2 * Copyright (C) 2012 CERN (www.cern.ch)
5 * Released according to the GNU GPL, version 2 or any later version.
7 * This work is part of the White Rabbit project, a research effort led
8 * by CERN, the European Institute for Nuclear Research.
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/fmc.h>
13 #include <linux/sdb.h>
14 #include <linux/err.h>
15 #include <linux/fmc-sdb.h>
16 #include <asm/byteorder.h>
18 static uint32_t __sdb_rd(struct fmc_device *fmc, unsigned long address,
21 uint32_t res = fmc_readl(fmc, address);
23 return __be32_to_cpu(res);
27 static struct sdb_array *__fmc_scan_sdb_tree(struct fmc_device *fmc,
28 unsigned long sdb_addr,
29 unsigned long reg_base, int level)
32 int i, j, n, convert = 0;
33 struct sdb_array *arr, *sub;
35 onew = fmc_readl(fmc, sdb_addr);
36 if (onew == SDB_MAGIC) {
37 /* Uh! If we are little-endian, we must convert */
38 if (SDB_MAGIC != __be32_to_cpu(SDB_MAGIC))
40 } else if (onew == __be32_to_cpu(SDB_MAGIC)) {
41 /* ok, don't convert */
43 return ERR_PTR(-ENOENT);
45 /* So, the magic was there: get the count from offset 4*/
46 onew = __sdb_rd(fmc, sdb_addr + 4, convert);
47 n = __be16_to_cpu(*(uint16_t *)&onew);
48 arr = kzalloc(sizeof(*arr), GFP_KERNEL);
50 return ERR_PTR(-ENOMEM);
51 arr->record = kzalloc(sizeof(arr->record[0]) * n, GFP_KERNEL);
52 arr->subtree = kzalloc(sizeof(arr->subtree[0]) * n, GFP_KERNEL);
53 if (!arr->record || !arr->subtree) {
57 return ERR_PTR(-ENOMEM);
63 for (i = 0; i < n; i++) {
66 for (j = 0; j < sizeof(arr->record[0]); j += 4) {
67 *(uint32_t *)((void *)(arr->record + i) + j) =
68 __sdb_rd(fmc, sdb_addr + (i * 64) + j, convert);
71 arr->subtree[i] = ERR_PTR(-ENODEV);
72 if (r->empty.record_type == sdb_type_bridge) {
73 struct sdb_component *c = &r->bridge.sdb_component;
74 uint64_t subaddr = __be64_to_cpu(r->bridge.sdb_child);
75 uint64_t newbase = __be64_to_cpu(c->addr_first);
79 sub = __fmc_scan_sdb_tree(fmc, subaddr, newbase,
81 arr->subtree[i] = sub; /* may be error */
85 sub->baseaddr = newbase;
91 int fmc_scan_sdb_tree(struct fmc_device *fmc, unsigned long address)
93 struct sdb_array *ret;
96 ret = __fmc_scan_sdb_tree(fmc, address, 0 /* regs */, 0);
102 EXPORT_SYMBOL(fmc_scan_sdb_tree);
104 static void __fmc_sdb_free(struct sdb_array *arr)
111 for (i = 0; i < n; i++) {
112 if (IS_ERR(arr->subtree[i]))
114 __fmc_sdb_free(arr->subtree[i]);
121 int fmc_free_sdb_tree(struct fmc_device *fmc)
123 __fmc_sdb_free(fmc->sdb);
127 EXPORT_SYMBOL(fmc_free_sdb_tree);
129 /* This helper calls reprogram and inizialized sdb as well */
130 int fmc_reprogram(struct fmc_device *fmc, struct fmc_driver *d, char *gw,
135 ret = fmc->op->reprogram(fmc, d, gw);
141 /* We are required to find SDB at a given offset */
142 ret = fmc_scan_sdb_tree(fmc, sdb_entry);
144 dev_err(&fmc->dev, "Can't find SDB at address 0x%x\n",
151 EXPORT_SYMBOL(fmc_reprogram);
153 static char *__strip_trailing_space(char *buf, char *str, int len)
157 memcpy(buf, str, len);
158 while(i >= 0 && buf[i] == ' ')
163 #define __sdb_string(buf, field) ({ \
164 BUILD_BUG_ON(sizeof(buf) < sizeof(field)); \
165 __strip_trailing_space(buf, (void *)(field), sizeof(field)); \
168 static void __fmc_show_sdb_tree(const struct fmc_device *fmc,
169 const struct sdb_array *arr)
171 unsigned long base = arr->baseaddr;
172 int i, j, n = arr->len, level = arr->level;
175 for (i = 0; i < n; i++) {
177 struct sdb_product *p;
178 struct sdb_component *c;
180 c = &r->dev.sdb_component;
183 dev_info(&fmc->dev, "SDB: ");
185 for (j = 0; j < level; j++)
186 printk(KERN_CONT " ");
187 switch (r->empty.record_type) {
188 case sdb_type_interconnect:
189 printk(KERN_CONT "%08llx:%08x %.19s\n",
190 __be64_to_cpu(p->vendor_id),
191 __be32_to_cpu(p->device_id),
194 case sdb_type_device:
195 printk(KERN_CONT "%08llx:%08x %.19s (%08llx-%08llx)\n",
196 __be64_to_cpu(p->vendor_id),
197 __be32_to_cpu(p->device_id),
199 __be64_to_cpu(c->addr_first) + base,
200 __be64_to_cpu(c->addr_last) + base);
202 case sdb_type_bridge:
203 printk(KERN_CONT "%08llx:%08x %.19s (bridge: %08llx)\n",
204 __be64_to_cpu(p->vendor_id),
205 __be32_to_cpu(p->device_id),
207 __be64_to_cpu(c->addr_first) + base);
208 if (IS_ERR(arr->subtree[i])) {
209 dev_info(&fmc->dev, "SDB: (bridge error %li)\n",
210 PTR_ERR(arr->subtree[i]));
213 __fmc_show_sdb_tree(fmc, arr->subtree[i]);
215 case sdb_type_integration:
216 printk(KERN_CONT "integration\n");
218 case sdb_type_repo_url:
219 printk(KERN_CONT "Synthesis repository: %s\n",
220 __sdb_string(buf, r->repo_url.repo_url));
222 case sdb_type_synthesis:
223 printk(KERN_CONT "Bitstream '%s' ",
224 __sdb_string(buf, r->synthesis.syn_name));
225 printk(KERN_CONT "synthesized %08x by %s ",
226 __be32_to_cpu(r->synthesis.date),
227 __sdb_string(buf, r->synthesis.user_name));
228 printk(KERN_CONT "(%s version %x), ",
229 __sdb_string(buf, r->synthesis.tool_name),
230 __be32_to_cpu(r->synthesis.tool_version));
231 printk(KERN_CONT "commit %pm\n",
232 r->synthesis.commit_id);
235 printk(KERN_CONT "empty\n");
238 printk(KERN_CONT "UNKNOWN TYPE 0x%02x\n",
239 r->empty.record_type);
245 void fmc_show_sdb_tree(const struct fmc_device *fmc)
249 __fmc_show_sdb_tree(fmc, fmc->sdb);
251 EXPORT_SYMBOL(fmc_show_sdb_tree);
253 signed long fmc_find_sdb_device(struct sdb_array *tree,
254 uint64_t vid, uint32_t did, unsigned long *sz)
256 signed long res = -ENODEV;
258 struct sdb_product *p;
259 struct sdb_component *c;
260 int i, n = tree->len;
261 uint64_t last, first;
263 /* FIXME: what if the first interconnect is not at zero? */
264 for (i = 0; i < n; i++) {
265 r = &tree->record[i];
266 c = &r->dev.sdb_component;
269 if (!IS_ERR(tree->subtree[i]))
270 res = fmc_find_sdb_device(tree->subtree[i],
273 return res + tree->baseaddr;
274 if (r->empty.record_type != sdb_type_device)
276 if (__be64_to_cpu(p->vendor_id) != vid)
278 if (__be32_to_cpu(p->device_id) != did)
281 last = __be64_to_cpu(c->addr_last);
282 first = __be64_to_cpu(c->addr_first);
284 *sz = (typeof(*sz))(last + 1 - first);
285 return first + tree->baseaddr;
289 EXPORT_SYMBOL(fmc_find_sdb_device);