2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "compression.h"
40 * A fs_path is a helper to dynamically build path names with unknown size.
41 * It reallocates the internal buffer on demand.
42 * It allows fast adding of path elements on the right side (normal path) and
43 * fast adding to the left side (reversed path). A reversed path can also be
44 * unreversed if needed.
53 unsigned short buf_len:15;
54 unsigned short reversed:1;
58 * Average path length does not exceed 200 bytes, we'll have
59 * better packing in the slab and higher chance to satisfy
60 * a allocation later during send.
65 #define FS_PATH_INLINE_SIZE \
66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
69 /* reused for each extent */
71 struct btrfs_root *root;
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
82 struct file *send_filp;
88 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
89 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
91 struct btrfs_root *send_root;
92 struct btrfs_root *parent_root;
93 struct clone_root *clone_roots;
96 /* current state of the compare_tree call */
97 struct btrfs_path *left_path;
98 struct btrfs_path *right_path;
99 struct btrfs_key *cmp_key;
102 * infos of the currently processed inode. In case of deleted inodes,
103 * these are the values from the deleted inode.
108 int cur_inode_new_gen;
109 int cur_inode_deleted;
113 u64 cur_inode_last_extent;
117 struct list_head new_refs;
118 struct list_head deleted_refs;
120 struct radix_tree_root name_cache;
121 struct list_head name_cache_list;
124 struct file_ra_state ra;
129 * We process inodes by their increasing order, so if before an
130 * incremental send we reverse the parent/child relationship of
131 * directories such that a directory with a lower inode number was
132 * the parent of a directory with a higher inode number, and the one
133 * becoming the new parent got renamed too, we can't rename/move the
134 * directory with lower inode number when we finish processing it - we
135 * must process the directory with higher inode number first, then
136 * rename/move it and then rename/move the directory with lower inode
137 * number. Example follows.
139 * Tree state when the first send was performed:
151 * Tree state when the second (incremental) send is performed:
160 * The sequence of steps that lead to the second state was:
162 * mv /a/b/c/d /a/b/c2/d2
163 * mv /a/b/c /a/b/c2/d2/cc
165 * "c" has lower inode number, but we can't move it (2nd mv operation)
166 * before we move "d", which has higher inode number.
168 * So we just memorize which move/rename operations must be performed
169 * later when their respective parent is processed and moved/renamed.
172 /* Indexed by parent directory inode number. */
173 struct rb_root pending_dir_moves;
176 * Reverse index, indexed by the inode number of a directory that
177 * is waiting for the move/rename of its immediate parent before its
178 * own move/rename can be performed.
180 struct rb_root waiting_dir_moves;
183 * A directory that is going to be rm'ed might have a child directory
184 * which is in the pending directory moves index above. In this case,
185 * the directory can only be removed after the move/rename of its child
186 * is performed. Example:
206 * Sequence of steps that lead to the send snapshot:
207 * rm -f /a/b/c/foo.txt
209 * mv /a/b/c/x /a/b/YY
212 * When the child is processed, its move/rename is delayed until its
213 * parent is processed (as explained above), but all other operations
214 * like update utimes, chown, chgrp, etc, are performed and the paths
215 * that it uses for those operations must use the orphanized name of
216 * its parent (the directory we're going to rm later), so we need to
217 * memorize that name.
219 * Indexed by the inode number of the directory to be deleted.
221 struct rb_root orphan_dirs;
224 struct pending_dir_move {
226 struct list_head list;
230 struct list_head update_refs;
233 struct waiting_dir_move {
237 * There might be some directory that could not be removed because it
238 * was waiting for this directory inode to be moved first. Therefore
239 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
245 struct orphan_dir_info {
251 struct name_cache_entry {
252 struct list_head list;
254 * radix_tree has only 32bit entries but we need to handle 64bit inums.
255 * We use the lower 32bit of the 64bit inum to store it in the tree. If
256 * more then one inum would fall into the same entry, we use radix_list
257 * to store the additional entries. radix_list is also used to store
258 * entries where two entries have the same inum but different
261 struct list_head radix_list;
267 int need_later_update;
272 static void inconsistent_snapshot_error(struct send_ctx *sctx,
273 enum btrfs_compare_tree_result result,
276 const char *result_string;
279 case BTRFS_COMPARE_TREE_NEW:
280 result_string = "new";
282 case BTRFS_COMPARE_TREE_DELETED:
283 result_string = "deleted";
285 case BTRFS_COMPARE_TREE_CHANGED:
286 result_string = "updated";
288 case BTRFS_COMPARE_TREE_SAME:
290 result_string = "unchanged";
294 result_string = "unexpected";
297 btrfs_err(sctx->send_root->fs_info,
298 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
299 result_string, what, sctx->cmp_key->objectid,
300 sctx->send_root->root_key.objectid,
302 sctx->parent_root->root_key.objectid : 0));
305 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
307 static struct waiting_dir_move *
308 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
310 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
312 static int need_send_hole(struct send_ctx *sctx)
314 return (sctx->parent_root && !sctx->cur_inode_new &&
315 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
316 S_ISREG(sctx->cur_inode_mode));
319 static void fs_path_reset(struct fs_path *p)
322 p->start = p->buf + p->buf_len - 1;
332 static struct fs_path *fs_path_alloc(void)
336 p = kmalloc(sizeof(*p), GFP_KERNEL);
340 p->buf = p->inline_buf;
341 p->buf_len = FS_PATH_INLINE_SIZE;
346 static struct fs_path *fs_path_alloc_reversed(void)
358 static void fs_path_free(struct fs_path *p)
362 if (p->buf != p->inline_buf)
367 static int fs_path_len(struct fs_path *p)
369 return p->end - p->start;
372 static int fs_path_ensure_buf(struct fs_path *p, int len)
380 if (p->buf_len >= len)
383 if (len > PATH_MAX) {
388 path_len = p->end - p->start;
389 old_buf_len = p->buf_len;
392 * First time the inline_buf does not suffice
394 if (p->buf == p->inline_buf) {
395 tmp_buf = kmalloc(len, GFP_KERNEL);
397 memcpy(tmp_buf, p->buf, old_buf_len);
399 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
405 * The real size of the buffer is bigger, this will let the fast path
406 * happen most of the time
408 p->buf_len = ksize(p->buf);
411 tmp_buf = p->buf + old_buf_len - path_len - 1;
412 p->end = p->buf + p->buf_len - 1;
413 p->start = p->end - path_len;
414 memmove(p->start, tmp_buf, path_len + 1);
417 p->end = p->start + path_len;
422 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
428 new_len = p->end - p->start + name_len;
429 if (p->start != p->end)
431 ret = fs_path_ensure_buf(p, new_len);
436 if (p->start != p->end)
438 p->start -= name_len;
439 *prepared = p->start;
441 if (p->start != p->end)
452 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
457 ret = fs_path_prepare_for_add(p, name_len, &prepared);
460 memcpy(prepared, name, name_len);
466 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
471 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
474 memcpy(prepared, p2->start, p2->end - p2->start);
480 static int fs_path_add_from_extent_buffer(struct fs_path *p,
481 struct extent_buffer *eb,
482 unsigned long off, int len)
487 ret = fs_path_prepare_for_add(p, len, &prepared);
491 read_extent_buffer(eb, prepared, off, len);
497 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
501 p->reversed = from->reversed;
504 ret = fs_path_add_path(p, from);
510 static void fs_path_unreverse(struct fs_path *p)
519 len = p->end - p->start;
521 p->end = p->start + len;
522 memmove(p->start, tmp, len + 1);
526 static struct btrfs_path *alloc_path_for_send(void)
528 struct btrfs_path *path;
530 path = btrfs_alloc_path();
533 path->search_commit_root = 1;
534 path->skip_locking = 1;
535 path->need_commit_sem = 1;
539 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
549 ret = vfs_write(filp, (__force const char __user *)buf + pos,
551 /* TODO handle that correctly */
552 /*if (ret == -ERESTARTSYS) {
571 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
573 struct btrfs_tlv_header *hdr;
574 int total_len = sizeof(*hdr) + len;
575 int left = sctx->send_max_size - sctx->send_size;
577 if (unlikely(left < total_len))
580 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
581 hdr->tlv_type = cpu_to_le16(attr);
582 hdr->tlv_len = cpu_to_le16(len);
583 memcpy(hdr + 1, data, len);
584 sctx->send_size += total_len;
589 #define TLV_PUT_DEFINE_INT(bits) \
590 static int tlv_put_u##bits(struct send_ctx *sctx, \
591 u##bits attr, u##bits value) \
593 __le##bits __tmp = cpu_to_le##bits(value); \
594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
597 TLV_PUT_DEFINE_INT(64)
599 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
600 const char *str, int len)
604 return tlv_put(sctx, attr, str, len);
607 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
610 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
613 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
614 struct extent_buffer *eb,
615 struct btrfs_timespec *ts)
617 struct btrfs_timespec bts;
618 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
619 return tlv_put(sctx, attr, &bts, sizeof(bts));
623 #define TLV_PUT(sctx, attrtype, attrlen, data) \
625 ret = tlv_put(sctx, attrtype, attrlen, data); \
627 goto tlv_put_failure; \
630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
632 ret = tlv_put_u##bits(sctx, attrtype, value); \
634 goto tlv_put_failure; \
637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
643 ret = tlv_put_string(sctx, attrtype, str, len); \
645 goto tlv_put_failure; \
647 #define TLV_PUT_PATH(sctx, attrtype, p) \
649 ret = tlv_put_string(sctx, attrtype, p->start, \
650 p->end - p->start); \
652 goto tlv_put_failure; \
654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
656 ret = tlv_put_uuid(sctx, attrtype, uuid); \
658 goto tlv_put_failure; \
660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
664 goto tlv_put_failure; \
667 static int send_header(struct send_ctx *sctx)
669 struct btrfs_stream_header hdr;
671 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
672 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
674 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
679 * For each command/item we want to send to userspace, we call this function.
681 static int begin_cmd(struct send_ctx *sctx, int cmd)
683 struct btrfs_cmd_header *hdr;
685 if (WARN_ON(!sctx->send_buf))
688 BUG_ON(sctx->send_size);
690 sctx->send_size += sizeof(*hdr);
691 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
692 hdr->cmd = cpu_to_le16(cmd);
697 static int send_cmd(struct send_ctx *sctx)
700 struct btrfs_cmd_header *hdr;
703 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
704 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
707 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
708 hdr->crc = cpu_to_le32(crc);
710 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
713 sctx->total_send_size += sctx->send_size;
714 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
721 * Sends a move instruction to user space
723 static int send_rename(struct send_ctx *sctx,
724 struct fs_path *from, struct fs_path *to)
726 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
729 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
731 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
735 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
736 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
738 ret = send_cmd(sctx);
746 * Sends a link instruction to user space
748 static int send_link(struct send_ctx *sctx,
749 struct fs_path *path, struct fs_path *lnk)
751 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
754 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
756 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
760 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
761 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
763 ret = send_cmd(sctx);
771 * Sends an unlink instruction to user space
773 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
775 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
778 btrfs_debug(fs_info, "send_unlink %s", path->start);
780 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
784 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
786 ret = send_cmd(sctx);
794 * Sends a rmdir instruction to user space
796 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
798 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
801 btrfs_debug(fs_info, "send_rmdir %s", path->start);
803 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
807 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
809 ret = send_cmd(sctx);
817 * Helper function to retrieve some fields from an inode item.
819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
820 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
824 struct btrfs_inode_item *ii;
825 struct btrfs_key key;
828 key.type = BTRFS_INODE_ITEM_KEY;
830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
837 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
838 struct btrfs_inode_item);
840 *size = btrfs_inode_size(path->nodes[0], ii);
842 *gen = btrfs_inode_generation(path->nodes[0], ii);
844 *mode = btrfs_inode_mode(path->nodes[0], ii);
846 *uid = btrfs_inode_uid(path->nodes[0], ii);
848 *gid = btrfs_inode_gid(path->nodes[0], ii);
850 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
855 static int get_inode_info(struct btrfs_root *root,
856 u64 ino, u64 *size, u64 *gen,
857 u64 *mode, u64 *uid, u64 *gid,
860 struct btrfs_path *path;
863 path = alloc_path_for_send();
866 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
868 btrfs_free_path(path);
872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
877 * Helper function to iterate the entries in ONE btrfs_inode_ref or
878 * btrfs_inode_extref.
879 * The iterate callback may return a non zero value to stop iteration. This can
880 * be a negative value for error codes or 1 to simply stop it.
882 * path must point to the INODE_REF or INODE_EXTREF when called.
884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
885 struct btrfs_key *found_key, int resolve,
886 iterate_inode_ref_t iterate, void *ctx)
888 struct extent_buffer *eb = path->nodes[0];
889 struct btrfs_item *item;
890 struct btrfs_inode_ref *iref;
891 struct btrfs_inode_extref *extref;
892 struct btrfs_path *tmp_path;
896 int slot = path->slots[0];
903 unsigned long name_off;
904 unsigned long elem_size;
907 p = fs_path_alloc_reversed();
911 tmp_path = alloc_path_for_send();
918 if (found_key->type == BTRFS_INODE_REF_KEY) {
919 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
920 struct btrfs_inode_ref);
921 item = btrfs_item_nr(slot);
922 total = btrfs_item_size(eb, item);
923 elem_size = sizeof(*iref);
925 ptr = btrfs_item_ptr_offset(eb, slot);
926 total = btrfs_item_size_nr(eb, slot);
927 elem_size = sizeof(*extref);
930 while (cur < total) {
933 if (found_key->type == BTRFS_INODE_REF_KEY) {
934 iref = (struct btrfs_inode_ref *)(ptr + cur);
935 name_len = btrfs_inode_ref_name_len(eb, iref);
936 name_off = (unsigned long)(iref + 1);
937 index = btrfs_inode_ref_index(eb, iref);
938 dir = found_key->offset;
940 extref = (struct btrfs_inode_extref *)(ptr + cur);
941 name_len = btrfs_inode_extref_name_len(eb, extref);
942 name_off = (unsigned long)&extref->name;
943 index = btrfs_inode_extref_index(eb, extref);
944 dir = btrfs_inode_extref_parent(eb, extref);
948 start = btrfs_ref_to_path(root, tmp_path, name_len,
952 ret = PTR_ERR(start);
955 if (start < p->buf) {
956 /* overflow , try again with larger buffer */
957 ret = fs_path_ensure_buf(p,
958 p->buf_len + p->buf - start);
961 start = btrfs_ref_to_path(root, tmp_path,
966 ret = PTR_ERR(start);
969 BUG_ON(start < p->buf);
973 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
979 cur += elem_size + name_len;
980 ret = iterate(num, dir, index, p, ctx);
987 btrfs_free_path(tmp_path);
992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
993 const char *name, int name_len,
994 const char *data, int data_len,
998 * Helper function to iterate the entries in ONE btrfs_dir_item.
999 * The iterate callback may return a non zero value to stop iteration. This can
1000 * be a negative value for error codes or 1 to simply stop it.
1002 * path must point to the dir item when called.
1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1005 struct btrfs_key *found_key,
1006 iterate_dir_item_t iterate, void *ctx)
1009 struct extent_buffer *eb;
1010 struct btrfs_item *item;
1011 struct btrfs_dir_item *di;
1012 struct btrfs_key di_key;
1025 * Start with a small buffer (1 page). If later we end up needing more
1026 * space, which can happen for xattrs on a fs with a leaf size greater
1027 * then the page size, attempt to increase the buffer. Typically xattr
1031 buf = kmalloc(buf_len, GFP_KERNEL);
1037 eb = path->nodes[0];
1038 slot = path->slots[0];
1039 item = btrfs_item_nr(slot);
1040 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1043 total = btrfs_item_size(eb, item);
1046 while (cur < total) {
1047 name_len = btrfs_dir_name_len(eb, di);
1048 data_len = btrfs_dir_data_len(eb, di);
1049 type = btrfs_dir_type(eb, di);
1050 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1052 if (type == BTRFS_FT_XATTR) {
1053 if (name_len > XATTR_NAME_MAX) {
1054 ret = -ENAMETOOLONG;
1057 if (name_len + data_len >
1058 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1066 if (name_len + data_len > PATH_MAX) {
1067 ret = -ENAMETOOLONG;
1072 if (name_len + data_len > buf_len) {
1073 buf_len = name_len + data_len;
1074 if (is_vmalloc_addr(buf)) {
1078 char *tmp = krealloc(buf, buf_len,
1079 GFP_KERNEL | __GFP_NOWARN);
1086 buf = vmalloc(buf_len);
1094 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1095 name_len + data_len);
1097 len = sizeof(*di) + name_len + data_len;
1098 di = (struct btrfs_dir_item *)((char *)di + len);
1101 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1102 data_len, type, ctx);
1118 static int __copy_first_ref(int num, u64 dir, int index,
1119 struct fs_path *p, void *ctx)
1122 struct fs_path *pt = ctx;
1124 ret = fs_path_copy(pt, p);
1128 /* we want the first only */
1133 * Retrieve the first path of an inode. If an inode has more then one
1134 * ref/hardlink, this is ignored.
1136 static int get_inode_path(struct btrfs_root *root,
1137 u64 ino, struct fs_path *path)
1140 struct btrfs_key key, found_key;
1141 struct btrfs_path *p;
1143 p = alloc_path_for_send();
1147 fs_path_reset(path);
1150 key.type = BTRFS_INODE_REF_KEY;
1153 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1160 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1161 if (found_key.objectid != ino ||
1162 (found_key.type != BTRFS_INODE_REF_KEY &&
1163 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1168 ret = iterate_inode_ref(root, p, &found_key, 1,
1169 __copy_first_ref, path);
1179 struct backref_ctx {
1180 struct send_ctx *sctx;
1182 struct btrfs_path *path;
1183 /* number of total found references */
1187 * used for clones found in send_root. clones found behind cur_objectid
1188 * and cur_offset are not considered as allowed clones.
1193 /* may be truncated in case it's the last extent in a file */
1196 /* data offset in the file extent item */
1199 /* Just to check for bugs in backref resolving */
1203 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1205 u64 root = (u64)(uintptr_t)key;
1206 struct clone_root *cr = (struct clone_root *)elt;
1208 if (root < cr->root->objectid)
1210 if (root > cr->root->objectid)
1215 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1217 struct clone_root *cr1 = (struct clone_root *)e1;
1218 struct clone_root *cr2 = (struct clone_root *)e2;
1220 if (cr1->root->objectid < cr2->root->objectid)
1222 if (cr1->root->objectid > cr2->root->objectid)
1228 * Called for every backref that is found for the current extent.
1229 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1231 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1233 struct backref_ctx *bctx = ctx_;
1234 struct clone_root *found;
1238 /* First check if the root is in the list of accepted clone sources */
1239 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1240 bctx->sctx->clone_roots_cnt,
1241 sizeof(struct clone_root),
1242 __clone_root_cmp_bsearch);
1246 if (found->root == bctx->sctx->send_root &&
1247 ino == bctx->cur_objectid &&
1248 offset == bctx->cur_offset) {
1249 bctx->found_itself = 1;
1253 * There are inodes that have extents that lie behind its i_size. Don't
1254 * accept clones from these extents.
1256 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1258 btrfs_release_path(bctx->path);
1262 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1266 * Make sure we don't consider clones from send_root that are
1267 * behind the current inode/offset.
1269 if (found->root == bctx->sctx->send_root) {
1271 * TODO for the moment we don't accept clones from the inode
1272 * that is currently send. We may change this when
1273 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1276 if (ino >= bctx->cur_objectid)
1279 if (ino > bctx->cur_objectid)
1281 if (offset + bctx->extent_len > bctx->cur_offset)
1287 found->found_refs++;
1288 if (ino < found->ino) {
1290 found->offset = offset;
1291 } else if (found->ino == ino) {
1293 * same extent found more then once in the same file.
1295 if (found->offset > offset + bctx->extent_len)
1296 found->offset = offset;
1303 * Given an inode, offset and extent item, it finds a good clone for a clone
1304 * instruction. Returns -ENOENT when none could be found. The function makes
1305 * sure that the returned clone is usable at the point where sending is at the
1306 * moment. This means, that no clones are accepted which lie behind the current
1309 * path must point to the extent item when called.
1311 static int find_extent_clone(struct send_ctx *sctx,
1312 struct btrfs_path *path,
1313 u64 ino, u64 data_offset,
1315 struct clone_root **found)
1317 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1323 u64 extent_item_pos;
1325 struct btrfs_file_extent_item *fi;
1326 struct extent_buffer *eb = path->nodes[0];
1327 struct backref_ctx *backref_ctx = NULL;
1328 struct clone_root *cur_clone_root;
1329 struct btrfs_key found_key;
1330 struct btrfs_path *tmp_path;
1334 tmp_path = alloc_path_for_send();
1338 /* We only use this path under the commit sem */
1339 tmp_path->need_commit_sem = 0;
1341 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1347 backref_ctx->path = tmp_path;
1349 if (data_offset >= ino_size) {
1351 * There may be extents that lie behind the file's size.
1352 * I at least had this in combination with snapshotting while
1353 * writing large files.
1359 fi = btrfs_item_ptr(eb, path->slots[0],
1360 struct btrfs_file_extent_item);
1361 extent_type = btrfs_file_extent_type(eb, fi);
1362 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1366 compressed = btrfs_file_extent_compression(eb, fi);
1368 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1369 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1370 if (disk_byte == 0) {
1374 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1376 down_read(&fs_info->commit_root_sem);
1377 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1378 &found_key, &flags);
1379 up_read(&fs_info->commit_root_sem);
1380 btrfs_release_path(tmp_path);
1384 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1390 * Setup the clone roots.
1392 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1393 cur_clone_root = sctx->clone_roots + i;
1394 cur_clone_root->ino = (u64)-1;
1395 cur_clone_root->offset = 0;
1396 cur_clone_root->found_refs = 0;
1399 backref_ctx->sctx = sctx;
1400 backref_ctx->found = 0;
1401 backref_ctx->cur_objectid = ino;
1402 backref_ctx->cur_offset = data_offset;
1403 backref_ctx->found_itself = 0;
1404 backref_ctx->extent_len = num_bytes;
1406 * For non-compressed extents iterate_extent_inodes() gives us extent
1407 * offsets that already take into account the data offset, but not for
1408 * compressed extents, since the offset is logical and not relative to
1409 * the physical extent locations. We must take this into account to
1410 * avoid sending clone offsets that go beyond the source file's size,
1411 * which would result in the clone ioctl failing with -EINVAL on the
1414 if (compressed == BTRFS_COMPRESS_NONE)
1415 backref_ctx->data_offset = 0;
1417 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1420 * The last extent of a file may be too large due to page alignment.
1421 * We need to adjust extent_len in this case so that the checks in
1422 * __iterate_backrefs work.
1424 if (data_offset + num_bytes >= ino_size)
1425 backref_ctx->extent_len = ino_size - data_offset;
1428 * Now collect all backrefs.
1430 if (compressed == BTRFS_COMPRESS_NONE)
1431 extent_item_pos = logical - found_key.objectid;
1433 extent_item_pos = 0;
1434 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1435 extent_item_pos, 1, __iterate_backrefs,
1441 if (!backref_ctx->found_itself) {
1442 /* found a bug in backref code? */
1445 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1446 ino, data_offset, disk_byte, found_key.objectid);
1450 btrfs_debug(fs_info,
1451 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1452 data_offset, ino, num_bytes, logical);
1454 if (!backref_ctx->found)
1455 btrfs_debug(fs_info, "no clones found");
1457 cur_clone_root = NULL;
1458 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1459 if (sctx->clone_roots[i].found_refs) {
1460 if (!cur_clone_root)
1461 cur_clone_root = sctx->clone_roots + i;
1462 else if (sctx->clone_roots[i].root == sctx->send_root)
1463 /* prefer clones from send_root over others */
1464 cur_clone_root = sctx->clone_roots + i;
1469 if (cur_clone_root) {
1470 *found = cur_clone_root;
1477 btrfs_free_path(tmp_path);
1482 static int read_symlink(struct btrfs_root *root,
1484 struct fs_path *dest)
1487 struct btrfs_path *path;
1488 struct btrfs_key key;
1489 struct btrfs_file_extent_item *ei;
1495 path = alloc_path_for_send();
1500 key.type = BTRFS_EXTENT_DATA_KEY;
1502 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1507 * An empty symlink inode. Can happen in rare error paths when
1508 * creating a symlink (transaction committed before the inode
1509 * eviction handler removed the symlink inode items and a crash
1510 * happened in between or the subvol was snapshoted in between).
1511 * Print an informative message to dmesg/syslog so that the user
1512 * can delete the symlink.
1514 btrfs_err(root->fs_info,
1515 "Found empty symlink inode %llu at root %llu",
1516 ino, root->root_key.objectid);
1521 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1522 struct btrfs_file_extent_item);
1523 type = btrfs_file_extent_type(path->nodes[0], ei);
1524 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1525 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1526 BUG_ON(compression);
1528 off = btrfs_file_extent_inline_start(ei);
1529 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1531 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1534 btrfs_free_path(path);
1539 * Helper function to generate a file name that is unique in the root of
1540 * send_root and parent_root. This is used to generate names for orphan inodes.
1542 static int gen_unique_name(struct send_ctx *sctx,
1544 struct fs_path *dest)
1547 struct btrfs_path *path;
1548 struct btrfs_dir_item *di;
1553 path = alloc_path_for_send();
1558 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1560 ASSERT(len < sizeof(tmp));
1562 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1563 path, BTRFS_FIRST_FREE_OBJECTID,
1564 tmp, strlen(tmp), 0);
1565 btrfs_release_path(path);
1571 /* not unique, try again */
1576 if (!sctx->parent_root) {
1582 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1583 path, BTRFS_FIRST_FREE_OBJECTID,
1584 tmp, strlen(tmp), 0);
1585 btrfs_release_path(path);
1591 /* not unique, try again */
1599 ret = fs_path_add(dest, tmp, strlen(tmp));
1602 btrfs_free_path(path);
1607 inode_state_no_change,
1608 inode_state_will_create,
1609 inode_state_did_create,
1610 inode_state_will_delete,
1611 inode_state_did_delete,
1614 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1622 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1624 if (ret < 0 && ret != -ENOENT)
1628 if (!sctx->parent_root) {
1629 right_ret = -ENOENT;
1631 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1632 NULL, NULL, NULL, NULL);
1633 if (ret < 0 && ret != -ENOENT)
1638 if (!left_ret && !right_ret) {
1639 if (left_gen == gen && right_gen == gen) {
1640 ret = inode_state_no_change;
1641 } else if (left_gen == gen) {
1642 if (ino < sctx->send_progress)
1643 ret = inode_state_did_create;
1645 ret = inode_state_will_create;
1646 } else if (right_gen == gen) {
1647 if (ino < sctx->send_progress)
1648 ret = inode_state_did_delete;
1650 ret = inode_state_will_delete;
1654 } else if (!left_ret) {
1655 if (left_gen == gen) {
1656 if (ino < sctx->send_progress)
1657 ret = inode_state_did_create;
1659 ret = inode_state_will_create;
1663 } else if (!right_ret) {
1664 if (right_gen == gen) {
1665 if (ino < sctx->send_progress)
1666 ret = inode_state_did_delete;
1668 ret = inode_state_will_delete;
1680 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1684 ret = get_cur_inode_state(sctx, ino, gen);
1688 if (ret == inode_state_no_change ||
1689 ret == inode_state_did_create ||
1690 ret == inode_state_will_delete)
1700 * Helper function to lookup a dir item in a dir.
1702 static int lookup_dir_item_inode(struct btrfs_root *root,
1703 u64 dir, const char *name, int name_len,
1708 struct btrfs_dir_item *di;
1709 struct btrfs_key key;
1710 struct btrfs_path *path;
1712 path = alloc_path_for_send();
1716 di = btrfs_lookup_dir_item(NULL, root, path,
1717 dir, name, name_len, 0);
1726 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1727 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1731 *found_inode = key.objectid;
1732 *found_type = btrfs_dir_type(path->nodes[0], di);
1735 btrfs_free_path(path);
1740 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1741 * generation of the parent dir and the name of the dir entry.
1743 static int get_first_ref(struct btrfs_root *root, u64 ino,
1744 u64 *dir, u64 *dir_gen, struct fs_path *name)
1747 struct btrfs_key key;
1748 struct btrfs_key found_key;
1749 struct btrfs_path *path;
1753 path = alloc_path_for_send();
1758 key.type = BTRFS_INODE_REF_KEY;
1761 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1765 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1767 if (ret || found_key.objectid != ino ||
1768 (found_key.type != BTRFS_INODE_REF_KEY &&
1769 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1774 if (found_key.type == BTRFS_INODE_REF_KEY) {
1775 struct btrfs_inode_ref *iref;
1776 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1777 struct btrfs_inode_ref);
1778 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1779 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1780 (unsigned long)(iref + 1),
1782 parent_dir = found_key.offset;
1784 struct btrfs_inode_extref *extref;
1785 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1786 struct btrfs_inode_extref);
1787 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1788 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1789 (unsigned long)&extref->name, len);
1790 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1794 btrfs_release_path(path);
1797 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1806 btrfs_free_path(path);
1810 static int is_first_ref(struct btrfs_root *root,
1812 const char *name, int name_len)
1815 struct fs_path *tmp_name;
1818 tmp_name = fs_path_alloc();
1822 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1826 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1831 ret = !memcmp(tmp_name->start, name, name_len);
1834 fs_path_free(tmp_name);
1839 * Used by process_recorded_refs to determine if a new ref would overwrite an
1840 * already existing ref. In case it detects an overwrite, it returns the
1841 * inode/gen in who_ino/who_gen.
1842 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1843 * to make sure later references to the overwritten inode are possible.
1844 * Orphanizing is however only required for the first ref of an inode.
1845 * process_recorded_refs does an additional is_first_ref check to see if
1846 * orphanizing is really required.
1848 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1849 const char *name, int name_len,
1850 u64 *who_ino, u64 *who_gen)
1854 u64 other_inode = 0;
1857 if (!sctx->parent_root)
1860 ret = is_inode_existent(sctx, dir, dir_gen);
1865 * If we have a parent root we need to verify that the parent dir was
1866 * not deleted and then re-created, if it was then we have no overwrite
1867 * and we can just unlink this entry.
1869 if (sctx->parent_root) {
1870 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1872 if (ret < 0 && ret != -ENOENT)
1882 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1883 &other_inode, &other_type);
1884 if (ret < 0 && ret != -ENOENT)
1892 * Check if the overwritten ref was already processed. If yes, the ref
1893 * was already unlinked/moved, so we can safely assume that we will not
1894 * overwrite anything at this point in time.
1896 if (other_inode > sctx->send_progress ||
1897 is_waiting_for_move(sctx, other_inode)) {
1898 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1899 who_gen, NULL, NULL, NULL, NULL);
1904 *who_ino = other_inode;
1914 * Checks if the ref was overwritten by an already processed inode. This is
1915 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1916 * thus the orphan name needs be used.
1917 * process_recorded_refs also uses it to avoid unlinking of refs that were
1920 static int did_overwrite_ref(struct send_ctx *sctx,
1921 u64 dir, u64 dir_gen,
1922 u64 ino, u64 ino_gen,
1923 const char *name, int name_len)
1930 if (!sctx->parent_root)
1933 ret = is_inode_existent(sctx, dir, dir_gen);
1937 /* check if the ref was overwritten by another ref */
1938 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1939 &ow_inode, &other_type);
1940 if (ret < 0 && ret != -ENOENT)
1943 /* was never and will never be overwritten */
1948 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1953 if (ow_inode == ino && gen == ino_gen) {
1959 * We know that it is or will be overwritten. Check this now.
1960 * The current inode being processed might have been the one that caused
1961 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1962 * the current inode being processed.
1964 if ((ow_inode < sctx->send_progress) ||
1965 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1966 gen == sctx->cur_inode_gen))
1976 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1977 * that got overwritten. This is used by process_recorded_refs to determine
1978 * if it has to use the path as returned by get_cur_path or the orphan name.
1980 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1983 struct fs_path *name = NULL;
1987 if (!sctx->parent_root)
1990 name = fs_path_alloc();
1994 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1998 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1999 name->start, fs_path_len(name));
2007 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2008 * so we need to do some special handling in case we have clashes. This function
2009 * takes care of this with the help of name_cache_entry::radix_list.
2010 * In case of error, nce is kfreed.
2012 static int name_cache_insert(struct send_ctx *sctx,
2013 struct name_cache_entry *nce)
2016 struct list_head *nce_head;
2018 nce_head = radix_tree_lookup(&sctx->name_cache,
2019 (unsigned long)nce->ino);
2021 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2026 INIT_LIST_HEAD(nce_head);
2028 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2035 list_add_tail(&nce->radix_list, nce_head);
2036 list_add_tail(&nce->list, &sctx->name_cache_list);
2037 sctx->name_cache_size++;
2042 static void name_cache_delete(struct send_ctx *sctx,
2043 struct name_cache_entry *nce)
2045 struct list_head *nce_head;
2047 nce_head = radix_tree_lookup(&sctx->name_cache,
2048 (unsigned long)nce->ino);
2050 btrfs_err(sctx->send_root->fs_info,
2051 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2052 nce->ino, sctx->name_cache_size);
2055 list_del(&nce->radix_list);
2056 list_del(&nce->list);
2057 sctx->name_cache_size--;
2060 * We may not get to the final release of nce_head if the lookup fails
2062 if (nce_head && list_empty(nce_head)) {
2063 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2068 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2071 struct list_head *nce_head;
2072 struct name_cache_entry *cur;
2074 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2078 list_for_each_entry(cur, nce_head, radix_list) {
2079 if (cur->ino == ino && cur->gen == gen)
2086 * Removes the entry from the list and adds it back to the end. This marks the
2087 * entry as recently used so that name_cache_clean_unused does not remove it.
2089 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2091 list_del(&nce->list);
2092 list_add_tail(&nce->list, &sctx->name_cache_list);
2096 * Remove some entries from the beginning of name_cache_list.
2098 static void name_cache_clean_unused(struct send_ctx *sctx)
2100 struct name_cache_entry *nce;
2102 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2105 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2106 nce = list_entry(sctx->name_cache_list.next,
2107 struct name_cache_entry, list);
2108 name_cache_delete(sctx, nce);
2113 static void name_cache_free(struct send_ctx *sctx)
2115 struct name_cache_entry *nce;
2117 while (!list_empty(&sctx->name_cache_list)) {
2118 nce = list_entry(sctx->name_cache_list.next,
2119 struct name_cache_entry, list);
2120 name_cache_delete(sctx, nce);
2126 * Used by get_cur_path for each ref up to the root.
2127 * Returns 0 if it succeeded.
2128 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2129 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2130 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2131 * Returns <0 in case of error.
2133 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2137 struct fs_path *dest)
2141 struct name_cache_entry *nce = NULL;
2144 * First check if we already did a call to this function with the same
2145 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2146 * return the cached result.
2148 nce = name_cache_search(sctx, ino, gen);
2150 if (ino < sctx->send_progress && nce->need_later_update) {
2151 name_cache_delete(sctx, nce);
2155 name_cache_used(sctx, nce);
2156 *parent_ino = nce->parent_ino;
2157 *parent_gen = nce->parent_gen;
2158 ret = fs_path_add(dest, nce->name, nce->name_len);
2167 * If the inode is not existent yet, add the orphan name and return 1.
2168 * This should only happen for the parent dir that we determine in
2171 ret = is_inode_existent(sctx, ino, gen);
2176 ret = gen_unique_name(sctx, ino, gen, dest);
2184 * Depending on whether the inode was already processed or not, use
2185 * send_root or parent_root for ref lookup.
2187 if (ino < sctx->send_progress)
2188 ret = get_first_ref(sctx->send_root, ino,
2189 parent_ino, parent_gen, dest);
2191 ret = get_first_ref(sctx->parent_root, ino,
2192 parent_ino, parent_gen, dest);
2197 * Check if the ref was overwritten by an inode's ref that was processed
2198 * earlier. If yes, treat as orphan and return 1.
2200 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2201 dest->start, dest->end - dest->start);
2205 fs_path_reset(dest);
2206 ret = gen_unique_name(sctx, ino, gen, dest);
2214 * Store the result of the lookup in the name cache.
2216 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2224 nce->parent_ino = *parent_ino;
2225 nce->parent_gen = *parent_gen;
2226 nce->name_len = fs_path_len(dest);
2228 strcpy(nce->name, dest->start);
2230 if (ino < sctx->send_progress)
2231 nce->need_later_update = 0;
2233 nce->need_later_update = 1;
2235 nce_ret = name_cache_insert(sctx, nce);
2238 name_cache_clean_unused(sctx);
2245 * Magic happens here. This function returns the first ref to an inode as it
2246 * would look like while receiving the stream at this point in time.
2247 * We walk the path up to the root. For every inode in between, we check if it
2248 * was already processed/sent. If yes, we continue with the parent as found
2249 * in send_root. If not, we continue with the parent as found in parent_root.
2250 * If we encounter an inode that was deleted at this point in time, we use the
2251 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2252 * that were not created yet and overwritten inodes/refs.
2254 * When do we have have orphan inodes:
2255 * 1. When an inode is freshly created and thus no valid refs are available yet
2256 * 2. When a directory lost all it's refs (deleted) but still has dir items
2257 * inside which were not processed yet (pending for move/delete). If anyone
2258 * tried to get the path to the dir items, it would get a path inside that
2260 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2261 * of an unprocessed inode. If in that case the first ref would be
2262 * overwritten, the overwritten inode gets "orphanized". Later when we
2263 * process this overwritten inode, it is restored at a new place by moving
2266 * sctx->send_progress tells this function at which point in time receiving
2269 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2270 struct fs_path *dest)
2273 struct fs_path *name = NULL;
2274 u64 parent_inode = 0;
2278 name = fs_path_alloc();
2285 fs_path_reset(dest);
2287 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2288 struct waiting_dir_move *wdm;
2290 fs_path_reset(name);
2292 if (is_waiting_for_rm(sctx, ino)) {
2293 ret = gen_unique_name(sctx, ino, gen, name);
2296 ret = fs_path_add_path(dest, name);
2300 wdm = get_waiting_dir_move(sctx, ino);
2301 if (wdm && wdm->orphanized) {
2302 ret = gen_unique_name(sctx, ino, gen, name);
2305 ret = get_first_ref(sctx->parent_root, ino,
2306 &parent_inode, &parent_gen, name);
2308 ret = __get_cur_name_and_parent(sctx, ino, gen,
2318 ret = fs_path_add_path(dest, name);
2329 fs_path_unreverse(dest);
2334 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2336 static int send_subvol_begin(struct send_ctx *sctx)
2339 struct btrfs_root *send_root = sctx->send_root;
2340 struct btrfs_root *parent_root = sctx->parent_root;
2341 struct btrfs_path *path;
2342 struct btrfs_key key;
2343 struct btrfs_root_ref *ref;
2344 struct extent_buffer *leaf;
2348 path = btrfs_alloc_path();
2352 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2354 btrfs_free_path(path);
2358 key.objectid = send_root->objectid;
2359 key.type = BTRFS_ROOT_BACKREF_KEY;
2362 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2371 leaf = path->nodes[0];
2372 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2373 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2374 key.objectid != send_root->objectid) {
2378 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2379 namelen = btrfs_root_ref_name_len(leaf, ref);
2380 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2381 btrfs_release_path(path);
2384 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2388 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2393 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2395 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2396 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2397 sctx->send_root->root_item.received_uuid);
2399 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2400 sctx->send_root->root_item.uuid);
2402 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2403 le64_to_cpu(sctx->send_root->root_item.ctransid));
2405 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2406 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2407 parent_root->root_item.received_uuid);
2409 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2410 parent_root->root_item.uuid);
2411 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2412 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2415 ret = send_cmd(sctx);
2419 btrfs_free_path(path);
2424 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2426 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2430 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2432 p = fs_path_alloc();
2436 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2440 ret = get_cur_path(sctx, ino, gen, p);
2443 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2444 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2446 ret = send_cmd(sctx);
2454 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2456 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2460 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2462 p = fs_path_alloc();
2466 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2470 ret = get_cur_path(sctx, ino, gen, p);
2473 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2474 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2476 ret = send_cmd(sctx);
2484 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2486 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2490 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2493 p = fs_path_alloc();
2497 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2501 ret = get_cur_path(sctx, ino, gen, p);
2504 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2505 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2506 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2508 ret = send_cmd(sctx);
2516 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2518 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2520 struct fs_path *p = NULL;
2521 struct btrfs_inode_item *ii;
2522 struct btrfs_path *path = NULL;
2523 struct extent_buffer *eb;
2524 struct btrfs_key key;
2527 btrfs_debug(fs_info, "send_utimes %llu", ino);
2529 p = fs_path_alloc();
2533 path = alloc_path_for_send();
2540 key.type = BTRFS_INODE_ITEM_KEY;
2542 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2548 eb = path->nodes[0];
2549 slot = path->slots[0];
2550 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2552 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2556 ret = get_cur_path(sctx, ino, gen, p);
2559 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2560 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2561 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2562 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2563 /* TODO Add otime support when the otime patches get into upstream */
2565 ret = send_cmd(sctx);
2570 btrfs_free_path(path);
2575 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2576 * a valid path yet because we did not process the refs yet. So, the inode
2577 * is created as orphan.
2579 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2581 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2589 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2591 p = fs_path_alloc();
2595 if (ino != sctx->cur_ino) {
2596 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2601 gen = sctx->cur_inode_gen;
2602 mode = sctx->cur_inode_mode;
2603 rdev = sctx->cur_inode_rdev;
2606 if (S_ISREG(mode)) {
2607 cmd = BTRFS_SEND_C_MKFILE;
2608 } else if (S_ISDIR(mode)) {
2609 cmd = BTRFS_SEND_C_MKDIR;
2610 } else if (S_ISLNK(mode)) {
2611 cmd = BTRFS_SEND_C_SYMLINK;
2612 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2613 cmd = BTRFS_SEND_C_MKNOD;
2614 } else if (S_ISFIFO(mode)) {
2615 cmd = BTRFS_SEND_C_MKFIFO;
2616 } else if (S_ISSOCK(mode)) {
2617 cmd = BTRFS_SEND_C_MKSOCK;
2619 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2620 (int)(mode & S_IFMT));
2625 ret = begin_cmd(sctx, cmd);
2629 ret = gen_unique_name(sctx, ino, gen, p);
2633 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2634 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2636 if (S_ISLNK(mode)) {
2638 ret = read_symlink(sctx->send_root, ino, p);
2641 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2642 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2643 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2644 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2645 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2648 ret = send_cmd(sctx);
2660 * We need some special handling for inodes that get processed before the parent
2661 * directory got created. See process_recorded_refs for details.
2662 * This function does the check if we already created the dir out of order.
2664 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2667 struct btrfs_path *path = NULL;
2668 struct btrfs_key key;
2669 struct btrfs_key found_key;
2670 struct btrfs_key di_key;
2671 struct extent_buffer *eb;
2672 struct btrfs_dir_item *di;
2675 path = alloc_path_for_send();
2682 key.type = BTRFS_DIR_INDEX_KEY;
2684 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2689 eb = path->nodes[0];
2690 slot = path->slots[0];
2691 if (slot >= btrfs_header_nritems(eb)) {
2692 ret = btrfs_next_leaf(sctx->send_root, path);
2695 } else if (ret > 0) {
2702 btrfs_item_key_to_cpu(eb, &found_key, slot);
2703 if (found_key.objectid != key.objectid ||
2704 found_key.type != key.type) {
2709 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2710 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2712 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2713 di_key.objectid < sctx->send_progress) {
2722 btrfs_free_path(path);
2727 * Only creates the inode if it is:
2728 * 1. Not a directory
2729 * 2. Or a directory which was not created already due to out of order
2730 * directories. See did_create_dir and process_recorded_refs for details.
2732 static int send_create_inode_if_needed(struct send_ctx *sctx)
2736 if (S_ISDIR(sctx->cur_inode_mode)) {
2737 ret = did_create_dir(sctx, sctx->cur_ino);
2746 ret = send_create_inode(sctx, sctx->cur_ino);
2754 struct recorded_ref {
2755 struct list_head list;
2758 struct fs_path *full_path;
2766 * We need to process new refs before deleted refs, but compare_tree gives us
2767 * everything mixed. So we first record all refs and later process them.
2768 * This function is a helper to record one ref.
2770 static int __record_ref(struct list_head *head, u64 dir,
2771 u64 dir_gen, struct fs_path *path)
2773 struct recorded_ref *ref;
2775 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2780 ref->dir_gen = dir_gen;
2781 ref->full_path = path;
2783 ref->name = (char *)kbasename(ref->full_path->start);
2784 ref->name_len = ref->full_path->end - ref->name;
2785 ref->dir_path = ref->full_path->start;
2786 if (ref->name == ref->full_path->start)
2787 ref->dir_path_len = 0;
2789 ref->dir_path_len = ref->full_path->end -
2790 ref->full_path->start - 1 - ref->name_len;
2792 list_add_tail(&ref->list, head);
2796 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2798 struct recorded_ref *new;
2800 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2804 new->dir = ref->dir;
2805 new->dir_gen = ref->dir_gen;
2806 new->full_path = NULL;
2807 INIT_LIST_HEAD(&new->list);
2808 list_add_tail(&new->list, list);
2812 static void __free_recorded_refs(struct list_head *head)
2814 struct recorded_ref *cur;
2816 while (!list_empty(head)) {
2817 cur = list_entry(head->next, struct recorded_ref, list);
2818 fs_path_free(cur->full_path);
2819 list_del(&cur->list);
2824 static void free_recorded_refs(struct send_ctx *sctx)
2826 __free_recorded_refs(&sctx->new_refs);
2827 __free_recorded_refs(&sctx->deleted_refs);
2831 * Renames/moves a file/dir to its orphan name. Used when the first
2832 * ref of an unprocessed inode gets overwritten and for all non empty
2835 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2836 struct fs_path *path)
2839 struct fs_path *orphan;
2841 orphan = fs_path_alloc();
2845 ret = gen_unique_name(sctx, ino, gen, orphan);
2849 ret = send_rename(sctx, path, orphan);
2852 fs_path_free(orphan);
2856 static struct orphan_dir_info *
2857 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2859 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2860 struct rb_node *parent = NULL;
2861 struct orphan_dir_info *entry, *odi;
2863 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2865 return ERR_PTR(-ENOMEM);
2871 entry = rb_entry(parent, struct orphan_dir_info, node);
2872 if (dir_ino < entry->ino) {
2874 } else if (dir_ino > entry->ino) {
2875 p = &(*p)->rb_right;
2882 rb_link_node(&odi->node, parent, p);
2883 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2887 static struct orphan_dir_info *
2888 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2890 struct rb_node *n = sctx->orphan_dirs.rb_node;
2891 struct orphan_dir_info *entry;
2894 entry = rb_entry(n, struct orphan_dir_info, node);
2895 if (dir_ino < entry->ino)
2897 else if (dir_ino > entry->ino)
2905 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2907 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2912 static void free_orphan_dir_info(struct send_ctx *sctx,
2913 struct orphan_dir_info *odi)
2917 rb_erase(&odi->node, &sctx->orphan_dirs);
2922 * Returns 1 if a directory can be removed at this point in time.
2923 * We check this by iterating all dir items and checking if the inode behind
2924 * the dir item was already processed.
2926 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2930 struct btrfs_root *root = sctx->parent_root;
2931 struct btrfs_path *path;
2932 struct btrfs_key key;
2933 struct btrfs_key found_key;
2934 struct btrfs_key loc;
2935 struct btrfs_dir_item *di;
2938 * Don't try to rmdir the top/root subvolume dir.
2940 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2943 path = alloc_path_for_send();
2948 key.type = BTRFS_DIR_INDEX_KEY;
2950 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2955 struct waiting_dir_move *dm;
2957 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2958 ret = btrfs_next_leaf(root, path);
2965 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2967 if (found_key.objectid != key.objectid ||
2968 found_key.type != key.type)
2971 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2972 struct btrfs_dir_item);
2973 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2975 dm = get_waiting_dir_move(sctx, loc.objectid);
2977 struct orphan_dir_info *odi;
2979 odi = add_orphan_dir_info(sctx, dir);
2985 dm->rmdir_ino = dir;
2990 if (loc.objectid > send_progress) {
2991 struct orphan_dir_info *odi;
2993 odi = get_orphan_dir_info(sctx, dir);
2994 free_orphan_dir_info(sctx, odi);
3005 btrfs_free_path(path);
3009 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3011 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3013 return entry != NULL;
3016 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3018 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3019 struct rb_node *parent = NULL;
3020 struct waiting_dir_move *entry, *dm;
3022 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3027 dm->orphanized = orphanized;
3031 entry = rb_entry(parent, struct waiting_dir_move, node);
3032 if (ino < entry->ino) {
3034 } else if (ino > entry->ino) {
3035 p = &(*p)->rb_right;
3042 rb_link_node(&dm->node, parent, p);
3043 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3047 static struct waiting_dir_move *
3048 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3050 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3051 struct waiting_dir_move *entry;
3054 entry = rb_entry(n, struct waiting_dir_move, node);
3055 if (ino < entry->ino)
3057 else if (ino > entry->ino)
3065 static void free_waiting_dir_move(struct send_ctx *sctx,
3066 struct waiting_dir_move *dm)
3070 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3074 static int add_pending_dir_move(struct send_ctx *sctx,
3078 struct list_head *new_refs,
3079 struct list_head *deleted_refs,
3080 const bool is_orphan)
3082 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3083 struct rb_node *parent = NULL;
3084 struct pending_dir_move *entry = NULL, *pm;
3085 struct recorded_ref *cur;
3089 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3092 pm->parent_ino = parent_ino;
3095 INIT_LIST_HEAD(&pm->list);
3096 INIT_LIST_HEAD(&pm->update_refs);
3097 RB_CLEAR_NODE(&pm->node);
3101 entry = rb_entry(parent, struct pending_dir_move, node);
3102 if (parent_ino < entry->parent_ino) {
3104 } else if (parent_ino > entry->parent_ino) {
3105 p = &(*p)->rb_right;
3112 list_for_each_entry(cur, deleted_refs, list) {
3113 ret = dup_ref(cur, &pm->update_refs);
3117 list_for_each_entry(cur, new_refs, list) {
3118 ret = dup_ref(cur, &pm->update_refs);
3123 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3128 list_add_tail(&pm->list, &entry->list);
3130 rb_link_node(&pm->node, parent, p);
3131 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3136 __free_recorded_refs(&pm->update_refs);
3142 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3145 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3146 struct pending_dir_move *entry;
3149 entry = rb_entry(n, struct pending_dir_move, node);
3150 if (parent_ino < entry->parent_ino)
3152 else if (parent_ino > entry->parent_ino)
3160 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3161 u64 ino, u64 gen, u64 *ancestor_ino)
3164 u64 parent_inode = 0;
3166 u64 start_ino = ino;
3169 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3170 fs_path_reset(name);
3172 if (is_waiting_for_rm(sctx, ino))
3174 if (is_waiting_for_move(sctx, ino)) {
3175 if (*ancestor_ino == 0)
3176 *ancestor_ino = ino;
3177 ret = get_first_ref(sctx->parent_root, ino,
3178 &parent_inode, &parent_gen, name);
3180 ret = __get_cur_name_and_parent(sctx, ino, gen,
3190 if (parent_inode == start_ino) {
3192 if (*ancestor_ino == 0)
3193 *ancestor_ino = ino;
3202 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3204 struct fs_path *from_path = NULL;
3205 struct fs_path *to_path = NULL;
3206 struct fs_path *name = NULL;
3207 u64 orig_progress = sctx->send_progress;
3208 struct recorded_ref *cur;
3209 u64 parent_ino, parent_gen;
3210 struct waiting_dir_move *dm = NULL;
3216 name = fs_path_alloc();
3217 from_path = fs_path_alloc();
3218 if (!name || !from_path) {
3223 dm = get_waiting_dir_move(sctx, pm->ino);
3225 rmdir_ino = dm->rmdir_ino;
3226 is_orphan = dm->orphanized;
3227 free_waiting_dir_move(sctx, dm);
3230 ret = gen_unique_name(sctx, pm->ino,
3231 pm->gen, from_path);
3233 ret = get_first_ref(sctx->parent_root, pm->ino,
3234 &parent_ino, &parent_gen, name);
3237 ret = get_cur_path(sctx, parent_ino, parent_gen,
3241 ret = fs_path_add_path(from_path, name);
3246 sctx->send_progress = sctx->cur_ino + 1;
3247 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3251 LIST_HEAD(deleted_refs);
3252 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3253 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3254 &pm->update_refs, &deleted_refs,
3259 dm = get_waiting_dir_move(sctx, pm->ino);
3261 dm->rmdir_ino = rmdir_ino;
3265 fs_path_reset(name);
3268 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3272 ret = send_rename(sctx, from_path, to_path);
3277 struct orphan_dir_info *odi;
3279 odi = get_orphan_dir_info(sctx, rmdir_ino);
3281 /* already deleted */
3284 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3290 name = fs_path_alloc();
3295 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3298 ret = send_rmdir(sctx, name);
3301 free_orphan_dir_info(sctx, odi);
3305 ret = send_utimes(sctx, pm->ino, pm->gen);
3310 * After rename/move, need to update the utimes of both new parent(s)
3311 * and old parent(s).
3313 list_for_each_entry(cur, &pm->update_refs, list) {
3315 * The parent inode might have been deleted in the send snapshot
3317 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3318 NULL, NULL, NULL, NULL, NULL);
3319 if (ret == -ENOENT) {
3326 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3333 fs_path_free(from_path);
3334 fs_path_free(to_path);
3335 sctx->send_progress = orig_progress;
3340 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3342 if (!list_empty(&m->list))
3344 if (!RB_EMPTY_NODE(&m->node))
3345 rb_erase(&m->node, &sctx->pending_dir_moves);
3346 __free_recorded_refs(&m->update_refs);
3350 static void tail_append_pending_moves(struct pending_dir_move *moves,
3351 struct list_head *stack)
3353 if (list_empty(&moves->list)) {
3354 list_add_tail(&moves->list, stack);
3357 list_splice_init(&moves->list, &list);
3358 list_add_tail(&moves->list, stack);
3359 list_splice_tail(&list, stack);
3363 static int apply_children_dir_moves(struct send_ctx *sctx)
3365 struct pending_dir_move *pm;
3366 struct list_head stack;
3367 u64 parent_ino = sctx->cur_ino;
3370 pm = get_pending_dir_moves(sctx, parent_ino);
3374 INIT_LIST_HEAD(&stack);
3375 tail_append_pending_moves(pm, &stack);
3377 while (!list_empty(&stack)) {
3378 pm = list_first_entry(&stack, struct pending_dir_move, list);
3379 parent_ino = pm->ino;
3380 ret = apply_dir_move(sctx, pm);
3381 free_pending_move(sctx, pm);
3384 pm = get_pending_dir_moves(sctx, parent_ino);
3386 tail_append_pending_moves(pm, &stack);
3391 while (!list_empty(&stack)) {
3392 pm = list_first_entry(&stack, struct pending_dir_move, list);
3393 free_pending_move(sctx, pm);
3399 * We might need to delay a directory rename even when no ancestor directory
3400 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3401 * renamed. This happens when we rename a directory to the old name (the name
3402 * in the parent root) of some other unrelated directory that got its rename
3403 * delayed due to some ancestor with higher number that got renamed.
3409 * |---- a/ (ino 257)
3410 * | |---- file (ino 260)
3412 * |---- b/ (ino 258)
3413 * |---- c/ (ino 259)
3417 * |---- a/ (ino 258)
3418 * |---- x/ (ino 259)
3419 * |---- y/ (ino 257)
3420 * |----- file (ino 260)
3422 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3423 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3424 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3427 * 1 - rename 259 from 'c' to 'x'
3428 * 2 - rename 257 from 'a' to 'x/y'
3429 * 3 - rename 258 from 'b' to 'a'
3431 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3432 * be done right away and < 0 on error.
3434 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3435 struct recorded_ref *parent_ref,
3436 const bool is_orphan)
3438 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3439 struct btrfs_path *path;
3440 struct btrfs_key key;
3441 struct btrfs_key di_key;
3442 struct btrfs_dir_item *di;
3446 struct waiting_dir_move *wdm;
3448 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3451 path = alloc_path_for_send();
3455 key.objectid = parent_ref->dir;
3456 key.type = BTRFS_DIR_ITEM_KEY;
3457 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3459 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3462 } else if (ret > 0) {
3467 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3468 parent_ref->name_len);
3474 * di_key.objectid has the number of the inode that has a dentry in the
3475 * parent directory with the same name that sctx->cur_ino is being
3476 * renamed to. We need to check if that inode is in the send root as
3477 * well and if it is currently marked as an inode with a pending rename,
3478 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3479 * that it happens after that other inode is renamed.
3481 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3482 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3487 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3488 &left_gen, NULL, NULL, NULL, NULL);
3491 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3492 &right_gen, NULL, NULL, NULL, NULL);
3499 /* Different inode, no need to delay the rename of sctx->cur_ino */
3500 if (right_gen != left_gen) {
3505 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3506 if (wdm && !wdm->orphanized) {
3507 ret = add_pending_dir_move(sctx,
3509 sctx->cur_inode_gen,
3512 &sctx->deleted_refs,
3518 btrfs_free_path(path);
3523 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3524 * Return 1 if true, 0 if false and < 0 on error.
3526 static int is_ancestor(struct btrfs_root *root,
3530 struct fs_path *fs_path)
3534 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3539 fs_path_reset(fs_path);
3540 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3542 if (ret == -ENOENT && ino == ino2)
3547 return parent_gen == ino1_gen ? 1 : 0;
3553 static int wait_for_parent_move(struct send_ctx *sctx,
3554 struct recorded_ref *parent_ref,
3555 const bool is_orphan)
3558 u64 ino = parent_ref->dir;
3559 u64 parent_ino_before, parent_ino_after;
3560 struct fs_path *path_before = NULL;
3561 struct fs_path *path_after = NULL;
3564 path_after = fs_path_alloc();
3565 path_before = fs_path_alloc();
3566 if (!path_after || !path_before) {
3572 * Our current directory inode may not yet be renamed/moved because some
3573 * ancestor (immediate or not) has to be renamed/moved first. So find if
3574 * such ancestor exists and make sure our own rename/move happens after
3575 * that ancestor is processed to avoid path build infinite loops (done
3576 * at get_cur_path()).
3578 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3579 if (is_waiting_for_move(sctx, ino)) {
3581 * If the current inode is an ancestor of ino in the
3582 * parent root, we need to delay the rename of the
3583 * current inode, otherwise don't delayed the rename
3584 * because we can end up with a circular dependency
3585 * of renames, resulting in some directories never
3586 * getting the respective rename operations issued in
3587 * the send stream or getting into infinite path build
3590 ret = is_ancestor(sctx->parent_root,
3591 sctx->cur_ino, sctx->cur_inode_gen,
3597 fs_path_reset(path_before);
3598 fs_path_reset(path_after);
3600 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3604 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3606 if (ret < 0 && ret != -ENOENT) {
3608 } else if (ret == -ENOENT) {
3613 len1 = fs_path_len(path_before);
3614 len2 = fs_path_len(path_after);
3615 if (ino > sctx->cur_ino &&
3616 (parent_ino_before != parent_ino_after || len1 != len2 ||
3617 memcmp(path_before->start, path_after->start, len1))) {
3621 ino = parent_ino_after;
3625 fs_path_free(path_before);
3626 fs_path_free(path_after);
3629 ret = add_pending_dir_move(sctx,
3631 sctx->cur_inode_gen,
3634 &sctx->deleted_refs,
3644 * This does all the move/link/unlink/rmdir magic.
3646 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3648 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3650 struct recorded_ref *cur;
3651 struct recorded_ref *cur2;
3652 struct list_head check_dirs;
3653 struct fs_path *valid_path = NULL;
3656 int did_overwrite = 0;
3658 u64 last_dir_ino_rm = 0;
3659 bool can_rename = true;
3661 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3664 * This should never happen as the root dir always has the same ref
3665 * which is always '..'
3667 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3668 INIT_LIST_HEAD(&check_dirs);
3670 valid_path = fs_path_alloc();
3677 * First, check if the first ref of the current inode was overwritten
3678 * before. If yes, we know that the current inode was already orphanized
3679 * and thus use the orphan name. If not, we can use get_cur_path to
3680 * get the path of the first ref as it would like while receiving at
3681 * this point in time.
3682 * New inodes are always orphan at the beginning, so force to use the
3683 * orphan name in this case.
3684 * The first ref is stored in valid_path and will be updated if it
3685 * gets moved around.
3687 if (!sctx->cur_inode_new) {
3688 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3689 sctx->cur_inode_gen);
3695 if (sctx->cur_inode_new || did_overwrite) {
3696 ret = gen_unique_name(sctx, sctx->cur_ino,
3697 sctx->cur_inode_gen, valid_path);
3702 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3708 list_for_each_entry(cur, &sctx->new_refs, list) {
3710 * We may have refs where the parent directory does not exist
3711 * yet. This happens if the parent directories inum is higher
3712 * the the current inum. To handle this case, we create the
3713 * parent directory out of order. But we need to check if this
3714 * did already happen before due to other refs in the same dir.
3716 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3719 if (ret == inode_state_will_create) {
3722 * First check if any of the current inodes refs did
3723 * already create the dir.
3725 list_for_each_entry(cur2, &sctx->new_refs, list) {
3728 if (cur2->dir == cur->dir) {
3735 * If that did not happen, check if a previous inode
3736 * did already create the dir.
3739 ret = did_create_dir(sctx, cur->dir);
3743 ret = send_create_inode(sctx, cur->dir);
3750 * Check if this new ref would overwrite the first ref of
3751 * another unprocessed inode. If yes, orphanize the
3752 * overwritten inode. If we find an overwritten ref that is
3753 * not the first ref, simply unlink it.
3755 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3756 cur->name, cur->name_len,
3757 &ow_inode, &ow_gen);
3761 ret = is_first_ref(sctx->parent_root,
3762 ow_inode, cur->dir, cur->name,
3767 struct name_cache_entry *nce;
3768 struct waiting_dir_move *wdm;
3770 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3776 * If ow_inode has its rename operation delayed
3777 * make sure that its orphanized name is used in
3778 * the source path when performing its rename
3781 if (is_waiting_for_move(sctx, ow_inode)) {
3782 wdm = get_waiting_dir_move(sctx,
3785 wdm->orphanized = true;
3789 * Make sure we clear our orphanized inode's
3790 * name from the name cache. This is because the
3791 * inode ow_inode might be an ancestor of some
3792 * other inode that will be orphanized as well
3793 * later and has an inode number greater than
3794 * sctx->send_progress. We need to prevent
3795 * future name lookups from using the old name
3796 * and get instead the orphan name.
3798 nce = name_cache_search(sctx, ow_inode, ow_gen);
3800 name_cache_delete(sctx, nce);
3805 * ow_inode might currently be an ancestor of
3806 * cur_ino, therefore compute valid_path (the
3807 * current path of cur_ino) again because it
3808 * might contain the pre-orphanization name of
3809 * ow_inode, which is no longer valid.
3811 fs_path_reset(valid_path);
3812 ret = get_cur_path(sctx, sctx->cur_ino,
3813 sctx->cur_inode_gen, valid_path);
3817 ret = send_unlink(sctx, cur->full_path);
3823 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3824 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3833 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3835 ret = wait_for_parent_move(sctx, cur, is_orphan);
3845 * link/move the ref to the new place. If we have an orphan
3846 * inode, move it and update valid_path. If not, link or move
3847 * it depending on the inode mode.
3849 if (is_orphan && can_rename) {
3850 ret = send_rename(sctx, valid_path, cur->full_path);
3854 ret = fs_path_copy(valid_path, cur->full_path);
3857 } else if (can_rename) {
3858 if (S_ISDIR(sctx->cur_inode_mode)) {
3860 * Dirs can't be linked, so move it. For moved
3861 * dirs, we always have one new and one deleted
3862 * ref. The deleted ref is ignored later.
3864 ret = send_rename(sctx, valid_path,
3867 ret = fs_path_copy(valid_path,
3872 ret = send_link(sctx, cur->full_path,
3878 ret = dup_ref(cur, &check_dirs);
3883 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3885 * Check if we can already rmdir the directory. If not,
3886 * orphanize it. For every dir item inside that gets deleted
3887 * later, we do this check again and rmdir it then if possible.
3888 * See the use of check_dirs for more details.
3890 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3895 ret = send_rmdir(sctx, valid_path);
3898 } else if (!is_orphan) {
3899 ret = orphanize_inode(sctx, sctx->cur_ino,
3900 sctx->cur_inode_gen, valid_path);
3906 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3907 ret = dup_ref(cur, &check_dirs);
3911 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3912 !list_empty(&sctx->deleted_refs)) {
3914 * We have a moved dir. Add the old parent to check_dirs
3916 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3918 ret = dup_ref(cur, &check_dirs);
3921 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3923 * We have a non dir inode. Go through all deleted refs and
3924 * unlink them if they were not already overwritten by other
3927 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3928 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3929 sctx->cur_ino, sctx->cur_inode_gen,
3930 cur->name, cur->name_len);
3934 ret = send_unlink(sctx, cur->full_path);
3938 ret = dup_ref(cur, &check_dirs);
3943 * If the inode is still orphan, unlink the orphan. This may
3944 * happen when a previous inode did overwrite the first ref
3945 * of this inode and no new refs were added for the current
3946 * inode. Unlinking does not mean that the inode is deleted in
3947 * all cases. There may still be links to this inode in other
3951 ret = send_unlink(sctx, valid_path);
3958 * We did collect all parent dirs where cur_inode was once located. We
3959 * now go through all these dirs and check if they are pending for
3960 * deletion and if it's finally possible to perform the rmdir now.
3961 * We also update the inode stats of the parent dirs here.
3963 list_for_each_entry(cur, &check_dirs, list) {
3965 * In case we had refs into dirs that were not processed yet,
3966 * we don't need to do the utime and rmdir logic for these dirs.
3967 * The dir will be processed later.
3969 if (cur->dir > sctx->cur_ino)
3972 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3976 if (ret == inode_state_did_create ||
3977 ret == inode_state_no_change) {
3978 /* TODO delayed utimes */
3979 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3982 } else if (ret == inode_state_did_delete &&
3983 cur->dir != last_dir_ino_rm) {
3984 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3989 ret = get_cur_path(sctx, cur->dir,
3990 cur->dir_gen, valid_path);
3993 ret = send_rmdir(sctx, valid_path);
3996 last_dir_ino_rm = cur->dir;
4004 __free_recorded_refs(&check_dirs);
4005 free_recorded_refs(sctx);
4006 fs_path_free(valid_path);
4010 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
4011 struct fs_path *name, void *ctx, struct list_head *refs)
4014 struct send_ctx *sctx = ctx;
4018 p = fs_path_alloc();
4022 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4027 ret = get_cur_path(sctx, dir, gen, p);
4030 ret = fs_path_add_path(p, name);
4034 ret = __record_ref(refs, dir, gen, p);
4042 static int __record_new_ref(int num, u64 dir, int index,
4043 struct fs_path *name,
4046 struct send_ctx *sctx = ctx;
4047 return record_ref(sctx->send_root, num, dir, index, name,
4048 ctx, &sctx->new_refs);
4052 static int __record_deleted_ref(int num, u64 dir, int index,
4053 struct fs_path *name,
4056 struct send_ctx *sctx = ctx;
4057 return record_ref(sctx->parent_root, num, dir, index, name,
4058 ctx, &sctx->deleted_refs);
4061 static int record_new_ref(struct send_ctx *sctx)
4065 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4066 sctx->cmp_key, 0, __record_new_ref, sctx);
4075 static int record_deleted_ref(struct send_ctx *sctx)
4079 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4080 sctx->cmp_key, 0, __record_deleted_ref, sctx);
4089 struct find_ref_ctx {
4092 struct btrfs_root *root;
4093 struct fs_path *name;
4097 static int __find_iref(int num, u64 dir, int index,
4098 struct fs_path *name,
4101 struct find_ref_ctx *ctx = ctx_;
4105 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4106 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4108 * To avoid doing extra lookups we'll only do this if everything
4111 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4115 if (dir_gen != ctx->dir_gen)
4117 ctx->found_idx = num;
4123 static int find_iref(struct btrfs_root *root,
4124 struct btrfs_path *path,
4125 struct btrfs_key *key,
4126 u64 dir, u64 dir_gen, struct fs_path *name)
4129 struct find_ref_ctx ctx;
4133 ctx.dir_gen = dir_gen;
4137 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4141 if (ctx.found_idx == -1)
4144 return ctx.found_idx;
4147 static int __record_changed_new_ref(int num, u64 dir, int index,
4148 struct fs_path *name,
4153 struct send_ctx *sctx = ctx;
4155 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4160 ret = find_iref(sctx->parent_root, sctx->right_path,
4161 sctx->cmp_key, dir, dir_gen, name);
4163 ret = __record_new_ref(num, dir, index, name, sctx);
4170 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4171 struct fs_path *name,
4176 struct send_ctx *sctx = ctx;
4178 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4183 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4184 dir, dir_gen, name);
4186 ret = __record_deleted_ref(num, dir, index, name, sctx);
4193 static int record_changed_ref(struct send_ctx *sctx)
4197 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4198 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4201 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4202 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4212 * Record and process all refs at once. Needed when an inode changes the
4213 * generation number, which means that it was deleted and recreated.
4215 static int process_all_refs(struct send_ctx *sctx,
4216 enum btrfs_compare_tree_result cmd)
4219 struct btrfs_root *root;
4220 struct btrfs_path *path;
4221 struct btrfs_key key;
4222 struct btrfs_key found_key;
4223 struct extent_buffer *eb;
4225 iterate_inode_ref_t cb;
4226 int pending_move = 0;
4228 path = alloc_path_for_send();
4232 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4233 root = sctx->send_root;
4234 cb = __record_new_ref;
4235 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4236 root = sctx->parent_root;
4237 cb = __record_deleted_ref;
4239 btrfs_err(sctx->send_root->fs_info,
4240 "Wrong command %d in process_all_refs", cmd);
4245 key.objectid = sctx->cmp_key->objectid;
4246 key.type = BTRFS_INODE_REF_KEY;
4248 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4253 eb = path->nodes[0];
4254 slot = path->slots[0];
4255 if (slot >= btrfs_header_nritems(eb)) {
4256 ret = btrfs_next_leaf(root, path);
4264 btrfs_item_key_to_cpu(eb, &found_key, slot);
4266 if (found_key.objectid != key.objectid ||
4267 (found_key.type != BTRFS_INODE_REF_KEY &&
4268 found_key.type != BTRFS_INODE_EXTREF_KEY))
4271 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4277 btrfs_release_path(path);
4280 * We don't actually care about pending_move as we are simply
4281 * re-creating this inode and will be rename'ing it into place once we
4282 * rename the parent directory.
4284 ret = process_recorded_refs(sctx, &pending_move);
4286 btrfs_free_path(path);
4290 static int send_set_xattr(struct send_ctx *sctx,
4291 struct fs_path *path,
4292 const char *name, int name_len,
4293 const char *data, int data_len)
4297 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4301 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4302 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4303 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4305 ret = send_cmd(sctx);
4312 static int send_remove_xattr(struct send_ctx *sctx,
4313 struct fs_path *path,
4314 const char *name, int name_len)
4318 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4322 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4323 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4325 ret = send_cmd(sctx);
4332 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4333 const char *name, int name_len,
4334 const char *data, int data_len,
4338 struct send_ctx *sctx = ctx;
4340 struct posix_acl_xattr_header dummy_acl;
4342 p = fs_path_alloc();
4347 * This hack is needed because empty acls are stored as zero byte
4348 * data in xattrs. Problem with that is, that receiving these zero byte
4349 * acls will fail later. To fix this, we send a dummy acl list that
4350 * only contains the version number and no entries.
4352 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4353 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4354 if (data_len == 0) {
4355 dummy_acl.a_version =
4356 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4357 data = (char *)&dummy_acl;
4358 data_len = sizeof(dummy_acl);
4362 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4366 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4373 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4374 const char *name, int name_len,
4375 const char *data, int data_len,
4379 struct send_ctx *sctx = ctx;
4382 p = fs_path_alloc();
4386 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4390 ret = send_remove_xattr(sctx, p, name, name_len);
4397 static int process_new_xattr(struct send_ctx *sctx)
4401 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4402 sctx->cmp_key, __process_new_xattr, sctx);
4407 static int process_deleted_xattr(struct send_ctx *sctx)
4409 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4410 sctx->cmp_key, __process_deleted_xattr, sctx);
4413 struct find_xattr_ctx {
4421 static int __find_xattr(int num, struct btrfs_key *di_key,
4422 const char *name, int name_len,
4423 const char *data, int data_len,
4424 u8 type, void *vctx)
4426 struct find_xattr_ctx *ctx = vctx;
4428 if (name_len == ctx->name_len &&
4429 strncmp(name, ctx->name, name_len) == 0) {
4430 ctx->found_idx = num;
4431 ctx->found_data_len = data_len;
4432 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4433 if (!ctx->found_data)
4440 static int find_xattr(struct btrfs_root *root,
4441 struct btrfs_path *path,
4442 struct btrfs_key *key,
4443 const char *name, int name_len,
4444 char **data, int *data_len)
4447 struct find_xattr_ctx ctx;
4450 ctx.name_len = name_len;
4452 ctx.found_data = NULL;
4453 ctx.found_data_len = 0;
4455 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4459 if (ctx.found_idx == -1)
4462 *data = ctx.found_data;
4463 *data_len = ctx.found_data_len;
4465 kfree(ctx.found_data);
4467 return ctx.found_idx;
4471 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4472 const char *name, int name_len,
4473 const char *data, int data_len,
4477 struct send_ctx *sctx = ctx;
4478 char *found_data = NULL;
4479 int found_data_len = 0;
4481 ret = find_xattr(sctx->parent_root, sctx->right_path,
4482 sctx->cmp_key, name, name_len, &found_data,
4484 if (ret == -ENOENT) {
4485 ret = __process_new_xattr(num, di_key, name, name_len, data,
4486 data_len, type, ctx);
4487 } else if (ret >= 0) {
4488 if (data_len != found_data_len ||
4489 memcmp(data, found_data, data_len)) {
4490 ret = __process_new_xattr(num, di_key, name, name_len,
4491 data, data_len, type, ctx);
4501 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4502 const char *name, int name_len,
4503 const char *data, int data_len,
4507 struct send_ctx *sctx = ctx;
4509 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4510 name, name_len, NULL, NULL);
4512 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4513 data_len, type, ctx);
4520 static int process_changed_xattr(struct send_ctx *sctx)
4524 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4525 sctx->cmp_key, __process_changed_new_xattr, sctx);
4528 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4529 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4535 static int process_all_new_xattrs(struct send_ctx *sctx)
4538 struct btrfs_root *root;
4539 struct btrfs_path *path;
4540 struct btrfs_key key;
4541 struct btrfs_key found_key;
4542 struct extent_buffer *eb;
4545 path = alloc_path_for_send();
4549 root = sctx->send_root;
4551 key.objectid = sctx->cmp_key->objectid;
4552 key.type = BTRFS_XATTR_ITEM_KEY;
4554 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4559 eb = path->nodes[0];
4560 slot = path->slots[0];
4561 if (slot >= btrfs_header_nritems(eb)) {
4562 ret = btrfs_next_leaf(root, path);
4565 } else if (ret > 0) {
4572 btrfs_item_key_to_cpu(eb, &found_key, slot);
4573 if (found_key.objectid != key.objectid ||
4574 found_key.type != key.type) {
4579 ret = iterate_dir_item(root, path, &found_key,
4580 __process_new_xattr, sctx);
4588 btrfs_free_path(path);
4592 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4594 struct btrfs_root *root = sctx->send_root;
4595 struct btrfs_fs_info *fs_info = root->fs_info;
4596 struct inode *inode;
4599 struct btrfs_key key;
4600 pgoff_t index = offset >> PAGE_SHIFT;
4602 unsigned pg_offset = offset & ~PAGE_MASK;
4605 key.objectid = sctx->cur_ino;
4606 key.type = BTRFS_INODE_ITEM_KEY;
4609 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4611 return PTR_ERR(inode);
4613 if (offset + len > i_size_read(inode)) {
4614 if (offset > i_size_read(inode))
4617 len = offset - i_size_read(inode);
4622 last_index = (offset + len - 1) >> PAGE_SHIFT;
4624 /* initial readahead */
4625 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4626 file_ra_state_init(&sctx->ra, inode->i_mapping);
4627 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4628 last_index - index + 1);
4630 while (index <= last_index) {
4631 unsigned cur_len = min_t(unsigned, len,
4632 PAGE_SIZE - pg_offset);
4633 page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
4639 if (!PageUptodate(page)) {
4640 btrfs_readpage(NULL, page);
4642 if (!PageUptodate(page)) {
4651 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4666 * Read some bytes from the current inode/file and send a write command to
4669 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4671 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4674 ssize_t num_read = 0;
4676 p = fs_path_alloc();
4680 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4682 num_read = fill_read_buf(sctx, offset, len);
4683 if (num_read <= 0) {
4689 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4693 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4697 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4698 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4699 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4701 ret = send_cmd(sctx);
4712 * Send a clone command to user space.
4714 static int send_clone(struct send_ctx *sctx,
4715 u64 offset, u32 len,
4716 struct clone_root *clone_root)
4722 btrfs_debug(sctx->send_root->fs_info,
4723 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4724 offset, len, clone_root->root->objectid, clone_root->ino,
4725 clone_root->offset);
4727 p = fs_path_alloc();
4731 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4735 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4739 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4740 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4741 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4743 if (clone_root->root == sctx->send_root) {
4744 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4745 &gen, NULL, NULL, NULL, NULL);
4748 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4750 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4756 * If the parent we're using has a received_uuid set then use that as
4757 * our clone source as that is what we will look for when doing a
4760 * This covers the case that we create a snapshot off of a received
4761 * subvolume and then use that as the parent and try to receive on a
4764 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4765 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4766 clone_root->root->root_item.received_uuid);
4768 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4769 clone_root->root->root_item.uuid);
4770 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4771 le64_to_cpu(clone_root->root->root_item.ctransid));
4772 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4773 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4774 clone_root->offset);
4776 ret = send_cmd(sctx);
4785 * Send an update extent command to user space.
4787 static int send_update_extent(struct send_ctx *sctx,
4788 u64 offset, u32 len)
4793 p = fs_path_alloc();
4797 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4801 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4805 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4806 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4807 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4809 ret = send_cmd(sctx);
4817 static int send_hole(struct send_ctx *sctx, u64 end)
4819 struct fs_path *p = NULL;
4820 u64 offset = sctx->cur_inode_last_extent;
4824 p = fs_path_alloc();
4827 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4829 goto tlv_put_failure;
4830 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4831 while (offset < end) {
4832 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4834 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4837 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4838 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4839 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4840 ret = send_cmd(sctx);
4850 static int send_extent_data(struct send_ctx *sctx,
4856 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4857 return send_update_extent(sctx, offset, len);
4859 while (sent < len) {
4860 u64 size = len - sent;
4863 if (size > BTRFS_SEND_READ_SIZE)
4864 size = BTRFS_SEND_READ_SIZE;
4865 ret = send_write(sctx, offset + sent, size);
4875 static int clone_range(struct send_ctx *sctx,
4876 struct clone_root *clone_root,
4877 const u64 disk_byte,
4882 struct btrfs_path *path;
4883 struct btrfs_key key;
4886 path = alloc_path_for_send();
4891 * We can't send a clone operation for the entire range if we find
4892 * extent items in the respective range in the source file that
4893 * refer to different extents or if we find holes.
4894 * So check for that and do a mix of clone and regular write/copy
4895 * operations if needed.
4899 * mkfs.btrfs -f /dev/sda
4900 * mount /dev/sda /mnt
4901 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4902 * cp --reflink=always /mnt/foo /mnt/bar
4903 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4904 * btrfs subvolume snapshot -r /mnt /mnt/snap
4906 * If when we send the snapshot and we are processing file bar (which
4907 * has a higher inode number than foo) we blindly send a clone operation
4908 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4909 * a file bar that matches the content of file foo - iow, doesn't match
4910 * the content from bar in the original filesystem.
4912 key.objectid = clone_root->ino;
4913 key.type = BTRFS_EXTENT_DATA_KEY;
4914 key.offset = clone_root->offset;
4915 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4918 if (ret > 0 && path->slots[0] > 0) {
4919 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4920 if (key.objectid == clone_root->ino &&
4921 key.type == BTRFS_EXTENT_DATA_KEY)
4926 struct extent_buffer *leaf = path->nodes[0];
4927 int slot = path->slots[0];
4928 struct btrfs_file_extent_item *ei;
4933 if (slot >= btrfs_header_nritems(leaf)) {
4934 ret = btrfs_next_leaf(clone_root->root, path);
4942 btrfs_item_key_to_cpu(leaf, &key, slot);
4945 * We might have an implicit trailing hole (NO_HOLES feature
4946 * enabled). We deal with it after leaving this loop.
4948 if (key.objectid != clone_root->ino ||
4949 key.type != BTRFS_EXTENT_DATA_KEY)
4952 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4953 type = btrfs_file_extent_type(leaf, ei);
4954 if (type == BTRFS_FILE_EXTENT_INLINE) {
4955 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
4956 ext_len = PAGE_ALIGN(ext_len);
4958 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4961 if (key.offset + ext_len <= clone_root->offset)
4964 if (key.offset > clone_root->offset) {
4965 /* Implicit hole, NO_HOLES feature enabled. */
4966 u64 hole_len = key.offset - clone_root->offset;
4970 ret = send_extent_data(sctx, offset, hole_len);
4978 clone_root->offset += hole_len;
4979 data_offset += hole_len;
4982 if (key.offset >= clone_root->offset + len)
4985 clone_len = min_t(u64, ext_len, len);
4987 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
4988 btrfs_file_extent_offset(leaf, ei) == data_offset)
4989 ret = send_clone(sctx, offset, clone_len, clone_root);
4991 ret = send_extent_data(sctx, offset, clone_len);
4999 offset += clone_len;
5000 clone_root->offset += clone_len;
5001 data_offset += clone_len;
5007 ret = send_extent_data(sctx, offset, len);
5011 btrfs_free_path(path);
5015 static int send_write_or_clone(struct send_ctx *sctx,
5016 struct btrfs_path *path,
5017 struct btrfs_key *key,
5018 struct clone_root *clone_root)
5021 struct btrfs_file_extent_item *ei;
5022 u64 offset = key->offset;
5025 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5027 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5028 struct btrfs_file_extent_item);
5029 type = btrfs_file_extent_type(path->nodes[0], ei);
5030 if (type == BTRFS_FILE_EXTENT_INLINE) {
5031 len = btrfs_file_extent_inline_len(path->nodes[0],
5032 path->slots[0], ei);
5034 * it is possible the inline item won't cover the whole page,
5035 * but there may be items after this page. Make
5036 * sure to send the whole thing
5038 len = PAGE_ALIGN(len);
5040 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5043 if (offset + len > sctx->cur_inode_size)
5044 len = sctx->cur_inode_size - offset;
5050 if (clone_root && IS_ALIGNED(offset + len, bs)) {
5054 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5055 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5056 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5059 ret = send_extent_data(sctx, offset, len);
5065 static int is_extent_unchanged(struct send_ctx *sctx,
5066 struct btrfs_path *left_path,
5067 struct btrfs_key *ekey)
5070 struct btrfs_key key;
5071 struct btrfs_path *path = NULL;
5072 struct extent_buffer *eb;
5074 struct btrfs_key found_key;
5075 struct btrfs_file_extent_item *ei;
5080 u64 left_offset_fixed;
5088 path = alloc_path_for_send();
5092 eb = left_path->nodes[0];
5093 slot = left_path->slots[0];
5094 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5095 left_type = btrfs_file_extent_type(eb, ei);
5097 if (left_type != BTRFS_FILE_EXTENT_REG) {
5101 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5102 left_len = btrfs_file_extent_num_bytes(eb, ei);
5103 left_offset = btrfs_file_extent_offset(eb, ei);
5104 left_gen = btrfs_file_extent_generation(eb, ei);
5107 * Following comments will refer to these graphics. L is the left
5108 * extents which we are checking at the moment. 1-8 are the right
5109 * extents that we iterate.
5112 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5115 * |--1--|-2b-|...(same as above)
5117 * Alternative situation. Happens on files where extents got split.
5119 * |-----------7-----------|-6-|
5121 * Alternative situation. Happens on files which got larger.
5124 * Nothing follows after 8.
5127 key.objectid = ekey->objectid;
5128 key.type = BTRFS_EXTENT_DATA_KEY;
5129 key.offset = ekey->offset;
5130 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5139 * Handle special case where the right side has no extents at all.
5141 eb = path->nodes[0];
5142 slot = path->slots[0];
5143 btrfs_item_key_to_cpu(eb, &found_key, slot);
5144 if (found_key.objectid != key.objectid ||
5145 found_key.type != key.type) {
5146 /* If we're a hole then just pretend nothing changed */
5147 ret = (left_disknr) ? 0 : 1;
5152 * We're now on 2a, 2b or 7.
5155 while (key.offset < ekey->offset + left_len) {
5156 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5157 right_type = btrfs_file_extent_type(eb, ei);
5158 if (right_type != BTRFS_FILE_EXTENT_REG) {
5163 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5164 right_len = btrfs_file_extent_num_bytes(eb, ei);
5165 right_offset = btrfs_file_extent_offset(eb, ei);
5166 right_gen = btrfs_file_extent_generation(eb, ei);
5169 * Are we at extent 8? If yes, we know the extent is changed.
5170 * This may only happen on the first iteration.
5172 if (found_key.offset + right_len <= ekey->offset) {
5173 /* If we're a hole just pretend nothing changed */
5174 ret = (left_disknr) ? 0 : 1;
5178 left_offset_fixed = left_offset;
5179 if (key.offset < ekey->offset) {
5180 /* Fix the right offset for 2a and 7. */
5181 right_offset += ekey->offset - key.offset;
5183 /* Fix the left offset for all behind 2a and 2b */
5184 left_offset_fixed += key.offset - ekey->offset;
5188 * Check if we have the same extent.
5190 if (left_disknr != right_disknr ||
5191 left_offset_fixed != right_offset ||
5192 left_gen != right_gen) {
5198 * Go to the next extent.
5200 ret = btrfs_next_item(sctx->parent_root, path);
5204 eb = path->nodes[0];
5205 slot = path->slots[0];
5206 btrfs_item_key_to_cpu(eb, &found_key, slot);
5208 if (ret || found_key.objectid != key.objectid ||
5209 found_key.type != key.type) {
5210 key.offset += right_len;
5213 if (found_key.offset != key.offset + right_len) {
5221 * We're now behind the left extent (treat as unchanged) or at the end
5222 * of the right side (treat as changed).
5224 if (key.offset >= ekey->offset + left_len)
5231 btrfs_free_path(path);
5235 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5237 struct btrfs_path *path;
5238 struct btrfs_root *root = sctx->send_root;
5239 struct btrfs_file_extent_item *fi;
5240 struct btrfs_key key;
5245 path = alloc_path_for_send();
5249 sctx->cur_inode_last_extent = 0;
5251 key.objectid = sctx->cur_ino;
5252 key.type = BTRFS_EXTENT_DATA_KEY;
5253 key.offset = offset;
5254 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5258 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5259 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5262 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5263 struct btrfs_file_extent_item);
5264 type = btrfs_file_extent_type(path->nodes[0], fi);
5265 if (type == BTRFS_FILE_EXTENT_INLINE) {
5266 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5267 path->slots[0], fi);
5268 extent_end = ALIGN(key.offset + size,
5269 sctx->send_root->fs_info->sectorsize);
5271 extent_end = key.offset +
5272 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5274 sctx->cur_inode_last_extent = extent_end;
5276 btrfs_free_path(path);
5280 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5281 struct btrfs_key *key)
5283 struct btrfs_file_extent_item *fi;
5288 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5291 if (sctx->cur_inode_last_extent == (u64)-1) {
5292 ret = get_last_extent(sctx, key->offset - 1);
5297 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5298 struct btrfs_file_extent_item);
5299 type = btrfs_file_extent_type(path->nodes[0], fi);
5300 if (type == BTRFS_FILE_EXTENT_INLINE) {
5301 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5302 path->slots[0], fi);
5303 extent_end = ALIGN(key->offset + size,
5304 sctx->send_root->fs_info->sectorsize);
5306 extent_end = key->offset +
5307 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5310 if (path->slots[0] == 0 &&
5311 sctx->cur_inode_last_extent < key->offset) {
5313 * We might have skipped entire leafs that contained only
5314 * file extent items for our current inode. These leafs have
5315 * a generation number smaller (older) than the one in the
5316 * current leaf and the leaf our last extent came from, and
5317 * are located between these 2 leafs.
5319 ret = get_last_extent(sctx, key->offset - 1);
5324 if (sctx->cur_inode_last_extent < key->offset)
5325 ret = send_hole(sctx, key->offset);
5326 sctx->cur_inode_last_extent = extent_end;
5330 static int process_extent(struct send_ctx *sctx,
5331 struct btrfs_path *path,
5332 struct btrfs_key *key)
5334 struct clone_root *found_clone = NULL;
5337 if (S_ISLNK(sctx->cur_inode_mode))
5340 if (sctx->parent_root && !sctx->cur_inode_new) {
5341 ret = is_extent_unchanged(sctx, path, key);
5349 struct btrfs_file_extent_item *ei;
5352 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5353 struct btrfs_file_extent_item);
5354 type = btrfs_file_extent_type(path->nodes[0], ei);
5355 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5356 type == BTRFS_FILE_EXTENT_REG) {
5358 * The send spec does not have a prealloc command yet,
5359 * so just leave a hole for prealloc'ed extents until
5360 * we have enough commands queued up to justify rev'ing
5363 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5368 /* Have a hole, just skip it. */
5369 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5376 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5377 sctx->cur_inode_size, &found_clone);
5378 if (ret != -ENOENT && ret < 0)
5381 ret = send_write_or_clone(sctx, path, key, found_clone);
5385 ret = maybe_send_hole(sctx, path, key);
5390 static int process_all_extents(struct send_ctx *sctx)
5393 struct btrfs_root *root;
5394 struct btrfs_path *path;
5395 struct btrfs_key key;
5396 struct btrfs_key found_key;
5397 struct extent_buffer *eb;
5400 root = sctx->send_root;
5401 path = alloc_path_for_send();
5405 key.objectid = sctx->cmp_key->objectid;
5406 key.type = BTRFS_EXTENT_DATA_KEY;
5408 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5413 eb = path->nodes[0];
5414 slot = path->slots[0];
5416 if (slot >= btrfs_header_nritems(eb)) {
5417 ret = btrfs_next_leaf(root, path);
5420 } else if (ret > 0) {
5427 btrfs_item_key_to_cpu(eb, &found_key, slot);
5429 if (found_key.objectid != key.objectid ||
5430 found_key.type != key.type) {
5435 ret = process_extent(sctx, path, &found_key);
5443 btrfs_free_path(path);
5447 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5449 int *refs_processed)
5453 if (sctx->cur_ino == 0)
5455 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5456 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5458 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5461 ret = process_recorded_refs(sctx, pending_move);
5465 *refs_processed = 1;
5470 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5481 int pending_move = 0;
5482 int refs_processed = 0;
5484 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5490 * We have processed the refs and thus need to advance send_progress.
5491 * Now, calls to get_cur_xxx will take the updated refs of the current
5492 * inode into account.
5494 * On the other hand, if our current inode is a directory and couldn't
5495 * be moved/renamed because its parent was renamed/moved too and it has
5496 * a higher inode number, we can only move/rename our current inode
5497 * after we moved/renamed its parent. Therefore in this case operate on
5498 * the old path (pre move/rename) of our current inode, and the
5499 * move/rename will be performed later.
5501 if (refs_processed && !pending_move)
5502 sctx->send_progress = sctx->cur_ino + 1;
5504 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5506 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5509 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5510 &left_mode, &left_uid, &left_gid, NULL);
5514 if (!sctx->parent_root || sctx->cur_inode_new) {
5516 if (!S_ISLNK(sctx->cur_inode_mode))
5519 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5520 NULL, NULL, &right_mode, &right_uid,
5525 if (left_uid != right_uid || left_gid != right_gid)
5527 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5531 if (S_ISREG(sctx->cur_inode_mode)) {
5532 if (need_send_hole(sctx)) {
5533 if (sctx->cur_inode_last_extent == (u64)-1 ||
5534 sctx->cur_inode_last_extent <
5535 sctx->cur_inode_size) {
5536 ret = get_last_extent(sctx, (u64)-1);
5540 if (sctx->cur_inode_last_extent <
5541 sctx->cur_inode_size) {
5542 ret = send_hole(sctx, sctx->cur_inode_size);
5547 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5548 sctx->cur_inode_size);
5554 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5555 left_uid, left_gid);
5560 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5567 * If other directory inodes depended on our current directory
5568 * inode's move/rename, now do their move/rename operations.
5570 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5571 ret = apply_children_dir_moves(sctx);
5575 * Need to send that every time, no matter if it actually
5576 * changed between the two trees as we have done changes to
5577 * the inode before. If our inode is a directory and it's
5578 * waiting to be moved/renamed, we will send its utimes when
5579 * it's moved/renamed, therefore we don't need to do it here.
5581 sctx->send_progress = sctx->cur_ino + 1;
5582 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5591 static int changed_inode(struct send_ctx *sctx,
5592 enum btrfs_compare_tree_result result)
5595 struct btrfs_key *key = sctx->cmp_key;
5596 struct btrfs_inode_item *left_ii = NULL;
5597 struct btrfs_inode_item *right_ii = NULL;
5601 sctx->cur_ino = key->objectid;
5602 sctx->cur_inode_new_gen = 0;
5603 sctx->cur_inode_last_extent = (u64)-1;
5606 * Set send_progress to current inode. This will tell all get_cur_xxx
5607 * functions that the current inode's refs are not updated yet. Later,
5608 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5610 sctx->send_progress = sctx->cur_ino;
5612 if (result == BTRFS_COMPARE_TREE_NEW ||
5613 result == BTRFS_COMPARE_TREE_CHANGED) {
5614 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5615 sctx->left_path->slots[0],
5616 struct btrfs_inode_item);
5617 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5620 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5621 sctx->right_path->slots[0],
5622 struct btrfs_inode_item);
5623 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5626 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5627 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5628 sctx->right_path->slots[0],
5629 struct btrfs_inode_item);
5631 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5635 * The cur_ino = root dir case is special here. We can't treat
5636 * the inode as deleted+reused because it would generate a
5637 * stream that tries to delete/mkdir the root dir.
5639 if (left_gen != right_gen &&
5640 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5641 sctx->cur_inode_new_gen = 1;
5644 if (result == BTRFS_COMPARE_TREE_NEW) {
5645 sctx->cur_inode_gen = left_gen;
5646 sctx->cur_inode_new = 1;
5647 sctx->cur_inode_deleted = 0;
5648 sctx->cur_inode_size = btrfs_inode_size(
5649 sctx->left_path->nodes[0], left_ii);
5650 sctx->cur_inode_mode = btrfs_inode_mode(
5651 sctx->left_path->nodes[0], left_ii);
5652 sctx->cur_inode_rdev = btrfs_inode_rdev(
5653 sctx->left_path->nodes[0], left_ii);
5654 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5655 ret = send_create_inode_if_needed(sctx);
5656 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5657 sctx->cur_inode_gen = right_gen;
5658 sctx->cur_inode_new = 0;
5659 sctx->cur_inode_deleted = 1;
5660 sctx->cur_inode_size = btrfs_inode_size(
5661 sctx->right_path->nodes[0], right_ii);
5662 sctx->cur_inode_mode = btrfs_inode_mode(
5663 sctx->right_path->nodes[0], right_ii);
5664 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5666 * We need to do some special handling in case the inode was
5667 * reported as changed with a changed generation number. This
5668 * means that the original inode was deleted and new inode
5669 * reused the same inum. So we have to treat the old inode as
5670 * deleted and the new one as new.
5672 if (sctx->cur_inode_new_gen) {
5674 * First, process the inode as if it was deleted.
5676 sctx->cur_inode_gen = right_gen;
5677 sctx->cur_inode_new = 0;
5678 sctx->cur_inode_deleted = 1;
5679 sctx->cur_inode_size = btrfs_inode_size(
5680 sctx->right_path->nodes[0], right_ii);
5681 sctx->cur_inode_mode = btrfs_inode_mode(
5682 sctx->right_path->nodes[0], right_ii);
5683 ret = process_all_refs(sctx,
5684 BTRFS_COMPARE_TREE_DELETED);
5689 * Now process the inode as if it was new.
5691 sctx->cur_inode_gen = left_gen;
5692 sctx->cur_inode_new = 1;
5693 sctx->cur_inode_deleted = 0;
5694 sctx->cur_inode_size = btrfs_inode_size(
5695 sctx->left_path->nodes[0], left_ii);
5696 sctx->cur_inode_mode = btrfs_inode_mode(
5697 sctx->left_path->nodes[0], left_ii);
5698 sctx->cur_inode_rdev = btrfs_inode_rdev(
5699 sctx->left_path->nodes[0], left_ii);
5700 ret = send_create_inode_if_needed(sctx);
5704 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5708 * Advance send_progress now as we did not get into
5709 * process_recorded_refs_if_needed in the new_gen case.
5711 sctx->send_progress = sctx->cur_ino + 1;
5714 * Now process all extents and xattrs of the inode as if
5715 * they were all new.
5717 ret = process_all_extents(sctx);
5720 ret = process_all_new_xattrs(sctx);
5724 sctx->cur_inode_gen = left_gen;
5725 sctx->cur_inode_new = 0;
5726 sctx->cur_inode_new_gen = 0;
5727 sctx->cur_inode_deleted = 0;
5728 sctx->cur_inode_size = btrfs_inode_size(
5729 sctx->left_path->nodes[0], left_ii);
5730 sctx->cur_inode_mode = btrfs_inode_mode(
5731 sctx->left_path->nodes[0], left_ii);
5740 * We have to process new refs before deleted refs, but compare_trees gives us
5741 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5742 * first and later process them in process_recorded_refs.
5743 * For the cur_inode_new_gen case, we skip recording completely because
5744 * changed_inode did already initiate processing of refs. The reason for this is
5745 * that in this case, compare_tree actually compares the refs of 2 different
5746 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5747 * refs of the right tree as deleted and all refs of the left tree as new.
5749 static int changed_ref(struct send_ctx *sctx,
5750 enum btrfs_compare_tree_result result)
5754 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5755 inconsistent_snapshot_error(sctx, result, "reference");
5759 if (!sctx->cur_inode_new_gen &&
5760 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5761 if (result == BTRFS_COMPARE_TREE_NEW)
5762 ret = record_new_ref(sctx);
5763 else if (result == BTRFS_COMPARE_TREE_DELETED)
5764 ret = record_deleted_ref(sctx);
5765 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5766 ret = record_changed_ref(sctx);
5773 * Process new/deleted/changed xattrs. We skip processing in the
5774 * cur_inode_new_gen case because changed_inode did already initiate processing
5775 * of xattrs. The reason is the same as in changed_ref
5777 static int changed_xattr(struct send_ctx *sctx,
5778 enum btrfs_compare_tree_result result)
5782 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5783 inconsistent_snapshot_error(sctx, result, "xattr");
5787 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5788 if (result == BTRFS_COMPARE_TREE_NEW)
5789 ret = process_new_xattr(sctx);
5790 else if (result == BTRFS_COMPARE_TREE_DELETED)
5791 ret = process_deleted_xattr(sctx);
5792 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5793 ret = process_changed_xattr(sctx);
5800 * Process new/deleted/changed extents. We skip processing in the
5801 * cur_inode_new_gen case because changed_inode did already initiate processing
5802 * of extents. The reason is the same as in changed_ref
5804 static int changed_extent(struct send_ctx *sctx,
5805 enum btrfs_compare_tree_result result)
5809 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5811 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5812 struct extent_buffer *leaf_l;
5813 struct extent_buffer *leaf_r;
5814 struct btrfs_file_extent_item *ei_l;
5815 struct btrfs_file_extent_item *ei_r;
5817 leaf_l = sctx->left_path->nodes[0];
5818 leaf_r = sctx->right_path->nodes[0];
5819 ei_l = btrfs_item_ptr(leaf_l,
5820 sctx->left_path->slots[0],
5821 struct btrfs_file_extent_item);
5822 ei_r = btrfs_item_ptr(leaf_r,
5823 sctx->right_path->slots[0],
5824 struct btrfs_file_extent_item);
5827 * We may have found an extent item that has changed
5828 * only its disk_bytenr field and the corresponding
5829 * inode item was not updated. This case happens due to
5830 * very specific timings during relocation when a leaf
5831 * that contains file extent items is COWed while
5832 * relocation is ongoing and its in the stage where it
5833 * updates data pointers. So when this happens we can
5834 * safely ignore it since we know it's the same extent,
5835 * but just at different logical and physical locations
5836 * (when an extent is fully replaced with a new one, we
5837 * know the generation number must have changed too,
5838 * since snapshot creation implies committing the current
5839 * transaction, and the inode item must have been updated
5841 * This replacement of the disk_bytenr happens at
5842 * relocation.c:replace_file_extents() through
5843 * relocation.c:btrfs_reloc_cow_block().
5845 if (btrfs_file_extent_generation(leaf_l, ei_l) ==
5846 btrfs_file_extent_generation(leaf_r, ei_r) &&
5847 btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
5848 btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
5849 btrfs_file_extent_compression(leaf_l, ei_l) ==
5850 btrfs_file_extent_compression(leaf_r, ei_r) &&
5851 btrfs_file_extent_encryption(leaf_l, ei_l) ==
5852 btrfs_file_extent_encryption(leaf_r, ei_r) &&
5853 btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
5854 btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
5855 btrfs_file_extent_type(leaf_l, ei_l) ==
5856 btrfs_file_extent_type(leaf_r, ei_r) &&
5857 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
5858 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
5859 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
5860 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
5861 btrfs_file_extent_offset(leaf_l, ei_l) ==
5862 btrfs_file_extent_offset(leaf_r, ei_r) &&
5863 btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
5864 btrfs_file_extent_num_bytes(leaf_r, ei_r))
5868 inconsistent_snapshot_error(sctx, result, "extent");
5872 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5873 if (result != BTRFS_COMPARE_TREE_DELETED)
5874 ret = process_extent(sctx, sctx->left_path,
5881 static int dir_changed(struct send_ctx *sctx, u64 dir)
5883 u64 orig_gen, new_gen;
5886 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5891 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5896 return (orig_gen != new_gen) ? 1 : 0;
5899 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5900 struct btrfs_key *key)
5902 struct btrfs_inode_extref *extref;
5903 struct extent_buffer *leaf;
5904 u64 dirid = 0, last_dirid = 0;
5911 /* Easy case, just check this one dirid */
5912 if (key->type == BTRFS_INODE_REF_KEY) {
5913 dirid = key->offset;
5915 ret = dir_changed(sctx, dirid);
5919 leaf = path->nodes[0];
5920 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5921 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5922 while (cur_offset < item_size) {
5923 extref = (struct btrfs_inode_extref *)(ptr +
5925 dirid = btrfs_inode_extref_parent(leaf, extref);
5926 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5927 cur_offset += ref_name_len + sizeof(*extref);
5928 if (dirid == last_dirid)
5930 ret = dir_changed(sctx, dirid);
5940 * Updates compare related fields in sctx and simply forwards to the actual
5941 * changed_xxx functions.
5943 static int changed_cb(struct btrfs_root *left_root,
5944 struct btrfs_root *right_root,
5945 struct btrfs_path *left_path,
5946 struct btrfs_path *right_path,
5947 struct btrfs_key *key,
5948 enum btrfs_compare_tree_result result,
5952 struct send_ctx *sctx = ctx;
5954 if (result == BTRFS_COMPARE_TREE_SAME) {
5955 if (key->type == BTRFS_INODE_REF_KEY ||
5956 key->type == BTRFS_INODE_EXTREF_KEY) {
5957 ret = compare_refs(sctx, left_path, key);
5962 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5963 return maybe_send_hole(sctx, left_path, key);
5967 result = BTRFS_COMPARE_TREE_CHANGED;
5971 sctx->left_path = left_path;
5972 sctx->right_path = right_path;
5973 sctx->cmp_key = key;
5975 ret = finish_inode_if_needed(sctx, 0);
5979 /* Ignore non-FS objects */
5980 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5981 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5984 if (key->type == BTRFS_INODE_ITEM_KEY)
5985 ret = changed_inode(sctx, result);
5986 else if (key->type == BTRFS_INODE_REF_KEY ||
5987 key->type == BTRFS_INODE_EXTREF_KEY)
5988 ret = changed_ref(sctx, result);
5989 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5990 ret = changed_xattr(sctx, result);
5991 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5992 ret = changed_extent(sctx, result);
5998 static int full_send_tree(struct send_ctx *sctx)
6001 struct btrfs_root *send_root = sctx->send_root;
6002 struct btrfs_key key;
6003 struct btrfs_key found_key;
6004 struct btrfs_path *path;
6005 struct extent_buffer *eb;
6008 path = alloc_path_for_send();
6012 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6013 key.type = BTRFS_INODE_ITEM_KEY;
6016 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6023 eb = path->nodes[0];
6024 slot = path->slots[0];
6025 btrfs_item_key_to_cpu(eb, &found_key, slot);
6027 ret = changed_cb(send_root, NULL, path, NULL,
6028 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
6032 key.objectid = found_key.objectid;
6033 key.type = found_key.type;
6034 key.offset = found_key.offset + 1;
6036 ret = btrfs_next_item(send_root, path);
6046 ret = finish_inode_if_needed(sctx, 1);
6049 btrfs_free_path(path);
6053 static int send_subvol(struct send_ctx *sctx)
6057 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6058 ret = send_header(sctx);
6063 ret = send_subvol_begin(sctx);
6067 if (sctx->parent_root) {
6068 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6072 ret = finish_inode_if_needed(sctx, 1);
6076 ret = full_send_tree(sctx);
6082 free_recorded_refs(sctx);
6087 * If orphan cleanup did remove any orphans from a root, it means the tree
6088 * was modified and therefore the commit root is not the same as the current
6089 * root anymore. This is a problem, because send uses the commit root and
6090 * therefore can see inode items that don't exist in the current root anymore,
6091 * and for example make calls to btrfs_iget, which will do tree lookups based
6092 * on the current root and not on the commit root. Those lookups will fail,
6093 * returning a -ESTALE error, and making send fail with that error. So make
6094 * sure a send does not see any orphans we have just removed, and that it will
6095 * see the same inodes regardless of whether a transaction commit happened
6096 * before it started (meaning that the commit root will be the same as the
6097 * current root) or not.
6099 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6102 struct btrfs_trans_handle *trans = NULL;
6105 if (sctx->parent_root &&
6106 sctx->parent_root->node != sctx->parent_root->commit_root)
6109 for (i = 0; i < sctx->clone_roots_cnt; i++)
6110 if (sctx->clone_roots[i].root->node !=
6111 sctx->clone_roots[i].root->commit_root)
6115 return btrfs_end_transaction(trans);
6120 /* Use any root, all fs roots will get their commit roots updated. */
6122 trans = btrfs_join_transaction(sctx->send_root);
6124 return PTR_ERR(trans);
6128 return btrfs_commit_transaction(trans);
6131 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6133 spin_lock(&root->root_item_lock);
6134 root->send_in_progress--;
6136 * Not much left to do, we don't know why it's unbalanced and
6137 * can't blindly reset it to 0.
6139 if (root->send_in_progress < 0)
6140 btrfs_err(root->fs_info,
6141 "send_in_progres unbalanced %d root %llu",
6142 root->send_in_progress, root->root_key.objectid);
6143 spin_unlock(&root->root_item_lock);
6146 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
6149 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6150 struct btrfs_fs_info *fs_info = send_root->fs_info;
6151 struct btrfs_root *clone_root;
6152 struct btrfs_ioctl_send_args *arg = NULL;
6153 struct btrfs_key key;
6154 struct send_ctx *sctx = NULL;
6156 u64 *clone_sources_tmp = NULL;
6157 int clone_sources_to_rollback = 0;
6158 unsigned alloc_size;
6159 int sort_clone_roots = 0;
6162 if (!capable(CAP_SYS_ADMIN))
6166 * The subvolume must remain read-only during send, protect against
6167 * making it RW. This also protects against deletion.
6169 spin_lock(&send_root->root_item_lock);
6170 send_root->send_in_progress++;
6171 spin_unlock(&send_root->root_item_lock);
6174 * This is done when we lookup the root, it should already be complete
6175 * by the time we get here.
6177 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6180 * Userspace tools do the checks and warn the user if it's
6183 if (!btrfs_root_readonly(send_root)) {
6188 arg = memdup_user(arg_, sizeof(*arg));
6195 if (arg->clone_sources_count >
6196 ULLONG_MAX / sizeof(*arg->clone_sources)) {
6201 if (!access_ok(VERIFY_READ, arg->clone_sources,
6202 sizeof(*arg->clone_sources) *
6203 arg->clone_sources_count)) {
6208 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6213 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6219 INIT_LIST_HEAD(&sctx->new_refs);
6220 INIT_LIST_HEAD(&sctx->deleted_refs);
6221 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6222 INIT_LIST_HEAD(&sctx->name_cache_list);
6224 sctx->flags = arg->flags;
6226 sctx->send_filp = fget(arg->send_fd);
6227 if (!sctx->send_filp) {
6232 sctx->send_root = send_root;
6234 * Unlikely but possible, if the subvolume is marked for deletion but
6235 * is slow to remove the directory entry, send can still be started
6237 if (btrfs_root_dead(sctx->send_root)) {
6242 sctx->clone_roots_cnt = arg->clone_sources_count;
6244 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6245 sctx->send_buf = kmalloc(sctx->send_max_size, GFP_KERNEL | __GFP_NOWARN);
6246 if (!sctx->send_buf) {
6247 sctx->send_buf = vmalloc(sctx->send_max_size);
6248 if (!sctx->send_buf) {
6254 sctx->read_buf = kmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL | __GFP_NOWARN);
6255 if (!sctx->read_buf) {
6256 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
6257 if (!sctx->read_buf) {
6263 sctx->pending_dir_moves = RB_ROOT;
6264 sctx->waiting_dir_moves = RB_ROOT;
6265 sctx->orphan_dirs = RB_ROOT;
6267 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6269 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
6270 if (!sctx->clone_roots) {
6271 sctx->clone_roots = vzalloc(alloc_size);
6272 if (!sctx->clone_roots) {
6278 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6280 if (arg->clone_sources_count) {
6281 clone_sources_tmp = kmalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
6282 if (!clone_sources_tmp) {
6283 clone_sources_tmp = vmalloc(alloc_size);
6284 if (!clone_sources_tmp) {
6290 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6297 for (i = 0; i < arg->clone_sources_count; i++) {
6298 key.objectid = clone_sources_tmp[i];
6299 key.type = BTRFS_ROOT_ITEM_KEY;
6300 key.offset = (u64)-1;
6302 index = srcu_read_lock(&fs_info->subvol_srcu);
6304 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6305 if (IS_ERR(clone_root)) {
6306 srcu_read_unlock(&fs_info->subvol_srcu, index);
6307 ret = PTR_ERR(clone_root);
6310 spin_lock(&clone_root->root_item_lock);
6311 if (!btrfs_root_readonly(clone_root) ||
6312 btrfs_root_dead(clone_root)) {
6313 spin_unlock(&clone_root->root_item_lock);
6314 srcu_read_unlock(&fs_info->subvol_srcu, index);
6318 clone_root->send_in_progress++;
6319 spin_unlock(&clone_root->root_item_lock);
6320 srcu_read_unlock(&fs_info->subvol_srcu, index);
6322 sctx->clone_roots[i].root = clone_root;
6323 clone_sources_to_rollback = i + 1;
6325 kvfree(clone_sources_tmp);
6326 clone_sources_tmp = NULL;
6329 if (arg->parent_root) {
6330 key.objectid = arg->parent_root;
6331 key.type = BTRFS_ROOT_ITEM_KEY;
6332 key.offset = (u64)-1;
6334 index = srcu_read_lock(&fs_info->subvol_srcu);
6336 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6337 if (IS_ERR(sctx->parent_root)) {
6338 srcu_read_unlock(&fs_info->subvol_srcu, index);
6339 ret = PTR_ERR(sctx->parent_root);
6343 spin_lock(&sctx->parent_root->root_item_lock);
6344 sctx->parent_root->send_in_progress++;
6345 if (!btrfs_root_readonly(sctx->parent_root) ||
6346 btrfs_root_dead(sctx->parent_root)) {
6347 spin_unlock(&sctx->parent_root->root_item_lock);
6348 srcu_read_unlock(&fs_info->subvol_srcu, index);
6352 spin_unlock(&sctx->parent_root->root_item_lock);
6354 srcu_read_unlock(&fs_info->subvol_srcu, index);
6358 * Clones from send_root are allowed, but only if the clone source
6359 * is behind the current send position. This is checked while searching
6360 * for possible clone sources.
6362 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6364 /* We do a bsearch later */
6365 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6366 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6368 sort_clone_roots = 1;
6370 ret = ensure_commit_roots_uptodate(sctx);
6374 current->journal_info = BTRFS_SEND_TRANS_STUB;
6375 ret = send_subvol(sctx);
6376 current->journal_info = NULL;
6380 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6381 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6384 ret = send_cmd(sctx);
6390 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6391 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6393 struct pending_dir_move *pm;
6395 n = rb_first(&sctx->pending_dir_moves);
6396 pm = rb_entry(n, struct pending_dir_move, node);
6397 while (!list_empty(&pm->list)) {
6398 struct pending_dir_move *pm2;
6400 pm2 = list_first_entry(&pm->list,
6401 struct pending_dir_move, list);
6402 free_pending_move(sctx, pm2);
6404 free_pending_move(sctx, pm);
6407 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6408 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6410 struct waiting_dir_move *dm;
6412 n = rb_first(&sctx->waiting_dir_moves);
6413 dm = rb_entry(n, struct waiting_dir_move, node);
6414 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6418 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6419 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6421 struct orphan_dir_info *odi;
6423 n = rb_first(&sctx->orphan_dirs);
6424 odi = rb_entry(n, struct orphan_dir_info, node);
6425 free_orphan_dir_info(sctx, odi);
6428 if (sort_clone_roots) {
6429 for (i = 0; i < sctx->clone_roots_cnt; i++)
6430 btrfs_root_dec_send_in_progress(
6431 sctx->clone_roots[i].root);
6433 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6434 btrfs_root_dec_send_in_progress(
6435 sctx->clone_roots[i].root);
6437 btrfs_root_dec_send_in_progress(send_root);
6439 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6440 btrfs_root_dec_send_in_progress(sctx->parent_root);
6443 kvfree(clone_sources_tmp);
6446 if (sctx->send_filp)
6447 fput(sctx->send_filp);
6449 kvfree(sctx->clone_roots);
6450 kvfree(sctx->send_buf);
6451 kvfree(sctx->read_buf);
6453 name_cache_free(sctx);