]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c
drm: use new iterator in drm_gem_plane_helper_prepare_fb v3
[linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28
29 #include <linux/dma-fence-array.h>
30 #include <linux/interval_tree_generic.h>
31 #include <linux/idr.h>
32 #include <linux/dma-buf.h>
33
34 #include <drm/amdgpu_drm.h>
35 #include <drm/drm_drv.h>
36 #include "amdgpu.h"
37 #include "amdgpu_trace.h"
38 #include "amdgpu_amdkfd.h"
39 #include "amdgpu_gmc.h"
40 #include "amdgpu_xgmi.h"
41 #include "amdgpu_dma_buf.h"
42 #include "amdgpu_res_cursor.h"
43 #include "kfd_svm.h"
44
45 /**
46  * DOC: GPUVM
47  *
48  * GPUVM is similar to the legacy gart on older asics, however
49  * rather than there being a single global gart table
50  * for the entire GPU, there are multiple VM page tables active
51  * at any given time.  The VM page tables can contain a mix
52  * vram pages and system memory pages and system memory pages
53  * can be mapped as snooped (cached system pages) or unsnooped
54  * (uncached system pages).
55  * Each VM has an ID associated with it and there is a page table
56  * associated with each VMID.  When execting a command buffer,
57  * the kernel tells the the ring what VMID to use for that command
58  * buffer.  VMIDs are allocated dynamically as commands are submitted.
59  * The userspace drivers maintain their own address space and the kernel
60  * sets up their pages tables accordingly when they submit their
61  * command buffers and a VMID is assigned.
62  * Cayman/Trinity support up to 8 active VMs at any given time;
63  * SI supports 16.
64  */
65
66 #define START(node) ((node)->start)
67 #define LAST(node) ((node)->last)
68
69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
70                      START, LAST, static, amdgpu_vm_it)
71
72 #undef START
73 #undef LAST
74
75 /**
76  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
77  */
78 struct amdgpu_prt_cb {
79
80         /**
81          * @adev: amdgpu device
82          */
83         struct amdgpu_device *adev;
84
85         /**
86          * @cb: callback
87          */
88         struct dma_fence_cb cb;
89 };
90
91 /**
92  * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping
93  *
94  * @adev: amdgpu_device pointer
95  * @vm: amdgpu_vm pointer
96  * @pasid: the pasid the VM is using on this GPU
97  *
98  * Set the pasid this VM is using on this GPU, can also be used to remove the
99  * pasid by passing in zero.
100  *
101  */
102 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm,
103                         u32 pasid)
104 {
105         int r;
106
107         if (vm->pasid == pasid)
108                 return 0;
109
110         if (vm->pasid) {
111                 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid));
112                 if (r < 0)
113                         return r;
114
115                 vm->pasid = 0;
116         }
117
118         if (pasid) {
119                 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm,
120                                         GFP_KERNEL));
121                 if (r < 0)
122                         return r;
123
124                 vm->pasid = pasid;
125         }
126
127
128         return 0;
129 }
130
131 /*
132  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
133  * happens while holding this lock anywhere to prevent deadlocks when
134  * an MMU notifier runs in reclaim-FS context.
135  */
136 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
137 {
138         mutex_lock(&vm->eviction_lock);
139         vm->saved_flags = memalloc_noreclaim_save();
140 }
141
142 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
143 {
144         if (mutex_trylock(&vm->eviction_lock)) {
145                 vm->saved_flags = memalloc_noreclaim_save();
146                 return 1;
147         }
148         return 0;
149 }
150
151 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
152 {
153         memalloc_noreclaim_restore(vm->saved_flags);
154         mutex_unlock(&vm->eviction_lock);
155 }
156
157 /**
158  * amdgpu_vm_level_shift - return the addr shift for each level
159  *
160  * @adev: amdgpu_device pointer
161  * @level: VMPT level
162  *
163  * Returns:
164  * The number of bits the pfn needs to be right shifted for a level.
165  */
166 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
167                                       unsigned level)
168 {
169         switch (level) {
170         case AMDGPU_VM_PDB2:
171         case AMDGPU_VM_PDB1:
172         case AMDGPU_VM_PDB0:
173                 return 9 * (AMDGPU_VM_PDB0 - level) +
174                         adev->vm_manager.block_size;
175         case AMDGPU_VM_PTB:
176                 return 0;
177         default:
178                 return ~0;
179         }
180 }
181
182 /**
183  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
184  *
185  * @adev: amdgpu_device pointer
186  * @level: VMPT level
187  *
188  * Returns:
189  * The number of entries in a page directory or page table.
190  */
191 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
192                                       unsigned level)
193 {
194         unsigned shift = amdgpu_vm_level_shift(adev,
195                                                adev->vm_manager.root_level);
196
197         if (level == adev->vm_manager.root_level)
198                 /* For the root directory */
199                 return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
200                         >> shift;
201         else if (level != AMDGPU_VM_PTB)
202                 /* Everything in between */
203                 return 512;
204         else
205                 /* For the page tables on the leaves */
206                 return AMDGPU_VM_PTE_COUNT(adev);
207 }
208
209 /**
210  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
211  *
212  * @adev: amdgpu_device pointer
213  *
214  * Returns:
215  * The number of entries in the root page directory which needs the ATS setting.
216  */
217 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
218 {
219         unsigned shift;
220
221         shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
222         return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
223 }
224
225 /**
226  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
227  *
228  * @adev: amdgpu_device pointer
229  * @level: VMPT level
230  *
231  * Returns:
232  * The mask to extract the entry number of a PD/PT from an address.
233  */
234 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
235                                        unsigned int level)
236 {
237         if (level <= adev->vm_manager.root_level)
238                 return 0xffffffff;
239         else if (level != AMDGPU_VM_PTB)
240                 return 0x1ff;
241         else
242                 return AMDGPU_VM_PTE_COUNT(adev) - 1;
243 }
244
245 /**
246  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
247  *
248  * @adev: amdgpu_device pointer
249  * @level: VMPT level
250  *
251  * Returns:
252  * The size of the BO for a page directory or page table in bytes.
253  */
254 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
255 {
256         return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
257 }
258
259 /**
260  * amdgpu_vm_bo_evicted - vm_bo is evicted
261  *
262  * @vm_bo: vm_bo which is evicted
263  *
264  * State for PDs/PTs and per VM BOs which are not at the location they should
265  * be.
266  */
267 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
268 {
269         struct amdgpu_vm *vm = vm_bo->vm;
270         struct amdgpu_bo *bo = vm_bo->bo;
271
272         vm_bo->moved = true;
273         if (bo->tbo.type == ttm_bo_type_kernel)
274                 list_move(&vm_bo->vm_status, &vm->evicted);
275         else
276                 list_move_tail(&vm_bo->vm_status, &vm->evicted);
277 }
278 /**
279  * amdgpu_vm_bo_moved - vm_bo is moved
280  *
281  * @vm_bo: vm_bo which is moved
282  *
283  * State for per VM BOs which are moved, but that change is not yet reflected
284  * in the page tables.
285  */
286 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
287 {
288         list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
289 }
290
291 /**
292  * amdgpu_vm_bo_idle - vm_bo is idle
293  *
294  * @vm_bo: vm_bo which is now idle
295  *
296  * State for PDs/PTs and per VM BOs which have gone through the state machine
297  * and are now idle.
298  */
299 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
300 {
301         list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
302         vm_bo->moved = false;
303 }
304
305 /**
306  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
307  *
308  * @vm_bo: vm_bo which is now invalidated
309  *
310  * State for normal BOs which are invalidated and that change not yet reflected
311  * in the PTs.
312  */
313 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
314 {
315         spin_lock(&vm_bo->vm->invalidated_lock);
316         list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
317         spin_unlock(&vm_bo->vm->invalidated_lock);
318 }
319
320 /**
321  * amdgpu_vm_bo_relocated - vm_bo is reloacted
322  *
323  * @vm_bo: vm_bo which is relocated
324  *
325  * State for PDs/PTs which needs to update their parent PD.
326  * For the root PD, just move to idle state.
327  */
328 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
329 {
330         if (vm_bo->bo->parent)
331                 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
332         else
333                 amdgpu_vm_bo_idle(vm_bo);
334 }
335
336 /**
337  * amdgpu_vm_bo_done - vm_bo is done
338  *
339  * @vm_bo: vm_bo which is now done
340  *
341  * State for normal BOs which are invalidated and that change has been updated
342  * in the PTs.
343  */
344 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
345 {
346         spin_lock(&vm_bo->vm->invalidated_lock);
347         list_move(&vm_bo->vm_status, &vm_bo->vm->done);
348         spin_unlock(&vm_bo->vm->invalidated_lock);
349 }
350
351 /**
352  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
353  *
354  * @base: base structure for tracking BO usage in a VM
355  * @vm: vm to which bo is to be added
356  * @bo: amdgpu buffer object
357  *
358  * Initialize a bo_va_base structure and add it to the appropriate lists
359  *
360  */
361 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
362                                    struct amdgpu_vm *vm,
363                                    struct amdgpu_bo *bo)
364 {
365         base->vm = vm;
366         base->bo = bo;
367         base->next = NULL;
368         INIT_LIST_HEAD(&base->vm_status);
369
370         if (!bo)
371                 return;
372         base->next = bo->vm_bo;
373         bo->vm_bo = base;
374
375         if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
376                 return;
377
378         vm->bulk_moveable = false;
379         if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
380                 amdgpu_vm_bo_relocated(base);
381         else
382                 amdgpu_vm_bo_idle(base);
383
384         if (bo->preferred_domains &
385             amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
386                 return;
387
388         /*
389          * we checked all the prerequisites, but it looks like this per vm bo
390          * is currently evicted. add the bo to the evicted list to make sure it
391          * is validated on next vm use to avoid fault.
392          * */
393         amdgpu_vm_bo_evicted(base);
394 }
395
396 /**
397  * amdgpu_vm_pt_parent - get the parent page directory
398  *
399  * @pt: child page table
400  *
401  * Helper to get the parent entry for the child page table. NULL if we are at
402  * the root page directory.
403  */
404 static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt)
405 {
406         struct amdgpu_bo *parent = pt->bo->parent;
407
408         if (!parent)
409                 return NULL;
410
411         return parent->vm_bo;
412 }
413
414 /*
415  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
416  */
417 struct amdgpu_vm_pt_cursor {
418         uint64_t pfn;
419         struct amdgpu_vm_bo_base *parent;
420         struct amdgpu_vm_bo_base *entry;
421         unsigned level;
422 };
423
424 /**
425  * amdgpu_vm_pt_start - start PD/PT walk
426  *
427  * @adev: amdgpu_device pointer
428  * @vm: amdgpu_vm structure
429  * @start: start address of the walk
430  * @cursor: state to initialize
431  *
432  * Initialize a amdgpu_vm_pt_cursor to start a walk.
433  */
434 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
435                                struct amdgpu_vm *vm, uint64_t start,
436                                struct amdgpu_vm_pt_cursor *cursor)
437 {
438         cursor->pfn = start;
439         cursor->parent = NULL;
440         cursor->entry = &vm->root;
441         cursor->level = adev->vm_manager.root_level;
442 }
443
444 /**
445  * amdgpu_vm_pt_descendant - go to child node
446  *
447  * @adev: amdgpu_device pointer
448  * @cursor: current state
449  *
450  * Walk to the child node of the current node.
451  * Returns:
452  * True if the walk was possible, false otherwise.
453  */
454 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
455                                     struct amdgpu_vm_pt_cursor *cursor)
456 {
457         unsigned mask, shift, idx;
458
459         if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry ||
460             !cursor->entry->bo)
461                 return false;
462
463         mask = amdgpu_vm_entries_mask(adev, cursor->level);
464         shift = amdgpu_vm_level_shift(adev, cursor->level);
465
466         ++cursor->level;
467         idx = (cursor->pfn >> shift) & mask;
468         cursor->parent = cursor->entry;
469         cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx];
470         return true;
471 }
472
473 /**
474  * amdgpu_vm_pt_sibling - go to sibling node
475  *
476  * @adev: amdgpu_device pointer
477  * @cursor: current state
478  *
479  * Walk to the sibling node of the current node.
480  * Returns:
481  * True if the walk was possible, false otherwise.
482  */
483 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
484                                  struct amdgpu_vm_pt_cursor *cursor)
485 {
486         unsigned shift, num_entries;
487
488         /* Root doesn't have a sibling */
489         if (!cursor->parent)
490                 return false;
491
492         /* Go to our parents and see if we got a sibling */
493         shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
494         num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
495
496         if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1])
497                 return false;
498
499         cursor->pfn += 1ULL << shift;
500         cursor->pfn &= ~((1ULL << shift) - 1);
501         ++cursor->entry;
502         return true;
503 }
504
505 /**
506  * amdgpu_vm_pt_ancestor - go to parent node
507  *
508  * @cursor: current state
509  *
510  * Walk to the parent node of the current node.
511  * Returns:
512  * True if the walk was possible, false otherwise.
513  */
514 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
515 {
516         if (!cursor->parent)
517                 return false;
518
519         --cursor->level;
520         cursor->entry = cursor->parent;
521         cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
522         return true;
523 }
524
525 /**
526  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
527  *
528  * @adev: amdgpu_device pointer
529  * @cursor: current state
530  *
531  * Walk the PD/PT tree to the next node.
532  */
533 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
534                               struct amdgpu_vm_pt_cursor *cursor)
535 {
536         /* First try a newborn child */
537         if (amdgpu_vm_pt_descendant(adev, cursor))
538                 return;
539
540         /* If that didn't worked try to find a sibling */
541         while (!amdgpu_vm_pt_sibling(adev, cursor)) {
542                 /* No sibling, go to our parents and grandparents */
543                 if (!amdgpu_vm_pt_ancestor(cursor)) {
544                         cursor->pfn = ~0ll;
545                         return;
546                 }
547         }
548 }
549
550 /**
551  * amdgpu_vm_pt_first_dfs - start a deep first search
552  *
553  * @adev: amdgpu_device structure
554  * @vm: amdgpu_vm structure
555  * @start: optional cursor to start with
556  * @cursor: state to initialize
557  *
558  * Starts a deep first traversal of the PD/PT tree.
559  */
560 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
561                                    struct amdgpu_vm *vm,
562                                    struct amdgpu_vm_pt_cursor *start,
563                                    struct amdgpu_vm_pt_cursor *cursor)
564 {
565         if (start)
566                 *cursor = *start;
567         else
568                 amdgpu_vm_pt_start(adev, vm, 0, cursor);
569         while (amdgpu_vm_pt_descendant(adev, cursor));
570 }
571
572 /**
573  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
574  *
575  * @start: starting point for the search
576  * @entry: current entry
577  *
578  * Returns:
579  * True when the search should continue, false otherwise.
580  */
581 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
582                                       struct amdgpu_vm_bo_base *entry)
583 {
584         return entry && (!start || entry != start->entry);
585 }
586
587 /**
588  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
589  *
590  * @adev: amdgpu_device structure
591  * @cursor: current state
592  *
593  * Move the cursor to the next node in a deep first search.
594  */
595 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
596                                   struct amdgpu_vm_pt_cursor *cursor)
597 {
598         if (!cursor->entry)
599                 return;
600
601         if (!cursor->parent)
602                 cursor->entry = NULL;
603         else if (amdgpu_vm_pt_sibling(adev, cursor))
604                 while (amdgpu_vm_pt_descendant(adev, cursor));
605         else
606                 amdgpu_vm_pt_ancestor(cursor);
607 }
608
609 /*
610  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
611  */
612 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)          \
613         for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),          \
614              (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
615              amdgpu_vm_pt_continue_dfs((start), (entry));                       \
616              (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
617
618 /**
619  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
620  *
621  * @vm: vm providing the BOs
622  * @validated: head of validation list
623  * @entry: entry to add
624  *
625  * Add the page directory to the list of BOs to
626  * validate for command submission.
627  */
628 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
629                          struct list_head *validated,
630                          struct amdgpu_bo_list_entry *entry)
631 {
632         entry->priority = 0;
633         entry->tv.bo = &vm->root.bo->tbo;
634         /* Two for VM updates, one for TTM and one for the CS job */
635         entry->tv.num_shared = 4;
636         entry->user_pages = NULL;
637         list_add(&entry->tv.head, validated);
638 }
639
640 /**
641  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
642  *
643  * @bo: BO which was removed from the LRU
644  *
645  * Make sure the bulk_moveable flag is updated when a BO is removed from the
646  * LRU.
647  */
648 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
649 {
650         struct amdgpu_bo *abo;
651         struct amdgpu_vm_bo_base *bo_base;
652
653         if (!amdgpu_bo_is_amdgpu_bo(bo))
654                 return;
655
656         if (bo->pin_count)
657                 return;
658
659         abo = ttm_to_amdgpu_bo(bo);
660         if (!abo->parent)
661                 return;
662         for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
663                 struct amdgpu_vm *vm = bo_base->vm;
664
665                 if (abo->tbo.base.resv == vm->root.bo->tbo.base.resv)
666                         vm->bulk_moveable = false;
667         }
668
669 }
670 /**
671  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
672  *
673  * @adev: amdgpu device pointer
674  * @vm: vm providing the BOs
675  *
676  * Move all BOs to the end of LRU and remember their positions to put them
677  * together.
678  */
679 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
680                                 struct amdgpu_vm *vm)
681 {
682         struct amdgpu_vm_bo_base *bo_base;
683
684         if (vm->bulk_moveable) {
685                 spin_lock(&adev->mman.bdev.lru_lock);
686                 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
687                 spin_unlock(&adev->mman.bdev.lru_lock);
688                 return;
689         }
690
691         memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
692
693         spin_lock(&adev->mman.bdev.lru_lock);
694         list_for_each_entry(bo_base, &vm->idle, vm_status) {
695                 struct amdgpu_bo *bo = bo_base->bo;
696                 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
697
698                 if (!bo->parent)
699                         continue;
700
701                 ttm_bo_move_to_lru_tail(&bo->tbo, bo->tbo.resource,
702                                         &vm->lru_bulk_move);
703                 if (shadow)
704                         ttm_bo_move_to_lru_tail(&shadow->tbo,
705                                                 shadow->tbo.resource,
706                                                 &vm->lru_bulk_move);
707         }
708         spin_unlock(&adev->mman.bdev.lru_lock);
709
710         vm->bulk_moveable = true;
711 }
712
713 /**
714  * amdgpu_vm_validate_pt_bos - validate the page table BOs
715  *
716  * @adev: amdgpu device pointer
717  * @vm: vm providing the BOs
718  * @validate: callback to do the validation
719  * @param: parameter for the validation callback
720  *
721  * Validate the page table BOs on command submission if neccessary.
722  *
723  * Returns:
724  * Validation result.
725  */
726 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
727                               int (*validate)(void *p, struct amdgpu_bo *bo),
728                               void *param)
729 {
730         struct amdgpu_vm_bo_base *bo_base, *tmp;
731         int r;
732
733         vm->bulk_moveable &= list_empty(&vm->evicted);
734
735         list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
736                 struct amdgpu_bo *bo = bo_base->bo;
737                 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
738
739                 r = validate(param, bo);
740                 if (r)
741                         return r;
742                 if (shadow) {
743                         r = validate(param, shadow);
744                         if (r)
745                                 return r;
746                 }
747
748                 if (bo->tbo.type != ttm_bo_type_kernel) {
749                         amdgpu_vm_bo_moved(bo_base);
750                 } else {
751                         vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
752                         amdgpu_vm_bo_relocated(bo_base);
753                 }
754         }
755
756         amdgpu_vm_eviction_lock(vm);
757         vm->evicting = false;
758         amdgpu_vm_eviction_unlock(vm);
759
760         return 0;
761 }
762
763 /**
764  * amdgpu_vm_ready - check VM is ready for updates
765  *
766  * @vm: VM to check
767  *
768  * Check if all VM PDs/PTs are ready for updates
769  *
770  * Returns:
771  * True if eviction list is empty.
772  */
773 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
774 {
775         return list_empty(&vm->evicted);
776 }
777
778 /**
779  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
780  *
781  * @adev: amdgpu_device pointer
782  * @vm: VM to clear BO from
783  * @vmbo: BO to clear
784  * @immediate: use an immediate update
785  *
786  * Root PD needs to be reserved when calling this.
787  *
788  * Returns:
789  * 0 on success, errno otherwise.
790  */
791 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
792                               struct amdgpu_vm *vm,
793                               struct amdgpu_bo_vm *vmbo,
794                               bool immediate)
795 {
796         struct ttm_operation_ctx ctx = { true, false };
797         unsigned level = adev->vm_manager.root_level;
798         struct amdgpu_vm_update_params params;
799         struct amdgpu_bo *ancestor = &vmbo->bo;
800         struct amdgpu_bo *bo = &vmbo->bo;
801         unsigned entries, ats_entries;
802         uint64_t addr;
803         int r;
804
805         /* Figure out our place in the hierarchy */
806         if (ancestor->parent) {
807                 ++level;
808                 while (ancestor->parent->parent) {
809                         ++level;
810                         ancestor = ancestor->parent;
811                 }
812         }
813
814         entries = amdgpu_bo_size(bo) / 8;
815         if (!vm->pte_support_ats) {
816                 ats_entries = 0;
817
818         } else if (!bo->parent) {
819                 ats_entries = amdgpu_vm_num_ats_entries(adev);
820                 ats_entries = min(ats_entries, entries);
821                 entries -= ats_entries;
822
823         } else {
824                 struct amdgpu_vm_bo_base *pt;
825
826                 pt = ancestor->vm_bo;
827                 ats_entries = amdgpu_vm_num_ats_entries(adev);
828                 if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) {
829                         ats_entries = 0;
830                 } else {
831                         ats_entries = entries;
832                         entries = 0;
833                 }
834         }
835
836         r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
837         if (r)
838                 return r;
839
840         if (vmbo->shadow) {
841                 struct amdgpu_bo *shadow = vmbo->shadow;
842
843                 r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx);
844                 if (r)
845                         return r;
846         }
847
848         r = vm->update_funcs->map_table(vmbo);
849         if (r)
850                 return r;
851
852         memset(&params, 0, sizeof(params));
853         params.adev = adev;
854         params.vm = vm;
855         params.immediate = immediate;
856
857         r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
858         if (r)
859                 return r;
860
861         addr = 0;
862         if (ats_entries) {
863                 uint64_t value = 0, flags;
864
865                 flags = AMDGPU_PTE_DEFAULT_ATC;
866                 if (level != AMDGPU_VM_PTB) {
867                         /* Handle leaf PDEs as PTEs */
868                         flags |= AMDGPU_PDE_PTE;
869                         amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
870                 }
871
872                 r = vm->update_funcs->update(&params, vmbo, addr, 0, ats_entries,
873                                              value, flags);
874                 if (r)
875                         return r;
876
877                 addr += ats_entries * 8;
878         }
879
880         if (entries) {
881                 uint64_t value = 0, flags = 0;
882
883                 if (adev->asic_type >= CHIP_VEGA10) {
884                         if (level != AMDGPU_VM_PTB) {
885                                 /* Handle leaf PDEs as PTEs */
886                                 flags |= AMDGPU_PDE_PTE;
887                                 amdgpu_gmc_get_vm_pde(adev, level,
888                                                       &value, &flags);
889                         } else {
890                                 /* Workaround for fault priority problem on GMC9 */
891                                 flags = AMDGPU_PTE_EXECUTABLE;
892                         }
893                 }
894
895                 r = vm->update_funcs->update(&params, vmbo, addr, 0, entries,
896                                              value, flags);
897                 if (r)
898                         return r;
899         }
900
901         return vm->update_funcs->commit(&params, NULL);
902 }
903
904 /**
905  * amdgpu_vm_pt_create - create bo for PD/PT
906  *
907  * @adev: amdgpu_device pointer
908  * @vm: requesting vm
909  * @level: the page table level
910  * @immediate: use a immediate update
911  * @vmbo: pointer to the buffer object pointer
912  */
913 static int amdgpu_vm_pt_create(struct amdgpu_device *adev,
914                                struct amdgpu_vm *vm,
915                                int level, bool immediate,
916                                struct amdgpu_bo_vm **vmbo)
917 {
918         struct amdgpu_bo_param bp;
919         struct amdgpu_bo *bo;
920         struct dma_resv *resv;
921         unsigned int num_entries;
922         int r;
923
924         memset(&bp, 0, sizeof(bp));
925
926         bp.size = amdgpu_vm_bo_size(adev, level);
927         bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
928         bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
929         bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain);
930         bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
931                 AMDGPU_GEM_CREATE_CPU_GTT_USWC;
932
933         if (level < AMDGPU_VM_PTB)
934                 num_entries = amdgpu_vm_num_entries(adev, level);
935         else
936                 num_entries = 0;
937
938         bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries);
939
940         if (vm->use_cpu_for_update)
941                 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
942
943         bp.type = ttm_bo_type_kernel;
944         bp.no_wait_gpu = immediate;
945         if (vm->root.bo)
946                 bp.resv = vm->root.bo->tbo.base.resv;
947
948         r = amdgpu_bo_create_vm(adev, &bp, vmbo);
949         if (r)
950                 return r;
951
952         bo = &(*vmbo)->bo;
953         if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) {
954                 (*vmbo)->shadow = NULL;
955                 return 0;
956         }
957
958         if (!bp.resv)
959                 WARN_ON(dma_resv_lock(bo->tbo.base.resv,
960                                       NULL));
961         resv = bp.resv;
962         memset(&bp, 0, sizeof(bp));
963         bp.size = amdgpu_vm_bo_size(adev, level);
964         bp.domain = AMDGPU_GEM_DOMAIN_GTT;
965         bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
966         bp.type = ttm_bo_type_kernel;
967         bp.resv = bo->tbo.base.resv;
968         bp.bo_ptr_size = sizeof(struct amdgpu_bo);
969
970         r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow);
971
972         if (!resv)
973                 dma_resv_unlock(bo->tbo.base.resv);
974
975         if (r) {
976                 amdgpu_bo_unref(&bo);
977                 return r;
978         }
979
980         (*vmbo)->shadow->parent = amdgpu_bo_ref(bo);
981         amdgpu_bo_add_to_shadow_list(*vmbo);
982
983         return 0;
984 }
985
986 /**
987  * amdgpu_vm_alloc_pts - Allocate a specific page table
988  *
989  * @adev: amdgpu_device pointer
990  * @vm: VM to allocate page tables for
991  * @cursor: Which page table to allocate
992  * @immediate: use an immediate update
993  *
994  * Make sure a specific page table or directory is allocated.
995  *
996  * Returns:
997  * 1 if page table needed to be allocated, 0 if page table was already
998  * allocated, negative errno if an error occurred.
999  */
1000 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
1001                                struct amdgpu_vm *vm,
1002                                struct amdgpu_vm_pt_cursor *cursor,
1003                                bool immediate)
1004 {
1005         struct amdgpu_vm_bo_base *entry = cursor->entry;
1006         struct amdgpu_bo *pt_bo;
1007         struct amdgpu_bo_vm *pt;
1008         int r;
1009
1010         if (entry->bo)
1011                 return 0;
1012
1013         r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt);
1014         if (r)
1015                 return r;
1016
1017         /* Keep a reference to the root directory to avoid
1018          * freeing them up in the wrong order.
1019          */
1020         pt_bo = &pt->bo;
1021         pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo);
1022         amdgpu_vm_bo_base_init(entry, vm, pt_bo);
1023         r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
1024         if (r)
1025                 goto error_free_pt;
1026
1027         return 0;
1028
1029 error_free_pt:
1030         amdgpu_bo_unref(&pt->shadow);
1031         amdgpu_bo_unref(&pt_bo);
1032         return r;
1033 }
1034
1035 /**
1036  * amdgpu_vm_free_table - fre one PD/PT
1037  *
1038  * @entry: PDE to free
1039  */
1040 static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry)
1041 {
1042         struct amdgpu_bo *shadow;
1043
1044         if (!entry->bo)
1045                 return;
1046         shadow = amdgpu_bo_shadowed(entry->bo);
1047         entry->bo->vm_bo = NULL;
1048         list_del(&entry->vm_status);
1049         amdgpu_bo_unref(&shadow);
1050         amdgpu_bo_unref(&entry->bo);
1051 }
1052
1053 /**
1054  * amdgpu_vm_free_pts - free PD/PT levels
1055  *
1056  * @adev: amdgpu device structure
1057  * @vm: amdgpu vm structure
1058  * @start: optional cursor where to start freeing PDs/PTs
1059  *
1060  * Free the page directory or page table level and all sub levels.
1061  */
1062 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
1063                                struct amdgpu_vm *vm,
1064                                struct amdgpu_vm_pt_cursor *start)
1065 {
1066         struct amdgpu_vm_pt_cursor cursor;
1067         struct amdgpu_vm_bo_base *entry;
1068
1069         vm->bulk_moveable = false;
1070
1071         for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
1072                 amdgpu_vm_free_table(entry);
1073
1074         if (start)
1075                 amdgpu_vm_free_table(start->entry);
1076 }
1077
1078 /**
1079  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
1080  *
1081  * @adev: amdgpu_device pointer
1082  */
1083 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1084 {
1085         const struct amdgpu_ip_block *ip_block;
1086         bool has_compute_vm_bug;
1087         struct amdgpu_ring *ring;
1088         int i;
1089
1090         has_compute_vm_bug = false;
1091
1092         ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1093         if (ip_block) {
1094                 /* Compute has a VM bug for GFX version < 7.
1095                    Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1096                 if (ip_block->version->major <= 7)
1097                         has_compute_vm_bug = true;
1098                 else if (ip_block->version->major == 8)
1099                         if (adev->gfx.mec_fw_version < 673)
1100                                 has_compute_vm_bug = true;
1101         }
1102
1103         for (i = 0; i < adev->num_rings; i++) {
1104                 ring = adev->rings[i];
1105                 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1106                         /* only compute rings */
1107                         ring->has_compute_vm_bug = has_compute_vm_bug;
1108                 else
1109                         ring->has_compute_vm_bug = false;
1110         }
1111 }
1112
1113 /**
1114  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1115  *
1116  * @ring: ring on which the job will be submitted
1117  * @job: job to submit
1118  *
1119  * Returns:
1120  * True if sync is needed.
1121  */
1122 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1123                                   struct amdgpu_job *job)
1124 {
1125         struct amdgpu_device *adev = ring->adev;
1126         unsigned vmhub = ring->funcs->vmhub;
1127         struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1128         struct amdgpu_vmid *id;
1129         bool gds_switch_needed;
1130         bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1131
1132         if (job->vmid == 0)
1133                 return false;
1134         id = &id_mgr->ids[job->vmid];
1135         gds_switch_needed = ring->funcs->emit_gds_switch && (
1136                 id->gds_base != job->gds_base ||
1137                 id->gds_size != job->gds_size ||
1138                 id->gws_base != job->gws_base ||
1139                 id->gws_size != job->gws_size ||
1140                 id->oa_base != job->oa_base ||
1141                 id->oa_size != job->oa_size);
1142
1143         if (amdgpu_vmid_had_gpu_reset(adev, id))
1144                 return true;
1145
1146         return vm_flush_needed || gds_switch_needed;
1147 }
1148
1149 /**
1150  * amdgpu_vm_flush - hardware flush the vm
1151  *
1152  * @ring: ring to use for flush
1153  * @job:  related job
1154  * @need_pipe_sync: is pipe sync needed
1155  *
1156  * Emit a VM flush when it is necessary.
1157  *
1158  * Returns:
1159  * 0 on success, errno otherwise.
1160  */
1161 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1162                     bool need_pipe_sync)
1163 {
1164         struct amdgpu_device *adev = ring->adev;
1165         unsigned vmhub = ring->funcs->vmhub;
1166         struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1167         struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1168         bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1169                 id->gds_base != job->gds_base ||
1170                 id->gds_size != job->gds_size ||
1171                 id->gws_base != job->gws_base ||
1172                 id->gws_size != job->gws_size ||
1173                 id->oa_base != job->oa_base ||
1174                 id->oa_size != job->oa_size);
1175         bool vm_flush_needed = job->vm_needs_flush;
1176         struct dma_fence *fence = NULL;
1177         bool pasid_mapping_needed = false;
1178         unsigned patch_offset = 0;
1179         bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1180         int r;
1181
1182         if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1183                 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1184
1185         if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1186                 gds_switch_needed = true;
1187                 vm_flush_needed = true;
1188                 pasid_mapping_needed = true;
1189         }
1190
1191         mutex_lock(&id_mgr->lock);
1192         if (id->pasid != job->pasid || !id->pasid_mapping ||
1193             !dma_fence_is_signaled(id->pasid_mapping))
1194                 pasid_mapping_needed = true;
1195         mutex_unlock(&id_mgr->lock);
1196
1197         gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1198         vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1199                         job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1200         pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1201                 ring->funcs->emit_wreg;
1202
1203         if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1204                 return 0;
1205
1206         if (ring->funcs->init_cond_exec)
1207                 patch_offset = amdgpu_ring_init_cond_exec(ring);
1208
1209         if (need_pipe_sync)
1210                 amdgpu_ring_emit_pipeline_sync(ring);
1211
1212         if (vm_flush_needed) {
1213                 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1214                 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1215         }
1216
1217         if (pasid_mapping_needed)
1218                 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1219
1220         if (vm_flush_needed || pasid_mapping_needed) {
1221                 r = amdgpu_fence_emit(ring, &fence, NULL, 0);
1222                 if (r)
1223                         return r;
1224         }
1225
1226         if (vm_flush_needed) {
1227                 mutex_lock(&id_mgr->lock);
1228                 dma_fence_put(id->last_flush);
1229                 id->last_flush = dma_fence_get(fence);
1230                 id->current_gpu_reset_count =
1231                         atomic_read(&adev->gpu_reset_counter);
1232                 mutex_unlock(&id_mgr->lock);
1233         }
1234
1235         if (pasid_mapping_needed) {
1236                 mutex_lock(&id_mgr->lock);
1237                 id->pasid = job->pasid;
1238                 dma_fence_put(id->pasid_mapping);
1239                 id->pasid_mapping = dma_fence_get(fence);
1240                 mutex_unlock(&id_mgr->lock);
1241         }
1242         dma_fence_put(fence);
1243
1244         if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1245                 id->gds_base = job->gds_base;
1246                 id->gds_size = job->gds_size;
1247                 id->gws_base = job->gws_base;
1248                 id->gws_size = job->gws_size;
1249                 id->oa_base = job->oa_base;
1250                 id->oa_size = job->oa_size;
1251                 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1252                                             job->gds_size, job->gws_base,
1253                                             job->gws_size, job->oa_base,
1254                                             job->oa_size);
1255         }
1256
1257         if (ring->funcs->patch_cond_exec)
1258                 amdgpu_ring_patch_cond_exec(ring, patch_offset);
1259
1260         /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1261         if (ring->funcs->emit_switch_buffer) {
1262                 amdgpu_ring_emit_switch_buffer(ring);
1263                 amdgpu_ring_emit_switch_buffer(ring);
1264         }
1265         return 0;
1266 }
1267
1268 /**
1269  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1270  *
1271  * @vm: requested vm
1272  * @bo: requested buffer object
1273  *
1274  * Find @bo inside the requested vm.
1275  * Search inside the @bos vm list for the requested vm
1276  * Returns the found bo_va or NULL if none is found
1277  *
1278  * Object has to be reserved!
1279  *
1280  * Returns:
1281  * Found bo_va or NULL.
1282  */
1283 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1284                                        struct amdgpu_bo *bo)
1285 {
1286         struct amdgpu_vm_bo_base *base;
1287
1288         for (base = bo->vm_bo; base; base = base->next) {
1289                 if (base->vm != vm)
1290                         continue;
1291
1292                 return container_of(base, struct amdgpu_bo_va, base);
1293         }
1294         return NULL;
1295 }
1296
1297 /**
1298  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1299  *
1300  * @pages_addr: optional DMA address to use for lookup
1301  * @addr: the unmapped addr
1302  *
1303  * Look up the physical address of the page that the pte resolves
1304  * to.
1305  *
1306  * Returns:
1307  * The pointer for the page table entry.
1308  */
1309 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1310 {
1311         uint64_t result;
1312
1313         /* page table offset */
1314         result = pages_addr[addr >> PAGE_SHIFT];
1315
1316         /* in case cpu page size != gpu page size*/
1317         result |= addr & (~PAGE_MASK);
1318
1319         result &= 0xFFFFFFFFFFFFF000ULL;
1320
1321         return result;
1322 }
1323
1324 /**
1325  * amdgpu_vm_update_pde - update a single level in the hierarchy
1326  *
1327  * @params: parameters for the update
1328  * @vm: requested vm
1329  * @entry: entry to update
1330  *
1331  * Makes sure the requested entry in parent is up to date.
1332  */
1333 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1334                                 struct amdgpu_vm *vm,
1335                                 struct amdgpu_vm_bo_base *entry)
1336 {
1337         struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry);
1338         struct amdgpu_bo *bo = parent->bo, *pbo;
1339         uint64_t pde, pt, flags;
1340         unsigned level;
1341
1342         for (level = 0, pbo = bo->parent; pbo; ++level)
1343                 pbo = pbo->parent;
1344
1345         level += params->adev->vm_manager.root_level;
1346         amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags);
1347         pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8;
1348         return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt,
1349                                         1, 0, flags);
1350 }
1351
1352 /**
1353  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1354  *
1355  * @adev: amdgpu_device pointer
1356  * @vm: related vm
1357  *
1358  * Mark all PD level as invalid after an error.
1359  */
1360 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1361                                      struct amdgpu_vm *vm)
1362 {
1363         struct amdgpu_vm_pt_cursor cursor;
1364         struct amdgpu_vm_bo_base *entry;
1365
1366         for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1367                 if (entry->bo && !entry->moved)
1368                         amdgpu_vm_bo_relocated(entry);
1369 }
1370
1371 /**
1372  * amdgpu_vm_update_pdes - make sure that all directories are valid
1373  *
1374  * @adev: amdgpu_device pointer
1375  * @vm: requested vm
1376  * @immediate: submit immediately to the paging queue
1377  *
1378  * Makes sure all directories are up to date.
1379  *
1380  * Returns:
1381  * 0 for success, error for failure.
1382  */
1383 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1384                           struct amdgpu_vm *vm, bool immediate)
1385 {
1386         struct amdgpu_vm_update_params params;
1387         int r;
1388
1389         if (list_empty(&vm->relocated))
1390                 return 0;
1391
1392         memset(&params, 0, sizeof(params));
1393         params.adev = adev;
1394         params.vm = vm;
1395         params.immediate = immediate;
1396
1397         r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1398         if (r)
1399                 return r;
1400
1401         while (!list_empty(&vm->relocated)) {
1402                 struct amdgpu_vm_bo_base *entry;
1403
1404                 entry = list_first_entry(&vm->relocated,
1405                                          struct amdgpu_vm_bo_base,
1406                                          vm_status);
1407                 amdgpu_vm_bo_idle(entry);
1408
1409                 r = amdgpu_vm_update_pde(&params, vm, entry);
1410                 if (r)
1411                         goto error;
1412         }
1413
1414         r = vm->update_funcs->commit(&params, &vm->last_update);
1415         if (r)
1416                 goto error;
1417         return 0;
1418
1419 error:
1420         amdgpu_vm_invalidate_pds(adev, vm);
1421         return r;
1422 }
1423
1424 /*
1425  * amdgpu_vm_update_flags - figure out flags for PTE updates
1426  *
1427  * Make sure to set the right flags for the PTEs at the desired level.
1428  */
1429 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1430                                    struct amdgpu_bo_vm *pt, unsigned int level,
1431                                    uint64_t pe, uint64_t addr,
1432                                    unsigned int count, uint32_t incr,
1433                                    uint64_t flags)
1434
1435 {
1436         if (level != AMDGPU_VM_PTB) {
1437                 flags |= AMDGPU_PDE_PTE;
1438                 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1439
1440         } else if (params->adev->asic_type >= CHIP_VEGA10 &&
1441                    !(flags & AMDGPU_PTE_VALID) &&
1442                    !(flags & AMDGPU_PTE_PRT)) {
1443
1444                 /* Workaround for fault priority problem on GMC9 */
1445                 flags |= AMDGPU_PTE_EXECUTABLE;
1446         }
1447
1448         params->vm->update_funcs->update(params, pt, pe, addr, count, incr,
1449                                          flags);
1450 }
1451
1452 /**
1453  * amdgpu_vm_fragment - get fragment for PTEs
1454  *
1455  * @params: see amdgpu_vm_update_params definition
1456  * @start: first PTE to handle
1457  * @end: last PTE to handle
1458  * @flags: hw mapping flags
1459  * @frag: resulting fragment size
1460  * @frag_end: end of this fragment
1461  *
1462  * Returns the first possible fragment for the start and end address.
1463  */
1464 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1465                                uint64_t start, uint64_t end, uint64_t flags,
1466                                unsigned int *frag, uint64_t *frag_end)
1467 {
1468         /**
1469          * The MC L1 TLB supports variable sized pages, based on a fragment
1470          * field in the PTE. When this field is set to a non-zero value, page
1471          * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1472          * flags are considered valid for all PTEs within the fragment range
1473          * and corresponding mappings are assumed to be physically contiguous.
1474          *
1475          * The L1 TLB can store a single PTE for the whole fragment,
1476          * significantly increasing the space available for translation
1477          * caching. This leads to large improvements in throughput when the
1478          * TLB is under pressure.
1479          *
1480          * The L2 TLB distributes small and large fragments into two
1481          * asymmetric partitions. The large fragment cache is significantly
1482          * larger. Thus, we try to use large fragments wherever possible.
1483          * Userspace can support this by aligning virtual base address and
1484          * allocation size to the fragment size.
1485          *
1486          * Starting with Vega10 the fragment size only controls the L1. The L2
1487          * is now directly feed with small/huge/giant pages from the walker.
1488          */
1489         unsigned max_frag;
1490
1491         if (params->adev->asic_type < CHIP_VEGA10)
1492                 max_frag = params->adev->vm_manager.fragment_size;
1493         else
1494                 max_frag = 31;
1495
1496         /* system pages are non continuously */
1497         if (params->pages_addr) {
1498                 *frag = 0;
1499                 *frag_end = end;
1500                 return;
1501         }
1502
1503         /* This intentionally wraps around if no bit is set */
1504         *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1505         if (*frag >= max_frag) {
1506                 *frag = max_frag;
1507                 *frag_end = end & ~((1ULL << max_frag) - 1);
1508         } else {
1509                 *frag_end = start + (1 << *frag);
1510         }
1511 }
1512
1513 /**
1514  * amdgpu_vm_update_ptes - make sure that page tables are valid
1515  *
1516  * @params: see amdgpu_vm_update_params definition
1517  * @start: start of GPU address range
1518  * @end: end of GPU address range
1519  * @dst: destination address to map to, the next dst inside the function
1520  * @flags: mapping flags
1521  *
1522  * Update the page tables in the range @start - @end.
1523  *
1524  * Returns:
1525  * 0 for success, -EINVAL for failure.
1526  */
1527 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1528                                  uint64_t start, uint64_t end,
1529                                  uint64_t dst, uint64_t flags)
1530 {
1531         struct amdgpu_device *adev = params->adev;
1532         struct amdgpu_vm_pt_cursor cursor;
1533         uint64_t frag_start = start, frag_end;
1534         unsigned int frag;
1535         int r;
1536
1537         /* figure out the initial fragment */
1538         amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1539
1540         /* walk over the address space and update the PTs */
1541         amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1542         while (cursor.pfn < end) {
1543                 unsigned shift, parent_shift, mask;
1544                 uint64_t incr, entry_end, pe_start;
1545                 struct amdgpu_bo *pt;
1546
1547                 if (!params->unlocked) {
1548                         /* make sure that the page tables covering the
1549                          * address range are actually allocated
1550                          */
1551                         r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1552                                                 &cursor, params->immediate);
1553                         if (r)
1554                                 return r;
1555                 }
1556
1557                 shift = amdgpu_vm_level_shift(adev, cursor.level);
1558                 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1559                 if (params->unlocked) {
1560                         /* Unlocked updates are only allowed on the leaves */
1561                         if (amdgpu_vm_pt_descendant(adev, &cursor))
1562                                 continue;
1563                 } else if (adev->asic_type < CHIP_VEGA10 &&
1564                            (flags & AMDGPU_PTE_VALID)) {
1565                         /* No huge page support before GMC v9 */
1566                         if (cursor.level != AMDGPU_VM_PTB) {
1567                                 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1568                                         return -ENOENT;
1569                                 continue;
1570                         }
1571                 } else if (frag < shift) {
1572                         /* We can't use this level when the fragment size is
1573                          * smaller than the address shift. Go to the next
1574                          * child entry and try again.
1575                          */
1576                         if (amdgpu_vm_pt_descendant(adev, &cursor))
1577                                 continue;
1578                 } else if (frag >= parent_shift) {
1579                         /* If the fragment size is even larger than the parent
1580                          * shift we should go up one level and check it again.
1581                          */
1582                         if (!amdgpu_vm_pt_ancestor(&cursor))
1583                                 return -EINVAL;
1584                         continue;
1585                 }
1586
1587                 pt = cursor.entry->bo;
1588                 if (!pt) {
1589                         /* We need all PDs and PTs for mapping something, */
1590                         if (flags & AMDGPU_PTE_VALID)
1591                                 return -ENOENT;
1592
1593                         /* but unmapping something can happen at a higher
1594                          * level.
1595                          */
1596                         if (!amdgpu_vm_pt_ancestor(&cursor))
1597                                 return -EINVAL;
1598
1599                         pt = cursor.entry->bo;
1600                         shift = parent_shift;
1601                         frag_end = max(frag_end, ALIGN(frag_start + 1,
1602                                    1ULL << shift));
1603                 }
1604
1605                 /* Looks good so far, calculate parameters for the update */
1606                 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1607                 mask = amdgpu_vm_entries_mask(adev, cursor.level);
1608                 pe_start = ((cursor.pfn >> shift) & mask) * 8;
1609                 entry_end = ((uint64_t)mask + 1) << shift;
1610                 entry_end += cursor.pfn & ~(entry_end - 1);
1611                 entry_end = min(entry_end, end);
1612
1613                 do {
1614                         struct amdgpu_vm *vm = params->vm;
1615                         uint64_t upd_end = min(entry_end, frag_end);
1616                         unsigned nptes = (upd_end - frag_start) >> shift;
1617                         uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1618
1619                         /* This can happen when we set higher level PDs to
1620                          * silent to stop fault floods.
1621                          */
1622                         nptes = max(nptes, 1u);
1623
1624                         trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1625                                                     nptes, dst, incr, upd_flags,
1626                                                     vm->task_info.pid,
1627                                                     vm->immediate.fence_context);
1628                         amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt),
1629                                                cursor.level, pe_start, dst,
1630                                                nptes, incr, upd_flags);
1631
1632                         pe_start += nptes * 8;
1633                         dst += nptes * incr;
1634
1635                         frag_start = upd_end;
1636                         if (frag_start >= frag_end) {
1637                                 /* figure out the next fragment */
1638                                 amdgpu_vm_fragment(params, frag_start, end,
1639                                                    flags, &frag, &frag_end);
1640                                 if (frag < shift)
1641                                         break;
1642                         }
1643                 } while (frag_start < entry_end);
1644
1645                 if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1646                         /* Free all child entries.
1647                          * Update the tables with the flags and addresses and free up subsequent
1648                          * tables in the case of huge pages or freed up areas.
1649                          * This is the maximum you can free, because all other page tables are not
1650                          * completely covered by the range and so potentially still in use.
1651                          */
1652                         while (cursor.pfn < frag_start) {
1653                                 /* Make sure previous mapping is freed */
1654                                 if (cursor.entry->bo) {
1655                                         params->table_freed = true;
1656                                         amdgpu_vm_free_pts(adev, params->vm, &cursor);
1657                                 }
1658                                 amdgpu_vm_pt_next(adev, &cursor);
1659                         }
1660
1661                 } else if (frag >= shift) {
1662                         /* or just move on to the next on the same level. */
1663                         amdgpu_vm_pt_next(adev, &cursor);
1664                 }
1665         }
1666
1667         return 0;
1668 }
1669
1670 /**
1671  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1672  *
1673  * @adev: amdgpu_device pointer of the VM
1674  * @bo_adev: amdgpu_device pointer of the mapped BO
1675  * @vm: requested vm
1676  * @immediate: immediate submission in a page fault
1677  * @unlocked: unlocked invalidation during MM callback
1678  * @resv: fences we need to sync to
1679  * @start: start of mapped range
1680  * @last: last mapped entry
1681  * @flags: flags for the entries
1682  * @offset: offset into nodes and pages_addr
1683  * @res: ttm_resource to map
1684  * @pages_addr: DMA addresses to use for mapping
1685  * @fence: optional resulting fence
1686  * @table_freed: return true if page table is freed
1687  *
1688  * Fill in the page table entries between @start and @last.
1689  *
1690  * Returns:
1691  * 0 for success, -EINVAL for failure.
1692  */
1693 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1694                                 struct amdgpu_device *bo_adev,
1695                                 struct amdgpu_vm *vm, bool immediate,
1696                                 bool unlocked, struct dma_resv *resv,
1697                                 uint64_t start, uint64_t last,
1698                                 uint64_t flags, uint64_t offset,
1699                                 struct ttm_resource *res,
1700                                 dma_addr_t *pages_addr,
1701                                 struct dma_fence **fence,
1702                                 bool *table_freed)
1703 {
1704         struct amdgpu_vm_update_params params;
1705         struct amdgpu_res_cursor cursor;
1706         enum amdgpu_sync_mode sync_mode;
1707         int r, idx;
1708
1709         if (!drm_dev_enter(&adev->ddev, &idx))
1710                 return -ENODEV;
1711
1712         memset(&params, 0, sizeof(params));
1713         params.adev = adev;
1714         params.vm = vm;
1715         params.immediate = immediate;
1716         params.pages_addr = pages_addr;
1717         params.unlocked = unlocked;
1718
1719         /* Implicitly sync to command submissions in the same VM before
1720          * unmapping. Sync to moving fences before mapping.
1721          */
1722         if (!(flags & AMDGPU_PTE_VALID))
1723                 sync_mode = AMDGPU_SYNC_EQ_OWNER;
1724         else
1725                 sync_mode = AMDGPU_SYNC_EXPLICIT;
1726
1727         amdgpu_vm_eviction_lock(vm);
1728         if (vm->evicting) {
1729                 r = -EBUSY;
1730                 goto error_unlock;
1731         }
1732
1733         if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1734                 struct dma_fence *tmp = dma_fence_get_stub();
1735
1736                 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
1737                 swap(vm->last_unlocked, tmp);
1738                 dma_fence_put(tmp);
1739         }
1740
1741         r = vm->update_funcs->prepare(&params, resv, sync_mode);
1742         if (r)
1743                 goto error_unlock;
1744
1745         amdgpu_res_first(pages_addr ? NULL : res, offset,
1746                          (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
1747         while (cursor.remaining) {
1748                 uint64_t tmp, num_entries, addr;
1749
1750                 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
1751                 if (pages_addr) {
1752                         bool contiguous = true;
1753
1754                         if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1755                                 uint64_t pfn = cursor.start >> PAGE_SHIFT;
1756                                 uint64_t count;
1757
1758                                 contiguous = pages_addr[pfn + 1] ==
1759                                         pages_addr[pfn] + PAGE_SIZE;
1760
1761                                 tmp = num_entries /
1762                                         AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1763                                 for (count = 2; count < tmp; ++count) {
1764                                         uint64_t idx = pfn + count;
1765
1766                                         if (contiguous != (pages_addr[idx] ==
1767                                             pages_addr[idx - 1] + PAGE_SIZE))
1768                                                 break;
1769                                 }
1770                                 num_entries = count *
1771                                         AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1772                         }
1773
1774                         if (!contiguous) {
1775                                 addr = cursor.start;
1776                                 params.pages_addr = pages_addr;
1777                         } else {
1778                                 addr = pages_addr[cursor.start >> PAGE_SHIFT];
1779                                 params.pages_addr = NULL;
1780                         }
1781
1782                 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1783                         addr = bo_adev->vm_manager.vram_base_offset +
1784                                 cursor.start;
1785                 } else {
1786                         addr = 0;
1787                 }
1788
1789                 tmp = start + num_entries;
1790                 r = amdgpu_vm_update_ptes(&params, start, tmp, addr, flags);
1791                 if (r)
1792                         goto error_unlock;
1793
1794                 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1795                 start = tmp;
1796         }
1797
1798         r = vm->update_funcs->commit(&params, fence);
1799
1800         if (table_freed)
1801                 *table_freed = *table_freed || params.table_freed;
1802
1803 error_unlock:
1804         amdgpu_vm_eviction_unlock(vm);
1805         drm_dev_exit(idx);
1806         return r;
1807 }
1808
1809 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem,
1810                                 uint64_t *gtt_mem, uint64_t *cpu_mem)
1811 {
1812         struct amdgpu_bo_va *bo_va, *tmp;
1813
1814         list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
1815                 if (!bo_va->base.bo)
1816                         continue;
1817                 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1818                                 gtt_mem, cpu_mem);
1819         }
1820         list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
1821                 if (!bo_va->base.bo)
1822                         continue;
1823                 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1824                                 gtt_mem, cpu_mem);
1825         }
1826         list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
1827                 if (!bo_va->base.bo)
1828                         continue;
1829                 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1830                                 gtt_mem, cpu_mem);
1831         }
1832         list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1833                 if (!bo_va->base.bo)
1834                         continue;
1835                 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1836                                 gtt_mem, cpu_mem);
1837         }
1838         spin_lock(&vm->invalidated_lock);
1839         list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
1840                 if (!bo_va->base.bo)
1841                         continue;
1842                 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1843                                 gtt_mem, cpu_mem);
1844         }
1845         list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
1846                 if (!bo_va->base.bo)
1847                         continue;
1848                 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1849                                 gtt_mem, cpu_mem);
1850         }
1851         spin_unlock(&vm->invalidated_lock);
1852 }
1853 /**
1854  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1855  *
1856  * @adev: amdgpu_device pointer
1857  * @bo_va: requested BO and VM object
1858  * @clear: if true clear the entries
1859  * @table_freed: return true if page table is freed
1860  *
1861  * Fill in the page table entries for @bo_va.
1862  *
1863  * Returns:
1864  * 0 for success, -EINVAL for failure.
1865  */
1866 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1867                         bool clear, bool *table_freed)
1868 {
1869         struct amdgpu_bo *bo = bo_va->base.bo;
1870         struct amdgpu_vm *vm = bo_va->base.vm;
1871         struct amdgpu_bo_va_mapping *mapping;
1872         dma_addr_t *pages_addr = NULL;
1873         struct ttm_resource *mem;
1874         struct dma_fence **last_update;
1875         struct dma_resv *resv;
1876         uint64_t flags;
1877         struct amdgpu_device *bo_adev = adev;
1878         int r;
1879
1880         if (clear || !bo) {
1881                 mem = NULL;
1882                 resv = vm->root.bo->tbo.base.resv;
1883         } else {
1884                 struct drm_gem_object *obj = &bo->tbo.base;
1885
1886                 resv = bo->tbo.base.resv;
1887                 if (obj->import_attach && bo_va->is_xgmi) {
1888                         struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1889                         struct drm_gem_object *gobj = dma_buf->priv;
1890                         struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1891
1892                         if (abo->tbo.resource->mem_type == TTM_PL_VRAM)
1893                                 bo = gem_to_amdgpu_bo(gobj);
1894                 }
1895                 mem = bo->tbo.resource;
1896                 if (mem->mem_type == TTM_PL_TT ||
1897                     mem->mem_type == AMDGPU_PL_PREEMPT)
1898                         pages_addr = bo->tbo.ttm->dma_address;
1899         }
1900
1901         if (bo) {
1902                 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1903
1904                 if (amdgpu_bo_encrypted(bo))
1905                         flags |= AMDGPU_PTE_TMZ;
1906
1907                 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1908         } else {
1909                 flags = 0x0;
1910         }
1911
1912         if (clear || (bo && bo->tbo.base.resv ==
1913                       vm->root.bo->tbo.base.resv))
1914                 last_update = &vm->last_update;
1915         else
1916                 last_update = &bo_va->last_pt_update;
1917
1918         if (!clear && bo_va->base.moved) {
1919                 bo_va->base.moved = false;
1920                 list_splice_init(&bo_va->valids, &bo_va->invalids);
1921
1922         } else if (bo_va->cleared != clear) {
1923                 list_splice_init(&bo_va->valids, &bo_va->invalids);
1924         }
1925
1926         list_for_each_entry(mapping, &bo_va->invalids, list) {
1927                 uint64_t update_flags = flags;
1928
1929                 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1930                  * but in case of something, we filter the flags in first place
1931                  */
1932                 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1933                         update_flags &= ~AMDGPU_PTE_READABLE;
1934                 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1935                         update_flags &= ~AMDGPU_PTE_WRITEABLE;
1936
1937                 /* Apply ASIC specific mapping flags */
1938                 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1939
1940                 trace_amdgpu_vm_bo_update(mapping);
1941
1942                 r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false,
1943                                                 resv, mapping->start,
1944                                                 mapping->last, update_flags,
1945                                                 mapping->offset, mem,
1946                                                 pages_addr, last_update, table_freed);
1947                 if (r)
1948                         return r;
1949         }
1950
1951         /* If the BO is not in its preferred location add it back to
1952          * the evicted list so that it gets validated again on the
1953          * next command submission.
1954          */
1955         if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
1956                 uint32_t mem_type = bo->tbo.resource->mem_type;
1957
1958                 if (!(bo->preferred_domains &
1959                       amdgpu_mem_type_to_domain(mem_type)))
1960                         amdgpu_vm_bo_evicted(&bo_va->base);
1961                 else
1962                         amdgpu_vm_bo_idle(&bo_va->base);
1963         } else {
1964                 amdgpu_vm_bo_done(&bo_va->base);
1965         }
1966
1967         list_splice_init(&bo_va->invalids, &bo_va->valids);
1968         bo_va->cleared = clear;
1969
1970         if (trace_amdgpu_vm_bo_mapping_enabled()) {
1971                 list_for_each_entry(mapping, &bo_va->valids, list)
1972                         trace_amdgpu_vm_bo_mapping(mapping);
1973         }
1974
1975         return 0;
1976 }
1977
1978 /**
1979  * amdgpu_vm_update_prt_state - update the global PRT state
1980  *
1981  * @adev: amdgpu_device pointer
1982  */
1983 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1984 {
1985         unsigned long flags;
1986         bool enable;
1987
1988         spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1989         enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1990         adev->gmc.gmc_funcs->set_prt(adev, enable);
1991         spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1992 }
1993
1994 /**
1995  * amdgpu_vm_prt_get - add a PRT user
1996  *
1997  * @adev: amdgpu_device pointer
1998  */
1999 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
2000 {
2001         if (!adev->gmc.gmc_funcs->set_prt)
2002                 return;
2003
2004         if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
2005                 amdgpu_vm_update_prt_state(adev);
2006 }
2007
2008 /**
2009  * amdgpu_vm_prt_put - drop a PRT user
2010  *
2011  * @adev: amdgpu_device pointer
2012  */
2013 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
2014 {
2015         if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
2016                 amdgpu_vm_update_prt_state(adev);
2017 }
2018
2019 /**
2020  * amdgpu_vm_prt_cb - callback for updating the PRT status
2021  *
2022  * @fence: fence for the callback
2023  * @_cb: the callback function
2024  */
2025 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
2026 {
2027         struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
2028
2029         amdgpu_vm_prt_put(cb->adev);
2030         kfree(cb);
2031 }
2032
2033 /**
2034  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
2035  *
2036  * @adev: amdgpu_device pointer
2037  * @fence: fence for the callback
2038  */
2039 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
2040                                  struct dma_fence *fence)
2041 {
2042         struct amdgpu_prt_cb *cb;
2043
2044         if (!adev->gmc.gmc_funcs->set_prt)
2045                 return;
2046
2047         cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
2048         if (!cb) {
2049                 /* Last resort when we are OOM */
2050                 if (fence)
2051                         dma_fence_wait(fence, false);
2052
2053                 amdgpu_vm_prt_put(adev);
2054         } else {
2055                 cb->adev = adev;
2056                 if (!fence || dma_fence_add_callback(fence, &cb->cb,
2057                                                      amdgpu_vm_prt_cb))
2058                         amdgpu_vm_prt_cb(fence, &cb->cb);
2059         }
2060 }
2061
2062 /**
2063  * amdgpu_vm_free_mapping - free a mapping
2064  *
2065  * @adev: amdgpu_device pointer
2066  * @vm: requested vm
2067  * @mapping: mapping to be freed
2068  * @fence: fence of the unmap operation
2069  *
2070  * Free a mapping and make sure we decrease the PRT usage count if applicable.
2071  */
2072 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
2073                                    struct amdgpu_vm *vm,
2074                                    struct amdgpu_bo_va_mapping *mapping,
2075                                    struct dma_fence *fence)
2076 {
2077         if (mapping->flags & AMDGPU_PTE_PRT)
2078                 amdgpu_vm_add_prt_cb(adev, fence);
2079         kfree(mapping);
2080 }
2081
2082 /**
2083  * amdgpu_vm_prt_fini - finish all prt mappings
2084  *
2085  * @adev: amdgpu_device pointer
2086  * @vm: requested vm
2087  *
2088  * Register a cleanup callback to disable PRT support after VM dies.
2089  */
2090 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2091 {
2092         struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2093         struct dma_resv_iter cursor;
2094         struct dma_fence *fence;
2095
2096         dma_resv_for_each_fence(&cursor, resv, true, fence) {
2097                 /* Add a callback for each fence in the reservation object */
2098                 amdgpu_vm_prt_get(adev);
2099                 amdgpu_vm_add_prt_cb(adev, fence);
2100         }
2101 }
2102
2103 /**
2104  * amdgpu_vm_clear_freed - clear freed BOs in the PT
2105  *
2106  * @adev: amdgpu_device pointer
2107  * @vm: requested vm
2108  * @fence: optional resulting fence (unchanged if no work needed to be done
2109  * or if an error occurred)
2110  *
2111  * Make sure all freed BOs are cleared in the PT.
2112  * PTs have to be reserved and mutex must be locked!
2113  *
2114  * Returns:
2115  * 0 for success.
2116  *
2117  */
2118 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2119                           struct amdgpu_vm *vm,
2120                           struct dma_fence **fence)
2121 {
2122         struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2123         struct amdgpu_bo_va_mapping *mapping;
2124         uint64_t init_pte_value = 0;
2125         struct dma_fence *f = NULL;
2126         int r;
2127
2128         while (!list_empty(&vm->freed)) {
2129                 mapping = list_first_entry(&vm->freed,
2130                         struct amdgpu_bo_va_mapping, list);
2131                 list_del(&mapping->list);
2132
2133                 if (vm->pte_support_ats &&
2134                     mapping->start < AMDGPU_GMC_HOLE_START)
2135                         init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2136
2137                 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false,
2138                                                 resv, mapping->start,
2139                                                 mapping->last, init_pte_value,
2140                                                 0, NULL, NULL, &f, NULL);
2141                 amdgpu_vm_free_mapping(adev, vm, mapping, f);
2142                 if (r) {
2143                         dma_fence_put(f);
2144                         return r;
2145                 }
2146         }
2147
2148         if (fence && f) {
2149                 dma_fence_put(*fence);
2150                 *fence = f;
2151         } else {
2152                 dma_fence_put(f);
2153         }
2154
2155         return 0;
2156
2157 }
2158
2159 /**
2160  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2161  *
2162  * @adev: amdgpu_device pointer
2163  * @vm: requested vm
2164  *
2165  * Make sure all BOs which are moved are updated in the PTs.
2166  *
2167  * Returns:
2168  * 0 for success.
2169  *
2170  * PTs have to be reserved!
2171  */
2172 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2173                            struct amdgpu_vm *vm)
2174 {
2175         struct amdgpu_bo_va *bo_va, *tmp;
2176         struct dma_resv *resv;
2177         bool clear;
2178         int r;
2179
2180         list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2181                 /* Per VM BOs never need to bo cleared in the page tables */
2182                 r = amdgpu_vm_bo_update(adev, bo_va, false, NULL);
2183                 if (r)
2184                         return r;
2185         }
2186
2187         spin_lock(&vm->invalidated_lock);
2188         while (!list_empty(&vm->invalidated)) {
2189                 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2190                                          base.vm_status);
2191                 resv = bo_va->base.bo->tbo.base.resv;
2192                 spin_unlock(&vm->invalidated_lock);
2193
2194                 /* Try to reserve the BO to avoid clearing its ptes */
2195                 if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2196                         clear = false;
2197                 /* Somebody else is using the BO right now */
2198                 else
2199                         clear = true;
2200
2201                 r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL);
2202                 if (r)
2203                         return r;
2204
2205                 if (!clear)
2206                         dma_resv_unlock(resv);
2207                 spin_lock(&vm->invalidated_lock);
2208         }
2209         spin_unlock(&vm->invalidated_lock);
2210
2211         return 0;
2212 }
2213
2214 /**
2215  * amdgpu_vm_bo_add - add a bo to a specific vm
2216  *
2217  * @adev: amdgpu_device pointer
2218  * @vm: requested vm
2219  * @bo: amdgpu buffer object
2220  *
2221  * Add @bo into the requested vm.
2222  * Add @bo to the list of bos associated with the vm
2223  *
2224  * Returns:
2225  * Newly added bo_va or NULL for failure
2226  *
2227  * Object has to be reserved!
2228  */
2229 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2230                                       struct amdgpu_vm *vm,
2231                                       struct amdgpu_bo *bo)
2232 {
2233         struct amdgpu_bo_va *bo_va;
2234
2235         bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2236         if (bo_va == NULL) {
2237                 return NULL;
2238         }
2239         amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2240
2241         bo_va->ref_count = 1;
2242         INIT_LIST_HEAD(&bo_va->valids);
2243         INIT_LIST_HEAD(&bo_va->invalids);
2244
2245         if (!bo)
2246                 return bo_va;
2247
2248         if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2249                 bo_va->is_xgmi = true;
2250                 /* Power up XGMI if it can be potentially used */
2251                 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2252         }
2253
2254         return bo_va;
2255 }
2256
2257
2258 /**
2259  * amdgpu_vm_bo_insert_map - insert a new mapping
2260  *
2261  * @adev: amdgpu_device pointer
2262  * @bo_va: bo_va to store the address
2263  * @mapping: the mapping to insert
2264  *
2265  * Insert a new mapping into all structures.
2266  */
2267 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2268                                     struct amdgpu_bo_va *bo_va,
2269                                     struct amdgpu_bo_va_mapping *mapping)
2270 {
2271         struct amdgpu_vm *vm = bo_va->base.vm;
2272         struct amdgpu_bo *bo = bo_va->base.bo;
2273
2274         mapping->bo_va = bo_va;
2275         list_add(&mapping->list, &bo_va->invalids);
2276         amdgpu_vm_it_insert(mapping, &vm->va);
2277
2278         if (mapping->flags & AMDGPU_PTE_PRT)
2279                 amdgpu_vm_prt_get(adev);
2280
2281         if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
2282             !bo_va->base.moved) {
2283                 list_move(&bo_va->base.vm_status, &vm->moved);
2284         }
2285         trace_amdgpu_vm_bo_map(bo_va, mapping);
2286 }
2287
2288 /**
2289  * amdgpu_vm_bo_map - map bo inside a vm
2290  *
2291  * @adev: amdgpu_device pointer
2292  * @bo_va: bo_va to store the address
2293  * @saddr: where to map the BO
2294  * @offset: requested offset in the BO
2295  * @size: BO size in bytes
2296  * @flags: attributes of pages (read/write/valid/etc.)
2297  *
2298  * Add a mapping of the BO at the specefied addr into the VM.
2299  *
2300  * Returns:
2301  * 0 for success, error for failure.
2302  *
2303  * Object has to be reserved and unreserved outside!
2304  */
2305 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2306                      struct amdgpu_bo_va *bo_va,
2307                      uint64_t saddr, uint64_t offset,
2308                      uint64_t size, uint64_t flags)
2309 {
2310         struct amdgpu_bo_va_mapping *mapping, *tmp;
2311         struct amdgpu_bo *bo = bo_va->base.bo;
2312         struct amdgpu_vm *vm = bo_va->base.vm;
2313         uint64_t eaddr;
2314
2315         /* validate the parameters */
2316         if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2317             size == 0 || size & ~PAGE_MASK)
2318                 return -EINVAL;
2319
2320         /* make sure object fit at this offset */
2321         eaddr = saddr + size - 1;
2322         if (saddr >= eaddr ||
2323             (bo && offset + size > amdgpu_bo_size(bo)) ||
2324             (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2325                 return -EINVAL;
2326
2327         saddr /= AMDGPU_GPU_PAGE_SIZE;
2328         eaddr /= AMDGPU_GPU_PAGE_SIZE;
2329
2330         tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2331         if (tmp) {
2332                 /* bo and tmp overlap, invalid addr */
2333                 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2334                         "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2335                         tmp->start, tmp->last + 1);
2336                 return -EINVAL;
2337         }
2338
2339         mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2340         if (!mapping)
2341                 return -ENOMEM;
2342
2343         mapping->start = saddr;
2344         mapping->last = eaddr;
2345         mapping->offset = offset;
2346         mapping->flags = flags;
2347
2348         amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2349
2350         return 0;
2351 }
2352
2353 /**
2354  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2355  *
2356  * @adev: amdgpu_device pointer
2357  * @bo_va: bo_va to store the address
2358  * @saddr: where to map the BO
2359  * @offset: requested offset in the BO
2360  * @size: BO size in bytes
2361  * @flags: attributes of pages (read/write/valid/etc.)
2362  *
2363  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2364  * mappings as we do so.
2365  *
2366  * Returns:
2367  * 0 for success, error for failure.
2368  *
2369  * Object has to be reserved and unreserved outside!
2370  */
2371 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2372                              struct amdgpu_bo_va *bo_va,
2373                              uint64_t saddr, uint64_t offset,
2374                              uint64_t size, uint64_t flags)
2375 {
2376         struct amdgpu_bo_va_mapping *mapping;
2377         struct amdgpu_bo *bo = bo_va->base.bo;
2378         uint64_t eaddr;
2379         int r;
2380
2381         /* validate the parameters */
2382         if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2383             size == 0 || size & ~PAGE_MASK)
2384                 return -EINVAL;
2385
2386         /* make sure object fit at this offset */
2387         eaddr = saddr + size - 1;
2388         if (saddr >= eaddr ||
2389             (bo && offset + size > amdgpu_bo_size(bo)) ||
2390             (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2391                 return -EINVAL;
2392
2393         /* Allocate all the needed memory */
2394         mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2395         if (!mapping)
2396                 return -ENOMEM;
2397
2398         r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2399         if (r) {
2400                 kfree(mapping);
2401                 return r;
2402         }
2403
2404         saddr /= AMDGPU_GPU_PAGE_SIZE;
2405         eaddr /= AMDGPU_GPU_PAGE_SIZE;
2406
2407         mapping->start = saddr;
2408         mapping->last = eaddr;
2409         mapping->offset = offset;
2410         mapping->flags = flags;
2411
2412         amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2413
2414         return 0;
2415 }
2416
2417 /**
2418  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2419  *
2420  * @adev: amdgpu_device pointer
2421  * @bo_va: bo_va to remove the address from
2422  * @saddr: where to the BO is mapped
2423  *
2424  * Remove a mapping of the BO at the specefied addr from the VM.
2425  *
2426  * Returns:
2427  * 0 for success, error for failure.
2428  *
2429  * Object has to be reserved and unreserved outside!
2430  */
2431 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2432                        struct amdgpu_bo_va *bo_va,
2433                        uint64_t saddr)
2434 {
2435         struct amdgpu_bo_va_mapping *mapping;
2436         struct amdgpu_vm *vm = bo_va->base.vm;
2437         bool valid = true;
2438
2439         saddr /= AMDGPU_GPU_PAGE_SIZE;
2440
2441         list_for_each_entry(mapping, &bo_va->valids, list) {
2442                 if (mapping->start == saddr)
2443                         break;
2444         }
2445
2446         if (&mapping->list == &bo_va->valids) {
2447                 valid = false;
2448
2449                 list_for_each_entry(mapping, &bo_va->invalids, list) {
2450                         if (mapping->start == saddr)
2451                                 break;
2452                 }
2453
2454                 if (&mapping->list == &bo_va->invalids)
2455                         return -ENOENT;
2456         }
2457
2458         list_del(&mapping->list);
2459         amdgpu_vm_it_remove(mapping, &vm->va);
2460         mapping->bo_va = NULL;
2461         trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2462
2463         if (valid)
2464                 list_add(&mapping->list, &vm->freed);
2465         else
2466                 amdgpu_vm_free_mapping(adev, vm, mapping,
2467                                        bo_va->last_pt_update);
2468
2469         return 0;
2470 }
2471
2472 /**
2473  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2474  *
2475  * @adev: amdgpu_device pointer
2476  * @vm: VM structure to use
2477  * @saddr: start of the range
2478  * @size: size of the range
2479  *
2480  * Remove all mappings in a range, split them as appropriate.
2481  *
2482  * Returns:
2483  * 0 for success, error for failure.
2484  */
2485 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2486                                 struct amdgpu_vm *vm,
2487                                 uint64_t saddr, uint64_t size)
2488 {
2489         struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2490         LIST_HEAD(removed);
2491         uint64_t eaddr;
2492
2493         eaddr = saddr + size - 1;
2494         saddr /= AMDGPU_GPU_PAGE_SIZE;
2495         eaddr /= AMDGPU_GPU_PAGE_SIZE;
2496
2497         /* Allocate all the needed memory */
2498         before = kzalloc(sizeof(*before), GFP_KERNEL);
2499         if (!before)
2500                 return -ENOMEM;
2501         INIT_LIST_HEAD(&before->list);
2502
2503         after = kzalloc(sizeof(*after), GFP_KERNEL);
2504         if (!after) {
2505                 kfree(before);
2506                 return -ENOMEM;
2507         }
2508         INIT_LIST_HEAD(&after->list);
2509
2510         /* Now gather all removed mappings */
2511         tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2512         while (tmp) {
2513                 /* Remember mapping split at the start */
2514                 if (tmp->start < saddr) {
2515                         before->start = tmp->start;
2516                         before->last = saddr - 1;
2517                         before->offset = tmp->offset;
2518                         before->flags = tmp->flags;
2519                         before->bo_va = tmp->bo_va;
2520                         list_add(&before->list, &tmp->bo_va->invalids);
2521                 }
2522
2523                 /* Remember mapping split at the end */
2524                 if (tmp->last > eaddr) {
2525                         after->start = eaddr + 1;
2526                         after->last = tmp->last;
2527                         after->offset = tmp->offset;
2528                         after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2529                         after->flags = tmp->flags;
2530                         after->bo_va = tmp->bo_va;
2531                         list_add(&after->list, &tmp->bo_va->invalids);
2532                 }
2533
2534                 list_del(&tmp->list);
2535                 list_add(&tmp->list, &removed);
2536
2537                 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2538         }
2539
2540         /* And free them up */
2541         list_for_each_entry_safe(tmp, next, &removed, list) {
2542                 amdgpu_vm_it_remove(tmp, &vm->va);
2543                 list_del(&tmp->list);
2544
2545                 if (tmp->start < saddr)
2546                     tmp->start = saddr;
2547                 if (tmp->last > eaddr)
2548                     tmp->last = eaddr;
2549
2550                 tmp->bo_va = NULL;
2551                 list_add(&tmp->list, &vm->freed);
2552                 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2553         }
2554
2555         /* Insert partial mapping before the range */
2556         if (!list_empty(&before->list)) {
2557                 amdgpu_vm_it_insert(before, &vm->va);
2558                 if (before->flags & AMDGPU_PTE_PRT)
2559                         amdgpu_vm_prt_get(adev);
2560         } else {
2561                 kfree(before);
2562         }
2563
2564         /* Insert partial mapping after the range */
2565         if (!list_empty(&after->list)) {
2566                 amdgpu_vm_it_insert(after, &vm->va);
2567                 if (after->flags & AMDGPU_PTE_PRT)
2568                         amdgpu_vm_prt_get(adev);
2569         } else {
2570                 kfree(after);
2571         }
2572
2573         return 0;
2574 }
2575
2576 /**
2577  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2578  *
2579  * @vm: the requested VM
2580  * @addr: the address
2581  *
2582  * Find a mapping by it's address.
2583  *
2584  * Returns:
2585  * The amdgpu_bo_va_mapping matching for addr or NULL
2586  *
2587  */
2588 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2589                                                          uint64_t addr)
2590 {
2591         return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2592 }
2593
2594 /**
2595  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2596  *
2597  * @vm: the requested vm
2598  * @ticket: CS ticket
2599  *
2600  * Trace all mappings of BOs reserved during a command submission.
2601  */
2602 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2603 {
2604         struct amdgpu_bo_va_mapping *mapping;
2605
2606         if (!trace_amdgpu_vm_bo_cs_enabled())
2607                 return;
2608
2609         for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2610              mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2611                 if (mapping->bo_va && mapping->bo_va->base.bo) {
2612                         struct amdgpu_bo *bo;
2613
2614                         bo = mapping->bo_va->base.bo;
2615                         if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2616                             ticket)
2617                                 continue;
2618                 }
2619
2620                 trace_amdgpu_vm_bo_cs(mapping);
2621         }
2622 }
2623
2624 /**
2625  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2626  *
2627  * @adev: amdgpu_device pointer
2628  * @bo_va: requested bo_va
2629  *
2630  * Remove @bo_va->bo from the requested vm.
2631  *
2632  * Object have to be reserved!
2633  */
2634 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2635                       struct amdgpu_bo_va *bo_va)
2636 {
2637         struct amdgpu_bo_va_mapping *mapping, *next;
2638         struct amdgpu_bo *bo = bo_va->base.bo;
2639         struct amdgpu_vm *vm = bo_va->base.vm;
2640         struct amdgpu_vm_bo_base **base;
2641
2642         if (bo) {
2643                 if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2644                         vm->bulk_moveable = false;
2645
2646                 for (base = &bo_va->base.bo->vm_bo; *base;
2647                      base = &(*base)->next) {
2648                         if (*base != &bo_va->base)
2649                                 continue;
2650
2651                         *base = bo_va->base.next;
2652                         break;
2653                 }
2654         }
2655
2656         spin_lock(&vm->invalidated_lock);
2657         list_del(&bo_va->base.vm_status);
2658         spin_unlock(&vm->invalidated_lock);
2659
2660         list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2661                 list_del(&mapping->list);
2662                 amdgpu_vm_it_remove(mapping, &vm->va);
2663                 mapping->bo_va = NULL;
2664                 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2665                 list_add(&mapping->list, &vm->freed);
2666         }
2667         list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2668                 list_del(&mapping->list);
2669                 amdgpu_vm_it_remove(mapping, &vm->va);
2670                 amdgpu_vm_free_mapping(adev, vm, mapping,
2671                                        bo_va->last_pt_update);
2672         }
2673
2674         dma_fence_put(bo_va->last_pt_update);
2675
2676         if (bo && bo_va->is_xgmi)
2677                 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2678
2679         kfree(bo_va);
2680 }
2681
2682 /**
2683  * amdgpu_vm_evictable - check if we can evict a VM
2684  *
2685  * @bo: A page table of the VM.
2686  *
2687  * Check if it is possible to evict a VM.
2688  */
2689 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2690 {
2691         struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2692
2693         /* Page tables of a destroyed VM can go away immediately */
2694         if (!bo_base || !bo_base->vm)
2695                 return true;
2696
2697         /* Don't evict VM page tables while they are busy */
2698         if (!dma_resv_test_signaled(bo->tbo.base.resv, true))
2699                 return false;
2700
2701         /* Try to block ongoing updates */
2702         if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2703                 return false;
2704
2705         /* Don't evict VM page tables while they are updated */
2706         if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2707                 amdgpu_vm_eviction_unlock(bo_base->vm);
2708                 return false;
2709         }
2710
2711         bo_base->vm->evicting = true;
2712         amdgpu_vm_eviction_unlock(bo_base->vm);
2713         return true;
2714 }
2715
2716 /**
2717  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2718  *
2719  * @adev: amdgpu_device pointer
2720  * @bo: amdgpu buffer object
2721  * @evicted: is the BO evicted
2722  *
2723  * Mark @bo as invalid.
2724  */
2725 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2726                              struct amdgpu_bo *bo, bool evicted)
2727 {
2728         struct amdgpu_vm_bo_base *bo_base;
2729
2730         /* shadow bo doesn't have bo base, its validation needs its parent */
2731         if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
2732                 bo = bo->parent;
2733
2734         for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2735                 struct amdgpu_vm *vm = bo_base->vm;
2736
2737                 if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
2738                         amdgpu_vm_bo_evicted(bo_base);
2739                         continue;
2740                 }
2741
2742                 if (bo_base->moved)
2743                         continue;
2744                 bo_base->moved = true;
2745
2746                 if (bo->tbo.type == ttm_bo_type_kernel)
2747                         amdgpu_vm_bo_relocated(bo_base);
2748                 else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2749                         amdgpu_vm_bo_moved(bo_base);
2750                 else
2751                         amdgpu_vm_bo_invalidated(bo_base);
2752         }
2753 }
2754
2755 /**
2756  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2757  *
2758  * @vm_size: VM size
2759  *
2760  * Returns:
2761  * VM page table as power of two
2762  */
2763 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2764 {
2765         /* Total bits covered by PD + PTs */
2766         unsigned bits = ilog2(vm_size) + 18;
2767
2768         /* Make sure the PD is 4K in size up to 8GB address space.
2769            Above that split equal between PD and PTs */
2770         if (vm_size <= 8)
2771                 return (bits - 9);
2772         else
2773                 return ((bits + 3) / 2);
2774 }
2775
2776 /**
2777  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2778  *
2779  * @adev: amdgpu_device pointer
2780  * @min_vm_size: the minimum vm size in GB if it's set auto
2781  * @fragment_size_default: Default PTE fragment size
2782  * @max_level: max VMPT level
2783  * @max_bits: max address space size in bits
2784  *
2785  */
2786 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2787                            uint32_t fragment_size_default, unsigned max_level,
2788                            unsigned max_bits)
2789 {
2790         unsigned int max_size = 1 << (max_bits - 30);
2791         unsigned int vm_size;
2792         uint64_t tmp;
2793
2794         /* adjust vm size first */
2795         if (amdgpu_vm_size != -1) {
2796                 vm_size = amdgpu_vm_size;
2797                 if (vm_size > max_size) {
2798                         dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2799                                  amdgpu_vm_size, max_size);
2800                         vm_size = max_size;
2801                 }
2802         } else {
2803                 struct sysinfo si;
2804                 unsigned int phys_ram_gb;
2805
2806                 /* Optimal VM size depends on the amount of physical
2807                  * RAM available. Underlying requirements and
2808                  * assumptions:
2809                  *
2810                  *  - Need to map system memory and VRAM from all GPUs
2811                  *     - VRAM from other GPUs not known here
2812                  *     - Assume VRAM <= system memory
2813                  *  - On GFX8 and older, VM space can be segmented for
2814                  *    different MTYPEs
2815                  *  - Need to allow room for fragmentation, guard pages etc.
2816                  *
2817                  * This adds up to a rough guess of system memory x3.
2818                  * Round up to power of two to maximize the available
2819                  * VM size with the given page table size.
2820                  */
2821                 si_meminfo(&si);
2822                 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2823                                (1 << 30) - 1) >> 30;
2824                 vm_size = roundup_pow_of_two(
2825                         min(max(phys_ram_gb * 3, min_vm_size), max_size));
2826         }
2827
2828         adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2829
2830         tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2831         if (amdgpu_vm_block_size != -1)
2832                 tmp >>= amdgpu_vm_block_size - 9;
2833         tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2834         adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2835         switch (adev->vm_manager.num_level) {
2836         case 3:
2837                 adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2838                 break;
2839         case 2:
2840                 adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2841                 break;
2842         case 1:
2843                 adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2844                 break;
2845         default:
2846                 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2847         }
2848         /* block size depends on vm size and hw setup*/
2849         if (amdgpu_vm_block_size != -1)
2850                 adev->vm_manager.block_size =
2851                         min((unsigned)amdgpu_vm_block_size, max_bits
2852                             - AMDGPU_GPU_PAGE_SHIFT
2853                             - 9 * adev->vm_manager.num_level);
2854         else if (adev->vm_manager.num_level > 1)
2855                 adev->vm_manager.block_size = 9;
2856         else
2857                 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2858
2859         if (amdgpu_vm_fragment_size == -1)
2860                 adev->vm_manager.fragment_size = fragment_size_default;
2861         else
2862                 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2863
2864         DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2865                  vm_size, adev->vm_manager.num_level + 1,
2866                  adev->vm_manager.block_size,
2867                  adev->vm_manager.fragment_size);
2868 }
2869
2870 /**
2871  * amdgpu_vm_wait_idle - wait for the VM to become idle
2872  *
2873  * @vm: VM object to wait for
2874  * @timeout: timeout to wait for VM to become idle
2875  */
2876 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2877 {
2878         timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, true,
2879                                         true, timeout);
2880         if (timeout <= 0)
2881                 return timeout;
2882
2883         return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2884 }
2885
2886 /**
2887  * amdgpu_vm_init - initialize a vm instance
2888  *
2889  * @adev: amdgpu_device pointer
2890  * @vm: requested vm
2891  *
2892  * Init @vm fields.
2893  *
2894  * Returns:
2895  * 0 for success, error for failure.
2896  */
2897 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2898 {
2899         struct amdgpu_bo *root_bo;
2900         struct amdgpu_bo_vm *root;
2901         int r, i;
2902
2903         vm->va = RB_ROOT_CACHED;
2904         for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2905                 vm->reserved_vmid[i] = NULL;
2906         INIT_LIST_HEAD(&vm->evicted);
2907         INIT_LIST_HEAD(&vm->relocated);
2908         INIT_LIST_HEAD(&vm->moved);
2909         INIT_LIST_HEAD(&vm->idle);
2910         INIT_LIST_HEAD(&vm->invalidated);
2911         spin_lock_init(&vm->invalidated_lock);
2912         INIT_LIST_HEAD(&vm->freed);
2913         INIT_LIST_HEAD(&vm->done);
2914
2915         /* create scheduler entities for page table updates */
2916         r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2917                                   adev->vm_manager.vm_pte_scheds,
2918                                   adev->vm_manager.vm_pte_num_scheds, NULL);
2919         if (r)
2920                 return r;
2921
2922         r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2923                                   adev->vm_manager.vm_pte_scheds,
2924                                   adev->vm_manager.vm_pte_num_scheds, NULL);
2925         if (r)
2926                 goto error_free_immediate;
2927
2928         vm->pte_support_ats = false;
2929         vm->is_compute_context = false;
2930
2931         vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2932                                     AMDGPU_VM_USE_CPU_FOR_GFX);
2933
2934         DRM_DEBUG_DRIVER("VM update mode is %s\n",
2935                          vm->use_cpu_for_update ? "CPU" : "SDMA");
2936         WARN_ONCE((vm->use_cpu_for_update &&
2937                    !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2938                   "CPU update of VM recommended only for large BAR system\n");
2939
2940         if (vm->use_cpu_for_update)
2941                 vm->update_funcs = &amdgpu_vm_cpu_funcs;
2942         else
2943                 vm->update_funcs = &amdgpu_vm_sdma_funcs;
2944         vm->last_update = NULL;
2945         vm->last_unlocked = dma_fence_get_stub();
2946
2947         mutex_init(&vm->eviction_lock);
2948         vm->evicting = false;
2949
2950         r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2951                                 false, &root);
2952         if (r)
2953                 goto error_free_delayed;
2954         root_bo = &root->bo;
2955         r = amdgpu_bo_reserve(root_bo, true);
2956         if (r)
2957                 goto error_free_root;
2958
2959         r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1);
2960         if (r)
2961                 goto error_unreserve;
2962
2963         amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
2964
2965         r = amdgpu_vm_clear_bo(adev, vm, root, false);
2966         if (r)
2967                 goto error_unreserve;
2968
2969         amdgpu_bo_unreserve(vm->root.bo);
2970
2971         INIT_KFIFO(vm->faults);
2972
2973         return 0;
2974
2975 error_unreserve:
2976         amdgpu_bo_unreserve(vm->root.bo);
2977
2978 error_free_root:
2979         amdgpu_bo_unref(&root->shadow);
2980         amdgpu_bo_unref(&root_bo);
2981         vm->root.bo = NULL;
2982
2983 error_free_delayed:
2984         dma_fence_put(vm->last_unlocked);
2985         drm_sched_entity_destroy(&vm->delayed);
2986
2987 error_free_immediate:
2988         drm_sched_entity_destroy(&vm->immediate);
2989
2990         return r;
2991 }
2992
2993 /**
2994  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2995  *
2996  * @adev: amdgpu_device pointer
2997  * @vm: the VM to check
2998  *
2999  * check all entries of the root PD, if any subsequent PDs are allocated,
3000  * it means there are page table creating and filling, and is no a clean
3001  * VM
3002  *
3003  * Returns:
3004  *      0 if this VM is clean
3005  */
3006 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
3007                                           struct amdgpu_vm *vm)
3008 {
3009         enum amdgpu_vm_level root = adev->vm_manager.root_level;
3010         unsigned int entries = amdgpu_vm_num_entries(adev, root);
3011         unsigned int i = 0;
3012
3013         for (i = 0; i < entries; i++) {
3014                 if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo)
3015                         return -EINVAL;
3016         }
3017
3018         return 0;
3019 }
3020
3021 /**
3022  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
3023  *
3024  * @adev: amdgpu_device pointer
3025  * @vm: requested vm
3026  *
3027  * This only works on GFX VMs that don't have any BOs added and no
3028  * page tables allocated yet.
3029  *
3030  * Changes the following VM parameters:
3031  * - use_cpu_for_update
3032  * - pte_supports_ats
3033  *
3034  * Reinitializes the page directory to reflect the changed ATS
3035  * setting.
3036  *
3037  * Returns:
3038  * 0 for success, -errno for errors.
3039  */
3040 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3041 {
3042         bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
3043         int r;
3044
3045         r = amdgpu_bo_reserve(vm->root.bo, true);
3046         if (r)
3047                 return r;
3048
3049         /* Sanity checks */
3050         r = amdgpu_vm_check_clean_reserved(adev, vm);
3051         if (r)
3052                 goto unreserve_bo;
3053
3054         /* Check if PD needs to be reinitialized and do it before
3055          * changing any other state, in case it fails.
3056          */
3057         if (pte_support_ats != vm->pte_support_ats) {
3058                 vm->pte_support_ats = pte_support_ats;
3059                 r = amdgpu_vm_clear_bo(adev, vm,
3060                                        to_amdgpu_bo_vm(vm->root.bo),
3061                                        false);
3062                 if (r)
3063                         goto unreserve_bo;
3064         }
3065
3066         /* Update VM state */
3067         vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3068                                     AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3069         DRM_DEBUG_DRIVER("VM update mode is %s\n",
3070                          vm->use_cpu_for_update ? "CPU" : "SDMA");
3071         WARN_ONCE((vm->use_cpu_for_update &&
3072                    !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3073                   "CPU update of VM recommended only for large BAR system\n");
3074
3075         if (vm->use_cpu_for_update) {
3076                 /* Sync with last SDMA update/clear before switching to CPU */
3077                 r = amdgpu_bo_sync_wait(vm->root.bo,
3078                                         AMDGPU_FENCE_OWNER_UNDEFINED, true);
3079                 if (r)
3080                         goto unreserve_bo;
3081
3082                 vm->update_funcs = &amdgpu_vm_cpu_funcs;
3083         } else {
3084                 vm->update_funcs = &amdgpu_vm_sdma_funcs;
3085         }
3086         dma_fence_put(vm->last_update);
3087         vm->last_update = NULL;
3088         vm->is_compute_context = true;
3089
3090         /* Free the shadow bo for compute VM */
3091         amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow);
3092
3093         goto unreserve_bo;
3094
3095 unreserve_bo:
3096         amdgpu_bo_unreserve(vm->root.bo);
3097         return r;
3098 }
3099
3100 /**
3101  * amdgpu_vm_release_compute - release a compute vm
3102  * @adev: amdgpu_device pointer
3103  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3104  *
3105  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3106  * pasid from vm. Compute should stop use of vm after this call.
3107  */
3108 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3109 {
3110         amdgpu_vm_set_pasid(adev, vm, 0);
3111         vm->is_compute_context = false;
3112 }
3113
3114 /**
3115  * amdgpu_vm_fini - tear down a vm instance
3116  *
3117  * @adev: amdgpu_device pointer
3118  * @vm: requested vm
3119  *
3120  * Tear down @vm.
3121  * Unbind the VM and remove all bos from the vm bo list
3122  */
3123 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3124 {
3125         struct amdgpu_bo_va_mapping *mapping, *tmp;
3126         bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3127         struct amdgpu_bo *root;
3128         int i;
3129
3130         amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3131
3132         root = amdgpu_bo_ref(vm->root.bo);
3133         amdgpu_bo_reserve(root, true);
3134         amdgpu_vm_set_pasid(adev, vm, 0);
3135         dma_fence_wait(vm->last_unlocked, false);
3136         dma_fence_put(vm->last_unlocked);
3137
3138         list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3139                 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3140                         amdgpu_vm_prt_fini(adev, vm);
3141                         prt_fini_needed = false;
3142                 }
3143
3144                 list_del(&mapping->list);
3145                 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3146         }
3147
3148         amdgpu_vm_free_pts(adev, vm, NULL);
3149         amdgpu_bo_unreserve(root);
3150         amdgpu_bo_unref(&root);
3151         WARN_ON(vm->root.bo);
3152
3153         drm_sched_entity_destroy(&vm->immediate);
3154         drm_sched_entity_destroy(&vm->delayed);
3155
3156         if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3157                 dev_err(adev->dev, "still active bo inside vm\n");
3158         }
3159         rbtree_postorder_for_each_entry_safe(mapping, tmp,
3160                                              &vm->va.rb_root, rb) {
3161                 /* Don't remove the mapping here, we don't want to trigger a
3162                  * rebalance and the tree is about to be destroyed anyway.
3163                  */
3164                 list_del(&mapping->list);
3165                 kfree(mapping);
3166         }
3167
3168         dma_fence_put(vm->last_update);
3169         for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3170                 amdgpu_vmid_free_reserved(adev, vm, i);
3171 }
3172
3173 /**
3174  * amdgpu_vm_manager_init - init the VM manager
3175  *
3176  * @adev: amdgpu_device pointer
3177  *
3178  * Initialize the VM manager structures
3179  */
3180 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3181 {
3182         unsigned i;
3183
3184         /* Concurrent flushes are only possible starting with Vega10 and
3185          * are broken on Navi10 and Navi14.
3186          */
3187         adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3188                                               adev->asic_type == CHIP_NAVI10 ||
3189                                               adev->asic_type == CHIP_NAVI14);
3190         amdgpu_vmid_mgr_init(adev);
3191
3192         adev->vm_manager.fence_context =
3193                 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3194         for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3195                 adev->vm_manager.seqno[i] = 0;
3196
3197         spin_lock_init(&adev->vm_manager.prt_lock);
3198         atomic_set(&adev->vm_manager.num_prt_users, 0);
3199
3200         /* If not overridden by the user, by default, only in large BAR systems
3201          * Compute VM tables will be updated by CPU
3202          */
3203 #ifdef CONFIG_X86_64
3204         if (amdgpu_vm_update_mode == -1) {
3205                 if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3206                         adev->vm_manager.vm_update_mode =
3207                                 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3208                 else
3209                         adev->vm_manager.vm_update_mode = 0;
3210         } else
3211                 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3212 #else
3213         adev->vm_manager.vm_update_mode = 0;
3214 #endif
3215
3216         xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ);
3217 }
3218
3219 /**
3220  * amdgpu_vm_manager_fini - cleanup VM manager
3221  *
3222  * @adev: amdgpu_device pointer
3223  *
3224  * Cleanup the VM manager and free resources.
3225  */
3226 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3227 {
3228         WARN_ON(!xa_empty(&adev->vm_manager.pasids));
3229         xa_destroy(&adev->vm_manager.pasids);
3230
3231         amdgpu_vmid_mgr_fini(adev);
3232 }
3233
3234 /**
3235  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3236  *
3237  * @dev: drm device pointer
3238  * @data: drm_amdgpu_vm
3239  * @filp: drm file pointer
3240  *
3241  * Returns:
3242  * 0 for success, -errno for errors.
3243  */
3244 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3245 {
3246         union drm_amdgpu_vm *args = data;
3247         struct amdgpu_device *adev = drm_to_adev(dev);
3248         struct amdgpu_fpriv *fpriv = filp->driver_priv;
3249         long timeout = msecs_to_jiffies(2000);
3250         int r;
3251
3252         switch (args->in.op) {
3253         case AMDGPU_VM_OP_RESERVE_VMID:
3254                 /* We only have requirement to reserve vmid from gfxhub */
3255                 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3256                                                AMDGPU_GFXHUB_0);
3257                 if (r)
3258                         return r;
3259                 break;
3260         case AMDGPU_VM_OP_UNRESERVE_VMID:
3261                 if (amdgpu_sriov_runtime(adev))
3262                         timeout = 8 * timeout;
3263
3264                 /* Wait vm idle to make sure the vmid set in SPM_VMID is
3265                  * not referenced anymore.
3266                  */
3267                 r = amdgpu_bo_reserve(fpriv->vm.root.bo, true);
3268                 if (r)
3269                         return r;
3270
3271                 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3272                 if (r < 0)
3273                         return r;
3274
3275                 amdgpu_bo_unreserve(fpriv->vm.root.bo);
3276                 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3277                 break;
3278         default:
3279                 return -EINVAL;
3280         }
3281
3282         return 0;
3283 }
3284
3285 /**
3286  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3287  *
3288  * @adev: drm device pointer
3289  * @pasid: PASID identifier for VM
3290  * @task_info: task_info to fill.
3291  */
3292 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3293                          struct amdgpu_task_info *task_info)
3294 {
3295         struct amdgpu_vm *vm;
3296         unsigned long flags;
3297
3298         xa_lock_irqsave(&adev->vm_manager.pasids, flags);
3299
3300         vm = xa_load(&adev->vm_manager.pasids, pasid);
3301         if (vm)
3302                 *task_info = vm->task_info;
3303
3304         xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
3305 }
3306
3307 /**
3308  * amdgpu_vm_set_task_info - Sets VMs task info.
3309  *
3310  * @vm: vm for which to set the info
3311  */
3312 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3313 {
3314         if (vm->task_info.pid)
3315                 return;
3316
3317         vm->task_info.pid = current->pid;
3318         get_task_comm(vm->task_info.task_name, current);
3319
3320         if (current->group_leader->mm != current->mm)
3321                 return;
3322
3323         vm->task_info.tgid = current->group_leader->pid;
3324         get_task_comm(vm->task_info.process_name, current->group_leader);
3325 }
3326
3327 /**
3328  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3329  * @adev: amdgpu device pointer
3330  * @pasid: PASID of the VM
3331  * @addr: Address of the fault
3332  * @write_fault: true is write fault, false is read fault
3333  *
3334  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3335  * shouldn't be reported any more.
3336  */
3337 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3338                             uint64_t addr, bool write_fault)
3339 {
3340         bool is_compute_context = false;
3341         struct amdgpu_bo *root;
3342         unsigned long irqflags;
3343         uint64_t value, flags;
3344         struct amdgpu_vm *vm;
3345         int r;
3346
3347         xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
3348         vm = xa_load(&adev->vm_manager.pasids, pasid);
3349         if (vm) {
3350                 root = amdgpu_bo_ref(vm->root.bo);
3351                 is_compute_context = vm->is_compute_context;
3352         } else {
3353                 root = NULL;
3354         }
3355         xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
3356
3357         if (!root)
3358                 return false;
3359
3360         addr /= AMDGPU_GPU_PAGE_SIZE;
3361
3362         if (is_compute_context &&
3363             !svm_range_restore_pages(adev, pasid, addr, write_fault)) {
3364                 amdgpu_bo_unref(&root);
3365                 return true;
3366         }
3367
3368         r = amdgpu_bo_reserve(root, true);
3369         if (r)
3370                 goto error_unref;
3371
3372         /* Double check that the VM still exists */
3373         xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
3374         vm = xa_load(&adev->vm_manager.pasids, pasid);
3375         if (vm && vm->root.bo != root)
3376                 vm = NULL;
3377         xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
3378         if (!vm)
3379                 goto error_unlock;
3380
3381         flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3382                 AMDGPU_PTE_SYSTEM;
3383
3384         if (is_compute_context) {
3385                 /* Intentionally setting invalid PTE flag
3386                  * combination to force a no-retry-fault
3387                  */
3388                 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3389                         AMDGPU_PTE_TF;
3390                 value = 0;
3391         } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3392                 /* Redirect the access to the dummy page */
3393                 value = adev->dummy_page_addr;
3394                 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3395                         AMDGPU_PTE_WRITEABLE;
3396
3397         } else {
3398                 /* Let the hw retry silently on the PTE */
3399                 value = 0;
3400         }
3401
3402         r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
3403         if (r) {
3404                 pr_debug("failed %d to reserve fence slot\n", r);
3405                 goto error_unlock;
3406         }
3407
3408         r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr,
3409                                         addr, flags, value, NULL, NULL, NULL,
3410                                         NULL);
3411         if (r)
3412                 goto error_unlock;
3413
3414         r = amdgpu_vm_update_pdes(adev, vm, true);
3415
3416 error_unlock:
3417         amdgpu_bo_unreserve(root);
3418         if (r < 0)
3419                 DRM_ERROR("Can't handle page fault (%d)\n", r);
3420
3421 error_unref:
3422         amdgpu_bo_unref(&root);
3423
3424         return false;
3425 }
3426
3427 #if defined(CONFIG_DEBUG_FS)
3428 /**
3429  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
3430  *
3431  * @vm: Requested VM for printing BO info
3432  * @m: debugfs file
3433  *
3434  * Print BO information in debugfs file for the VM
3435  */
3436 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
3437 {
3438         struct amdgpu_bo_va *bo_va, *tmp;
3439         u64 total_idle = 0;
3440         u64 total_evicted = 0;
3441         u64 total_relocated = 0;
3442         u64 total_moved = 0;
3443         u64 total_invalidated = 0;
3444         u64 total_done = 0;
3445         unsigned int total_idle_objs = 0;
3446         unsigned int total_evicted_objs = 0;
3447         unsigned int total_relocated_objs = 0;
3448         unsigned int total_moved_objs = 0;
3449         unsigned int total_invalidated_objs = 0;
3450         unsigned int total_done_objs = 0;
3451         unsigned int id = 0;
3452
3453         seq_puts(m, "\tIdle BOs:\n");
3454         list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
3455                 if (!bo_va->base.bo)
3456                         continue;
3457                 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3458         }
3459         total_idle_objs = id;
3460         id = 0;
3461
3462         seq_puts(m, "\tEvicted BOs:\n");
3463         list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
3464                 if (!bo_va->base.bo)
3465                         continue;
3466                 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3467         }
3468         total_evicted_objs = id;
3469         id = 0;
3470
3471         seq_puts(m, "\tRelocated BOs:\n");
3472         list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
3473                 if (!bo_va->base.bo)
3474                         continue;
3475                 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3476         }
3477         total_relocated_objs = id;
3478         id = 0;
3479
3480         seq_puts(m, "\tMoved BOs:\n");
3481         list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
3482                 if (!bo_va->base.bo)
3483                         continue;
3484                 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3485         }
3486         total_moved_objs = id;
3487         id = 0;
3488
3489         seq_puts(m, "\tInvalidated BOs:\n");
3490         spin_lock(&vm->invalidated_lock);
3491         list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
3492                 if (!bo_va->base.bo)
3493                         continue;
3494                 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3495         }
3496         total_invalidated_objs = id;
3497         id = 0;
3498
3499         seq_puts(m, "\tDone BOs:\n");
3500         list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
3501                 if (!bo_va->base.bo)
3502                         continue;
3503                 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3504         }
3505         spin_unlock(&vm->invalidated_lock);
3506         total_done_objs = id;
3507
3508         seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
3509                    total_idle_objs);
3510         seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
3511                    total_evicted_objs);
3512         seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
3513                    total_relocated_objs);
3514         seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
3515                    total_moved_objs);
3516         seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
3517                    total_invalidated_objs);
3518         seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
3519                    total_done_objs);
3520 }
3521 #endif
This page took 0.239618 seconds and 4 git commands to generate.