]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c
Merge branch 'core-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / gpu / drm / amd / amdkfd / kfd_device_queue_manager.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/ratelimit.h>
25 #include <linux/printk.h>
26 #include <linux/slab.h>
27 #include <linux/list.h>
28 #include <linux/types.h>
29 #include <linux/bitops.h>
30 #include <linux/sched.h>
31 #include "kfd_priv.h"
32 #include "kfd_device_queue_manager.h"
33 #include "kfd_mqd_manager.h"
34 #include "cik_regs.h"
35 #include "kfd_kernel_queue.h"
36
37 /* Size of the per-pipe EOP queue */
38 #define CIK_HPD_EOP_BYTES_LOG2 11
39 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
40
41 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
42                                         unsigned int pasid, unsigned int vmid);
43
44 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
45                                         struct queue *q,
46                                         struct qcm_process_device *qpd);
47
48 static int execute_queues_cpsch(struct device_queue_manager *dqm,
49                                 enum kfd_unmap_queues_filter filter,
50                                 uint32_t filter_param);
51 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
52                                 enum kfd_unmap_queues_filter filter,
53                                 uint32_t filter_param);
54
55 static int map_queues_cpsch(struct device_queue_manager *dqm);
56
57 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
58                                         struct queue *q,
59                                         struct qcm_process_device *qpd);
60
61 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
62                                 unsigned int sdma_queue_id);
63
64 static inline
65 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
66 {
67         if (type == KFD_QUEUE_TYPE_SDMA)
68                 return KFD_MQD_TYPE_SDMA;
69         return KFD_MQD_TYPE_CP;
70 }
71
72 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
73 {
74         int i;
75         int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec
76                 + pipe * dqm->dev->shared_resources.num_queue_per_pipe;
77
78         /* queue is available for KFD usage if bit is 1 */
79         for (i = 0; i <  dqm->dev->shared_resources.num_queue_per_pipe; ++i)
80                 if (test_bit(pipe_offset + i,
81                               dqm->dev->shared_resources.queue_bitmap))
82                         return true;
83         return false;
84 }
85
86 unsigned int get_queues_num(struct device_queue_manager *dqm)
87 {
88         return bitmap_weight(dqm->dev->shared_resources.queue_bitmap,
89                                 KGD_MAX_QUEUES);
90 }
91
92 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
93 {
94         return dqm->dev->shared_resources.num_queue_per_pipe;
95 }
96
97 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
98 {
99         return dqm->dev->shared_resources.num_pipe_per_mec;
100 }
101
102 void program_sh_mem_settings(struct device_queue_manager *dqm,
103                                         struct qcm_process_device *qpd)
104 {
105         return dqm->dev->kfd2kgd->program_sh_mem_settings(
106                                                 dqm->dev->kgd, qpd->vmid,
107                                                 qpd->sh_mem_config,
108                                                 qpd->sh_mem_ape1_base,
109                                                 qpd->sh_mem_ape1_limit,
110                                                 qpd->sh_mem_bases);
111 }
112
113 static int allocate_vmid(struct device_queue_manager *dqm,
114                         struct qcm_process_device *qpd,
115                         struct queue *q)
116 {
117         int bit, allocated_vmid;
118
119         if (dqm->vmid_bitmap == 0)
120                 return -ENOMEM;
121
122         bit = ffs(dqm->vmid_bitmap) - 1;
123         dqm->vmid_bitmap &= ~(1 << bit);
124
125         allocated_vmid = bit + dqm->dev->vm_info.first_vmid_kfd;
126         pr_debug("vmid allocation %d\n", allocated_vmid);
127         qpd->vmid = allocated_vmid;
128         q->properties.vmid = allocated_vmid;
129
130         set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
131         program_sh_mem_settings(dqm, qpd);
132
133         /* qpd->page_table_base is set earlier when register_process()
134          * is called, i.e. when the first queue is created.
135          */
136         dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd,
137                         qpd->vmid,
138                         qpd->page_table_base);
139         /* invalidate the VM context after pasid and vmid mapping is set up */
140         kfd_flush_tlb(qpd_to_pdd(qpd));
141
142         return 0;
143 }
144
145 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev,
146                                 struct qcm_process_device *qpd)
147 {
148         uint32_t len;
149
150         if (!qpd->ib_kaddr)
151                 return -ENOMEM;
152
153         len = pm_create_release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
154
155         return kdev->kfd2kgd->submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid,
156                                 qpd->ib_base, (uint32_t *)qpd->ib_kaddr, len);
157 }
158
159 static void deallocate_vmid(struct device_queue_manager *dqm,
160                                 struct qcm_process_device *qpd,
161                                 struct queue *q)
162 {
163         int bit = qpd->vmid - dqm->dev->vm_info.first_vmid_kfd;
164
165         /* On GFX v7, CP doesn't flush TC at dequeue */
166         if (q->device->device_info->asic_family == CHIP_HAWAII)
167                 if (flush_texture_cache_nocpsch(q->device, qpd))
168                         pr_err("Failed to flush TC\n");
169
170         kfd_flush_tlb(qpd_to_pdd(qpd));
171
172         /* Release the vmid mapping */
173         set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
174
175         dqm->vmid_bitmap |= (1 << bit);
176         qpd->vmid = 0;
177         q->properties.vmid = 0;
178 }
179
180 static int create_queue_nocpsch(struct device_queue_manager *dqm,
181                                 struct queue *q,
182                                 struct qcm_process_device *qpd)
183 {
184         int retval;
185
186         print_queue(q);
187
188         mutex_lock(&dqm->lock);
189
190         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
191                 pr_warn("Can't create new usermode queue because %d queues were already created\n",
192                                 dqm->total_queue_count);
193                 retval = -EPERM;
194                 goto out_unlock;
195         }
196
197         if (list_empty(&qpd->queues_list)) {
198                 retval = allocate_vmid(dqm, qpd, q);
199                 if (retval)
200                         goto out_unlock;
201         }
202         q->properties.vmid = qpd->vmid;
203         /*
204          * Eviction state logic: we only mark active queues as evicted
205          * to avoid the overhead of restoring inactive queues later
206          */
207         if (qpd->evicted)
208                 q->properties.is_evicted = (q->properties.queue_size > 0 &&
209                                             q->properties.queue_percent > 0 &&
210                                             q->properties.queue_address != 0);
211
212         q->properties.tba_addr = qpd->tba_addr;
213         q->properties.tma_addr = qpd->tma_addr;
214
215         if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
216                 retval = create_compute_queue_nocpsch(dqm, q, qpd);
217         else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
218                 retval = create_sdma_queue_nocpsch(dqm, q, qpd);
219         else
220                 retval = -EINVAL;
221
222         if (retval) {
223                 if (list_empty(&qpd->queues_list))
224                         deallocate_vmid(dqm, qpd, q);
225                 goto out_unlock;
226         }
227
228         list_add(&q->list, &qpd->queues_list);
229         qpd->queue_count++;
230         if (q->properties.is_active)
231                 dqm->queue_count++;
232
233         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
234                 dqm->sdma_queue_count++;
235
236         /*
237          * Unconditionally increment this counter, regardless of the queue's
238          * type or whether the queue is active.
239          */
240         dqm->total_queue_count++;
241         pr_debug("Total of %d queues are accountable so far\n",
242                         dqm->total_queue_count);
243
244 out_unlock:
245         mutex_unlock(&dqm->lock);
246         return retval;
247 }
248
249 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
250 {
251         bool set;
252         int pipe, bit, i;
253
254         set = false;
255
256         for (pipe = dqm->next_pipe_to_allocate, i = 0;
257                         i < get_pipes_per_mec(dqm);
258                         pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
259
260                 if (!is_pipe_enabled(dqm, 0, pipe))
261                         continue;
262
263                 if (dqm->allocated_queues[pipe] != 0) {
264                         bit = ffs(dqm->allocated_queues[pipe]) - 1;
265                         dqm->allocated_queues[pipe] &= ~(1 << bit);
266                         q->pipe = pipe;
267                         q->queue = bit;
268                         set = true;
269                         break;
270                 }
271         }
272
273         if (!set)
274                 return -EBUSY;
275
276         pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
277         /* horizontal hqd allocation */
278         dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
279
280         return 0;
281 }
282
283 static inline void deallocate_hqd(struct device_queue_manager *dqm,
284                                 struct queue *q)
285 {
286         dqm->allocated_queues[q->pipe] |= (1 << q->queue);
287 }
288
289 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
290                                         struct queue *q,
291                                         struct qcm_process_device *qpd)
292 {
293         int retval;
294         struct mqd_manager *mqd;
295
296         mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
297         if (!mqd)
298                 return -ENOMEM;
299
300         retval = allocate_hqd(dqm, q);
301         if (retval)
302                 return retval;
303
304         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
305                                 &q->gart_mqd_addr, &q->properties);
306         if (retval)
307                 goto out_deallocate_hqd;
308
309         pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
310                         q->pipe, q->queue);
311
312         dqm->dev->kfd2kgd->set_scratch_backing_va(
313                         dqm->dev->kgd, qpd->sh_hidden_private_base, qpd->vmid);
314
315         if (!q->properties.is_active)
316                 return 0;
317
318         retval = mqd->load_mqd(mqd, q->mqd, q->pipe, q->queue, &q->properties,
319                                q->process->mm);
320         if (retval)
321                 goto out_uninit_mqd;
322
323         return 0;
324
325 out_uninit_mqd:
326         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
327 out_deallocate_hqd:
328         deallocate_hqd(dqm, q);
329
330         return retval;
331 }
332
333 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
334  * to avoid asynchronized access
335  */
336 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
337                                 struct qcm_process_device *qpd,
338                                 struct queue *q)
339 {
340         int retval;
341         struct mqd_manager *mqd;
342
343         mqd = dqm->ops.get_mqd_manager(dqm,
344                 get_mqd_type_from_queue_type(q->properties.type));
345         if (!mqd)
346                 return -ENOMEM;
347
348         if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
349                 deallocate_hqd(dqm, q);
350         } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
351                 dqm->sdma_queue_count--;
352                 deallocate_sdma_queue(dqm, q->sdma_id);
353         } else {
354                 pr_debug("q->properties.type %d is invalid\n",
355                                 q->properties.type);
356                 return -EINVAL;
357         }
358         dqm->total_queue_count--;
359
360         retval = mqd->destroy_mqd(mqd, q->mqd,
361                                 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
362                                 KFD_UNMAP_LATENCY_MS,
363                                 q->pipe, q->queue);
364         if (retval == -ETIME)
365                 qpd->reset_wavefronts = true;
366
367         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
368
369         list_del(&q->list);
370         if (list_empty(&qpd->queues_list)) {
371                 if (qpd->reset_wavefronts) {
372                         pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
373                                         dqm->dev);
374                         /* dbgdev_wave_reset_wavefronts has to be called before
375                          * deallocate_vmid(), i.e. when vmid is still in use.
376                          */
377                         dbgdev_wave_reset_wavefronts(dqm->dev,
378                                         qpd->pqm->process);
379                         qpd->reset_wavefronts = false;
380                 }
381
382                 deallocate_vmid(dqm, qpd, q);
383         }
384         qpd->queue_count--;
385         if (q->properties.is_active)
386                 dqm->queue_count--;
387
388         return retval;
389 }
390
391 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
392                                 struct qcm_process_device *qpd,
393                                 struct queue *q)
394 {
395         int retval;
396
397         mutex_lock(&dqm->lock);
398         retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
399         mutex_unlock(&dqm->lock);
400
401         return retval;
402 }
403
404 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
405 {
406         int retval;
407         struct mqd_manager *mqd;
408         struct kfd_process_device *pdd;
409         bool prev_active = false;
410
411         mutex_lock(&dqm->lock);
412         pdd = kfd_get_process_device_data(q->device, q->process);
413         if (!pdd) {
414                 retval = -ENODEV;
415                 goto out_unlock;
416         }
417         mqd = dqm->ops.get_mqd_manager(dqm,
418                         get_mqd_type_from_queue_type(q->properties.type));
419         if (!mqd) {
420                 retval = -ENOMEM;
421                 goto out_unlock;
422         }
423         /*
424          * Eviction state logic: we only mark active queues as evicted
425          * to avoid the overhead of restoring inactive queues later
426          */
427         if (pdd->qpd.evicted)
428                 q->properties.is_evicted = (q->properties.queue_size > 0 &&
429                                             q->properties.queue_percent > 0 &&
430                                             q->properties.queue_address != 0);
431
432         /* Save previous activity state for counters */
433         prev_active = q->properties.is_active;
434
435         /* Make sure the queue is unmapped before updating the MQD */
436         if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
437                 retval = unmap_queues_cpsch(dqm,
438                                 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
439                 if (retval) {
440                         pr_err("unmap queue failed\n");
441                         goto out_unlock;
442                 }
443         } else if (prev_active &&
444                    (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
445                     q->properties.type == KFD_QUEUE_TYPE_SDMA)) {
446                 retval = mqd->destroy_mqd(mqd, q->mqd,
447                                 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
448                                 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
449                 if (retval) {
450                         pr_err("destroy mqd failed\n");
451                         goto out_unlock;
452                 }
453         }
454
455         retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
456
457         /*
458          * check active state vs. the previous state and modify
459          * counter accordingly. map_queues_cpsch uses the
460          * dqm->queue_count to determine whether a new runlist must be
461          * uploaded.
462          */
463         if (q->properties.is_active && !prev_active)
464                 dqm->queue_count++;
465         else if (!q->properties.is_active && prev_active)
466                 dqm->queue_count--;
467
468         if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS)
469                 retval = map_queues_cpsch(dqm);
470         else if (q->properties.is_active &&
471                  (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
472                   q->properties.type == KFD_QUEUE_TYPE_SDMA))
473                 retval = mqd->load_mqd(mqd, q->mqd, q->pipe, q->queue,
474                                        &q->properties, q->process->mm);
475
476 out_unlock:
477         mutex_unlock(&dqm->lock);
478         return retval;
479 }
480
481 static struct mqd_manager *get_mqd_manager(
482                 struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
483 {
484         struct mqd_manager *mqd;
485
486         if (WARN_ON(type >= KFD_MQD_TYPE_MAX))
487                 return NULL;
488
489         pr_debug("mqd type %d\n", type);
490
491         mqd = dqm->mqds[type];
492         if (!mqd) {
493                 mqd = mqd_manager_init(type, dqm->dev);
494                 if (!mqd)
495                         pr_err("mqd manager is NULL");
496                 dqm->mqds[type] = mqd;
497         }
498
499         return mqd;
500 }
501
502 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
503                                         struct qcm_process_device *qpd)
504 {
505         struct queue *q;
506         struct mqd_manager *mqd;
507         struct kfd_process_device *pdd;
508         int retval = 0;
509
510         mutex_lock(&dqm->lock);
511         if (qpd->evicted++ > 0) /* already evicted, do nothing */
512                 goto out;
513
514         pdd = qpd_to_pdd(qpd);
515         pr_info_ratelimited("Evicting PASID %u queues\n",
516                             pdd->process->pasid);
517
518         /* unactivate all active queues on the qpd */
519         list_for_each_entry(q, &qpd->queues_list, list) {
520                 if (!q->properties.is_active)
521                         continue;
522                 mqd = dqm->ops.get_mqd_manager(dqm,
523                         get_mqd_type_from_queue_type(q->properties.type));
524                 if (!mqd) { /* should not be here */
525                         pr_err("Cannot evict queue, mqd mgr is NULL\n");
526                         retval = -ENOMEM;
527                         goto out;
528                 }
529                 q->properties.is_evicted = true;
530                 q->properties.is_active = false;
531                 retval = mqd->destroy_mqd(mqd, q->mqd,
532                                 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
533                                 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
534                 if (retval)
535                         goto out;
536                 dqm->queue_count--;
537         }
538
539 out:
540         mutex_unlock(&dqm->lock);
541         return retval;
542 }
543
544 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
545                                       struct qcm_process_device *qpd)
546 {
547         struct queue *q;
548         struct kfd_process_device *pdd;
549         int retval = 0;
550
551         mutex_lock(&dqm->lock);
552         if (qpd->evicted++ > 0) /* already evicted, do nothing */
553                 goto out;
554
555         pdd = qpd_to_pdd(qpd);
556         pr_info_ratelimited("Evicting PASID %u queues\n",
557                             pdd->process->pasid);
558
559         /* unactivate all active queues on the qpd */
560         list_for_each_entry(q, &qpd->queues_list, list) {
561                 if (!q->properties.is_active)
562                         continue;
563                 q->properties.is_evicted = true;
564                 q->properties.is_active = false;
565                 dqm->queue_count--;
566         }
567         retval = execute_queues_cpsch(dqm,
568                                 qpd->is_debug ?
569                                 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
570                                 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
571
572 out:
573         mutex_unlock(&dqm->lock);
574         return retval;
575 }
576
577 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
578                                           struct qcm_process_device *qpd)
579 {
580         struct queue *q;
581         struct mqd_manager *mqd;
582         struct kfd_process_device *pdd;
583         uint32_t pd_base;
584         int retval = 0;
585
586         pdd = qpd_to_pdd(qpd);
587         /* Retrieve PD base */
588         pd_base = dqm->dev->kfd2kgd->get_process_page_dir(pdd->vm);
589
590         mutex_lock(&dqm->lock);
591         if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
592                 goto out;
593         if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
594                 qpd->evicted--;
595                 goto out;
596         }
597
598         pr_info_ratelimited("Restoring PASID %u queues\n",
599                             pdd->process->pasid);
600
601         /* Update PD Base in QPD */
602         qpd->page_table_base = pd_base;
603         pr_debug("Updated PD address to 0x%08x\n", pd_base);
604
605         if (!list_empty(&qpd->queues_list)) {
606                 dqm->dev->kfd2kgd->set_vm_context_page_table_base(
607                                 dqm->dev->kgd,
608                                 qpd->vmid,
609                                 qpd->page_table_base);
610                 kfd_flush_tlb(pdd);
611         }
612
613         /* activate all active queues on the qpd */
614         list_for_each_entry(q, &qpd->queues_list, list) {
615                 if (!q->properties.is_evicted)
616                         continue;
617                 mqd = dqm->ops.get_mqd_manager(dqm,
618                         get_mqd_type_from_queue_type(q->properties.type));
619                 if (!mqd) { /* should not be here */
620                         pr_err("Cannot restore queue, mqd mgr is NULL\n");
621                         retval = -ENOMEM;
622                         goto out;
623                 }
624                 q->properties.is_evicted = false;
625                 q->properties.is_active = true;
626                 retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
627                                        q->queue, &q->properties,
628                                        q->process->mm);
629                 if (retval)
630                         goto out;
631                 dqm->queue_count++;
632         }
633         qpd->evicted = 0;
634 out:
635         mutex_unlock(&dqm->lock);
636         return retval;
637 }
638
639 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
640                                         struct qcm_process_device *qpd)
641 {
642         struct queue *q;
643         struct kfd_process_device *pdd;
644         uint32_t pd_base;
645         int retval = 0;
646
647         pdd = qpd_to_pdd(qpd);
648         /* Retrieve PD base */
649         pd_base = dqm->dev->kfd2kgd->get_process_page_dir(pdd->vm);
650
651         mutex_lock(&dqm->lock);
652         if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
653                 goto out;
654         if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
655                 qpd->evicted--;
656                 goto out;
657         }
658
659         pr_info_ratelimited("Restoring PASID %u queues\n",
660                             pdd->process->pasid);
661
662         /* Update PD Base in QPD */
663         qpd->page_table_base = pd_base;
664         pr_debug("Updated PD address to 0x%08x\n", pd_base);
665
666         /* activate all active queues on the qpd */
667         list_for_each_entry(q, &qpd->queues_list, list) {
668                 if (!q->properties.is_evicted)
669                         continue;
670                 q->properties.is_evicted = false;
671                 q->properties.is_active = true;
672                 dqm->queue_count++;
673         }
674         retval = execute_queues_cpsch(dqm,
675                                 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
676         if (!retval)
677                 qpd->evicted = 0;
678 out:
679         mutex_unlock(&dqm->lock);
680         return retval;
681 }
682
683 static int register_process(struct device_queue_manager *dqm,
684                                         struct qcm_process_device *qpd)
685 {
686         struct device_process_node *n;
687         struct kfd_process_device *pdd;
688         uint32_t pd_base;
689         int retval;
690
691         n = kzalloc(sizeof(*n), GFP_KERNEL);
692         if (!n)
693                 return -ENOMEM;
694
695         n->qpd = qpd;
696
697         pdd = qpd_to_pdd(qpd);
698         /* Retrieve PD base */
699         pd_base = dqm->dev->kfd2kgd->get_process_page_dir(pdd->vm);
700
701         mutex_lock(&dqm->lock);
702         list_add(&n->list, &dqm->queues);
703
704         /* Update PD Base in QPD */
705         qpd->page_table_base = pd_base;
706
707         retval = dqm->asic_ops.update_qpd(dqm, qpd);
708
709         dqm->processes_count++;
710
711         mutex_unlock(&dqm->lock);
712
713         return retval;
714 }
715
716 static int unregister_process(struct device_queue_manager *dqm,
717                                         struct qcm_process_device *qpd)
718 {
719         int retval;
720         struct device_process_node *cur, *next;
721
722         pr_debug("qpd->queues_list is %s\n",
723                         list_empty(&qpd->queues_list) ? "empty" : "not empty");
724
725         retval = 0;
726         mutex_lock(&dqm->lock);
727
728         list_for_each_entry_safe(cur, next, &dqm->queues, list) {
729                 if (qpd == cur->qpd) {
730                         list_del(&cur->list);
731                         kfree(cur);
732                         dqm->processes_count--;
733                         goto out;
734                 }
735         }
736         /* qpd not found in dqm list */
737         retval = 1;
738 out:
739         mutex_unlock(&dqm->lock);
740         return retval;
741 }
742
743 static int
744 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
745                         unsigned int vmid)
746 {
747         uint32_t pasid_mapping;
748
749         pasid_mapping = (pasid == 0) ? 0 :
750                 (uint32_t)pasid |
751                 ATC_VMID_PASID_MAPPING_VALID;
752
753         return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
754                                                 dqm->dev->kgd, pasid_mapping,
755                                                 vmid);
756 }
757
758 static void init_interrupts(struct device_queue_manager *dqm)
759 {
760         unsigned int i;
761
762         for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
763                 if (is_pipe_enabled(dqm, 0, i))
764                         dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i);
765 }
766
767 static int initialize_nocpsch(struct device_queue_manager *dqm)
768 {
769         int pipe, queue;
770
771         pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
772
773         dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
774                                         sizeof(unsigned int), GFP_KERNEL);
775         if (!dqm->allocated_queues)
776                 return -ENOMEM;
777
778         mutex_init(&dqm->lock);
779         INIT_LIST_HEAD(&dqm->queues);
780         dqm->queue_count = dqm->next_pipe_to_allocate = 0;
781         dqm->sdma_queue_count = 0;
782
783         for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
784                 int pipe_offset = pipe * get_queues_per_pipe(dqm);
785
786                 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
787                         if (test_bit(pipe_offset + queue,
788                                      dqm->dev->shared_resources.queue_bitmap))
789                                 dqm->allocated_queues[pipe] |= 1 << queue;
790         }
791
792         dqm->vmid_bitmap = (1 << dqm->dev->vm_info.vmid_num_kfd) - 1;
793         dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
794
795         return 0;
796 }
797
798 static void uninitialize(struct device_queue_manager *dqm)
799 {
800         int i;
801
802         WARN_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
803
804         kfree(dqm->allocated_queues);
805         for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
806                 kfree(dqm->mqds[i]);
807         mutex_destroy(&dqm->lock);
808         kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
809 }
810
811 static int start_nocpsch(struct device_queue_manager *dqm)
812 {
813         init_interrupts(dqm);
814         return pm_init(&dqm->packets, dqm);
815 }
816
817 static int stop_nocpsch(struct device_queue_manager *dqm)
818 {
819         pm_uninit(&dqm->packets);
820         return 0;
821 }
822
823 static int allocate_sdma_queue(struct device_queue_manager *dqm,
824                                 unsigned int *sdma_queue_id)
825 {
826         int bit;
827
828         if (dqm->sdma_bitmap == 0)
829                 return -ENOMEM;
830
831         bit = ffs(dqm->sdma_bitmap) - 1;
832         dqm->sdma_bitmap &= ~(1 << bit);
833         *sdma_queue_id = bit;
834
835         return 0;
836 }
837
838 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
839                                 unsigned int sdma_queue_id)
840 {
841         if (sdma_queue_id >= CIK_SDMA_QUEUES)
842                 return;
843         dqm->sdma_bitmap |= (1 << sdma_queue_id);
844 }
845
846 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
847                                         struct queue *q,
848                                         struct qcm_process_device *qpd)
849 {
850         struct mqd_manager *mqd;
851         int retval;
852
853         mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
854         if (!mqd)
855                 return -ENOMEM;
856
857         retval = allocate_sdma_queue(dqm, &q->sdma_id);
858         if (retval)
859                 return retval;
860
861         q->properties.sdma_queue_id = q->sdma_id / CIK_SDMA_QUEUES_PER_ENGINE;
862         q->properties.sdma_engine_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
863
864         pr_debug("SDMA id is:    %d\n", q->sdma_id);
865         pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
866         pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
867
868         dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
869         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
870                                 &q->gart_mqd_addr, &q->properties);
871         if (retval)
872                 goto out_deallocate_sdma_queue;
873
874         retval = mqd->load_mqd(mqd, q->mqd, 0, 0, &q->properties, NULL);
875         if (retval)
876                 goto out_uninit_mqd;
877
878         return 0;
879
880 out_uninit_mqd:
881         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
882 out_deallocate_sdma_queue:
883         deallocate_sdma_queue(dqm, q->sdma_id);
884
885         return retval;
886 }
887
888 /*
889  * Device Queue Manager implementation for cp scheduler
890  */
891
892 static int set_sched_resources(struct device_queue_manager *dqm)
893 {
894         int i, mec;
895         struct scheduling_resources res;
896
897         res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap;
898
899         res.queue_mask = 0;
900         for (i = 0; i < KGD_MAX_QUEUES; ++i) {
901                 mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
902                         / dqm->dev->shared_resources.num_pipe_per_mec;
903
904                 if (!test_bit(i, dqm->dev->shared_resources.queue_bitmap))
905                         continue;
906
907                 /* only acquire queues from the first MEC */
908                 if (mec > 0)
909                         continue;
910
911                 /* This situation may be hit in the future if a new HW
912                  * generation exposes more than 64 queues. If so, the
913                  * definition of res.queue_mask needs updating
914                  */
915                 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
916                         pr_err("Invalid queue enabled by amdgpu: %d\n", i);
917                         break;
918                 }
919
920                 res.queue_mask |= (1ull << i);
921         }
922         res.gws_mask = res.oac_mask = res.gds_heap_base =
923                                                 res.gds_heap_size = 0;
924
925         pr_debug("Scheduling resources:\n"
926                         "vmid mask: 0x%8X\n"
927                         "queue mask: 0x%8llX\n",
928                         res.vmid_mask, res.queue_mask);
929
930         return pm_send_set_resources(&dqm->packets, &res);
931 }
932
933 static int initialize_cpsch(struct device_queue_manager *dqm)
934 {
935         pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
936
937         mutex_init(&dqm->lock);
938         INIT_LIST_HEAD(&dqm->queues);
939         dqm->queue_count = dqm->processes_count = 0;
940         dqm->sdma_queue_count = 0;
941         dqm->active_runlist = false;
942         dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
943
944         return 0;
945 }
946
947 static int start_cpsch(struct device_queue_manager *dqm)
948 {
949         int retval;
950
951         retval = 0;
952
953         retval = pm_init(&dqm->packets, dqm);
954         if (retval)
955                 goto fail_packet_manager_init;
956
957         retval = set_sched_resources(dqm);
958         if (retval)
959                 goto fail_set_sched_resources;
960
961         pr_debug("Allocating fence memory\n");
962
963         /* allocate fence memory on the gart */
964         retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
965                                         &dqm->fence_mem);
966
967         if (retval)
968                 goto fail_allocate_vidmem;
969
970         dqm->fence_addr = dqm->fence_mem->cpu_ptr;
971         dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
972
973         init_interrupts(dqm);
974
975         mutex_lock(&dqm->lock);
976         execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
977         mutex_unlock(&dqm->lock);
978
979         return 0;
980 fail_allocate_vidmem:
981 fail_set_sched_resources:
982         pm_uninit(&dqm->packets);
983 fail_packet_manager_init:
984         return retval;
985 }
986
987 static int stop_cpsch(struct device_queue_manager *dqm)
988 {
989         mutex_lock(&dqm->lock);
990         unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
991         mutex_unlock(&dqm->lock);
992
993         kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
994         pm_uninit(&dqm->packets);
995
996         return 0;
997 }
998
999 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1000                                         struct kernel_queue *kq,
1001                                         struct qcm_process_device *qpd)
1002 {
1003         mutex_lock(&dqm->lock);
1004         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1005                 pr_warn("Can't create new kernel queue because %d queues were already created\n",
1006                                 dqm->total_queue_count);
1007                 mutex_unlock(&dqm->lock);
1008                 return -EPERM;
1009         }
1010
1011         /*
1012          * Unconditionally increment this counter, regardless of the queue's
1013          * type or whether the queue is active.
1014          */
1015         dqm->total_queue_count++;
1016         pr_debug("Total of %d queues are accountable so far\n",
1017                         dqm->total_queue_count);
1018
1019         list_add(&kq->list, &qpd->priv_queue_list);
1020         dqm->queue_count++;
1021         qpd->is_debug = true;
1022         execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1023         mutex_unlock(&dqm->lock);
1024
1025         return 0;
1026 }
1027
1028 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1029                                         struct kernel_queue *kq,
1030                                         struct qcm_process_device *qpd)
1031 {
1032         mutex_lock(&dqm->lock);
1033         list_del(&kq->list);
1034         dqm->queue_count--;
1035         qpd->is_debug = false;
1036         execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1037         /*
1038          * Unconditionally decrement this counter, regardless of the queue's
1039          * type.
1040          */
1041         dqm->total_queue_count--;
1042         pr_debug("Total of %d queues are accountable so far\n",
1043                         dqm->total_queue_count);
1044         mutex_unlock(&dqm->lock);
1045 }
1046
1047 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1048                         struct qcm_process_device *qpd)
1049 {
1050         int retval;
1051         struct mqd_manager *mqd;
1052
1053         retval = 0;
1054
1055         mutex_lock(&dqm->lock);
1056
1057         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1058                 pr_warn("Can't create new usermode queue because %d queues were already created\n",
1059                                 dqm->total_queue_count);
1060                 retval = -EPERM;
1061                 goto out_unlock;
1062         }
1063
1064         if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1065                 retval = allocate_sdma_queue(dqm, &q->sdma_id);
1066                 if (retval)
1067                         goto out_unlock;
1068                 q->properties.sdma_queue_id =
1069                         q->sdma_id / CIK_SDMA_QUEUES_PER_ENGINE;
1070                 q->properties.sdma_engine_id =
1071                         q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
1072         }
1073         mqd = dqm->ops.get_mqd_manager(dqm,
1074                         get_mqd_type_from_queue_type(q->properties.type));
1075
1076         if (!mqd) {
1077                 retval = -ENOMEM;
1078                 goto out_deallocate_sdma_queue;
1079         }
1080         /*
1081          * Eviction state logic: we only mark active queues as evicted
1082          * to avoid the overhead of restoring inactive queues later
1083          */
1084         if (qpd->evicted)
1085                 q->properties.is_evicted = (q->properties.queue_size > 0 &&
1086                                             q->properties.queue_percent > 0 &&
1087                                             q->properties.queue_address != 0);
1088
1089         dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1090
1091         q->properties.tba_addr = qpd->tba_addr;
1092         q->properties.tma_addr = qpd->tma_addr;
1093         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
1094                                 &q->gart_mqd_addr, &q->properties);
1095         if (retval)
1096                 goto out_deallocate_sdma_queue;
1097
1098         list_add(&q->list, &qpd->queues_list);
1099         qpd->queue_count++;
1100         if (q->properties.is_active) {
1101                 dqm->queue_count++;
1102                 retval = execute_queues_cpsch(dqm,
1103                                 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1104         }
1105
1106         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1107                 dqm->sdma_queue_count++;
1108         /*
1109          * Unconditionally increment this counter, regardless of the queue's
1110          * type or whether the queue is active.
1111          */
1112         dqm->total_queue_count++;
1113
1114         pr_debug("Total of %d queues are accountable so far\n",
1115                         dqm->total_queue_count);
1116
1117         mutex_unlock(&dqm->lock);
1118         return retval;
1119
1120 out_deallocate_sdma_queue:
1121         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1122                 deallocate_sdma_queue(dqm, q->sdma_id);
1123 out_unlock:
1124         mutex_unlock(&dqm->lock);
1125         return retval;
1126 }
1127
1128 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
1129                                 unsigned int fence_value,
1130                                 unsigned int timeout_ms)
1131 {
1132         unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1133
1134         while (*fence_addr != fence_value) {
1135                 if (time_after(jiffies, end_jiffies)) {
1136                         pr_err("qcm fence wait loop timeout expired\n");
1137                         return -ETIME;
1138                 }
1139                 schedule();
1140         }
1141
1142         return 0;
1143 }
1144
1145 static int unmap_sdma_queues(struct device_queue_manager *dqm,
1146                                 unsigned int sdma_engine)
1147 {
1148         return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
1149                         KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, false,
1150                         sdma_engine);
1151 }
1152
1153 /* dqm->lock mutex has to be locked before calling this function */
1154 static int map_queues_cpsch(struct device_queue_manager *dqm)
1155 {
1156         int retval;
1157
1158         if (dqm->queue_count <= 0 || dqm->processes_count <= 0)
1159                 return 0;
1160
1161         if (dqm->active_runlist)
1162                 return 0;
1163
1164         retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1165         if (retval) {
1166                 pr_err("failed to execute runlist\n");
1167                 return retval;
1168         }
1169         dqm->active_runlist = true;
1170
1171         return retval;
1172 }
1173
1174 /* dqm->lock mutex has to be locked before calling this function */
1175 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1176                                 enum kfd_unmap_queues_filter filter,
1177                                 uint32_t filter_param)
1178 {
1179         int retval = 0;
1180
1181         if (!dqm->active_runlist)
1182                 return retval;
1183
1184         pr_debug("Before destroying queues, sdma queue count is : %u\n",
1185                 dqm->sdma_queue_count);
1186
1187         if (dqm->sdma_queue_count > 0) {
1188                 unmap_sdma_queues(dqm, 0);
1189                 unmap_sdma_queues(dqm, 1);
1190         }
1191
1192         retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
1193                         filter, filter_param, false, 0);
1194         if (retval)
1195                 return retval;
1196
1197         *dqm->fence_addr = KFD_FENCE_INIT;
1198         pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
1199                                 KFD_FENCE_COMPLETED);
1200         /* should be timed out */
1201         retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1202                                 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
1203         if (retval)
1204                 return retval;
1205
1206         pm_release_ib(&dqm->packets);
1207         dqm->active_runlist = false;
1208
1209         return retval;
1210 }
1211
1212 /* dqm->lock mutex has to be locked before calling this function */
1213 static int execute_queues_cpsch(struct device_queue_manager *dqm,
1214                                 enum kfd_unmap_queues_filter filter,
1215                                 uint32_t filter_param)
1216 {
1217         int retval;
1218
1219         retval = unmap_queues_cpsch(dqm, filter, filter_param);
1220         if (retval) {
1221                 pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1222                 return retval;
1223         }
1224
1225         return map_queues_cpsch(dqm);
1226 }
1227
1228 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1229                                 struct qcm_process_device *qpd,
1230                                 struct queue *q)
1231 {
1232         int retval;
1233         struct mqd_manager *mqd;
1234         bool preempt_all_queues;
1235
1236         preempt_all_queues = false;
1237
1238         retval = 0;
1239
1240         /* remove queue from list to prevent rescheduling after preemption */
1241         mutex_lock(&dqm->lock);
1242
1243         if (qpd->is_debug) {
1244                 /*
1245                  * error, currently we do not allow to destroy a queue
1246                  * of a currently debugged process
1247                  */
1248                 retval = -EBUSY;
1249                 goto failed_try_destroy_debugged_queue;
1250
1251         }
1252
1253         mqd = dqm->ops.get_mqd_manager(dqm,
1254                         get_mqd_type_from_queue_type(q->properties.type));
1255         if (!mqd) {
1256                 retval = -ENOMEM;
1257                 goto failed;
1258         }
1259
1260         if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1261                 dqm->sdma_queue_count--;
1262                 deallocate_sdma_queue(dqm, q->sdma_id);
1263         }
1264
1265         list_del(&q->list);
1266         qpd->queue_count--;
1267         if (q->properties.is_active) {
1268                 dqm->queue_count--;
1269                 retval = execute_queues_cpsch(dqm,
1270                                 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1271                 if (retval == -ETIME)
1272                         qpd->reset_wavefronts = true;
1273         }
1274
1275         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
1276
1277         /*
1278          * Unconditionally decrement this counter, regardless of the queue's
1279          * type
1280          */
1281         dqm->total_queue_count--;
1282         pr_debug("Total of %d queues are accountable so far\n",
1283                         dqm->total_queue_count);
1284
1285         mutex_unlock(&dqm->lock);
1286
1287         return retval;
1288
1289 failed:
1290 failed_try_destroy_debugged_queue:
1291
1292         mutex_unlock(&dqm->lock);
1293         return retval;
1294 }
1295
1296 /*
1297  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1298  * stay in user mode.
1299  */
1300 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1301 /* APE1 limit is inclusive and 64K aligned. */
1302 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1303
1304 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1305                                    struct qcm_process_device *qpd,
1306                                    enum cache_policy default_policy,
1307                                    enum cache_policy alternate_policy,
1308                                    void __user *alternate_aperture_base,
1309                                    uint64_t alternate_aperture_size)
1310 {
1311         bool retval;
1312
1313         mutex_lock(&dqm->lock);
1314
1315         if (alternate_aperture_size == 0) {
1316                 /* base > limit disables APE1 */
1317                 qpd->sh_mem_ape1_base = 1;
1318                 qpd->sh_mem_ape1_limit = 0;
1319         } else {
1320                 /*
1321                  * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1322                  *                      SH_MEM_APE1_BASE[31:0], 0x0000 }
1323                  * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1324                  *                      SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1325                  * Verify that the base and size parameters can be
1326                  * represented in this format and convert them.
1327                  * Additionally restrict APE1 to user-mode addresses.
1328                  */
1329
1330                 uint64_t base = (uintptr_t)alternate_aperture_base;
1331                 uint64_t limit = base + alternate_aperture_size - 1;
1332
1333                 if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
1334                    (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
1335                         retval = false;
1336                         goto out;
1337                 }
1338
1339                 qpd->sh_mem_ape1_base = base >> 16;
1340                 qpd->sh_mem_ape1_limit = limit >> 16;
1341         }
1342
1343         retval = dqm->asic_ops.set_cache_memory_policy(
1344                         dqm,
1345                         qpd,
1346                         default_policy,
1347                         alternate_policy,
1348                         alternate_aperture_base,
1349                         alternate_aperture_size);
1350
1351         if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1352                 program_sh_mem_settings(dqm, qpd);
1353
1354         pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1355                 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1356                 qpd->sh_mem_ape1_limit);
1357
1358 out:
1359         mutex_unlock(&dqm->lock);
1360         return retval;
1361 }
1362
1363 static int set_trap_handler(struct device_queue_manager *dqm,
1364                                 struct qcm_process_device *qpd,
1365                                 uint64_t tba_addr,
1366                                 uint64_t tma_addr)
1367 {
1368         uint64_t *tma;
1369
1370         if (dqm->dev->cwsr_enabled) {
1371                 /* Jump from CWSR trap handler to user trap */
1372                 tma = (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1373                 tma[0] = tba_addr;
1374                 tma[1] = tma_addr;
1375         } else {
1376                 qpd->tba_addr = tba_addr;
1377                 qpd->tma_addr = tma_addr;
1378         }
1379
1380         return 0;
1381 }
1382
1383 static int process_termination_nocpsch(struct device_queue_manager *dqm,
1384                 struct qcm_process_device *qpd)
1385 {
1386         struct queue *q, *next;
1387         struct device_process_node *cur, *next_dpn;
1388         int retval = 0;
1389
1390         mutex_lock(&dqm->lock);
1391
1392         /* Clear all user mode queues */
1393         list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1394                 int ret;
1395
1396                 ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
1397                 if (ret)
1398                         retval = ret;
1399         }
1400
1401         /* Unregister process */
1402         list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1403                 if (qpd == cur->qpd) {
1404                         list_del(&cur->list);
1405                         kfree(cur);
1406                         dqm->processes_count--;
1407                         break;
1408                 }
1409         }
1410
1411         mutex_unlock(&dqm->lock);
1412         return retval;
1413 }
1414
1415
1416 static int process_termination_cpsch(struct device_queue_manager *dqm,
1417                 struct qcm_process_device *qpd)
1418 {
1419         int retval;
1420         struct queue *q, *next;
1421         struct kernel_queue *kq, *kq_next;
1422         struct mqd_manager *mqd;
1423         struct device_process_node *cur, *next_dpn;
1424         enum kfd_unmap_queues_filter filter =
1425                 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
1426
1427         retval = 0;
1428
1429         mutex_lock(&dqm->lock);
1430
1431         /* Clean all kernel queues */
1432         list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
1433                 list_del(&kq->list);
1434                 dqm->queue_count--;
1435                 qpd->is_debug = false;
1436                 dqm->total_queue_count--;
1437                 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
1438         }
1439
1440         /* Clear all user mode queues */
1441         list_for_each_entry(q, &qpd->queues_list, list) {
1442                 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1443                         dqm->sdma_queue_count--;
1444                         deallocate_sdma_queue(dqm, q->sdma_id);
1445                 }
1446
1447                 if (q->properties.is_active)
1448                         dqm->queue_count--;
1449
1450                 dqm->total_queue_count--;
1451         }
1452
1453         /* Unregister process */
1454         list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1455                 if (qpd == cur->qpd) {
1456                         list_del(&cur->list);
1457                         kfree(cur);
1458                         dqm->processes_count--;
1459                         break;
1460                 }
1461         }
1462
1463         retval = execute_queues_cpsch(dqm, filter, 0);
1464         if (retval || qpd->reset_wavefronts) {
1465                 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
1466                 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
1467                 qpd->reset_wavefronts = false;
1468         }
1469
1470         /* lastly, free mqd resources */
1471         list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1472                 mqd = dqm->ops.get_mqd_manager(dqm,
1473                         get_mqd_type_from_queue_type(q->properties.type));
1474                 if (!mqd) {
1475                         retval = -ENOMEM;
1476                         goto out;
1477                 }
1478                 list_del(&q->list);
1479                 qpd->queue_count--;
1480                 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
1481         }
1482
1483 out:
1484         mutex_unlock(&dqm->lock);
1485         return retval;
1486 }
1487
1488 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1489 {
1490         struct device_queue_manager *dqm;
1491
1492         pr_debug("Loading device queue manager\n");
1493
1494         dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
1495         if (!dqm)
1496                 return NULL;
1497
1498         switch (dev->device_info->asic_family) {
1499         /* HWS is not available on Hawaii. */
1500         case CHIP_HAWAII:
1501         /* HWS depends on CWSR for timely dequeue. CWSR is not
1502          * available on Tonga.
1503          *
1504          * FIXME: This argument also applies to Kaveri.
1505          */
1506         case CHIP_TONGA:
1507                 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
1508                 break;
1509         default:
1510                 dqm->sched_policy = sched_policy;
1511                 break;
1512         }
1513
1514         dqm->dev = dev;
1515         switch (dqm->sched_policy) {
1516         case KFD_SCHED_POLICY_HWS:
1517         case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1518                 /* initialize dqm for cp scheduling */
1519                 dqm->ops.create_queue = create_queue_cpsch;
1520                 dqm->ops.initialize = initialize_cpsch;
1521                 dqm->ops.start = start_cpsch;
1522                 dqm->ops.stop = stop_cpsch;
1523                 dqm->ops.destroy_queue = destroy_queue_cpsch;
1524                 dqm->ops.update_queue = update_queue;
1525                 dqm->ops.get_mqd_manager = get_mqd_manager;
1526                 dqm->ops.register_process = register_process;
1527                 dqm->ops.unregister_process = unregister_process;
1528                 dqm->ops.uninitialize = uninitialize;
1529                 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1530                 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1531                 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1532                 dqm->ops.set_trap_handler = set_trap_handler;
1533                 dqm->ops.process_termination = process_termination_cpsch;
1534                 dqm->ops.evict_process_queues = evict_process_queues_cpsch;
1535                 dqm->ops.restore_process_queues = restore_process_queues_cpsch;
1536                 break;
1537         case KFD_SCHED_POLICY_NO_HWS:
1538                 /* initialize dqm for no cp scheduling */
1539                 dqm->ops.start = start_nocpsch;
1540                 dqm->ops.stop = stop_nocpsch;
1541                 dqm->ops.create_queue = create_queue_nocpsch;
1542                 dqm->ops.destroy_queue = destroy_queue_nocpsch;
1543                 dqm->ops.update_queue = update_queue;
1544                 dqm->ops.get_mqd_manager = get_mqd_manager;
1545                 dqm->ops.register_process = register_process;
1546                 dqm->ops.unregister_process = unregister_process;
1547                 dqm->ops.initialize = initialize_nocpsch;
1548                 dqm->ops.uninitialize = uninitialize;
1549                 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1550                 dqm->ops.set_trap_handler = set_trap_handler;
1551                 dqm->ops.process_termination = process_termination_nocpsch;
1552                 dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
1553                 dqm->ops.restore_process_queues =
1554                         restore_process_queues_nocpsch;
1555                 break;
1556         default:
1557                 pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
1558                 goto out_free;
1559         }
1560
1561         switch (dev->device_info->asic_family) {
1562         case CHIP_CARRIZO:
1563                 device_queue_manager_init_vi(&dqm->asic_ops);
1564                 break;
1565
1566         case CHIP_KAVERI:
1567                 device_queue_manager_init_cik(&dqm->asic_ops);
1568                 break;
1569
1570         case CHIP_HAWAII:
1571                 device_queue_manager_init_cik_hawaii(&dqm->asic_ops);
1572                 break;
1573
1574         case CHIP_TONGA:
1575         case CHIP_FIJI:
1576         case CHIP_POLARIS10:
1577         case CHIP_POLARIS11:
1578                 device_queue_manager_init_vi_tonga(&dqm->asic_ops);
1579                 break;
1580         default:
1581                 WARN(1, "Unexpected ASIC family %u",
1582                      dev->device_info->asic_family);
1583                 goto out_free;
1584         }
1585
1586         if (!dqm->ops.initialize(dqm))
1587                 return dqm;
1588
1589 out_free:
1590         kfree(dqm);
1591         return NULL;
1592 }
1593
1594 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1595 {
1596         dqm->ops.uninitialize(dqm);
1597         kfree(dqm);
1598 }
1599
1600 #if defined(CONFIG_DEBUG_FS)
1601
1602 static void seq_reg_dump(struct seq_file *m,
1603                          uint32_t (*dump)[2], uint32_t n_regs)
1604 {
1605         uint32_t i, count;
1606
1607         for (i = 0, count = 0; i < n_regs; i++) {
1608                 if (count == 0 ||
1609                     dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
1610                         seq_printf(m, "%s    %08x: %08x",
1611                                    i ? "\n" : "",
1612                                    dump[i][0], dump[i][1]);
1613                         count = 7;
1614                 } else {
1615                         seq_printf(m, " %08x", dump[i][1]);
1616                         count--;
1617                 }
1618         }
1619
1620         seq_puts(m, "\n");
1621 }
1622
1623 int dqm_debugfs_hqds(struct seq_file *m, void *data)
1624 {
1625         struct device_queue_manager *dqm = data;
1626         uint32_t (*dump)[2], n_regs;
1627         int pipe, queue;
1628         int r = 0;
1629
1630         for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1631                 int pipe_offset = pipe * get_queues_per_pipe(dqm);
1632
1633                 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
1634                         if (!test_bit(pipe_offset + queue,
1635                                       dqm->dev->shared_resources.queue_bitmap))
1636                                 continue;
1637
1638                         r = dqm->dev->kfd2kgd->hqd_dump(
1639                                 dqm->dev->kgd, pipe, queue, &dump, &n_regs);
1640                         if (r)
1641                                 break;
1642
1643                         seq_printf(m, "  CP Pipe %d, Queue %d\n",
1644                                   pipe, queue);
1645                         seq_reg_dump(m, dump, n_regs);
1646
1647                         kfree(dump);
1648                 }
1649         }
1650
1651         for (pipe = 0; pipe < CIK_SDMA_ENGINE_NUM; pipe++) {
1652                 for (queue = 0; queue < CIK_SDMA_QUEUES_PER_ENGINE; queue++) {
1653                         r = dqm->dev->kfd2kgd->hqd_sdma_dump(
1654                                 dqm->dev->kgd, pipe, queue, &dump, &n_regs);
1655                         if (r)
1656                                 break;
1657
1658                         seq_printf(m, "  SDMA Engine %d, RLC %d\n",
1659                                   pipe, queue);
1660                         seq_reg_dump(m, dump, n_regs);
1661
1662                         kfree(dump);
1663                 }
1664         }
1665
1666         return r;
1667 }
1668
1669 #endif
This page took 0.136195 seconds and 4 git commands to generate.