2 * AES XCBC routines supporting the Power 7+ Nest Accelerators driver
4 * Copyright (C) 2011-2012 International Business Machines Inc.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 only.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <crypto/internal/hash.h>
23 #include <crypto/aes.h>
24 #include <crypto/algapi.h>
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/crypto.h>
30 #include "nx_csbcpb.h"
35 u8 state[AES_BLOCK_SIZE];
37 u8 buffer[AES_BLOCK_SIZE];
40 static int nx_xcbc_set_key(struct crypto_shash *desc,
44 struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
45 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
49 nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
55 memcpy(csbcpb->cpb.aes_xcbc.key, in_key, key_len);
61 * Based on RFC 3566, for a zero-length message:
64 * K1 = E(K, 0x01010101010101010101010101010101)
65 * K3 = E(K, 0x03030303030303030303030303030303)
66 * E[0] = 0x00000000000000000000000000000000
67 * M[1] = 0x80000000000000000000000000000000 (0 length message with padding)
68 * E[1] = (K1, M[1] ^ E[0] ^ K3)
71 static int nx_xcbc_empty(struct shash_desc *desc, u8 *out)
73 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
74 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
75 struct nx_sg *in_sg, *out_sg;
76 u8 keys[2][AES_BLOCK_SIZE];
81 /* Change to ECB mode */
82 csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
83 memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE);
84 memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE);
85 NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
87 /* K1 and K3 base patterns */
88 memset(keys[0], 0x01, sizeof(keys[0]));
89 memset(keys[1], 0x03, sizeof(keys[1]));
92 /* Generate K1 and K3 encrypting the patterns */
93 in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, &len,
96 if (len != sizeof(keys))
99 out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, &len,
102 if (len != sizeof(keys))
105 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
106 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
108 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
109 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
112 atomic_inc(&(nx_ctx->stats->aes_ops));
114 /* XOr K3 with the padding for a 0 length message */
117 len = sizeof(keys[1]);
119 /* Encrypt the final result */
120 memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE);
121 in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], &len,
124 if (len != sizeof(keys[1]))
127 len = AES_BLOCK_SIZE;
128 out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
131 if (len != AES_BLOCK_SIZE)
134 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
135 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
137 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
138 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
141 atomic_inc(&(nx_ctx->stats->aes_ops));
144 /* Restore XCBC mode */
145 csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
146 memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE);
147 NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
152 static int nx_crypto_ctx_aes_xcbc_init2(struct crypto_tfm *tfm)
154 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
155 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
158 err = nx_crypto_ctx_aes_xcbc_init(tfm);
162 nx_ctx_init(nx_ctx, HCOP_FC_AES);
164 NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
165 csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
170 static int nx_xcbc_init(struct shash_desc *desc)
172 struct xcbc_state *sctx = shash_desc_ctx(desc);
174 memset(sctx, 0, sizeof *sctx);
179 static int nx_xcbc_update(struct shash_desc *desc,
183 struct xcbc_state *sctx = shash_desc_ctx(desc);
184 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
185 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
187 struct nx_sg *out_sg;
188 u32 to_process = 0, leftover, total;
189 unsigned int max_sg_len;
190 unsigned long irq_flags;
194 spin_lock_irqsave(&nx_ctx->lock, irq_flags);
197 total = sctx->count + len;
199 /* 2 cases for total data len:
200 * 1: <= AES_BLOCK_SIZE: copy into state, return 0
201 * 2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
203 if (total <= AES_BLOCK_SIZE) {
204 memcpy(sctx->buffer + sctx->count, data, len);
209 in_sg = nx_ctx->in_sg;
210 max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
212 max_sg_len = min_t(u64, max_sg_len,
213 nx_ctx->ap->databytelen/NX_PAGE_SIZE);
215 data_len = AES_BLOCK_SIZE;
216 out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
217 &len, nx_ctx->ap->sglen);
219 if (data_len != AES_BLOCK_SIZE) {
224 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
227 to_process = total - to_process;
228 to_process = to_process & ~(AES_BLOCK_SIZE - 1);
230 leftover = total - to_process;
232 /* the hardware will not accept a 0 byte operation for this
233 * algorithm and the operation MUST be finalized to be correct.
234 * So if we happen to get an update that falls on a block sized
235 * boundary, we must save off the last block to finalize with
238 to_process -= AES_BLOCK_SIZE;
239 leftover = AES_BLOCK_SIZE;
243 data_len = sctx->count;
244 in_sg = nx_build_sg_list(nx_ctx->in_sg,
248 if (data_len != sctx->count) {
254 data_len = to_process - sctx->count;
255 in_sg = nx_build_sg_list(in_sg,
260 if (data_len != to_process - sctx->count) {
265 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
266 sizeof(struct nx_sg);
268 /* we've hit the nx chip previously and we're updating again,
269 * so copy over the partial digest */
270 if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
271 memcpy(csbcpb->cpb.aes_xcbc.cv,
272 csbcpb->cpb.aes_xcbc.out_cv_mac,
276 NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
277 if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
282 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
283 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
287 atomic_inc(&(nx_ctx->stats->aes_ops));
289 /* everything after the first update is continuation */
290 NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
293 data += to_process - sctx->count;
295 in_sg = nx_ctx->in_sg;
296 } while (leftover > AES_BLOCK_SIZE);
298 /* copy the leftover back into the state struct */
299 memcpy(sctx->buffer, data, leftover);
300 sctx->count = leftover;
303 spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
307 static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
309 struct xcbc_state *sctx = shash_desc_ctx(desc);
310 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
311 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
312 struct nx_sg *in_sg, *out_sg;
313 unsigned long irq_flags;
317 spin_lock_irqsave(&nx_ctx->lock, irq_flags);
319 if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
320 /* we've hit the nx chip previously, now we're finalizing,
321 * so copy over the partial digest */
322 memcpy(csbcpb->cpb.aes_xcbc.cv,
323 csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
324 } else if (sctx->count == 0) {
326 * we've never seen an update, so this is a 0 byte op. The
327 * hardware cannot handle a 0 byte op, so just ECB to
330 rc = nx_xcbc_empty(desc, out);
334 /* final is represented by continuing the operation and indicating that
335 * this is not an intermediate operation */
336 NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
339 in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
340 &len, nx_ctx->ap->sglen);
342 if (len != sctx->count) {
347 len = AES_BLOCK_SIZE;
348 out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
351 if (len != AES_BLOCK_SIZE) {
356 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
357 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
359 if (!nx_ctx->op.outlen) {
364 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
365 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
369 atomic_inc(&(nx_ctx->stats->aes_ops));
371 memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
373 spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
377 struct shash_alg nx_shash_aes_xcbc_alg = {
378 .digestsize = AES_BLOCK_SIZE,
379 .init = nx_xcbc_init,
380 .update = nx_xcbc_update,
381 .final = nx_xcbc_final,
382 .setkey = nx_xcbc_set_key,
383 .descsize = sizeof(struct xcbc_state),
384 .statesize = sizeof(struct xcbc_state),
386 .cra_name = "xcbc(aes)",
387 .cra_driver_name = "xcbc-aes-nx",
389 .cra_flags = CRYPTO_ALG_TYPE_SHASH,
390 .cra_blocksize = AES_BLOCK_SIZE,
391 .cra_module = THIS_MODULE,
392 .cra_ctxsize = sizeof(struct nx_crypto_ctx),
393 .cra_init = nx_crypto_ctx_aes_xcbc_init2,
394 .cra_exit = nx_crypto_ctx_exit,