1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1994-1999 Linus Torvalds
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <asm/pgalloc.h>
50 #include <asm/tlbflush.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/filemap.h>
57 * FIXME: remove all knowledge of the buffer layer from the core VM
59 #include <linux/buffer_head.h> /* for try_to_free_buffers */
66 * Shared mappings implemented 30.11.1994. It's not fully working yet,
69 * Shared mappings now work. 15.8.1995 Bruno.
71 * finished 'unifying' the page and buffer cache and SMP-threaded the
80 * ->i_mmap_rwsem (truncate_pagecache)
81 * ->private_lock (__free_pte->block_dirty_folio)
82 * ->swap_lock (exclusive_swap_page, others)
86 * ->invalidate_lock (acquired by fs in truncate path)
87 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
91 * ->page_table_lock or pte_lock (various, mainly in memory.c)
92 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
95 * ->invalidate_lock (filemap_fault)
96 * ->lock_page (filemap_fault, access_process_vm)
98 * ->i_rwsem (generic_perform_write)
99 * ->mmap_lock (fault_in_readable->do_page_fault)
102 * sb_lock (fs/fs-writeback.c)
103 * ->i_pages lock (__sync_single_inode)
106 * ->anon_vma.lock (vma_merge)
109 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
111 * ->page_table_lock or pte_lock
112 * ->swap_lock (try_to_unmap_one)
113 * ->private_lock (try_to_unmap_one)
114 * ->i_pages lock (try_to_unmap_one)
115 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
116 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
117 * ->private_lock (folio_remove_rmap_pte->set_page_dirty)
118 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
119 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
120 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
121 * ->memcg->move_lock (folio_remove_rmap_pte->folio_memcg_lock)
122 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
123 * ->inode->i_lock (zap_pte_range->set_page_dirty)
124 * ->private_lock (zap_pte_range->block_dirty_folio)
127 static void page_cache_delete(struct address_space *mapping,
128 struct folio *folio, void *shadow)
130 XA_STATE(xas, &mapping->i_pages, folio->index);
133 mapping_set_update(&xas, mapping);
135 xas_set_order(&xas, folio->index, folio_order(folio));
136 nr = folio_nr_pages(folio);
138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
143 folio->mapping = NULL;
144 /* Leave page->index set: truncation lookup relies upon it */
145 mapping->nrpages -= nr;
148 static void filemap_unaccount_folio(struct address_space *mapping,
153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
156 current->comm, folio_pfn(folio));
157 dump_page(&folio->page, "still mapped when deleted");
159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
161 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
162 int mapcount = page_mapcount(&folio->page);
164 if (folio_ref_count(folio) >= mapcount + 2) {
166 * All vmas have already been torn down, so it's
167 * a good bet that actually the page is unmapped
168 * and we'd rather not leak it: if we're wrong,
169 * another bad page check should catch it later.
171 page_mapcount_reset(&folio->page);
172 folio_ref_sub(folio, mapcount);
177 /* hugetlb folios do not participate in page cache accounting. */
178 if (folio_test_hugetlb(folio))
181 nr = folio_nr_pages(folio);
183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 if (folio_test_swapbacked(folio)) {
185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 if (folio_test_pmd_mappable(folio))
187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 } else if (folio_test_pmd_mappable(folio)) {
189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
190 filemap_nr_thps_dec(mapping);
194 * At this point folio must be either written or cleaned by
195 * truncate. Dirty folio here signals a bug and loss of
196 * unwritten data - on ordinary filesystems.
198 * But it's harmless on in-memory filesystems like tmpfs; and can
199 * occur when a driver which did get_user_pages() sets page dirty
200 * before putting it, while the inode is being finally evicted.
202 * Below fixes dirty accounting after removing the folio entirely
203 * but leaves the dirty flag set: it has no effect for truncated
204 * folio and anyway will be cleared before returning folio to
207 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
208 mapping_can_writeback(mapping)))
209 folio_account_cleaned(folio, inode_to_wb(mapping->host));
213 * Delete a page from the page cache and free it. Caller has to make
214 * sure the page is locked and that nobody else uses it - or that usage
215 * is safe. The caller must hold the i_pages lock.
217 void __filemap_remove_folio(struct folio *folio, void *shadow)
219 struct address_space *mapping = folio->mapping;
221 trace_mm_filemap_delete_from_page_cache(folio);
222 filemap_unaccount_folio(mapping, folio);
223 page_cache_delete(mapping, folio, shadow);
226 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
228 void (*free_folio)(struct folio *);
231 free_folio = mapping->a_ops->free_folio;
235 if (folio_test_large(folio))
236 refs = folio_nr_pages(folio);
237 folio_put_refs(folio, refs);
241 * filemap_remove_folio - Remove folio from page cache.
244 * This must be called only on folios that are locked and have been
245 * verified to be in the page cache. It will never put the folio into
246 * the free list because the caller has a reference on the page.
248 void filemap_remove_folio(struct folio *folio)
250 struct address_space *mapping = folio->mapping;
252 BUG_ON(!folio_test_locked(folio));
253 spin_lock(&mapping->host->i_lock);
254 xa_lock_irq(&mapping->i_pages);
255 __filemap_remove_folio(folio, NULL);
256 xa_unlock_irq(&mapping->i_pages);
257 if (mapping_shrinkable(mapping))
258 inode_add_lru(mapping->host);
259 spin_unlock(&mapping->host->i_lock);
261 filemap_free_folio(mapping, folio);
265 * page_cache_delete_batch - delete several folios from page cache
266 * @mapping: the mapping to which folios belong
267 * @fbatch: batch of folios to delete
269 * The function walks over mapping->i_pages and removes folios passed in
270 * @fbatch from the mapping. The function expects @fbatch to be sorted
271 * by page index and is optimised for it to be dense.
272 * It tolerates holes in @fbatch (mapping entries at those indices are not
275 * The function expects the i_pages lock to be held.
277 static void page_cache_delete_batch(struct address_space *mapping,
278 struct folio_batch *fbatch)
280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
281 long total_pages = 0;
285 mapping_set_update(&xas, mapping);
286 xas_for_each(&xas, folio, ULONG_MAX) {
287 if (i >= folio_batch_count(fbatch))
290 /* A swap/dax/shadow entry got inserted? Skip it. */
291 if (xa_is_value(folio))
294 * A page got inserted in our range? Skip it. We have our
295 * pages locked so they are protected from being removed.
296 * If we see a page whose index is higher than ours, it
297 * means our page has been removed, which shouldn't be
298 * possible because we're holding the PageLock.
300 if (folio != fbatch->folios[i]) {
301 VM_BUG_ON_FOLIO(folio->index >
302 fbatch->folios[i]->index, folio);
306 WARN_ON_ONCE(!folio_test_locked(folio));
308 folio->mapping = NULL;
309 /* Leave folio->index set: truncation lookup relies on it */
312 xas_store(&xas, NULL);
313 total_pages += folio_nr_pages(folio);
315 mapping->nrpages -= total_pages;
318 void delete_from_page_cache_batch(struct address_space *mapping,
319 struct folio_batch *fbatch)
323 if (!folio_batch_count(fbatch))
326 spin_lock(&mapping->host->i_lock);
327 xa_lock_irq(&mapping->i_pages);
328 for (i = 0; i < folio_batch_count(fbatch); i++) {
329 struct folio *folio = fbatch->folios[i];
331 trace_mm_filemap_delete_from_page_cache(folio);
332 filemap_unaccount_folio(mapping, folio);
334 page_cache_delete_batch(mapping, fbatch);
335 xa_unlock_irq(&mapping->i_pages);
336 if (mapping_shrinkable(mapping))
337 inode_add_lru(mapping->host);
338 spin_unlock(&mapping->host->i_lock);
340 for (i = 0; i < folio_batch_count(fbatch); i++)
341 filemap_free_folio(mapping, fbatch->folios[i]);
344 int filemap_check_errors(struct address_space *mapping)
347 /* Check for outstanding write errors */
348 if (test_bit(AS_ENOSPC, &mapping->flags) &&
349 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
351 if (test_bit(AS_EIO, &mapping->flags) &&
352 test_and_clear_bit(AS_EIO, &mapping->flags))
356 EXPORT_SYMBOL(filemap_check_errors);
358 static int filemap_check_and_keep_errors(struct address_space *mapping)
360 /* Check for outstanding write errors */
361 if (test_bit(AS_EIO, &mapping->flags))
363 if (test_bit(AS_ENOSPC, &mapping->flags))
369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
370 * @mapping: address space structure to write
371 * @wbc: the writeback_control controlling the writeout
373 * Call writepages on the mapping using the provided wbc to control the
376 * Return: %0 on success, negative error code otherwise.
378 int filemap_fdatawrite_wbc(struct address_space *mapping,
379 struct writeback_control *wbc)
383 if (!mapping_can_writeback(mapping) ||
384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
387 wbc_attach_fdatawrite_inode(wbc, mapping->host);
388 ret = do_writepages(mapping, wbc);
389 wbc_detach_inode(wbc);
392 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
396 * @mapping: address space structure to write
397 * @start: offset in bytes where the range starts
398 * @end: offset in bytes where the range ends (inclusive)
399 * @sync_mode: enable synchronous operation
401 * Start writeback against all of a mapping's dirty pages that lie
402 * within the byte offsets <start, end> inclusive.
404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
405 * opposed to a regular memory cleansing writeback. The difference between
406 * these two operations is that if a dirty page/buffer is encountered, it must
407 * be waited upon, and not just skipped over.
409 * Return: %0 on success, negative error code otherwise.
411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 loff_t end, int sync_mode)
414 struct writeback_control wbc = {
415 .sync_mode = sync_mode,
416 .nr_to_write = LONG_MAX,
417 .range_start = start,
421 return filemap_fdatawrite_wbc(mapping, &wbc);
424 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 int filemap_fdatawrite(struct address_space *mapping)
432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
434 EXPORT_SYMBOL(filemap_fdatawrite);
436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
441 EXPORT_SYMBOL(filemap_fdatawrite_range);
444 * filemap_flush - mostly a non-blocking flush
445 * @mapping: target address_space
447 * This is a mostly non-blocking flush. Not suitable for data-integrity
448 * purposes - I/O may not be started against all dirty pages.
450 * Return: %0 on success, negative error code otherwise.
452 int filemap_flush(struct address_space *mapping)
454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
456 EXPORT_SYMBOL(filemap_flush);
459 * filemap_range_has_page - check if a page exists in range.
460 * @mapping: address space within which to check
461 * @start_byte: offset in bytes where the range starts
462 * @end_byte: offset in bytes where the range ends (inclusive)
464 * Find at least one page in the range supplied, usually used to check if
465 * direct writing in this range will trigger a writeback.
467 * Return: %true if at least one page exists in the specified range,
470 bool filemap_range_has_page(struct address_space *mapping,
471 loff_t start_byte, loff_t end_byte)
474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 pgoff_t max = end_byte >> PAGE_SHIFT;
477 if (end_byte < start_byte)
482 folio = xas_find(&xas, max);
483 if (xas_retry(&xas, folio))
485 /* Shadow entries don't count */
486 if (xa_is_value(folio))
489 * We don't need to try to pin this page; we're about to
490 * release the RCU lock anyway. It is enough to know that
491 * there was a page here recently.
497 return folio != NULL;
499 EXPORT_SYMBOL(filemap_range_has_page);
501 static void __filemap_fdatawait_range(struct address_space *mapping,
502 loff_t start_byte, loff_t end_byte)
504 pgoff_t index = start_byte >> PAGE_SHIFT;
505 pgoff_t end = end_byte >> PAGE_SHIFT;
506 struct folio_batch fbatch;
509 folio_batch_init(&fbatch);
511 while (index <= end) {
514 nr_folios = filemap_get_folios_tag(mapping, &index, end,
515 PAGECACHE_TAG_WRITEBACK, &fbatch);
520 for (i = 0; i < nr_folios; i++) {
521 struct folio *folio = fbatch.folios[i];
523 folio_wait_writeback(folio);
524 folio_clear_error(folio);
526 folio_batch_release(&fbatch);
532 * filemap_fdatawait_range - wait for writeback to complete
533 * @mapping: address space structure to wait for
534 * @start_byte: offset in bytes where the range starts
535 * @end_byte: offset in bytes where the range ends (inclusive)
537 * Walk the list of under-writeback pages of the given address space
538 * in the given range and wait for all of them. Check error status of
539 * the address space and return it.
541 * Since the error status of the address space is cleared by this function,
542 * callers are responsible for checking the return value and handling and/or
543 * reporting the error.
545 * Return: error status of the address space.
547 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
550 __filemap_fdatawait_range(mapping, start_byte, end_byte);
551 return filemap_check_errors(mapping);
553 EXPORT_SYMBOL(filemap_fdatawait_range);
556 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
557 * @mapping: address space structure to wait for
558 * @start_byte: offset in bytes where the range starts
559 * @end_byte: offset in bytes where the range ends (inclusive)
561 * Walk the list of under-writeback pages of the given address space in the
562 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
563 * this function does not clear error status of the address space.
565 * Use this function if callers don't handle errors themselves. Expected
566 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
569 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
570 loff_t start_byte, loff_t end_byte)
572 __filemap_fdatawait_range(mapping, start_byte, end_byte);
573 return filemap_check_and_keep_errors(mapping);
575 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
578 * file_fdatawait_range - wait for writeback to complete
579 * @file: file pointing to address space structure to wait for
580 * @start_byte: offset in bytes where the range starts
581 * @end_byte: offset in bytes where the range ends (inclusive)
583 * Walk the list of under-writeback pages of the address space that file
584 * refers to, in the given range and wait for all of them. Check error
585 * status of the address space vs. the file->f_wb_err cursor and return it.
587 * Since the error status of the file is advanced by this function,
588 * callers are responsible for checking the return value and handling and/or
589 * reporting the error.
591 * Return: error status of the address space vs. the file->f_wb_err cursor.
593 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
595 struct address_space *mapping = file->f_mapping;
597 __filemap_fdatawait_range(mapping, start_byte, end_byte);
598 return file_check_and_advance_wb_err(file);
600 EXPORT_SYMBOL(file_fdatawait_range);
603 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
604 * @mapping: address space structure to wait for
606 * Walk the list of under-writeback pages of the given address space
607 * and wait for all of them. Unlike filemap_fdatawait(), this function
608 * does not clear error status of the address space.
610 * Use this function if callers don't handle errors themselves. Expected
611 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
614 * Return: error status of the address space.
616 int filemap_fdatawait_keep_errors(struct address_space *mapping)
618 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
619 return filemap_check_and_keep_errors(mapping);
621 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
623 /* Returns true if writeback might be needed or already in progress. */
624 static bool mapping_needs_writeback(struct address_space *mapping)
626 return mapping->nrpages;
629 bool filemap_range_has_writeback(struct address_space *mapping,
630 loff_t start_byte, loff_t end_byte)
632 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
633 pgoff_t max = end_byte >> PAGE_SHIFT;
636 if (end_byte < start_byte)
640 xas_for_each(&xas, folio, max) {
641 if (xas_retry(&xas, folio))
643 if (xa_is_value(folio))
645 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
646 folio_test_writeback(folio))
650 return folio != NULL;
652 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
655 * filemap_write_and_wait_range - write out & wait on a file range
656 * @mapping: the address_space for the pages
657 * @lstart: offset in bytes where the range starts
658 * @lend: offset in bytes where the range ends (inclusive)
660 * Write out and wait upon file offsets lstart->lend, inclusive.
662 * Note that @lend is inclusive (describes the last byte to be written) so
663 * that this function can be used to write to the very end-of-file (end = -1).
665 * Return: error status of the address space.
667 int filemap_write_and_wait_range(struct address_space *mapping,
668 loff_t lstart, loff_t lend)
675 if (mapping_needs_writeback(mapping)) {
676 err = __filemap_fdatawrite_range(mapping, lstart, lend,
679 * Even if the above returned error, the pages may be
680 * written partially (e.g. -ENOSPC), so we wait for it.
681 * But the -EIO is special case, it may indicate the worst
682 * thing (e.g. bug) happened, so we avoid waiting for it.
685 __filemap_fdatawait_range(mapping, lstart, lend);
687 err2 = filemap_check_errors(mapping);
692 EXPORT_SYMBOL(filemap_write_and_wait_range);
694 void __filemap_set_wb_err(struct address_space *mapping, int err)
696 errseq_t eseq = errseq_set(&mapping->wb_err, err);
698 trace_filemap_set_wb_err(mapping, eseq);
700 EXPORT_SYMBOL(__filemap_set_wb_err);
703 * file_check_and_advance_wb_err - report wb error (if any) that was previously
704 * and advance wb_err to current one
705 * @file: struct file on which the error is being reported
707 * When userland calls fsync (or something like nfsd does the equivalent), we
708 * want to report any writeback errors that occurred since the last fsync (or
709 * since the file was opened if there haven't been any).
711 * Grab the wb_err from the mapping. If it matches what we have in the file,
712 * then just quickly return 0. The file is all caught up.
714 * If it doesn't match, then take the mapping value, set the "seen" flag in
715 * it and try to swap it into place. If it works, or another task beat us
716 * to it with the new value, then update the f_wb_err and return the error
717 * portion. The error at this point must be reported via proper channels
718 * (a'la fsync, or NFS COMMIT operation, etc.).
720 * While we handle mapping->wb_err with atomic operations, the f_wb_err
721 * value is protected by the f_lock since we must ensure that it reflects
722 * the latest value swapped in for this file descriptor.
724 * Return: %0 on success, negative error code otherwise.
726 int file_check_and_advance_wb_err(struct file *file)
729 errseq_t old = READ_ONCE(file->f_wb_err);
730 struct address_space *mapping = file->f_mapping;
732 /* Locklessly handle the common case where nothing has changed */
733 if (errseq_check(&mapping->wb_err, old)) {
734 /* Something changed, must use slow path */
735 spin_lock(&file->f_lock);
736 old = file->f_wb_err;
737 err = errseq_check_and_advance(&mapping->wb_err,
739 trace_file_check_and_advance_wb_err(file, old);
740 spin_unlock(&file->f_lock);
744 * We're mostly using this function as a drop in replacement for
745 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
746 * that the legacy code would have had on these flags.
748 clear_bit(AS_EIO, &mapping->flags);
749 clear_bit(AS_ENOSPC, &mapping->flags);
752 EXPORT_SYMBOL(file_check_and_advance_wb_err);
755 * file_write_and_wait_range - write out & wait on a file range
756 * @file: file pointing to address_space with pages
757 * @lstart: offset in bytes where the range starts
758 * @lend: offset in bytes where the range ends (inclusive)
760 * Write out and wait upon file offsets lstart->lend, inclusive.
762 * Note that @lend is inclusive (describes the last byte to be written) so
763 * that this function can be used to write to the very end-of-file (end = -1).
765 * After writing out and waiting on the data, we check and advance the
766 * f_wb_err cursor to the latest value, and return any errors detected there.
768 * Return: %0 on success, negative error code otherwise.
770 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
773 struct address_space *mapping = file->f_mapping;
778 if (mapping_needs_writeback(mapping)) {
779 err = __filemap_fdatawrite_range(mapping, lstart, lend,
781 /* See comment of filemap_write_and_wait() */
783 __filemap_fdatawait_range(mapping, lstart, lend);
785 err2 = file_check_and_advance_wb_err(file);
790 EXPORT_SYMBOL(file_write_and_wait_range);
793 * replace_page_cache_folio - replace a pagecache folio with a new one
794 * @old: folio to be replaced
795 * @new: folio to replace with
797 * This function replaces a folio in the pagecache with a new one. On
798 * success it acquires the pagecache reference for the new folio and
799 * drops it for the old folio. Both the old and new folios must be
800 * locked. This function does not add the new folio to the LRU, the
801 * caller must do that.
803 * The remove + add is atomic. This function cannot fail.
805 void replace_page_cache_folio(struct folio *old, struct folio *new)
807 struct address_space *mapping = old->mapping;
808 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
809 pgoff_t offset = old->index;
810 XA_STATE(xas, &mapping->i_pages, offset);
812 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
813 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
814 VM_BUG_ON_FOLIO(new->mapping, new);
817 new->mapping = mapping;
820 mem_cgroup_replace_folio(old, new);
823 xas_store(&xas, new);
826 /* hugetlb pages do not participate in page cache accounting. */
827 if (!folio_test_hugetlb(old))
828 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
829 if (!folio_test_hugetlb(new))
830 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
831 if (folio_test_swapbacked(old))
832 __lruvec_stat_sub_folio(old, NR_SHMEM);
833 if (folio_test_swapbacked(new))
834 __lruvec_stat_add_folio(new, NR_SHMEM);
835 xas_unlock_irq(&xas);
840 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
842 noinline int __filemap_add_folio(struct address_space *mapping,
843 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
845 XA_STATE(xas, &mapping->i_pages, index);
846 int huge = folio_test_hugetlb(folio);
847 bool charged = false;
850 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
851 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
852 mapping_set_update(&xas, mapping);
855 int error = mem_cgroup_charge(folio, NULL, gfp);
861 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
862 xas_set_order(&xas, index, folio_order(folio));
863 nr = folio_nr_pages(folio);
865 gfp &= GFP_RECLAIM_MASK;
866 folio_ref_add(folio, nr);
867 folio->mapping = mapping;
868 folio->index = xas.xa_index;
871 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
872 void *entry, *old = NULL;
874 if (order > folio_order(folio))
875 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
878 xas_for_each_conflict(&xas, entry) {
880 if (!xa_is_value(entry)) {
881 xas_set_err(&xas, -EEXIST);
889 /* entry may have been split before we acquired lock */
890 order = xa_get_order(xas.xa, xas.xa_index);
891 if (order > folio_order(folio)) {
892 /* How to handle large swap entries? */
893 BUG_ON(shmem_mapping(mapping));
894 xas_split(&xas, old, order);
899 xas_store(&xas, folio);
903 mapping->nrpages += nr;
905 /* hugetlb pages do not participate in page cache accounting */
907 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
908 if (folio_test_pmd_mappable(folio))
909 __lruvec_stat_mod_folio(folio,
913 xas_unlock_irq(&xas);
914 } while (xas_nomem(&xas, gfp));
919 trace_mm_filemap_add_to_page_cache(folio);
923 mem_cgroup_uncharge(folio);
924 folio->mapping = NULL;
925 /* Leave page->index set: truncation relies upon it */
926 folio_put_refs(folio, nr);
927 return xas_error(&xas);
929 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
931 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
932 pgoff_t index, gfp_t gfp)
937 __folio_set_locked(folio);
938 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
940 __folio_clear_locked(folio);
943 * The folio might have been evicted from cache only
944 * recently, in which case it should be activated like
945 * any other repeatedly accessed folio.
946 * The exception is folios getting rewritten; evicting other
947 * data from the working set, only to cache data that will
948 * get overwritten with something else, is a waste of memory.
950 WARN_ON_ONCE(folio_test_active(folio));
951 if (!(gfp & __GFP_WRITE) && shadow)
952 workingset_refault(folio, shadow);
953 folio_add_lru(folio);
957 EXPORT_SYMBOL_GPL(filemap_add_folio);
960 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
965 if (cpuset_do_page_mem_spread()) {
966 unsigned int cpuset_mems_cookie;
968 cpuset_mems_cookie = read_mems_allowed_begin();
969 n = cpuset_mem_spread_node();
970 folio = __folio_alloc_node(gfp, order, n);
971 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
975 return folio_alloc(gfp, order);
977 EXPORT_SYMBOL(filemap_alloc_folio);
981 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
983 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
985 * @mapping1: the first mapping to lock
986 * @mapping2: the second mapping to lock
988 void filemap_invalidate_lock_two(struct address_space *mapping1,
989 struct address_space *mapping2)
991 if (mapping1 > mapping2)
992 swap(mapping1, mapping2);
994 down_write(&mapping1->invalidate_lock);
995 if (mapping2 && mapping1 != mapping2)
996 down_write_nested(&mapping2->invalidate_lock, 1);
998 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1001 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1003 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1005 * @mapping1: the first mapping to unlock
1006 * @mapping2: the second mapping to unlock
1008 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1009 struct address_space *mapping2)
1012 up_write(&mapping1->invalidate_lock);
1013 if (mapping2 && mapping1 != mapping2)
1014 up_write(&mapping2->invalidate_lock);
1016 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1019 * In order to wait for pages to become available there must be
1020 * waitqueues associated with pages. By using a hash table of
1021 * waitqueues where the bucket discipline is to maintain all
1022 * waiters on the same queue and wake all when any of the pages
1023 * become available, and for the woken contexts to check to be
1024 * sure the appropriate page became available, this saves space
1025 * at a cost of "thundering herd" phenomena during rare hash
1028 #define PAGE_WAIT_TABLE_BITS 8
1029 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1030 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1032 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1034 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1037 void __init pagecache_init(void)
1041 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1042 init_waitqueue_head(&folio_wait_table[i]);
1044 page_writeback_init();
1048 * The page wait code treats the "wait->flags" somewhat unusually, because
1049 * we have multiple different kinds of waits, not just the usual "exclusive"
1054 * (a) no special bits set:
1056 * We're just waiting for the bit to be released, and when a waker
1057 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1058 * and remove it from the wait queue.
1060 * Simple and straightforward.
1062 * (b) WQ_FLAG_EXCLUSIVE:
1064 * The waiter is waiting to get the lock, and only one waiter should
1065 * be woken up to avoid any thundering herd behavior. We'll set the
1066 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1068 * This is the traditional exclusive wait.
1070 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1072 * The waiter is waiting to get the bit, and additionally wants the
1073 * lock to be transferred to it for fair lock behavior. If the lock
1074 * cannot be taken, we stop walking the wait queue without waking
1077 * This is the "fair lock handoff" case, and in addition to setting
1078 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1079 * that it now has the lock.
1081 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1084 struct wait_page_key *key = arg;
1085 struct wait_page_queue *wait_page
1086 = container_of(wait, struct wait_page_queue, wait);
1088 if (!wake_page_match(wait_page, key))
1092 * If it's a lock handoff wait, we get the bit for it, and
1093 * stop walking (and do not wake it up) if we can't.
1095 flags = wait->flags;
1096 if (flags & WQ_FLAG_EXCLUSIVE) {
1097 if (test_bit(key->bit_nr, &key->folio->flags))
1099 if (flags & WQ_FLAG_CUSTOM) {
1100 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1102 flags |= WQ_FLAG_DONE;
1107 * We are holding the wait-queue lock, but the waiter that
1108 * is waiting for this will be checking the flags without
1111 * So update the flags atomically, and wake up the waiter
1112 * afterwards to avoid any races. This store-release pairs
1113 * with the load-acquire in folio_wait_bit_common().
1115 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1116 wake_up_state(wait->private, mode);
1119 * Ok, we have successfully done what we're waiting for,
1120 * and we can unconditionally remove the wait entry.
1122 * Note that this pairs with the "finish_wait()" in the
1123 * waiter, and has to be the absolute last thing we do.
1124 * After this list_del_init(&wait->entry) the wait entry
1125 * might be de-allocated and the process might even have
1128 list_del_init_careful(&wait->entry);
1129 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1132 static void folio_wake_bit(struct folio *folio, int bit_nr)
1134 wait_queue_head_t *q = folio_waitqueue(folio);
1135 struct wait_page_key key;
1136 unsigned long flags;
1139 key.bit_nr = bit_nr;
1142 spin_lock_irqsave(&q->lock, flags);
1143 __wake_up_locked_key(q, TASK_NORMAL, &key);
1146 * It's possible to miss clearing waiters here, when we woke our page
1147 * waiters, but the hashed waitqueue has waiters for other pages on it.
1148 * That's okay, it's a rare case. The next waker will clear it.
1150 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1151 * other), the flag may be cleared in the course of freeing the page;
1152 * but that is not required for correctness.
1154 if (!waitqueue_active(q) || !key.page_match)
1155 folio_clear_waiters(folio);
1157 spin_unlock_irqrestore(&q->lock, flags);
1161 * A choice of three behaviors for folio_wait_bit_common():
1164 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1165 * __folio_lock() waiting on then setting PG_locked.
1167 SHARED, /* Hold ref to page and check the bit when woken, like
1168 * folio_wait_writeback() waiting on PG_writeback.
1170 DROP, /* Drop ref to page before wait, no check when woken,
1171 * like folio_put_wait_locked() on PG_locked.
1176 * Attempt to check (or get) the folio flag, and mark us done
1179 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1180 struct wait_queue_entry *wait)
1182 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1183 if (test_and_set_bit(bit_nr, &folio->flags))
1185 } else if (test_bit(bit_nr, &folio->flags))
1188 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1192 /* How many times do we accept lock stealing from under a waiter? */
1193 int sysctl_page_lock_unfairness = 5;
1195 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1196 int state, enum behavior behavior)
1198 wait_queue_head_t *q = folio_waitqueue(folio);
1199 int unfairness = sysctl_page_lock_unfairness;
1200 struct wait_page_queue wait_page;
1201 wait_queue_entry_t *wait = &wait_page.wait;
1202 bool thrashing = false;
1203 unsigned long pflags;
1206 if (bit_nr == PG_locked &&
1207 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1208 delayacct_thrashing_start(&in_thrashing);
1209 psi_memstall_enter(&pflags);
1214 wait->func = wake_page_function;
1215 wait_page.folio = folio;
1216 wait_page.bit_nr = bit_nr;
1220 if (behavior == EXCLUSIVE) {
1221 wait->flags = WQ_FLAG_EXCLUSIVE;
1222 if (--unfairness < 0)
1223 wait->flags |= WQ_FLAG_CUSTOM;
1227 * Do one last check whether we can get the
1228 * page bit synchronously.
1230 * Do the folio_set_waiters() marking before that
1231 * to let any waker we _just_ missed know they
1232 * need to wake us up (otherwise they'll never
1233 * even go to the slow case that looks at the
1234 * page queue), and add ourselves to the wait
1235 * queue if we need to sleep.
1237 * This part needs to be done under the queue
1238 * lock to avoid races.
1240 spin_lock_irq(&q->lock);
1241 folio_set_waiters(folio);
1242 if (!folio_trylock_flag(folio, bit_nr, wait))
1243 __add_wait_queue_entry_tail(q, wait);
1244 spin_unlock_irq(&q->lock);
1247 * From now on, all the logic will be based on
1248 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1249 * see whether the page bit testing has already
1250 * been done by the wake function.
1252 * We can drop our reference to the folio.
1254 if (behavior == DROP)
1258 * Note that until the "finish_wait()", or until
1259 * we see the WQ_FLAG_WOKEN flag, we need to
1260 * be very careful with the 'wait->flags', because
1261 * we may race with a waker that sets them.
1266 set_current_state(state);
1268 /* Loop until we've been woken or interrupted */
1269 flags = smp_load_acquire(&wait->flags);
1270 if (!(flags & WQ_FLAG_WOKEN)) {
1271 if (signal_pending_state(state, current))
1278 /* If we were non-exclusive, we're done */
1279 if (behavior != EXCLUSIVE)
1282 /* If the waker got the lock for us, we're done */
1283 if (flags & WQ_FLAG_DONE)
1287 * Otherwise, if we're getting the lock, we need to
1288 * try to get it ourselves.
1290 * And if that fails, we'll have to retry this all.
1292 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1295 wait->flags |= WQ_FLAG_DONE;
1300 * If a signal happened, this 'finish_wait()' may remove the last
1301 * waiter from the wait-queues, but the folio waiters bit will remain
1302 * set. That's ok. The next wakeup will take care of it, and trying
1303 * to do it here would be difficult and prone to races.
1305 finish_wait(q, wait);
1308 delayacct_thrashing_end(&in_thrashing);
1309 psi_memstall_leave(&pflags);
1313 * NOTE! The wait->flags weren't stable until we've done the
1314 * 'finish_wait()', and we could have exited the loop above due
1315 * to a signal, and had a wakeup event happen after the signal
1316 * test but before the 'finish_wait()'.
1318 * So only after the finish_wait() can we reliably determine
1319 * if we got woken up or not, so we can now figure out the final
1320 * return value based on that state without races.
1322 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1323 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1325 if (behavior == EXCLUSIVE)
1326 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1328 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1331 #ifdef CONFIG_MIGRATION
1333 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1334 * @entry: migration swap entry.
1335 * @ptl: already locked ptl. This function will drop the lock.
1337 * Wait for a migration entry referencing the given page to be removed. This is
1338 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1339 * this can be called without taking a reference on the page. Instead this
1340 * should be called while holding the ptl for the migration entry referencing
1343 * Returns after unlocking the ptl.
1345 * This follows the same logic as folio_wait_bit_common() so see the comments
1348 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1351 struct wait_page_queue wait_page;
1352 wait_queue_entry_t *wait = &wait_page.wait;
1353 bool thrashing = false;
1354 unsigned long pflags;
1356 wait_queue_head_t *q;
1357 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1359 q = folio_waitqueue(folio);
1360 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1361 delayacct_thrashing_start(&in_thrashing);
1362 psi_memstall_enter(&pflags);
1367 wait->func = wake_page_function;
1368 wait_page.folio = folio;
1369 wait_page.bit_nr = PG_locked;
1372 spin_lock_irq(&q->lock);
1373 folio_set_waiters(folio);
1374 if (!folio_trylock_flag(folio, PG_locked, wait))
1375 __add_wait_queue_entry_tail(q, wait);
1376 spin_unlock_irq(&q->lock);
1379 * If a migration entry exists for the page the migration path must hold
1380 * a valid reference to the page, and it must take the ptl to remove the
1381 * migration entry. So the page is valid until the ptl is dropped.
1388 set_current_state(TASK_UNINTERRUPTIBLE);
1390 /* Loop until we've been woken or interrupted */
1391 flags = smp_load_acquire(&wait->flags);
1392 if (!(flags & WQ_FLAG_WOKEN)) {
1393 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1402 finish_wait(q, wait);
1405 delayacct_thrashing_end(&in_thrashing);
1406 psi_memstall_leave(&pflags);
1411 void folio_wait_bit(struct folio *folio, int bit_nr)
1413 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1415 EXPORT_SYMBOL(folio_wait_bit);
1417 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1419 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1421 EXPORT_SYMBOL(folio_wait_bit_killable);
1424 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1425 * @folio: The folio to wait for.
1426 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1428 * The caller should hold a reference on @folio. They expect the page to
1429 * become unlocked relatively soon, but do not wish to hold up migration
1430 * (for example) by holding the reference while waiting for the folio to
1431 * come unlocked. After this function returns, the caller should not
1432 * dereference @folio.
1434 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1436 static int folio_put_wait_locked(struct folio *folio, int state)
1438 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1442 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1443 * @folio: Folio defining the wait queue of interest
1444 * @waiter: Waiter to add to the queue
1446 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1448 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1450 wait_queue_head_t *q = folio_waitqueue(folio);
1451 unsigned long flags;
1453 spin_lock_irqsave(&q->lock, flags);
1454 __add_wait_queue_entry_tail(q, waiter);
1455 folio_set_waiters(folio);
1456 spin_unlock_irqrestore(&q->lock, flags);
1458 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1461 * folio_unlock - Unlock a locked folio.
1462 * @folio: The folio.
1464 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1466 * Context: May be called from interrupt or process context. May not be
1467 * called from NMI context.
1469 void folio_unlock(struct folio *folio)
1471 /* Bit 7 allows x86 to check the byte's sign bit */
1472 BUILD_BUG_ON(PG_waiters != 7);
1473 BUILD_BUG_ON(PG_locked > 7);
1474 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1475 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1476 folio_wake_bit(folio, PG_locked);
1478 EXPORT_SYMBOL(folio_unlock);
1481 * folio_end_read - End read on a folio.
1482 * @folio: The folio.
1483 * @success: True if all reads completed successfully.
1485 * When all reads against a folio have completed, filesystems should
1486 * call this function to let the pagecache know that no more reads
1487 * are outstanding. This will unlock the folio and wake up any thread
1488 * sleeping on the lock. The folio will also be marked uptodate if all
1491 * Context: May be called from interrupt or process context. May not be
1492 * called from NMI context.
1494 void folio_end_read(struct folio *folio, bool success)
1496 unsigned long mask = 1 << PG_locked;
1498 /* Must be in bottom byte for x86 to work */
1499 BUILD_BUG_ON(PG_uptodate > 7);
1500 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1501 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1503 if (likely(success))
1504 mask |= 1 << PG_uptodate;
1505 if (folio_xor_flags_has_waiters(folio, mask))
1506 folio_wake_bit(folio, PG_locked);
1508 EXPORT_SYMBOL(folio_end_read);
1511 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1512 * @folio: The folio.
1514 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1515 * it. The folio reference held for PG_private_2 being set is released.
1517 * This is, for example, used when a netfs folio is being written to a local
1518 * disk cache, thereby allowing writes to the cache for the same folio to be
1521 void folio_end_private_2(struct folio *folio)
1523 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1524 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1525 folio_wake_bit(folio, PG_private_2);
1528 EXPORT_SYMBOL(folio_end_private_2);
1531 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1532 * @folio: The folio to wait on.
1534 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1536 void folio_wait_private_2(struct folio *folio)
1538 while (folio_test_private_2(folio))
1539 folio_wait_bit(folio, PG_private_2);
1541 EXPORT_SYMBOL(folio_wait_private_2);
1544 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1545 * @folio: The folio to wait on.
1547 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1548 * fatal signal is received by the calling task.
1551 * - 0 if successful.
1552 * - -EINTR if a fatal signal was encountered.
1554 int folio_wait_private_2_killable(struct folio *folio)
1558 while (folio_test_private_2(folio)) {
1559 ret = folio_wait_bit_killable(folio, PG_private_2);
1566 EXPORT_SYMBOL(folio_wait_private_2_killable);
1569 * folio_end_writeback - End writeback against a folio.
1570 * @folio: The folio.
1572 * The folio must actually be under writeback.
1574 * Context: May be called from process or interrupt context.
1576 void folio_end_writeback(struct folio *folio)
1578 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1581 * folio_test_clear_reclaim() could be used here but it is an
1582 * atomic operation and overkill in this particular case. Failing
1583 * to shuffle a folio marked for immediate reclaim is too mild
1584 * a gain to justify taking an atomic operation penalty at the
1585 * end of every folio writeback.
1587 if (folio_test_reclaim(folio)) {
1588 folio_clear_reclaim(folio);
1589 folio_rotate_reclaimable(folio);
1593 * Writeback does not hold a folio reference of its own, relying
1594 * on truncation to wait for the clearing of PG_writeback.
1595 * But here we must make sure that the folio is not freed and
1596 * reused before the folio_wake_bit().
1599 if (__folio_end_writeback(folio))
1600 folio_wake_bit(folio, PG_writeback);
1601 acct_reclaim_writeback(folio);
1604 EXPORT_SYMBOL(folio_end_writeback);
1607 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1608 * @folio: The folio to lock
1610 void __folio_lock(struct folio *folio)
1612 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1615 EXPORT_SYMBOL(__folio_lock);
1617 int __folio_lock_killable(struct folio *folio)
1619 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1622 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1624 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1626 struct wait_queue_head *q = folio_waitqueue(folio);
1629 wait->folio = folio;
1630 wait->bit_nr = PG_locked;
1632 spin_lock_irq(&q->lock);
1633 __add_wait_queue_entry_tail(q, &wait->wait);
1634 folio_set_waiters(folio);
1635 ret = !folio_trylock(folio);
1637 * If we were successful now, we know we're still on the
1638 * waitqueue as we're still under the lock. This means it's
1639 * safe to remove and return success, we know the callback
1640 * isn't going to trigger.
1643 __remove_wait_queue(q, &wait->wait);
1646 spin_unlock_irq(&q->lock);
1652 * 0 - folio is locked.
1653 * non-zero - folio is not locked.
1654 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1655 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1656 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1658 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1659 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1661 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1663 unsigned int flags = vmf->flags;
1665 if (fault_flag_allow_retry_first(flags)) {
1667 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1668 * released even though returning VM_FAULT_RETRY.
1670 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1671 return VM_FAULT_RETRY;
1673 release_fault_lock(vmf);
1674 if (flags & FAULT_FLAG_KILLABLE)
1675 folio_wait_locked_killable(folio);
1677 folio_wait_locked(folio);
1678 return VM_FAULT_RETRY;
1680 if (flags & FAULT_FLAG_KILLABLE) {
1683 ret = __folio_lock_killable(folio);
1685 release_fault_lock(vmf);
1686 return VM_FAULT_RETRY;
1689 __folio_lock(folio);
1696 * page_cache_next_miss() - Find the next gap in the page cache.
1697 * @mapping: Mapping.
1699 * @max_scan: Maximum range to search.
1701 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1702 * gap with the lowest index.
1704 * This function may be called under the rcu_read_lock. However, this will
1705 * not atomically search a snapshot of the cache at a single point in time.
1706 * For example, if a gap is created at index 5, then subsequently a gap is
1707 * created at index 10, page_cache_next_miss covering both indices may
1708 * return 10 if called under the rcu_read_lock.
1710 * Return: The index of the gap if found, otherwise an index outside the
1711 * range specified (in which case 'return - index >= max_scan' will be true).
1712 * In the rare case of index wrap-around, 0 will be returned.
1714 pgoff_t page_cache_next_miss(struct address_space *mapping,
1715 pgoff_t index, unsigned long max_scan)
1717 XA_STATE(xas, &mapping->i_pages, index);
1719 while (max_scan--) {
1720 void *entry = xas_next(&xas);
1721 if (!entry || xa_is_value(entry))
1723 if (xas.xa_index == 0)
1727 return xas.xa_index;
1729 EXPORT_SYMBOL(page_cache_next_miss);
1732 * page_cache_prev_miss() - Find the previous gap in the page cache.
1733 * @mapping: Mapping.
1735 * @max_scan: Maximum range to search.
1737 * Search the range [max(index - max_scan + 1, 0), index] for the
1738 * gap with the highest index.
1740 * This function may be called under the rcu_read_lock. However, this will
1741 * not atomically search a snapshot of the cache at a single point in time.
1742 * For example, if a gap is created at index 10, then subsequently a gap is
1743 * created at index 5, page_cache_prev_miss() covering both indices may
1744 * return 5 if called under the rcu_read_lock.
1746 * Return: The index of the gap if found, otherwise an index outside the
1747 * range specified (in which case 'index - return >= max_scan' will be true).
1748 * In the rare case of wrap-around, ULONG_MAX will be returned.
1750 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1751 pgoff_t index, unsigned long max_scan)
1753 XA_STATE(xas, &mapping->i_pages, index);
1755 while (max_scan--) {
1756 void *entry = xas_prev(&xas);
1757 if (!entry || xa_is_value(entry))
1759 if (xas.xa_index == ULONG_MAX)
1763 return xas.xa_index;
1765 EXPORT_SYMBOL(page_cache_prev_miss);
1768 * Lockless page cache protocol:
1769 * On the lookup side:
1770 * 1. Load the folio from i_pages
1771 * 2. Increment the refcount if it's not zero
1772 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1774 * On the removal side:
1775 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1776 * B. Remove the page from i_pages
1777 * C. Return the page to the page allocator
1779 * This means that any page may have its reference count temporarily
1780 * increased by a speculative page cache (or fast GUP) lookup as it can
1781 * be allocated by another user before the RCU grace period expires.
1782 * Because the refcount temporarily acquired here may end up being the
1783 * last refcount on the page, any page allocation must be freeable by
1788 * filemap_get_entry - Get a page cache entry.
1789 * @mapping: the address_space to search
1790 * @index: The page cache index.
1792 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1793 * it is returned with an increased refcount. If it is a shadow entry
1794 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1795 * it is returned without further action.
1797 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1799 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1801 XA_STATE(xas, &mapping->i_pages, index);
1802 struct folio *folio;
1807 folio = xas_load(&xas);
1808 if (xas_retry(&xas, folio))
1811 * A shadow entry of a recently evicted page, or a swap entry from
1812 * shmem/tmpfs. Return it without attempting to raise page count.
1814 if (!folio || xa_is_value(folio))
1817 if (!folio_try_get_rcu(folio))
1820 if (unlikely(folio != xas_reload(&xas))) {
1831 * __filemap_get_folio - Find and get a reference to a folio.
1832 * @mapping: The address_space to search.
1833 * @index: The page index.
1834 * @fgp_flags: %FGP flags modify how the folio is returned.
1835 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1837 * Looks up the page cache entry at @mapping & @index.
1839 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1840 * if the %GFP flags specified for %FGP_CREAT are atomic.
1842 * If this function returns a folio, it is returned with an increased refcount.
1844 * Return: The found folio or an ERR_PTR() otherwise.
1846 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1847 fgf_t fgp_flags, gfp_t gfp)
1849 struct folio *folio;
1852 folio = filemap_get_entry(mapping, index);
1853 if (xa_is_value(folio))
1858 if (fgp_flags & FGP_LOCK) {
1859 if (fgp_flags & FGP_NOWAIT) {
1860 if (!folio_trylock(folio)) {
1862 return ERR_PTR(-EAGAIN);
1868 /* Has the page been truncated? */
1869 if (unlikely(folio->mapping != mapping)) {
1870 folio_unlock(folio);
1874 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1877 if (fgp_flags & FGP_ACCESSED)
1878 folio_mark_accessed(folio);
1879 else if (fgp_flags & FGP_WRITE) {
1880 /* Clear idle flag for buffer write */
1881 if (folio_test_idle(folio))
1882 folio_clear_idle(folio);
1885 if (fgp_flags & FGP_STABLE)
1886 folio_wait_stable(folio);
1888 if (!folio && (fgp_flags & FGP_CREAT)) {
1889 unsigned order = FGF_GET_ORDER(fgp_flags);
1892 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1894 if (fgp_flags & FGP_NOFS)
1896 if (fgp_flags & FGP_NOWAIT) {
1898 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1900 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1901 fgp_flags |= FGP_LOCK;
1903 if (!mapping_large_folio_support(mapping))
1905 if (order > MAX_PAGECACHE_ORDER)
1906 order = MAX_PAGECACHE_ORDER;
1907 /* If we're not aligned, allocate a smaller folio */
1908 if (index & ((1UL << order) - 1))
1909 order = __ffs(index);
1912 gfp_t alloc_gfp = gfp;
1918 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1919 folio = filemap_alloc_folio(alloc_gfp, order);
1923 /* Init accessed so avoid atomic mark_page_accessed later */
1924 if (fgp_flags & FGP_ACCESSED)
1925 __folio_set_referenced(folio);
1927 err = filemap_add_folio(mapping, folio, index, gfp);
1932 } while (order-- > 0);
1937 return ERR_PTR(err);
1939 * filemap_add_folio locks the page, and for mmap
1940 * we expect an unlocked page.
1942 if (folio && (fgp_flags & FGP_FOR_MMAP))
1943 folio_unlock(folio);
1947 return ERR_PTR(-ENOENT);
1950 EXPORT_SYMBOL(__filemap_get_folio);
1952 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1955 struct folio *folio;
1958 if (mark == XA_PRESENT)
1959 folio = xas_find(xas, max);
1961 folio = xas_find_marked(xas, max, mark);
1963 if (xas_retry(xas, folio))
1966 * A shadow entry of a recently evicted page, a swap
1967 * entry from shmem/tmpfs or a DAX entry. Return it
1968 * without attempting to raise page count.
1970 if (!folio || xa_is_value(folio))
1973 if (!folio_try_get_rcu(folio))
1976 if (unlikely(folio != xas_reload(xas))) {
1988 * find_get_entries - gang pagecache lookup
1989 * @mapping: The address_space to search
1990 * @start: The starting page cache index
1991 * @end: The final page index (inclusive).
1992 * @fbatch: Where the resulting entries are placed.
1993 * @indices: The cache indices corresponding to the entries in @entries
1995 * find_get_entries() will search for and return a batch of entries in
1996 * the mapping. The entries are placed in @fbatch. find_get_entries()
1997 * takes a reference on any actual folios it returns.
1999 * The entries have ascending indexes. The indices may not be consecutive
2000 * due to not-present entries or large folios.
2002 * Any shadow entries of evicted folios, or swap entries from
2003 * shmem/tmpfs, are included in the returned array.
2005 * Return: The number of entries which were found.
2007 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2008 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2010 XA_STATE(xas, &mapping->i_pages, *start);
2011 struct folio *folio;
2014 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2015 indices[fbatch->nr] = xas.xa_index;
2016 if (!folio_batch_add(fbatch, folio))
2021 if (folio_batch_count(fbatch)) {
2022 unsigned long nr = 1;
2023 int idx = folio_batch_count(fbatch) - 1;
2025 folio = fbatch->folios[idx];
2026 if (!xa_is_value(folio))
2027 nr = folio_nr_pages(folio);
2028 *start = indices[idx] + nr;
2030 return folio_batch_count(fbatch);
2034 * find_lock_entries - Find a batch of pagecache entries.
2035 * @mapping: The address_space to search.
2036 * @start: The starting page cache index.
2037 * @end: The final page index (inclusive).
2038 * @fbatch: Where the resulting entries are placed.
2039 * @indices: The cache indices of the entries in @fbatch.
2041 * find_lock_entries() will return a batch of entries from @mapping.
2042 * Swap, shadow and DAX entries are included. Folios are returned
2043 * locked and with an incremented refcount. Folios which are locked
2044 * by somebody else or under writeback are skipped. Folios which are
2045 * partially outside the range are not returned.
2047 * The entries have ascending indexes. The indices may not be consecutive
2048 * due to not-present entries, large folios, folios which could not be
2049 * locked or folios under writeback.
2051 * Return: The number of entries which were found.
2053 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2054 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2056 XA_STATE(xas, &mapping->i_pages, *start);
2057 struct folio *folio;
2060 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2061 if (!xa_is_value(folio)) {
2062 if (folio->index < *start)
2064 if (folio_next_index(folio) - 1 > end)
2066 if (!folio_trylock(folio))
2068 if (folio->mapping != mapping ||
2069 folio_test_writeback(folio))
2071 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2074 indices[fbatch->nr] = xas.xa_index;
2075 if (!folio_batch_add(fbatch, folio))
2079 folio_unlock(folio);
2085 if (folio_batch_count(fbatch)) {
2086 unsigned long nr = 1;
2087 int idx = folio_batch_count(fbatch) - 1;
2089 folio = fbatch->folios[idx];
2090 if (!xa_is_value(folio))
2091 nr = folio_nr_pages(folio);
2092 *start = indices[idx] + nr;
2094 return folio_batch_count(fbatch);
2098 * filemap_get_folios - Get a batch of folios
2099 * @mapping: The address_space to search
2100 * @start: The starting page index
2101 * @end: The final page index (inclusive)
2102 * @fbatch: The batch to fill.
2104 * Search for and return a batch of folios in the mapping starting at
2105 * index @start and up to index @end (inclusive). The folios are returned
2106 * in @fbatch with an elevated reference count.
2108 * Return: The number of folios which were found.
2109 * We also update @start to index the next folio for the traversal.
2111 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2112 pgoff_t end, struct folio_batch *fbatch)
2114 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2116 EXPORT_SYMBOL(filemap_get_folios);
2119 * filemap_get_folios_contig - Get a batch of contiguous folios
2120 * @mapping: The address_space to search
2121 * @start: The starting page index
2122 * @end: The final page index (inclusive)
2123 * @fbatch: The batch to fill
2125 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2126 * except the returned folios are guaranteed to be contiguous. This may
2127 * not return all contiguous folios if the batch gets filled up.
2129 * Return: The number of folios found.
2130 * Also update @start to be positioned for traversal of the next folio.
2133 unsigned filemap_get_folios_contig(struct address_space *mapping,
2134 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2136 XA_STATE(xas, &mapping->i_pages, *start);
2138 struct folio *folio;
2142 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2143 folio = xas_next(&xas)) {
2144 if (xas_retry(&xas, folio))
2147 * If the entry has been swapped out, we can stop looking.
2148 * No current caller is looking for DAX entries.
2150 if (xa_is_value(folio))
2153 if (!folio_try_get_rcu(folio))
2156 if (unlikely(folio != xas_reload(&xas)))
2159 if (!folio_batch_add(fbatch, folio)) {
2160 nr = folio_nr_pages(folio);
2161 *start = folio->index + nr;
2173 nr = folio_batch_count(fbatch);
2176 folio = fbatch->folios[nr - 1];
2177 *start = folio_next_index(folio);
2181 return folio_batch_count(fbatch);
2183 EXPORT_SYMBOL(filemap_get_folios_contig);
2186 * filemap_get_folios_tag - Get a batch of folios matching @tag
2187 * @mapping: The address_space to search
2188 * @start: The starting page index
2189 * @end: The final page index (inclusive)
2190 * @tag: The tag index
2191 * @fbatch: The batch to fill
2193 * The first folio may start before @start; if it does, it will contain
2194 * @start. The final folio may extend beyond @end; if it does, it will
2195 * contain @end. The folios have ascending indices. There may be gaps
2196 * between the folios if there are indices which have no folio in the
2197 * page cache. If folios are added to or removed from the page cache
2198 * while this is running, they may or may not be found by this call.
2199 * Only returns folios that are tagged with @tag.
2201 * Return: The number of folios found.
2202 * Also update @start to index the next folio for traversal.
2204 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2205 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2207 XA_STATE(xas, &mapping->i_pages, *start);
2208 struct folio *folio;
2211 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2213 * Shadow entries should never be tagged, but this iteration
2214 * is lockless so there is a window for page reclaim to evict
2215 * a page we saw tagged. Skip over it.
2217 if (xa_is_value(folio))
2219 if (!folio_batch_add(fbatch, folio)) {
2220 unsigned long nr = folio_nr_pages(folio);
2221 *start = folio->index + nr;
2226 * We come here when there is no page beyond @end. We take care to not
2227 * overflow the index @start as it confuses some of the callers. This
2228 * breaks the iteration when there is a page at index -1 but that is
2229 * already broke anyway.
2231 if (end == (pgoff_t)-1)
2232 *start = (pgoff_t)-1;
2238 return folio_batch_count(fbatch);
2240 EXPORT_SYMBOL(filemap_get_folios_tag);
2243 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2244 * a _large_ part of the i/o request. Imagine the worst scenario:
2246 * ---R__________________________________________B__________
2247 * ^ reading here ^ bad block(assume 4k)
2249 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2250 * => failing the whole request => read(R) => read(R+1) =>
2251 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2252 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2253 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2255 * It is going insane. Fix it by quickly scaling down the readahead size.
2257 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2263 * filemap_get_read_batch - Get a batch of folios for read
2265 * Get a batch of folios which represent a contiguous range of bytes in
2266 * the file. No exceptional entries will be returned. If @index is in
2267 * the middle of a folio, the entire folio will be returned. The last
2268 * folio in the batch may have the readahead flag set or the uptodate flag
2269 * clear so that the caller can take the appropriate action.
2271 static void filemap_get_read_batch(struct address_space *mapping,
2272 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2274 XA_STATE(xas, &mapping->i_pages, index);
2275 struct folio *folio;
2278 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2279 if (xas_retry(&xas, folio))
2281 if (xas.xa_index > max || xa_is_value(folio))
2283 if (xa_is_sibling(folio))
2285 if (!folio_try_get_rcu(folio))
2288 if (unlikely(folio != xas_reload(&xas)))
2291 if (!folio_batch_add(fbatch, folio))
2293 if (!folio_test_uptodate(folio))
2295 if (folio_test_readahead(folio))
2297 xas_advance(&xas, folio_next_index(folio) - 1);
2307 static int filemap_read_folio(struct file *file, filler_t filler,
2308 struct folio *folio)
2310 bool workingset = folio_test_workingset(folio);
2311 unsigned long pflags;
2315 * A previous I/O error may have been due to temporary failures,
2316 * eg. multipath errors. PG_error will be set again if read_folio
2319 folio_clear_error(folio);
2321 /* Start the actual read. The read will unlock the page. */
2322 if (unlikely(workingset))
2323 psi_memstall_enter(&pflags);
2324 error = filler(file, folio);
2325 if (unlikely(workingset))
2326 psi_memstall_leave(&pflags);
2330 error = folio_wait_locked_killable(folio);
2333 if (folio_test_uptodate(folio))
2336 shrink_readahead_size_eio(&file->f_ra);
2340 static bool filemap_range_uptodate(struct address_space *mapping,
2341 loff_t pos, size_t count, struct folio *folio,
2344 if (folio_test_uptodate(folio))
2346 /* pipes can't handle partially uptodate pages */
2349 if (!mapping->a_ops->is_partially_uptodate)
2351 if (mapping->host->i_blkbits >= folio_shift(folio))
2354 if (folio_pos(folio) > pos) {
2355 count -= folio_pos(folio) - pos;
2358 pos -= folio_pos(folio);
2361 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2364 static int filemap_update_page(struct kiocb *iocb,
2365 struct address_space *mapping, size_t count,
2366 struct folio *folio, bool need_uptodate)
2370 if (iocb->ki_flags & IOCB_NOWAIT) {
2371 if (!filemap_invalidate_trylock_shared(mapping))
2374 filemap_invalidate_lock_shared(mapping);
2377 if (!folio_trylock(folio)) {
2379 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2380 goto unlock_mapping;
2381 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2382 filemap_invalidate_unlock_shared(mapping);
2384 * This is where we usually end up waiting for a
2385 * previously submitted readahead to finish.
2387 folio_put_wait_locked(folio, TASK_KILLABLE);
2388 return AOP_TRUNCATED_PAGE;
2390 error = __folio_lock_async(folio, iocb->ki_waitq);
2392 goto unlock_mapping;
2395 error = AOP_TRUNCATED_PAGE;
2396 if (!folio->mapping)
2400 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2405 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2408 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2410 goto unlock_mapping;
2412 folio_unlock(folio);
2414 filemap_invalidate_unlock_shared(mapping);
2415 if (error == AOP_TRUNCATED_PAGE)
2420 static int filemap_create_folio(struct file *file,
2421 struct address_space *mapping, pgoff_t index,
2422 struct folio_batch *fbatch)
2424 struct folio *folio;
2427 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2432 * Protect against truncate / hole punch. Grabbing invalidate_lock
2433 * here assures we cannot instantiate and bring uptodate new
2434 * pagecache folios after evicting page cache during truncate
2435 * and before actually freeing blocks. Note that we could
2436 * release invalidate_lock after inserting the folio into
2437 * the page cache as the locked folio would then be enough to
2438 * synchronize with hole punching. But there are code paths
2439 * such as filemap_update_page() filling in partially uptodate
2440 * pages or ->readahead() that need to hold invalidate_lock
2441 * while mapping blocks for IO so let's hold the lock here as
2442 * well to keep locking rules simple.
2444 filemap_invalidate_lock_shared(mapping);
2445 error = filemap_add_folio(mapping, folio, index,
2446 mapping_gfp_constraint(mapping, GFP_KERNEL));
2447 if (error == -EEXIST)
2448 error = AOP_TRUNCATED_PAGE;
2452 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2456 filemap_invalidate_unlock_shared(mapping);
2457 folio_batch_add(fbatch, folio);
2460 filemap_invalidate_unlock_shared(mapping);
2465 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2466 struct address_space *mapping, struct folio *folio,
2469 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2471 if (iocb->ki_flags & IOCB_NOIO)
2473 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2477 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2478 struct folio_batch *fbatch, bool need_uptodate)
2480 struct file *filp = iocb->ki_filp;
2481 struct address_space *mapping = filp->f_mapping;
2482 struct file_ra_state *ra = &filp->f_ra;
2483 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2485 struct folio *folio;
2488 /* "last_index" is the index of the page beyond the end of the read */
2489 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2491 if (fatal_signal_pending(current))
2494 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2495 if (!folio_batch_count(fbatch)) {
2496 if (iocb->ki_flags & IOCB_NOIO)
2498 page_cache_sync_readahead(mapping, ra, filp, index,
2499 last_index - index);
2500 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2502 if (!folio_batch_count(fbatch)) {
2503 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2505 err = filemap_create_folio(filp, mapping,
2506 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2507 if (err == AOP_TRUNCATED_PAGE)
2512 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2513 if (folio_test_readahead(folio)) {
2514 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2518 if (!folio_test_uptodate(folio)) {
2519 if ((iocb->ki_flags & IOCB_WAITQ) &&
2520 folio_batch_count(fbatch) > 1)
2521 iocb->ki_flags |= IOCB_NOWAIT;
2522 err = filemap_update_page(iocb, mapping, count, folio,
2532 if (likely(--fbatch->nr))
2534 if (err == AOP_TRUNCATED_PAGE)
2539 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2541 unsigned int shift = folio_shift(folio);
2543 return (pos1 >> shift == pos2 >> shift);
2547 * filemap_read - Read data from the page cache.
2548 * @iocb: The iocb to read.
2549 * @iter: Destination for the data.
2550 * @already_read: Number of bytes already read by the caller.
2552 * Copies data from the page cache. If the data is not currently present,
2553 * uses the readahead and read_folio address_space operations to fetch it.
2555 * Return: Total number of bytes copied, including those already read by
2556 * the caller. If an error happens before any bytes are copied, returns
2557 * a negative error number.
2559 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2560 ssize_t already_read)
2562 struct file *filp = iocb->ki_filp;
2563 struct file_ra_state *ra = &filp->f_ra;
2564 struct address_space *mapping = filp->f_mapping;
2565 struct inode *inode = mapping->host;
2566 struct folio_batch fbatch;
2568 bool writably_mapped;
2569 loff_t isize, end_offset;
2570 loff_t last_pos = ra->prev_pos;
2572 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2574 if (unlikely(!iov_iter_count(iter)))
2577 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2578 folio_batch_init(&fbatch);
2584 * If we've already successfully copied some data, then we
2585 * can no longer safely return -EIOCBQUEUED. Hence mark
2586 * an async read NOWAIT at that point.
2588 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2589 iocb->ki_flags |= IOCB_NOWAIT;
2591 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2594 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2599 * i_size must be checked after we know the pages are Uptodate.
2601 * Checking i_size after the check allows us to calculate
2602 * the correct value for "nr", which means the zero-filled
2603 * part of the page is not copied back to userspace (unless
2604 * another truncate extends the file - this is desired though).
2606 isize = i_size_read(inode);
2607 if (unlikely(iocb->ki_pos >= isize))
2609 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2612 * Pairs with a barrier in
2613 * block_write_end()->mark_buffer_dirty() or other page
2614 * dirtying routines like iomap_write_end() to ensure
2615 * changes to page contents are visible before we see
2616 * increased inode size.
2621 * Once we start copying data, we don't want to be touching any
2622 * cachelines that might be contended:
2624 writably_mapped = mapping_writably_mapped(mapping);
2627 * When a read accesses the same folio several times, only
2628 * mark it as accessed the first time.
2630 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2632 folio_mark_accessed(fbatch.folios[0]);
2634 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2635 struct folio *folio = fbatch.folios[i];
2636 size_t fsize = folio_size(folio);
2637 size_t offset = iocb->ki_pos & (fsize - 1);
2638 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2642 if (end_offset < folio_pos(folio))
2645 folio_mark_accessed(folio);
2647 * If users can be writing to this folio using arbitrary
2648 * virtual addresses, take care of potential aliasing
2649 * before reading the folio on the kernel side.
2651 if (writably_mapped)
2652 flush_dcache_folio(folio);
2654 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2656 already_read += copied;
2657 iocb->ki_pos += copied;
2658 last_pos = iocb->ki_pos;
2660 if (copied < bytes) {
2666 for (i = 0; i < folio_batch_count(&fbatch); i++)
2667 folio_put(fbatch.folios[i]);
2668 folio_batch_init(&fbatch);
2669 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2671 file_accessed(filp);
2672 ra->prev_pos = last_pos;
2673 return already_read ? already_read : error;
2675 EXPORT_SYMBOL_GPL(filemap_read);
2677 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2679 struct address_space *mapping = iocb->ki_filp->f_mapping;
2680 loff_t pos = iocb->ki_pos;
2681 loff_t end = pos + count - 1;
2683 if (iocb->ki_flags & IOCB_NOWAIT) {
2684 if (filemap_range_needs_writeback(mapping, pos, end))
2689 return filemap_write_and_wait_range(mapping, pos, end);
2691 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2693 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2695 struct address_space *mapping = iocb->ki_filp->f_mapping;
2696 loff_t pos = iocb->ki_pos;
2697 loff_t end = pos + count - 1;
2700 if (iocb->ki_flags & IOCB_NOWAIT) {
2701 /* we could block if there are any pages in the range */
2702 if (filemap_range_has_page(mapping, pos, end))
2705 ret = filemap_write_and_wait_range(mapping, pos, end);
2711 * After a write we want buffered reads to be sure to go to disk to get
2712 * the new data. We invalidate clean cached page from the region we're
2713 * about to write. We do this *before* the write so that we can return
2714 * without clobbering -EIOCBQUEUED from ->direct_IO().
2716 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2719 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2722 * generic_file_read_iter - generic filesystem read routine
2723 * @iocb: kernel I/O control block
2724 * @iter: destination for the data read
2726 * This is the "read_iter()" routine for all filesystems
2727 * that can use the page cache directly.
2729 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2730 * be returned when no data can be read without waiting for I/O requests
2731 * to complete; it doesn't prevent readahead.
2733 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2734 * requests shall be made for the read or for readahead. When no data
2735 * can be read, -EAGAIN shall be returned. When readahead would be
2736 * triggered, a partial, possibly empty read shall be returned.
2739 * * number of bytes copied, even for partial reads
2740 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2743 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2745 size_t count = iov_iter_count(iter);
2749 return 0; /* skip atime */
2751 if (iocb->ki_flags & IOCB_DIRECT) {
2752 struct file *file = iocb->ki_filp;
2753 struct address_space *mapping = file->f_mapping;
2754 struct inode *inode = mapping->host;
2756 retval = kiocb_write_and_wait(iocb, count);
2759 file_accessed(file);
2761 retval = mapping->a_ops->direct_IO(iocb, iter);
2763 iocb->ki_pos += retval;
2766 if (retval != -EIOCBQUEUED)
2767 iov_iter_revert(iter, count - iov_iter_count(iter));
2770 * Btrfs can have a short DIO read if we encounter
2771 * compressed extents, so if there was an error, or if
2772 * we've already read everything we wanted to, or if
2773 * there was a short read because we hit EOF, go ahead
2774 * and return. Otherwise fallthrough to buffered io for
2775 * the rest of the read. Buffered reads will not work for
2776 * DAX files, so don't bother trying.
2778 if (retval < 0 || !count || IS_DAX(inode))
2780 if (iocb->ki_pos >= i_size_read(inode))
2784 return filemap_read(iocb, iter, retval);
2786 EXPORT_SYMBOL(generic_file_read_iter);
2789 * Splice subpages from a folio into a pipe.
2791 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2792 struct folio *folio, loff_t fpos, size_t size)
2795 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2797 page = folio_page(folio, offset / PAGE_SIZE);
2798 size = min(size, folio_size(folio) - offset);
2799 offset %= PAGE_SIZE;
2801 while (spliced < size &&
2802 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2803 struct pipe_buffer *buf = pipe_head_buf(pipe);
2804 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2806 *buf = (struct pipe_buffer) {
2807 .ops = &page_cache_pipe_buf_ops,
2823 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2824 * @in: The file to read from
2825 * @ppos: Pointer to the file position to read from
2826 * @pipe: The pipe to splice into
2827 * @len: The amount to splice
2828 * @flags: The SPLICE_F_* flags
2830 * This function gets folios from a file's pagecache and splices them into the
2831 * pipe. Readahead will be called as necessary to fill more folios. This may
2832 * be used for blockdevs also.
2834 * Return: On success, the number of bytes read will be returned and *@ppos
2835 * will be updated if appropriate; 0 will be returned if there is no more data
2836 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2837 * other negative error code will be returned on error. A short read may occur
2838 * if the pipe has insufficient space, we reach the end of the data or we hit a
2841 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2842 struct pipe_inode_info *pipe,
2843 size_t len, unsigned int flags)
2845 struct folio_batch fbatch;
2847 size_t total_spliced = 0, used, npages;
2848 loff_t isize, end_offset;
2849 bool writably_mapped;
2852 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2855 init_sync_kiocb(&iocb, in);
2856 iocb.ki_pos = *ppos;
2858 /* Work out how much data we can actually add into the pipe */
2859 used = pipe_occupancy(pipe->head, pipe->tail);
2860 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2861 len = min_t(size_t, len, npages * PAGE_SIZE);
2863 folio_batch_init(&fbatch);
2868 if (*ppos >= i_size_read(in->f_mapping->host))
2871 iocb.ki_pos = *ppos;
2872 error = filemap_get_pages(&iocb, len, &fbatch, true);
2877 * i_size must be checked after we know the pages are Uptodate.
2879 * Checking i_size after the check allows us to calculate
2880 * the correct value for "nr", which means the zero-filled
2881 * part of the page is not copied back to userspace (unless
2882 * another truncate extends the file - this is desired though).
2884 isize = i_size_read(in->f_mapping->host);
2885 if (unlikely(*ppos >= isize))
2887 end_offset = min_t(loff_t, isize, *ppos + len);
2890 * Once we start copying data, we don't want to be touching any
2891 * cachelines that might be contended:
2893 writably_mapped = mapping_writably_mapped(in->f_mapping);
2895 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2896 struct folio *folio = fbatch.folios[i];
2899 if (folio_pos(folio) >= end_offset)
2901 folio_mark_accessed(folio);
2904 * If users can be writing to this folio using arbitrary
2905 * virtual addresses, take care of potential aliasing
2906 * before reading the folio on the kernel side.
2908 if (writably_mapped)
2909 flush_dcache_folio(folio);
2911 n = min_t(loff_t, len, isize - *ppos);
2912 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2918 in->f_ra.prev_pos = *ppos;
2919 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2923 folio_batch_release(&fbatch);
2927 folio_batch_release(&fbatch);
2930 return total_spliced ? total_spliced : error;
2932 EXPORT_SYMBOL(filemap_splice_read);
2934 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2935 struct address_space *mapping, struct folio *folio,
2936 loff_t start, loff_t end, bool seek_data)
2938 const struct address_space_operations *ops = mapping->a_ops;
2939 size_t offset, bsz = i_blocksize(mapping->host);
2941 if (xa_is_value(folio) || folio_test_uptodate(folio))
2942 return seek_data ? start : end;
2943 if (!ops->is_partially_uptodate)
2944 return seek_data ? end : start;
2949 if (unlikely(folio->mapping != mapping))
2952 offset = offset_in_folio(folio, start) & ~(bsz - 1);
2955 if (ops->is_partially_uptodate(folio, offset, bsz) ==
2958 start = (start + bsz) & ~(bsz - 1);
2960 } while (offset < folio_size(folio));
2962 folio_unlock(folio);
2967 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2969 if (xa_is_value(folio))
2970 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2971 return folio_size(folio);
2975 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2976 * @mapping: Address space to search.
2977 * @start: First byte to consider.
2978 * @end: Limit of search (exclusive).
2979 * @whence: Either SEEK_HOLE or SEEK_DATA.
2981 * If the page cache knows which blocks contain holes and which blocks
2982 * contain data, your filesystem can use this function to implement
2983 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2984 * entirely memory-based such as tmpfs, and filesystems which support
2985 * unwritten extents.
2987 * Return: The requested offset on success, or -ENXIO if @whence specifies
2988 * SEEK_DATA and there is no data after @start. There is an implicit hole
2989 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2990 * and @end contain data.
2992 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2993 loff_t end, int whence)
2995 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2996 pgoff_t max = (end - 1) >> PAGE_SHIFT;
2997 bool seek_data = (whence == SEEK_DATA);
2998 struct folio *folio;
3004 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3005 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3014 seek_size = seek_folio_size(&xas, folio);
3015 pos = round_up((u64)pos + 1, seek_size);
3016 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3022 if (seek_size > PAGE_SIZE)
3023 xas_set(&xas, pos >> PAGE_SHIFT);
3024 if (!xa_is_value(folio))
3031 if (folio && !xa_is_value(folio))
3039 #define MMAP_LOTSAMISS (100)
3041 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3042 * @vmf - the vm_fault for this fault.
3043 * @folio - the folio to lock.
3044 * @fpin - the pointer to the file we may pin (or is already pinned).
3046 * This works similar to lock_folio_or_retry in that it can drop the
3047 * mmap_lock. It differs in that it actually returns the folio locked
3048 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3049 * to drop the mmap_lock then fpin will point to the pinned file and
3050 * needs to be fput()'ed at a later point.
3052 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3055 if (folio_trylock(folio))
3059 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3060 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3061 * is supposed to work. We have way too many special cases..
3063 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3066 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3067 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3068 if (__folio_lock_killable(folio)) {
3070 * We didn't have the right flags to drop the
3071 * fault lock, but all fault_handlers only check
3072 * for fatal signals if we return VM_FAULT_RETRY,
3073 * so we need to drop the fault lock here and
3074 * return 0 if we don't have a fpin.
3077 release_fault_lock(vmf);
3081 __folio_lock(folio);
3087 * Synchronous readahead happens when we don't even find a page in the page
3088 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3089 * to drop the mmap sem we return the file that was pinned in order for us to do
3090 * that. If we didn't pin a file then we return NULL. The file that is
3091 * returned needs to be fput()'ed when we're done with it.
3093 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3095 struct file *file = vmf->vma->vm_file;
3096 struct file_ra_state *ra = &file->f_ra;
3097 struct address_space *mapping = file->f_mapping;
3098 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3099 struct file *fpin = NULL;
3100 unsigned long vm_flags = vmf->vma->vm_flags;
3101 unsigned int mmap_miss;
3103 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3104 /* Use the readahead code, even if readahead is disabled */
3105 if (vm_flags & VM_HUGEPAGE) {
3106 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3107 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3108 ra->size = HPAGE_PMD_NR;
3110 * Fetch two PMD folios, so we get the chance to actually
3111 * readahead, unless we've been told not to.
3113 if (!(vm_flags & VM_RAND_READ))
3115 ra->async_size = HPAGE_PMD_NR;
3116 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3121 /* If we don't want any read-ahead, don't bother */
3122 if (vm_flags & VM_RAND_READ)
3127 if (vm_flags & VM_SEQ_READ) {
3128 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3129 page_cache_sync_ra(&ractl, ra->ra_pages);
3133 /* Avoid banging the cache line if not needed */
3134 mmap_miss = READ_ONCE(ra->mmap_miss);
3135 if (mmap_miss < MMAP_LOTSAMISS * 10)
3136 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3139 * Do we miss much more than hit in this file? If so,
3140 * stop bothering with read-ahead. It will only hurt.
3142 if (mmap_miss > MMAP_LOTSAMISS)
3148 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3149 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3150 ra->size = ra->ra_pages;
3151 ra->async_size = ra->ra_pages / 4;
3152 ractl._index = ra->start;
3153 page_cache_ra_order(&ractl, ra, 0);
3158 * Asynchronous readahead happens when we find the page and PG_readahead,
3159 * so we want to possibly extend the readahead further. We return the file that
3160 * was pinned if we have to drop the mmap_lock in order to do IO.
3162 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3163 struct folio *folio)
3165 struct file *file = vmf->vma->vm_file;
3166 struct file_ra_state *ra = &file->f_ra;
3167 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3168 struct file *fpin = NULL;
3169 unsigned int mmap_miss;
3171 /* If we don't want any read-ahead, don't bother */
3172 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3175 mmap_miss = READ_ONCE(ra->mmap_miss);
3177 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3179 if (folio_test_readahead(folio)) {
3180 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3181 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3187 * filemap_fault - read in file data for page fault handling
3188 * @vmf: struct vm_fault containing details of the fault
3190 * filemap_fault() is invoked via the vma operations vector for a
3191 * mapped memory region to read in file data during a page fault.
3193 * The goto's are kind of ugly, but this streamlines the normal case of having
3194 * it in the page cache, and handles the special cases reasonably without
3195 * having a lot of duplicated code.
3197 * vma->vm_mm->mmap_lock must be held on entry.
3199 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3200 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3202 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3203 * has not been released.
3205 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3207 * Return: bitwise-OR of %VM_FAULT_ codes.
3209 vm_fault_t filemap_fault(struct vm_fault *vmf)
3212 struct file *file = vmf->vma->vm_file;
3213 struct file *fpin = NULL;
3214 struct address_space *mapping = file->f_mapping;
3215 struct inode *inode = mapping->host;
3216 pgoff_t max_idx, index = vmf->pgoff;
3217 struct folio *folio;
3219 bool mapping_locked = false;
3221 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3222 if (unlikely(index >= max_idx))
3223 return VM_FAULT_SIGBUS;
3226 * Do we have something in the page cache already?
3228 folio = filemap_get_folio(mapping, index);
3229 if (likely(!IS_ERR(folio))) {
3231 * We found the page, so try async readahead before waiting for
3234 if (!(vmf->flags & FAULT_FLAG_TRIED))
3235 fpin = do_async_mmap_readahead(vmf, folio);
3236 if (unlikely(!folio_test_uptodate(folio))) {
3237 filemap_invalidate_lock_shared(mapping);
3238 mapping_locked = true;
3241 /* No page in the page cache at all */
3242 count_vm_event(PGMAJFAULT);
3243 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3244 ret = VM_FAULT_MAJOR;
3245 fpin = do_sync_mmap_readahead(vmf);
3248 * See comment in filemap_create_folio() why we need
3251 if (!mapping_locked) {
3252 filemap_invalidate_lock_shared(mapping);
3253 mapping_locked = true;
3255 folio = __filemap_get_folio(mapping, index,
3256 FGP_CREAT|FGP_FOR_MMAP,
3258 if (IS_ERR(folio)) {
3261 filemap_invalidate_unlock_shared(mapping);
3262 return VM_FAULT_OOM;
3266 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3269 /* Did it get truncated? */
3270 if (unlikely(folio->mapping != mapping)) {
3271 folio_unlock(folio);
3275 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3278 * We have a locked folio in the page cache, now we need to check
3279 * that it's up-to-date. If not, it is going to be due to an error,
3280 * or because readahead was otherwise unable to retrieve it.
3282 if (unlikely(!folio_test_uptodate(folio))) {
3284 * If the invalidate lock is not held, the folio was in cache
3285 * and uptodate and now it is not. Strange but possible since we
3286 * didn't hold the page lock all the time. Let's drop
3287 * everything, get the invalidate lock and try again.
3289 if (!mapping_locked) {
3290 folio_unlock(folio);
3296 * OK, the folio is really not uptodate. This can be because the
3297 * VMA has the VM_RAND_READ flag set, or because an error
3298 * arose. Let's read it in directly.
3300 goto page_not_uptodate;
3304 * We've made it this far and we had to drop our mmap_lock, now is the
3305 * time to return to the upper layer and have it re-find the vma and
3309 folio_unlock(folio);
3313 filemap_invalidate_unlock_shared(mapping);
3316 * Found the page and have a reference on it.
3317 * We must recheck i_size under page lock.
3319 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3320 if (unlikely(index >= max_idx)) {
3321 folio_unlock(folio);
3323 return VM_FAULT_SIGBUS;
3326 vmf->page = folio_file_page(folio, index);
3327 return ret | VM_FAULT_LOCKED;
3331 * Umm, take care of errors if the page isn't up-to-date.
3332 * Try to re-read it _once_. We do this synchronously,
3333 * because there really aren't any performance issues here
3334 * and we need to check for errors.
3336 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3337 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3342 if (!error || error == AOP_TRUNCATED_PAGE)
3344 filemap_invalidate_unlock_shared(mapping);
3346 return VM_FAULT_SIGBUS;
3350 * We dropped the mmap_lock, we need to return to the fault handler to
3351 * re-find the vma and come back and find our hopefully still populated
3357 filemap_invalidate_unlock_shared(mapping);
3360 return ret | VM_FAULT_RETRY;
3362 EXPORT_SYMBOL(filemap_fault);
3364 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3367 struct mm_struct *mm = vmf->vma->vm_mm;
3369 /* Huge page is mapped? No need to proceed. */
3370 if (pmd_trans_huge(*vmf->pmd)) {
3371 folio_unlock(folio);
3376 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3377 struct page *page = folio_file_page(folio, start);
3378 vm_fault_t ret = do_set_pmd(vmf, page);
3380 /* The page is mapped successfully, reference consumed. */
3381 folio_unlock(folio);
3386 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3387 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3392 static struct folio *next_uptodate_folio(struct xa_state *xas,
3393 struct address_space *mapping, pgoff_t end_pgoff)
3395 struct folio *folio = xas_next_entry(xas, end_pgoff);
3396 unsigned long max_idx;
3401 if (xas_retry(xas, folio))
3403 if (xa_is_value(folio))
3405 if (folio_test_locked(folio))
3407 if (!folio_try_get_rcu(folio))
3409 /* Has the page moved or been split? */
3410 if (unlikely(folio != xas_reload(xas)))
3412 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3414 if (!folio_trylock(folio))
3416 if (folio->mapping != mapping)
3418 if (!folio_test_uptodate(folio))
3420 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3421 if (xas->xa_index >= max_idx)
3425 folio_unlock(folio);
3428 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3434 * Map page range [start_page, start_page + nr_pages) of folio.
3435 * start_page is gotten from start by folio_page(folio, start)
3437 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3438 struct folio *folio, unsigned long start,
3439 unsigned long addr, unsigned int nr_pages,
3440 unsigned int *mmap_miss)
3443 struct page *page = folio_page(folio, start);
3444 unsigned int count = 0;
3445 pte_t *old_ptep = vmf->pte;
3448 if (PageHWPoison(page + count))
3454 * NOTE: If there're PTE markers, we'll leave them to be
3455 * handled in the specific fault path, and it'll prohibit the
3456 * fault-around logic.
3458 if (!pte_none(ptep_get(&vmf->pte[count])))
3465 set_pte_range(vmf, folio, page, count, addr);
3466 folio_ref_add(folio, count);
3467 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3468 ret = VM_FAULT_NOPAGE;
3474 addr += count * PAGE_SIZE;
3476 } while (--nr_pages > 0);
3479 set_pte_range(vmf, folio, page, count, addr);
3480 folio_ref_add(folio, count);
3481 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3482 ret = VM_FAULT_NOPAGE;
3485 vmf->pte = old_ptep;
3490 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3491 struct folio *folio, unsigned long addr,
3492 unsigned int *mmap_miss)
3495 struct page *page = &folio->page;
3497 if (PageHWPoison(page))
3503 * NOTE: If there're PTE markers, we'll leave them to be
3504 * handled in the specific fault path, and it'll prohibit
3505 * the fault-around logic.
3507 if (!pte_none(ptep_get(vmf->pte)))
3510 if (vmf->address == addr)
3511 ret = VM_FAULT_NOPAGE;
3513 set_pte_range(vmf, folio, page, 1, addr);
3514 folio_ref_inc(folio);
3519 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3520 pgoff_t start_pgoff, pgoff_t end_pgoff)
3522 struct vm_area_struct *vma = vmf->vma;
3523 struct file *file = vma->vm_file;
3524 struct address_space *mapping = file->f_mapping;
3525 pgoff_t last_pgoff = start_pgoff;
3527 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3528 struct folio *folio;
3530 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
3533 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3537 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3538 ret = VM_FAULT_NOPAGE;
3542 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3543 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3545 folio_unlock(folio);
3552 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3553 vmf->pte += xas.xa_index - last_pgoff;
3554 last_pgoff = xas.xa_index;
3555 end = folio_next_index(folio) - 1;
3556 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3558 if (!folio_test_large(folio))
3559 ret |= filemap_map_order0_folio(vmf,
3560 folio, addr, &mmap_miss);
3562 ret |= filemap_map_folio_range(vmf, folio,
3563 xas.xa_index - folio->index, addr,
3564 nr_pages, &mmap_miss);
3566 folio_unlock(folio);
3568 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3569 pte_unmap_unlock(vmf->pte, vmf->ptl);
3573 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3574 if (mmap_miss >= mmap_miss_saved)
3575 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3577 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3581 EXPORT_SYMBOL(filemap_map_pages);
3583 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3585 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3586 struct folio *folio = page_folio(vmf->page);
3587 vm_fault_t ret = VM_FAULT_LOCKED;
3589 sb_start_pagefault(mapping->host->i_sb);
3590 file_update_time(vmf->vma->vm_file);
3592 if (folio->mapping != mapping) {
3593 folio_unlock(folio);
3594 ret = VM_FAULT_NOPAGE;
3598 * We mark the folio dirty already here so that when freeze is in
3599 * progress, we are guaranteed that writeback during freezing will
3600 * see the dirty folio and writeprotect it again.
3602 folio_mark_dirty(folio);
3603 folio_wait_stable(folio);
3605 sb_end_pagefault(mapping->host->i_sb);
3609 const struct vm_operations_struct generic_file_vm_ops = {
3610 .fault = filemap_fault,
3611 .map_pages = filemap_map_pages,
3612 .page_mkwrite = filemap_page_mkwrite,
3615 /* This is used for a general mmap of a disk file */
3617 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3619 struct address_space *mapping = file->f_mapping;
3621 if (!mapping->a_ops->read_folio)
3623 file_accessed(file);
3624 vma->vm_ops = &generic_file_vm_ops;
3629 * This is for filesystems which do not implement ->writepage.
3631 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3633 if (vma_is_shared_maywrite(vma))
3635 return generic_file_mmap(file, vma);
3638 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3640 return VM_FAULT_SIGBUS;
3642 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3646 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3650 #endif /* CONFIG_MMU */
3652 EXPORT_SYMBOL(filemap_page_mkwrite);
3653 EXPORT_SYMBOL(generic_file_mmap);
3654 EXPORT_SYMBOL(generic_file_readonly_mmap);
3656 static struct folio *do_read_cache_folio(struct address_space *mapping,
3657 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3659 struct folio *folio;
3663 filler = mapping->a_ops->read_folio;
3665 folio = filemap_get_folio(mapping, index);
3666 if (IS_ERR(folio)) {
3667 folio = filemap_alloc_folio(gfp, 0);
3669 return ERR_PTR(-ENOMEM);
3670 err = filemap_add_folio(mapping, folio, index, gfp);
3671 if (unlikely(err)) {
3675 /* Presumably ENOMEM for xarray node */
3676 return ERR_PTR(err);
3681 if (folio_test_uptodate(folio))
3684 if (!folio_trylock(folio)) {
3685 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3689 /* Folio was truncated from mapping */
3690 if (!folio->mapping) {
3691 folio_unlock(folio);
3696 /* Someone else locked and filled the page in a very small window */
3697 if (folio_test_uptodate(folio)) {
3698 folio_unlock(folio);
3703 err = filemap_read_folio(file, filler, folio);
3706 if (err == AOP_TRUNCATED_PAGE)
3708 return ERR_PTR(err);
3712 folio_mark_accessed(folio);
3717 * read_cache_folio - Read into page cache, fill it if needed.
3718 * @mapping: The address_space to read from.
3719 * @index: The index to read.
3720 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3721 * @file: Passed to filler function, may be NULL if not required.
3723 * Read one page into the page cache. If it succeeds, the folio returned
3724 * will contain @index, but it may not be the first page of the folio.
3726 * If the filler function returns an error, it will be returned to the
3729 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3730 * Return: An uptodate folio on success, ERR_PTR() on failure.
3732 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3733 filler_t filler, struct file *file)
3735 return do_read_cache_folio(mapping, index, filler, file,
3736 mapping_gfp_mask(mapping));
3738 EXPORT_SYMBOL(read_cache_folio);
3741 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3742 * @mapping: The address_space for the folio.
3743 * @index: The index that the allocated folio will contain.
3744 * @gfp: The page allocator flags to use if allocating.
3746 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3747 * any new memory allocations done using the specified allocation flags.
3749 * The most likely error from this function is EIO, but ENOMEM is
3750 * possible and so is EINTR. If ->read_folio returns another error,
3751 * that will be returned to the caller.
3753 * The function expects mapping->invalidate_lock to be already held.
3755 * Return: Uptodate folio on success, ERR_PTR() on failure.
3757 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3758 pgoff_t index, gfp_t gfp)
3760 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3762 EXPORT_SYMBOL(mapping_read_folio_gfp);
3764 static struct page *do_read_cache_page(struct address_space *mapping,
3765 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3767 struct folio *folio;
3769 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3771 return &folio->page;
3772 return folio_file_page(folio, index);
3775 struct page *read_cache_page(struct address_space *mapping,
3776 pgoff_t index, filler_t *filler, struct file *file)
3778 return do_read_cache_page(mapping, index, filler, file,
3779 mapping_gfp_mask(mapping));
3781 EXPORT_SYMBOL(read_cache_page);
3784 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3785 * @mapping: the page's address_space
3786 * @index: the page index
3787 * @gfp: the page allocator flags to use if allocating
3789 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3790 * any new page allocations done using the specified allocation flags.
3792 * If the page does not get brought uptodate, return -EIO.
3794 * The function expects mapping->invalidate_lock to be already held.
3796 * Return: up to date page on success, ERR_PTR() on failure.
3798 struct page *read_cache_page_gfp(struct address_space *mapping,
3802 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3804 EXPORT_SYMBOL(read_cache_page_gfp);
3807 * Warn about a page cache invalidation failure during a direct I/O write.
3809 static void dio_warn_stale_pagecache(struct file *filp)
3811 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3815 errseq_set(&filp->f_mapping->wb_err, -EIO);
3816 if (__ratelimit(&_rs)) {
3817 path = file_path(filp, pathname, sizeof(pathname));
3820 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3821 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3826 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3828 struct address_space *mapping = iocb->ki_filp->f_mapping;
3830 if (mapping->nrpages &&
3831 invalidate_inode_pages2_range(mapping,
3832 iocb->ki_pos >> PAGE_SHIFT,
3833 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3834 dio_warn_stale_pagecache(iocb->ki_filp);
3838 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3840 struct address_space *mapping = iocb->ki_filp->f_mapping;
3841 size_t write_len = iov_iter_count(from);
3845 * If a page can not be invalidated, return 0 to fall back
3846 * to buffered write.
3848 written = kiocb_invalidate_pages(iocb, write_len);
3850 if (written == -EBUSY)
3855 written = mapping->a_ops->direct_IO(iocb, from);
3858 * Finally, try again to invalidate clean pages which might have been
3859 * cached by non-direct readahead, or faulted in by get_user_pages()
3860 * if the source of the write was an mmap'ed region of the file
3861 * we're writing. Either one is a pretty crazy thing to do,
3862 * so we don't support it 100%. If this invalidation
3863 * fails, tough, the write still worked...
3865 * Most of the time we do not need this since dio_complete() will do
3866 * the invalidation for us. However there are some file systems that
3867 * do not end up with dio_complete() being called, so let's not break
3868 * them by removing it completely.
3870 * Noticeable example is a blkdev_direct_IO().
3872 * Skip invalidation for async writes or if mapping has no pages.
3875 struct inode *inode = mapping->host;
3876 loff_t pos = iocb->ki_pos;
3878 kiocb_invalidate_post_direct_write(iocb, written);
3880 write_len -= written;
3881 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3882 i_size_write(inode, pos);
3883 mark_inode_dirty(inode);
3887 if (written != -EIOCBQUEUED)
3888 iov_iter_revert(from, write_len - iov_iter_count(from));
3891 EXPORT_SYMBOL(generic_file_direct_write);
3893 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3895 struct file *file = iocb->ki_filp;
3896 loff_t pos = iocb->ki_pos;
3897 struct address_space *mapping = file->f_mapping;
3898 const struct address_space_operations *a_ops = mapping->a_ops;
3900 ssize_t written = 0;
3904 unsigned long offset; /* Offset into pagecache page */
3905 unsigned long bytes; /* Bytes to write to page */
3906 size_t copied; /* Bytes copied from user */
3907 void *fsdata = NULL;
3909 offset = (pos & (PAGE_SIZE - 1));
3910 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3915 * Bring in the user page that we will copy from _first_.
3916 * Otherwise there's a nasty deadlock on copying from the
3917 * same page as we're writing to, without it being marked
3920 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3925 if (fatal_signal_pending(current)) {
3930 status = a_ops->write_begin(file, mapping, pos, bytes,
3932 if (unlikely(status < 0))
3935 if (mapping_writably_mapped(mapping))
3936 flush_dcache_page(page);
3938 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3939 flush_dcache_page(page);
3941 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3943 if (unlikely(status != copied)) {
3944 iov_iter_revert(i, copied - max(status, 0L));
3945 if (unlikely(status < 0))
3950 if (unlikely(status == 0)) {
3952 * A short copy made ->write_end() reject the
3953 * thing entirely. Might be memory poisoning
3954 * halfway through, might be a race with munmap,
3955 * might be severe memory pressure.
3964 balance_dirty_pages_ratelimited(mapping);
3965 } while (iov_iter_count(i));
3969 iocb->ki_pos += written;
3972 EXPORT_SYMBOL(generic_perform_write);
3975 * __generic_file_write_iter - write data to a file
3976 * @iocb: IO state structure (file, offset, etc.)
3977 * @from: iov_iter with data to write
3979 * This function does all the work needed for actually writing data to a
3980 * file. It does all basic checks, removes SUID from the file, updates
3981 * modification times and calls proper subroutines depending on whether we
3982 * do direct IO or a standard buffered write.
3984 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3985 * object which does not need locking at all.
3987 * This function does *not* take care of syncing data in case of O_SYNC write.
3988 * A caller has to handle it. This is mainly due to the fact that we want to
3989 * avoid syncing under i_rwsem.
3992 * * number of bytes written, even for truncated writes
3993 * * negative error code if no data has been written at all
3995 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3997 struct file *file = iocb->ki_filp;
3998 struct address_space *mapping = file->f_mapping;
3999 struct inode *inode = mapping->host;
4002 ret = file_remove_privs(file);
4006 ret = file_update_time(file);
4010 if (iocb->ki_flags & IOCB_DIRECT) {
4011 ret = generic_file_direct_write(iocb, from);
4013 * If the write stopped short of completing, fall back to
4014 * buffered writes. Some filesystems do this for writes to
4015 * holes, for example. For DAX files, a buffered write will
4016 * not succeed (even if it did, DAX does not handle dirty
4017 * page-cache pages correctly).
4019 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4021 return direct_write_fallback(iocb, from, ret,
4022 generic_perform_write(iocb, from));
4025 return generic_perform_write(iocb, from);
4027 EXPORT_SYMBOL(__generic_file_write_iter);
4030 * generic_file_write_iter - write data to a file
4031 * @iocb: IO state structure
4032 * @from: iov_iter with data to write
4034 * This is a wrapper around __generic_file_write_iter() to be used by most
4035 * filesystems. It takes care of syncing the file in case of O_SYNC file
4036 * and acquires i_rwsem as needed.
4038 * * negative error code if no data has been written at all of
4039 * vfs_fsync_range() failed for a synchronous write
4040 * * number of bytes written, even for truncated writes
4042 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4044 struct file *file = iocb->ki_filp;
4045 struct inode *inode = file->f_mapping->host;
4049 ret = generic_write_checks(iocb, from);
4051 ret = __generic_file_write_iter(iocb, from);
4052 inode_unlock(inode);
4055 ret = generic_write_sync(iocb, ret);
4058 EXPORT_SYMBOL(generic_file_write_iter);
4061 * filemap_release_folio() - Release fs-specific metadata on a folio.
4062 * @folio: The folio which the kernel is trying to free.
4063 * @gfp: Memory allocation flags (and I/O mode).
4065 * The address_space is trying to release any data attached to a folio
4066 * (presumably at folio->private).
4068 * This will also be called if the private_2 flag is set on a page,
4069 * indicating that the folio has other metadata associated with it.
4071 * The @gfp argument specifies whether I/O may be performed to release
4072 * this page (__GFP_IO), and whether the call may block
4073 * (__GFP_RECLAIM & __GFP_FS).
4075 * Return: %true if the release was successful, otherwise %false.
4077 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4079 struct address_space * const mapping = folio->mapping;
4081 BUG_ON(!folio_test_locked(folio));
4082 if (!folio_needs_release(folio))
4084 if (folio_test_writeback(folio))
4087 if (mapping && mapping->a_ops->release_folio)
4088 return mapping->a_ops->release_folio(folio, gfp);
4089 return try_to_free_buffers(folio);
4091 EXPORT_SYMBOL(filemap_release_folio);
4093 #ifdef CONFIG_CACHESTAT_SYSCALL
4095 * filemap_cachestat() - compute the page cache statistics of a mapping
4096 * @mapping: The mapping to compute the statistics for.
4097 * @first_index: The starting page cache index.
4098 * @last_index: The final page index (inclusive).
4099 * @cs: the cachestat struct to write the result to.
4101 * This will query the page cache statistics of a mapping in the
4102 * page range of [first_index, last_index] (inclusive). The statistics
4103 * queried include: number of dirty pages, number of pages marked for
4104 * writeback, and the number of (recently) evicted pages.
4106 static void filemap_cachestat(struct address_space *mapping,
4107 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4109 XA_STATE(xas, &mapping->i_pages, first_index);
4110 struct folio *folio;
4113 xas_for_each(&xas, folio, last_index) {
4114 unsigned long nr_pages;
4115 pgoff_t folio_first_index, folio_last_index;
4117 if (xas_retry(&xas, folio))
4120 if (xa_is_value(folio)) {
4121 /* page is evicted */
4122 void *shadow = (void *)folio;
4123 bool workingset; /* not used */
4124 int order = xa_get_order(xas.xa, xas.xa_index);
4126 nr_pages = 1 << order;
4127 folio_first_index = round_down(xas.xa_index, 1 << order);
4128 folio_last_index = folio_first_index + nr_pages - 1;
4130 /* Folios might straddle the range boundaries, only count covered pages */
4131 if (folio_first_index < first_index)
4132 nr_pages -= first_index - folio_first_index;
4134 if (folio_last_index > last_index)
4135 nr_pages -= folio_last_index - last_index;
4137 cs->nr_evicted += nr_pages;
4139 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4140 if (shmem_mapping(mapping)) {
4141 /* shmem file - in swap cache */
4142 swp_entry_t swp = radix_to_swp_entry(folio);
4144 shadow = get_shadow_from_swap_cache(swp);
4147 if (workingset_test_recent(shadow, true, &workingset))
4148 cs->nr_recently_evicted += nr_pages;
4153 nr_pages = folio_nr_pages(folio);
4154 folio_first_index = folio_pgoff(folio);
4155 folio_last_index = folio_first_index + nr_pages - 1;
4157 /* Folios might straddle the range boundaries, only count covered pages */
4158 if (folio_first_index < first_index)
4159 nr_pages -= first_index - folio_first_index;
4161 if (folio_last_index > last_index)
4162 nr_pages -= folio_last_index - last_index;
4164 /* page is in cache */
4165 cs->nr_cache += nr_pages;
4167 if (folio_test_dirty(folio))
4168 cs->nr_dirty += nr_pages;
4170 if (folio_test_writeback(folio))
4171 cs->nr_writeback += nr_pages;
4174 if (need_resched()) {
4183 * The cachestat(2) system call.
4185 * cachestat() returns the page cache statistics of a file in the
4186 * bytes range specified by `off` and `len`: number of cached pages,
4187 * number of dirty pages, number of pages marked for writeback,
4188 * number of evicted pages, and number of recently evicted pages.
4190 * An evicted page is a page that is previously in the page cache
4191 * but has been evicted since. A page is recently evicted if its last
4192 * eviction was recent enough that its reentry to the cache would
4193 * indicate that it is actively being used by the system, and that
4194 * there is memory pressure on the system.
4196 * `off` and `len` must be non-negative integers. If `len` > 0,
4197 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4198 * we will query in the range from `off` to the end of the file.
4200 * The `flags` argument is unused for now, but is included for future
4201 * extensibility. User should pass 0 (i.e no flag specified).
4203 * Currently, hugetlbfs is not supported.
4205 * Because the status of a page can change after cachestat() checks it
4206 * but before it returns to the application, the returned values may
4207 * contain stale information.
4211 * -EFAULT - cstat or cstat_range points to an illegal address
4212 * -EINVAL - invalid flags
4213 * -EBADF - invalid file descriptor
4214 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4216 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4217 struct cachestat_range __user *, cstat_range,
4218 struct cachestat __user *, cstat, unsigned int, flags)
4220 struct fd f = fdget(fd);
4221 struct address_space *mapping;
4222 struct cachestat_range csr;
4223 struct cachestat cs;
4224 pgoff_t first_index, last_index;
4229 if (copy_from_user(&csr, cstat_range,
4230 sizeof(struct cachestat_range))) {
4235 /* hugetlbfs is not supported */
4236 if (is_file_hugepages(f.file)) {
4246 first_index = csr.off >> PAGE_SHIFT;
4248 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4249 memset(&cs, 0, sizeof(struct cachestat));
4250 mapping = f.file->f_mapping;
4251 filemap_cachestat(mapping, first_index, last_index, &cs);
4254 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4259 #endif /* CONFIG_CACHESTAT_SYSCALL */