),
2641 static int __init intel_pstate_init(void)
2643 const struct x86_cpu_id *id;
2646 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2652 id = x86_match_cpu(hwp_support_ids);
2654 copy_cpu_funcs(&core_funcs);
2657 hwp_mode_bdw = id->driver_data;
2658 intel_pstate.attr = hwp_cpufreq_attrs;
2659 goto hwp_cpu_matched;
2662 id = x86_match_cpu(intel_pstate_cpu_ids);
2664 pr_info("CPU model not supported\n");
2668 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2671 if (intel_pstate_msrs_not_valid()) {
2672 pr_info("Invalid MSRs\n");
2678 * The Intel pstate driver will be ignored if the platform
2679 * firmware has its own power management modes.
2681 if (intel_pstate_platform_pwr_mgmt_exists()) {
2682 pr_info("P-states controlled by the platform\n");
2686 if (!hwp_active && hwp_only)
2689 pr_info("Intel P-state driver initializing\n");
2691 all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2695 intel_pstate_request_control_from_smm();
2697 intel_pstate_sysfs_expose_params();
2699 mutex_lock(&intel_pstate_driver_lock);
2700 rc = intel_pstate_register_driver(default_driver);
2701 mutex_unlock(&intel_pstate_driver_lock);
2706 pr_info("HWP enabled\n");
2710 device_initcall(intel_pstate_init);
2712 static int __init intel_pstate_setup(char *str)
2717 if (!strcmp(str, "disable")) {
2719 } else if (!strcmp(str, "passive")) {
2720 pr_info("Passive mode enabled\n");
2721 default_driver = &intel_cpufreq;
2724 if (!strcmp(str, "no_hwp")) {
2725 pr_info("HWP disabled\n");
2728 if (!strcmp(str, "force"))
2730 if (!strcmp(str, "hwp_only"))
2732 if (!strcmp(str, "per_cpu_perf_limits"))
2733 per_cpu_limits = true;
2736 if (!strcmp(str, "support_acpi_ppc"))
2742 early_param("intel_pstate", intel_pstate_setup);
2745 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2746 MODULE_LICENSE("GPL");