2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
53 #define CREATE_TRACE_POINTS
56 #include <asm/debugreg.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71 #define emul_to_vcpu(ctxt) \
72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
75 * - enable syscall per default because its emulated by KVM
76 * - enable LME and LMA per default on 64 bit KVM
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32 kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
106 #define KVM_NR_SHARED_MSRS 16
108 struct kvm_shared_msrs_global {
110 u32 msrs[KVM_NR_SHARED_MSRS];
113 struct kvm_shared_msrs {
114 struct user_return_notifier urn;
116 struct kvm_shared_msr_values {
119 } values[KVM_NR_SHARED_MSRS];
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126 { "pf_fixed", VCPU_STAT(pf_fixed) },
127 { "pf_guest", VCPU_STAT(pf_guest) },
128 { "tlb_flush", VCPU_STAT(tlb_flush) },
129 { "invlpg", VCPU_STAT(invlpg) },
130 { "exits", VCPU_STAT(exits) },
131 { "io_exits", VCPU_STAT(io_exits) },
132 { "mmio_exits", VCPU_STAT(mmio_exits) },
133 { "signal_exits", VCPU_STAT(signal_exits) },
134 { "irq_window", VCPU_STAT(irq_window_exits) },
135 { "nmi_window", VCPU_STAT(nmi_window_exits) },
136 { "halt_exits", VCPU_STAT(halt_exits) },
137 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138 { "hypercalls", VCPU_STAT(hypercalls) },
139 { "request_irq", VCPU_STAT(request_irq_exits) },
140 { "irq_exits", VCPU_STAT(irq_exits) },
141 { "host_state_reload", VCPU_STAT(host_state_reload) },
142 { "efer_reload", VCPU_STAT(efer_reload) },
143 { "fpu_reload", VCPU_STAT(fpu_reload) },
144 { "insn_emulation", VCPU_STAT(insn_emulation) },
145 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146 { "irq_injections", VCPU_STAT(irq_injections) },
147 { "nmi_injections", VCPU_STAT(nmi_injections) },
148 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152 { "mmu_flooded", VM_STAT(mmu_flooded) },
153 { "mmu_recycled", VM_STAT(mmu_recycled) },
154 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155 { "mmu_unsync", VM_STAT(mmu_unsync) },
156 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157 { "largepages", VM_STAT(lpages) },
161 u64 __read_mostly host_xcr0;
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
165 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu);
167 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
170 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
171 vcpu->arch.apf.gfns[i] = ~0;
174 static void kvm_on_user_return(struct user_return_notifier *urn)
177 struct kvm_shared_msrs *locals
178 = container_of(urn, struct kvm_shared_msrs, urn);
179 struct kvm_shared_msr_values *values;
181 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
182 values = &locals->values[slot];
183 if (values->host != values->curr) {
184 wrmsrl(shared_msrs_global.msrs[slot], values->host);
185 values->curr = values->host;
188 locals->registered = false;
189 user_return_notifier_unregister(urn);
192 static void shared_msr_update(unsigned slot, u32 msr)
195 unsigned int cpu = smp_processor_id();
196 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
198 /* only read, and nobody should modify it at this time,
199 * so don't need lock */
200 if (slot >= shared_msrs_global.nr) {
201 printk(KERN_ERR "kvm: invalid MSR slot!");
204 rdmsrl_safe(msr, &value);
205 smsr->values[slot].host = value;
206 smsr->values[slot].curr = value;
209 void kvm_define_shared_msr(unsigned slot, u32 msr)
211 if (slot >= shared_msrs_global.nr)
212 shared_msrs_global.nr = slot + 1;
213 shared_msrs_global.msrs[slot] = msr;
214 /* we need ensured the shared_msr_global have been updated */
217 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
219 static void kvm_shared_msr_cpu_online(void)
223 for (i = 0; i < shared_msrs_global.nr; ++i)
224 shared_msr_update(i, shared_msrs_global.msrs[i]);
227 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
229 unsigned int cpu = smp_processor_id();
230 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
232 if (((value ^ smsr->values[slot].curr) & mask) == 0)
234 smsr->values[slot].curr = value;
235 wrmsrl(shared_msrs_global.msrs[slot], value);
236 if (!smsr->registered) {
237 smsr->urn.on_user_return = kvm_on_user_return;
238 user_return_notifier_register(&smsr->urn);
239 smsr->registered = true;
242 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
244 static void drop_user_return_notifiers(void *ignore)
246 unsigned int cpu = smp_processor_id();
247 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
249 if (smsr->registered)
250 kvm_on_user_return(&smsr->urn);
253 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
255 return vcpu->arch.apic_base;
257 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
259 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
261 /* TODO: reserve bits check */
262 kvm_lapic_set_base(vcpu, data);
264 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
266 #define EXCPT_BENIGN 0
267 #define EXCPT_CONTRIBUTORY 1
270 static int exception_class(int vector)
280 return EXCPT_CONTRIBUTORY;
287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
288 unsigned nr, bool has_error, u32 error_code,
294 kvm_make_request(KVM_REQ_EVENT, vcpu);
296 if (!vcpu->arch.exception.pending) {
298 vcpu->arch.exception.pending = true;
299 vcpu->arch.exception.has_error_code = has_error;
300 vcpu->arch.exception.nr = nr;
301 vcpu->arch.exception.error_code = error_code;
302 vcpu->arch.exception.reinject = reinject;
306 /* to check exception */
307 prev_nr = vcpu->arch.exception.nr;
308 if (prev_nr == DF_VECTOR) {
309 /* triple fault -> shutdown */
310 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
313 class1 = exception_class(prev_nr);
314 class2 = exception_class(nr);
315 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
316 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
317 /* generate double fault per SDM Table 5-5 */
318 vcpu->arch.exception.pending = true;
319 vcpu->arch.exception.has_error_code = true;
320 vcpu->arch.exception.nr = DF_VECTOR;
321 vcpu->arch.exception.error_code = 0;
323 /* replace previous exception with a new one in a hope
324 that instruction re-execution will regenerate lost
329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
331 kvm_multiple_exception(vcpu, nr, false, 0, false);
333 EXPORT_SYMBOL_GPL(kvm_queue_exception);
335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
337 kvm_multiple_exception(vcpu, nr, false, 0, true);
339 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
344 kvm_inject_gp(vcpu, 0);
346 kvm_x86_ops->skip_emulated_instruction(vcpu);
348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
352 ++vcpu->stat.pf_guest;
353 vcpu->arch.cr2 = fault->address;
354 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
360 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
361 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
363 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
366 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
368 atomic_inc(&vcpu->arch.nmi_queued);
369 kvm_make_request(KVM_REQ_NMI, vcpu);
371 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
375 kvm_multiple_exception(vcpu, nr, true, error_code, false);
377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
381 kvm_multiple_exception(vcpu, nr, true, error_code, true);
383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
386 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
387 * a #GP and return false.
389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
391 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
393 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
396 EXPORT_SYMBOL_GPL(kvm_require_cpl);
399 * This function will be used to read from the physical memory of the currently
400 * running guest. The difference to kvm_read_guest_page is that this function
401 * can read from guest physical or from the guest's guest physical memory.
403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
404 gfn_t ngfn, void *data, int offset, int len,
410 ngpa = gfn_to_gpa(ngfn);
411 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
412 if (real_gfn == UNMAPPED_GVA)
415 real_gfn = gpa_to_gfn(real_gfn);
417 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
422 void *data, int offset, int len, u32 access)
424 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
425 data, offset, len, access);
429 * Load the pae pdptrs. Return true is they are all valid.
431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
433 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
434 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
437 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
439 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
440 offset * sizeof(u64), sizeof(pdpte),
441 PFERR_USER_MASK|PFERR_WRITE_MASK);
446 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
447 if (is_present_gpte(pdpte[i]) &&
448 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
455 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
456 __set_bit(VCPU_EXREG_PDPTR,
457 (unsigned long *)&vcpu->arch.regs_avail);
458 __set_bit(VCPU_EXREG_PDPTR,
459 (unsigned long *)&vcpu->arch.regs_dirty);
464 EXPORT_SYMBOL_GPL(load_pdptrs);
466 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
468 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
474 if (is_long_mode(vcpu) || !is_pae(vcpu))
477 if (!test_bit(VCPU_EXREG_PDPTR,
478 (unsigned long *)&vcpu->arch.regs_avail))
481 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
482 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
483 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
484 PFERR_USER_MASK | PFERR_WRITE_MASK);
487 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
495 unsigned long old_cr0 = kvm_read_cr0(vcpu);
496 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
497 X86_CR0_CD | X86_CR0_NW;
502 if (cr0 & 0xffffffff00000000UL)
506 cr0 &= ~CR0_RESERVED_BITS;
508 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
511 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
514 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
516 if ((vcpu->arch.efer & EFER_LME)) {
521 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
526 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
531 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
534 kvm_x86_ops->set_cr0(vcpu, cr0);
536 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
537 kvm_clear_async_pf_completion_queue(vcpu);
538 kvm_async_pf_hash_reset(vcpu);
541 if ((cr0 ^ old_cr0) & update_bits)
542 kvm_mmu_reset_context(vcpu);
545 EXPORT_SYMBOL_GPL(kvm_set_cr0);
547 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
549 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
551 EXPORT_SYMBOL_GPL(kvm_lmsw);
553 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
557 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
558 if (index != XCR_XFEATURE_ENABLED_MASK)
561 if (kvm_x86_ops->get_cpl(vcpu) != 0)
563 if (!(xcr0 & XSTATE_FP))
565 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
567 if (xcr0 & ~host_xcr0)
569 vcpu->arch.xcr0 = xcr0;
570 vcpu->guest_xcr0_loaded = 0;
574 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
576 if (__kvm_set_xcr(vcpu, index, xcr)) {
577 kvm_inject_gp(vcpu, 0);
582 EXPORT_SYMBOL_GPL(kvm_set_xcr);
584 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
586 unsigned long old_cr4 = kvm_read_cr4(vcpu);
587 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
588 X86_CR4_PAE | X86_CR4_SMEP;
589 if (cr4 & CR4_RESERVED_BITS)
592 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
595 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
598 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
601 if (is_long_mode(vcpu)) {
602 if (!(cr4 & X86_CR4_PAE))
604 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
605 && ((cr4 ^ old_cr4) & pdptr_bits)
606 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
610 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
611 if (!guest_cpuid_has_pcid(vcpu))
614 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
615 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
619 if (kvm_x86_ops->set_cr4(vcpu, cr4))
622 if (((cr4 ^ old_cr4) & pdptr_bits) ||
623 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
624 kvm_mmu_reset_context(vcpu);
626 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
627 kvm_update_cpuid(vcpu);
631 EXPORT_SYMBOL_GPL(kvm_set_cr4);
633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
635 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
636 kvm_mmu_sync_roots(vcpu);
637 kvm_mmu_flush_tlb(vcpu);
641 if (is_long_mode(vcpu)) {
642 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
643 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
646 if (cr3 & CR3_L_MODE_RESERVED_BITS)
650 if (cr3 & CR3_PAE_RESERVED_BITS)
652 if (is_paging(vcpu) &&
653 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
657 * We don't check reserved bits in nonpae mode, because
658 * this isn't enforced, and VMware depends on this.
663 * Does the new cr3 value map to physical memory? (Note, we
664 * catch an invalid cr3 even in real-mode, because it would
665 * cause trouble later on when we turn on paging anyway.)
667 * A real CPU would silently accept an invalid cr3 and would
668 * attempt to use it - with largely undefined (and often hard
669 * to debug) behavior on the guest side.
671 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
673 vcpu->arch.cr3 = cr3;
674 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
675 vcpu->arch.mmu.new_cr3(vcpu);
678 EXPORT_SYMBOL_GPL(kvm_set_cr3);
680 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
682 if (cr8 & CR8_RESERVED_BITS)
684 if (irqchip_in_kernel(vcpu->kvm))
685 kvm_lapic_set_tpr(vcpu, cr8);
687 vcpu->arch.cr8 = cr8;
690 EXPORT_SYMBOL_GPL(kvm_set_cr8);
692 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
694 if (irqchip_in_kernel(vcpu->kvm))
695 return kvm_lapic_get_cr8(vcpu);
697 return vcpu->arch.cr8;
699 EXPORT_SYMBOL_GPL(kvm_get_cr8);
701 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
705 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
706 dr7 = vcpu->arch.guest_debug_dr7;
708 dr7 = vcpu->arch.dr7;
709 kvm_x86_ops->set_dr7(vcpu, dr7);
710 vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
713 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
717 vcpu->arch.db[dr] = val;
718 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
719 vcpu->arch.eff_db[dr] = val;
722 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
726 if (val & 0xffffffff00000000ULL)
728 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
731 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
735 if (val & 0xffffffff00000000ULL)
737 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
738 kvm_update_dr7(vcpu);
745 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
749 res = __kvm_set_dr(vcpu, dr, val);
751 kvm_queue_exception(vcpu, UD_VECTOR);
753 kvm_inject_gp(vcpu, 0);
757 EXPORT_SYMBOL_GPL(kvm_set_dr);
759 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
763 *val = vcpu->arch.db[dr];
766 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
770 *val = vcpu->arch.dr6;
773 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
777 *val = vcpu->arch.dr7;
784 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
786 if (_kvm_get_dr(vcpu, dr, val)) {
787 kvm_queue_exception(vcpu, UD_VECTOR);
792 EXPORT_SYMBOL_GPL(kvm_get_dr);
794 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
796 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
800 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
803 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
804 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
807 EXPORT_SYMBOL_GPL(kvm_rdpmc);
810 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
811 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
813 * This list is modified at module load time to reflect the
814 * capabilities of the host cpu. This capabilities test skips MSRs that are
815 * kvm-specific. Those are put in the beginning of the list.
818 #define KVM_SAVE_MSRS_BEGIN 10
819 static u32 msrs_to_save[] = {
820 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
821 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
822 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
823 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
825 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
828 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
830 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
833 static unsigned num_msrs_to_save;
835 static const u32 emulated_msrs[] = {
837 MSR_IA32_TSCDEADLINE,
838 MSR_IA32_MISC_ENABLE,
843 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
845 u64 old_efer = vcpu->arch.efer;
847 if (efer & efer_reserved_bits)
851 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
854 if (efer & EFER_FFXSR) {
855 struct kvm_cpuid_entry2 *feat;
857 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
858 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
862 if (efer & EFER_SVME) {
863 struct kvm_cpuid_entry2 *feat;
865 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
866 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
871 efer |= vcpu->arch.efer & EFER_LMA;
873 kvm_x86_ops->set_efer(vcpu, efer);
875 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
877 /* Update reserved bits */
878 if ((efer ^ old_efer) & EFER_NX)
879 kvm_mmu_reset_context(vcpu);
884 void kvm_enable_efer_bits(u64 mask)
886 efer_reserved_bits &= ~mask;
888 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
892 * Writes msr value into into the appropriate "register".
893 * Returns 0 on success, non-0 otherwise.
894 * Assumes vcpu_load() was already called.
896 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
898 return kvm_x86_ops->set_msr(vcpu, msr);
902 * Adapt set_msr() to msr_io()'s calling convention
904 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
910 msr.host_initiated = true;
911 return kvm_set_msr(vcpu, &msr);
915 struct pvclock_gtod_data {
918 struct { /* extract of a clocksource struct */
926 /* open coded 'struct timespec' */
927 u64 monotonic_time_snsec;
928 time_t monotonic_time_sec;
931 static struct pvclock_gtod_data pvclock_gtod_data;
933 static void update_pvclock_gtod(struct timekeeper *tk)
935 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
937 write_seqcount_begin(&vdata->seq);
939 /* copy pvclock gtod data */
940 vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode;
941 vdata->clock.cycle_last = tk->clock->cycle_last;
942 vdata->clock.mask = tk->clock->mask;
943 vdata->clock.mult = tk->mult;
944 vdata->clock.shift = tk->shift;
946 vdata->monotonic_time_sec = tk->xtime_sec
947 + tk->wall_to_monotonic.tv_sec;
948 vdata->monotonic_time_snsec = tk->xtime_nsec
949 + (tk->wall_to_monotonic.tv_nsec
951 while (vdata->monotonic_time_snsec >=
952 (((u64)NSEC_PER_SEC) << tk->shift)) {
953 vdata->monotonic_time_snsec -=
954 ((u64)NSEC_PER_SEC) << tk->shift;
955 vdata->monotonic_time_sec++;
958 write_seqcount_end(&vdata->seq);
963 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
967 struct pvclock_wall_clock wc;
968 struct timespec boot;
973 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
978 ++version; /* first time write, random junk */
982 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
985 * The guest calculates current wall clock time by adding
986 * system time (updated by kvm_guest_time_update below) to the
987 * wall clock specified here. guest system time equals host
988 * system time for us, thus we must fill in host boot time here.
992 if (kvm->arch.kvmclock_offset) {
993 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
994 boot = timespec_sub(boot, ts);
996 wc.sec = boot.tv_sec;
997 wc.nsec = boot.tv_nsec;
998 wc.version = version;
1000 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1003 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1006 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1008 uint32_t quotient, remainder;
1010 /* Don't try to replace with do_div(), this one calculates
1011 * "(dividend << 32) / divisor" */
1013 : "=a" (quotient), "=d" (remainder)
1014 : "0" (0), "1" (dividend), "r" (divisor) );
1018 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1019 s8 *pshift, u32 *pmultiplier)
1026 tps64 = base_khz * 1000LL;
1027 scaled64 = scaled_khz * 1000LL;
1028 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1033 tps32 = (uint32_t)tps64;
1034 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1035 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1043 *pmultiplier = div_frac(scaled64, tps32);
1045 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1046 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1049 static inline u64 get_kernel_ns(void)
1053 WARN_ON(preemptible());
1055 monotonic_to_bootbased(&ts);
1056 return timespec_to_ns(&ts);
1059 #ifdef CONFIG_X86_64
1060 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1063 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1064 unsigned long max_tsc_khz;
1066 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1068 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1069 vcpu->arch.virtual_tsc_shift);
1072 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1074 u64 v = (u64)khz * (1000000 + ppm);
1079 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1081 u32 thresh_lo, thresh_hi;
1082 int use_scaling = 0;
1084 /* Compute a scale to convert nanoseconds in TSC cycles */
1085 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1086 &vcpu->arch.virtual_tsc_shift,
1087 &vcpu->arch.virtual_tsc_mult);
1088 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1091 * Compute the variation in TSC rate which is acceptable
1092 * within the range of tolerance and decide if the
1093 * rate being applied is within that bounds of the hardware
1094 * rate. If so, no scaling or compensation need be done.
1096 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1097 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1098 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1099 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1102 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1105 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1107 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1108 vcpu->arch.virtual_tsc_mult,
1109 vcpu->arch.virtual_tsc_shift);
1110 tsc += vcpu->arch.this_tsc_write;
1114 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1116 #ifdef CONFIG_X86_64
1118 bool do_request = false;
1119 struct kvm_arch *ka = &vcpu->kvm->arch;
1120 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1122 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1123 atomic_read(&vcpu->kvm->online_vcpus));
1125 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1126 if (!ka->use_master_clock)
1129 if (!vcpus_matched && ka->use_master_clock)
1133 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1135 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1136 atomic_read(&vcpu->kvm->online_vcpus),
1137 ka->use_master_clock, gtod->clock.vclock_mode);
1141 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1143 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1144 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1147 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1149 struct kvm *kvm = vcpu->kvm;
1150 u64 offset, ns, elapsed;
1151 unsigned long flags;
1154 u64 data = msr->data;
1156 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1157 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1158 ns = get_kernel_ns();
1159 elapsed = ns - kvm->arch.last_tsc_nsec;
1161 /* n.b - signed multiplication and division required */
1162 usdiff = data - kvm->arch.last_tsc_write;
1163 #ifdef CONFIG_X86_64
1164 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1166 /* do_div() only does unsigned */
1167 asm("idivl %2; xor %%edx, %%edx"
1169 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1171 do_div(elapsed, 1000);
1177 * Special case: TSC write with a small delta (1 second) of virtual
1178 * cycle time against real time is interpreted as an attempt to
1179 * synchronize the CPU.
1181 * For a reliable TSC, we can match TSC offsets, and for an unstable
1182 * TSC, we add elapsed time in this computation. We could let the
1183 * compensation code attempt to catch up if we fall behind, but
1184 * it's better to try to match offsets from the beginning.
1186 if (usdiff < USEC_PER_SEC &&
1187 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1188 if (!check_tsc_unstable()) {
1189 offset = kvm->arch.cur_tsc_offset;
1190 pr_debug("kvm: matched tsc offset for %llu\n", data);
1192 u64 delta = nsec_to_cycles(vcpu, elapsed);
1194 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1195 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1200 * We split periods of matched TSC writes into generations.
1201 * For each generation, we track the original measured
1202 * nanosecond time, offset, and write, so if TSCs are in
1203 * sync, we can match exact offset, and if not, we can match
1204 * exact software computation in compute_guest_tsc()
1206 * These values are tracked in kvm->arch.cur_xxx variables.
1208 kvm->arch.cur_tsc_generation++;
1209 kvm->arch.cur_tsc_nsec = ns;
1210 kvm->arch.cur_tsc_write = data;
1211 kvm->arch.cur_tsc_offset = offset;
1213 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1214 kvm->arch.cur_tsc_generation, data);
1218 * We also track th most recent recorded KHZ, write and time to
1219 * allow the matching interval to be extended at each write.
1221 kvm->arch.last_tsc_nsec = ns;
1222 kvm->arch.last_tsc_write = data;
1223 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1225 /* Reset of TSC must disable overshoot protection below */
1226 vcpu->arch.hv_clock.tsc_timestamp = 0;
1227 vcpu->arch.last_guest_tsc = data;
1229 /* Keep track of which generation this VCPU has synchronized to */
1230 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1231 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1232 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1234 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1235 update_ia32_tsc_adjust_msr(vcpu, offset);
1236 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1237 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1239 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1241 kvm->arch.nr_vcpus_matched_tsc++;
1243 kvm->arch.nr_vcpus_matched_tsc = 0;
1245 kvm_track_tsc_matching(vcpu);
1246 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1249 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1251 #ifdef CONFIG_X86_64
1253 static cycle_t read_tsc(void)
1259 * Empirically, a fence (of type that depends on the CPU)
1260 * before rdtsc is enough to ensure that rdtsc is ordered
1261 * with respect to loads. The various CPU manuals are unclear
1262 * as to whether rdtsc can be reordered with later loads,
1263 * but no one has ever seen it happen.
1266 ret = (cycle_t)vget_cycles();
1268 last = pvclock_gtod_data.clock.cycle_last;
1270 if (likely(ret >= last))
1274 * GCC likes to generate cmov here, but this branch is extremely
1275 * predictable (it's just a funciton of time and the likely is
1276 * very likely) and there's a data dependence, so force GCC
1277 * to generate a branch instead. I don't barrier() because
1278 * we don't actually need a barrier, and if this function
1279 * ever gets inlined it will generate worse code.
1285 static inline u64 vgettsc(cycle_t *cycle_now)
1288 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1290 *cycle_now = read_tsc();
1292 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1293 return v * gtod->clock.mult;
1296 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1301 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1305 seq = read_seqcount_begin(>od->seq);
1306 mode = gtod->clock.vclock_mode;
1307 ts->tv_sec = gtod->monotonic_time_sec;
1308 ns = gtod->monotonic_time_snsec;
1309 ns += vgettsc(cycle_now);
1310 ns >>= gtod->clock.shift;
1311 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1312 timespec_add_ns(ts, ns);
1317 /* returns true if host is using tsc clocksource */
1318 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1322 /* checked again under seqlock below */
1323 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1326 if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1329 monotonic_to_bootbased(&ts);
1330 *kernel_ns = timespec_to_ns(&ts);
1338 * Assuming a stable TSC across physical CPUS, and a stable TSC
1339 * across virtual CPUs, the following condition is possible.
1340 * Each numbered line represents an event visible to both
1341 * CPUs at the next numbered event.
1343 * "timespecX" represents host monotonic time. "tscX" represents
1346 * VCPU0 on CPU0 | VCPU1 on CPU1
1348 * 1. read timespec0,tsc0
1349 * 2. | timespec1 = timespec0 + N
1351 * 3. transition to guest | transition to guest
1352 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1353 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1354 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1356 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1359 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1361 * - 0 < N - M => M < N
1363 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1364 * always the case (the difference between two distinct xtime instances
1365 * might be smaller then the difference between corresponding TSC reads,
1366 * when updating guest vcpus pvclock areas).
1368 * To avoid that problem, do not allow visibility of distinct
1369 * system_timestamp/tsc_timestamp values simultaneously: use a master
1370 * copy of host monotonic time values. Update that master copy
1373 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1377 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1379 #ifdef CONFIG_X86_64
1380 struct kvm_arch *ka = &kvm->arch;
1382 bool host_tsc_clocksource, vcpus_matched;
1384 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1385 atomic_read(&kvm->online_vcpus));
1388 * If the host uses TSC clock, then passthrough TSC as stable
1391 host_tsc_clocksource = kvm_get_time_and_clockread(
1392 &ka->master_kernel_ns,
1393 &ka->master_cycle_now);
1395 ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1397 if (ka->use_master_clock)
1398 atomic_set(&kvm_guest_has_master_clock, 1);
1400 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1401 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1406 static int kvm_guest_time_update(struct kvm_vcpu *v)
1408 unsigned long flags, this_tsc_khz;
1409 struct kvm_vcpu_arch *vcpu = &v->arch;
1410 struct kvm_arch *ka = &v->kvm->arch;
1412 s64 kernel_ns, max_kernel_ns;
1413 u64 tsc_timestamp, host_tsc;
1414 struct pvclock_vcpu_time_info *guest_hv_clock;
1416 bool use_master_clock;
1421 /* Keep irq disabled to prevent changes to the clock */
1422 local_irq_save(flags);
1423 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1424 if (unlikely(this_tsc_khz == 0)) {
1425 local_irq_restore(flags);
1426 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1431 * If the host uses TSC clock, then passthrough TSC as stable
1434 spin_lock(&ka->pvclock_gtod_sync_lock);
1435 use_master_clock = ka->use_master_clock;
1436 if (use_master_clock) {
1437 host_tsc = ka->master_cycle_now;
1438 kernel_ns = ka->master_kernel_ns;
1440 spin_unlock(&ka->pvclock_gtod_sync_lock);
1441 if (!use_master_clock) {
1442 host_tsc = native_read_tsc();
1443 kernel_ns = get_kernel_ns();
1446 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1449 * We may have to catch up the TSC to match elapsed wall clock
1450 * time for two reasons, even if kvmclock is used.
1451 * 1) CPU could have been running below the maximum TSC rate
1452 * 2) Broken TSC compensation resets the base at each VCPU
1453 * entry to avoid unknown leaps of TSC even when running
1454 * again on the same CPU. This may cause apparent elapsed
1455 * time to disappear, and the guest to stand still or run
1458 if (vcpu->tsc_catchup) {
1459 u64 tsc = compute_guest_tsc(v, kernel_ns);
1460 if (tsc > tsc_timestamp) {
1461 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1462 tsc_timestamp = tsc;
1466 local_irq_restore(flags);
1468 if (!vcpu->time_page)
1472 * Time as measured by the TSC may go backwards when resetting the base
1473 * tsc_timestamp. The reason for this is that the TSC resolution is
1474 * higher than the resolution of the other clock scales. Thus, many
1475 * possible measurments of the TSC correspond to one measurement of any
1476 * other clock, and so a spread of values is possible. This is not a
1477 * problem for the computation of the nanosecond clock; with TSC rates
1478 * around 1GHZ, there can only be a few cycles which correspond to one
1479 * nanosecond value, and any path through this code will inevitably
1480 * take longer than that. However, with the kernel_ns value itself,
1481 * the precision may be much lower, down to HZ granularity. If the
1482 * first sampling of TSC against kernel_ns ends in the low part of the
1483 * range, and the second in the high end of the range, we can get:
1485 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1487 * As the sampling errors potentially range in the thousands of cycles,
1488 * it is possible such a time value has already been observed by the
1489 * guest. To protect against this, we must compute the system time as
1490 * observed by the guest and ensure the new system time is greater.
1493 if (vcpu->hv_clock.tsc_timestamp) {
1494 max_kernel_ns = vcpu->last_guest_tsc -
1495 vcpu->hv_clock.tsc_timestamp;
1496 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1497 vcpu->hv_clock.tsc_to_system_mul,
1498 vcpu->hv_clock.tsc_shift);
1499 max_kernel_ns += vcpu->last_kernel_ns;
1502 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1503 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1504 &vcpu->hv_clock.tsc_shift,
1505 &vcpu->hv_clock.tsc_to_system_mul);
1506 vcpu->hw_tsc_khz = this_tsc_khz;
1509 /* with a master <monotonic time, tsc value> tuple,
1510 * pvclock clock reads always increase at the (scaled) rate
1511 * of guest TSC - no need to deal with sampling errors.
1513 if (!use_master_clock) {
1514 if (max_kernel_ns > kernel_ns)
1515 kernel_ns = max_kernel_ns;
1517 /* With all the info we got, fill in the values */
1518 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1519 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1520 vcpu->last_kernel_ns = kernel_ns;
1521 vcpu->last_guest_tsc = tsc_timestamp;
1524 * The interface expects us to write an even number signaling that the
1525 * update is finished. Since the guest won't see the intermediate
1526 * state, we just increase by 2 at the end.
1528 vcpu->hv_clock.version += 2;
1530 shared_kaddr = kmap_atomic(vcpu->time_page);
1532 guest_hv_clock = shared_kaddr + vcpu->time_offset;
1534 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1535 pvclock_flags = (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
1537 if (vcpu->pvclock_set_guest_stopped_request) {
1538 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1539 vcpu->pvclock_set_guest_stopped_request = false;
1542 /* If the host uses TSC clocksource, then it is stable */
1543 if (use_master_clock)
1544 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1546 vcpu->hv_clock.flags = pvclock_flags;
1548 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1549 sizeof(vcpu->hv_clock));
1551 kunmap_atomic(shared_kaddr);
1553 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1557 static bool msr_mtrr_valid(unsigned msr)
1560 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1561 case MSR_MTRRfix64K_00000:
1562 case MSR_MTRRfix16K_80000:
1563 case MSR_MTRRfix16K_A0000:
1564 case MSR_MTRRfix4K_C0000:
1565 case MSR_MTRRfix4K_C8000:
1566 case MSR_MTRRfix4K_D0000:
1567 case MSR_MTRRfix4K_D8000:
1568 case MSR_MTRRfix4K_E0000:
1569 case MSR_MTRRfix4K_E8000:
1570 case MSR_MTRRfix4K_F0000:
1571 case MSR_MTRRfix4K_F8000:
1572 case MSR_MTRRdefType:
1573 case MSR_IA32_CR_PAT:
1581 static bool valid_pat_type(unsigned t)
1583 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1586 static bool valid_mtrr_type(unsigned t)
1588 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1591 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1595 if (!msr_mtrr_valid(msr))
1598 if (msr == MSR_IA32_CR_PAT) {
1599 for (i = 0; i < 8; i++)
1600 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1603 } else if (msr == MSR_MTRRdefType) {
1606 return valid_mtrr_type(data & 0xff);
1607 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1608 for (i = 0; i < 8 ; i++)
1609 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1614 /* variable MTRRs */
1615 return valid_mtrr_type(data & 0xff);
1618 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1620 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1622 if (!mtrr_valid(vcpu, msr, data))
1625 if (msr == MSR_MTRRdefType) {
1626 vcpu->arch.mtrr_state.def_type = data;
1627 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1628 } else if (msr == MSR_MTRRfix64K_00000)
1630 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1631 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1632 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1633 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1634 else if (msr == MSR_IA32_CR_PAT)
1635 vcpu->arch.pat = data;
1636 else { /* Variable MTRRs */
1637 int idx, is_mtrr_mask;
1640 idx = (msr - 0x200) / 2;
1641 is_mtrr_mask = msr - 0x200 - 2 * idx;
1644 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1647 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1651 kvm_mmu_reset_context(vcpu);
1655 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1657 u64 mcg_cap = vcpu->arch.mcg_cap;
1658 unsigned bank_num = mcg_cap & 0xff;
1661 case MSR_IA32_MCG_STATUS:
1662 vcpu->arch.mcg_status = data;
1664 case MSR_IA32_MCG_CTL:
1665 if (!(mcg_cap & MCG_CTL_P))
1667 if (data != 0 && data != ~(u64)0)
1669 vcpu->arch.mcg_ctl = data;
1672 if (msr >= MSR_IA32_MC0_CTL &&
1673 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1674 u32 offset = msr - MSR_IA32_MC0_CTL;
1675 /* only 0 or all 1s can be written to IA32_MCi_CTL
1676 * some Linux kernels though clear bit 10 in bank 4 to
1677 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1678 * this to avoid an uncatched #GP in the guest
1680 if ((offset & 0x3) == 0 &&
1681 data != 0 && (data | (1 << 10)) != ~(u64)0)
1683 vcpu->arch.mce_banks[offset] = data;
1691 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1693 struct kvm *kvm = vcpu->kvm;
1694 int lm = is_long_mode(vcpu);
1695 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1696 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1697 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1698 : kvm->arch.xen_hvm_config.blob_size_32;
1699 u32 page_num = data & ~PAGE_MASK;
1700 u64 page_addr = data & PAGE_MASK;
1705 if (page_num >= blob_size)
1708 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1713 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1722 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1724 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1727 static bool kvm_hv_msr_partition_wide(u32 msr)
1731 case HV_X64_MSR_GUEST_OS_ID:
1732 case HV_X64_MSR_HYPERCALL:
1740 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1742 struct kvm *kvm = vcpu->kvm;
1745 case HV_X64_MSR_GUEST_OS_ID:
1746 kvm->arch.hv_guest_os_id = data;
1747 /* setting guest os id to zero disables hypercall page */
1748 if (!kvm->arch.hv_guest_os_id)
1749 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1751 case HV_X64_MSR_HYPERCALL: {
1756 /* if guest os id is not set hypercall should remain disabled */
1757 if (!kvm->arch.hv_guest_os_id)
1759 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1760 kvm->arch.hv_hypercall = data;
1763 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1764 addr = gfn_to_hva(kvm, gfn);
1765 if (kvm_is_error_hva(addr))
1767 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1768 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1769 if (__copy_to_user((void __user *)addr, instructions, 4))
1771 kvm->arch.hv_hypercall = data;
1775 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1776 "data 0x%llx\n", msr, data);
1782 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1785 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1788 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1789 vcpu->arch.hv_vapic = data;
1792 addr = gfn_to_hva(vcpu->kvm, data >>
1793 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1794 if (kvm_is_error_hva(addr))
1796 if (__clear_user((void __user *)addr, PAGE_SIZE))
1798 vcpu->arch.hv_vapic = data;
1801 case HV_X64_MSR_EOI:
1802 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1803 case HV_X64_MSR_ICR:
1804 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1805 case HV_X64_MSR_TPR:
1806 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1808 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1809 "data 0x%llx\n", msr, data);
1816 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1818 gpa_t gpa = data & ~0x3f;
1820 /* Bits 2:5 are reserved, Should be zero */
1824 vcpu->arch.apf.msr_val = data;
1826 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1827 kvm_clear_async_pf_completion_queue(vcpu);
1828 kvm_async_pf_hash_reset(vcpu);
1832 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1835 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1836 kvm_async_pf_wakeup_all(vcpu);
1840 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1842 if (vcpu->arch.time_page) {
1843 kvm_release_page_dirty(vcpu->arch.time_page);
1844 vcpu->arch.time_page = NULL;
1848 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1852 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1855 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1856 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1857 vcpu->arch.st.accum_steal = delta;
1860 static void record_steal_time(struct kvm_vcpu *vcpu)
1862 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1865 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1866 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1869 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1870 vcpu->arch.st.steal.version += 2;
1871 vcpu->arch.st.accum_steal = 0;
1873 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1874 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1877 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1880 u32 msr = msr_info->index;
1881 u64 data = msr_info->data;
1884 case MSR_AMD64_NB_CFG:
1885 case MSR_IA32_UCODE_REV:
1886 case MSR_IA32_UCODE_WRITE:
1887 case MSR_VM_HSAVE_PA:
1888 case MSR_AMD64_PATCH_LOADER:
1889 case MSR_AMD64_BU_CFG2:
1893 return set_efer(vcpu, data);
1895 data &= ~(u64)0x40; /* ignore flush filter disable */
1896 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1897 data &= ~(u64)0x8; /* ignore TLB cache disable */
1899 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1904 case MSR_FAM10H_MMIO_CONF_BASE:
1906 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1911 case MSR_IA32_DEBUGCTLMSR:
1913 /* We support the non-activated case already */
1915 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1916 /* Values other than LBR and BTF are vendor-specific,
1917 thus reserved and should throw a #GP */
1920 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1923 case 0x200 ... 0x2ff:
1924 return set_msr_mtrr(vcpu, msr, data);
1925 case MSR_IA32_APICBASE:
1926 kvm_set_apic_base(vcpu, data);
1928 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1929 return kvm_x2apic_msr_write(vcpu, msr, data);
1930 case MSR_IA32_TSCDEADLINE:
1931 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1933 case MSR_IA32_TSC_ADJUST:
1934 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1935 if (!msr_info->host_initiated) {
1936 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1937 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1939 vcpu->arch.ia32_tsc_adjust_msr = data;
1942 case MSR_IA32_MISC_ENABLE:
1943 vcpu->arch.ia32_misc_enable_msr = data;
1945 case MSR_KVM_WALL_CLOCK_NEW:
1946 case MSR_KVM_WALL_CLOCK:
1947 vcpu->kvm->arch.wall_clock = data;
1948 kvm_write_wall_clock(vcpu->kvm, data);
1950 case MSR_KVM_SYSTEM_TIME_NEW:
1951 case MSR_KVM_SYSTEM_TIME: {
1952 kvmclock_reset(vcpu);
1954 vcpu->arch.time = data;
1955 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1957 /* we verify if the enable bit is set... */
1961 /* ...but clean it before doing the actual write */
1962 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1964 vcpu->arch.time_page =
1965 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1967 if (is_error_page(vcpu->arch.time_page))
1968 vcpu->arch.time_page = NULL;
1972 case MSR_KVM_ASYNC_PF_EN:
1973 if (kvm_pv_enable_async_pf(vcpu, data))
1976 case MSR_KVM_STEAL_TIME:
1978 if (unlikely(!sched_info_on()))
1981 if (data & KVM_STEAL_RESERVED_MASK)
1984 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1985 data & KVM_STEAL_VALID_BITS))
1988 vcpu->arch.st.msr_val = data;
1990 if (!(data & KVM_MSR_ENABLED))
1993 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1996 accumulate_steal_time(vcpu);
1999 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2002 case MSR_KVM_PV_EOI_EN:
2003 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2007 case MSR_IA32_MCG_CTL:
2008 case MSR_IA32_MCG_STATUS:
2009 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2010 return set_msr_mce(vcpu, msr, data);
2012 /* Performance counters are not protected by a CPUID bit,
2013 * so we should check all of them in the generic path for the sake of
2014 * cross vendor migration.
2015 * Writing a zero into the event select MSRs disables them,
2016 * which we perfectly emulate ;-). Any other value should be at least
2017 * reported, some guests depend on them.
2019 case MSR_K7_EVNTSEL0:
2020 case MSR_K7_EVNTSEL1:
2021 case MSR_K7_EVNTSEL2:
2022 case MSR_K7_EVNTSEL3:
2024 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2025 "0x%x data 0x%llx\n", msr, data);
2027 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2028 * so we ignore writes to make it happy.
2030 case MSR_K7_PERFCTR0:
2031 case MSR_K7_PERFCTR1:
2032 case MSR_K7_PERFCTR2:
2033 case MSR_K7_PERFCTR3:
2034 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2035 "0x%x data 0x%llx\n", msr, data);
2037 case MSR_P6_PERFCTR0:
2038 case MSR_P6_PERFCTR1:
2040 case MSR_P6_EVNTSEL0:
2041 case MSR_P6_EVNTSEL1:
2042 if (kvm_pmu_msr(vcpu, msr))
2043 return kvm_pmu_set_msr(vcpu, msr, data);
2045 if (pr || data != 0)
2046 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2047 "0x%x data 0x%llx\n", msr, data);
2049 case MSR_K7_CLK_CTL:
2051 * Ignore all writes to this no longer documented MSR.
2052 * Writes are only relevant for old K7 processors,
2053 * all pre-dating SVM, but a recommended workaround from
2054 * AMD for these chips. It is possible to specify the
2055 * affected processor models on the command line, hence
2056 * the need to ignore the workaround.
2059 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2060 if (kvm_hv_msr_partition_wide(msr)) {
2062 mutex_lock(&vcpu->kvm->lock);
2063 r = set_msr_hyperv_pw(vcpu, msr, data);
2064 mutex_unlock(&vcpu->kvm->lock);
2067 return set_msr_hyperv(vcpu, msr, data);
2069 case MSR_IA32_BBL_CR_CTL3:
2070 /* Drop writes to this legacy MSR -- see rdmsr
2071 * counterpart for further detail.
2073 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2075 case MSR_AMD64_OSVW_ID_LENGTH:
2076 if (!guest_cpuid_has_osvw(vcpu))
2078 vcpu->arch.osvw.length = data;
2080 case MSR_AMD64_OSVW_STATUS:
2081 if (!guest_cpuid_has_osvw(vcpu))
2083 vcpu->arch.osvw.status = data;
2086 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2087 return xen_hvm_config(vcpu, data);
2088 if (kvm_pmu_msr(vcpu, msr))
2089 return kvm_pmu_set_msr(vcpu, msr, data);
2091 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2095 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2102 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2106 * Reads an msr value (of 'msr_index') into 'pdata'.
2107 * Returns 0 on success, non-0 otherwise.
2108 * Assumes vcpu_load() was already called.
2110 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2112 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2115 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2117 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2119 if (!msr_mtrr_valid(msr))
2122 if (msr == MSR_MTRRdefType)
2123 *pdata = vcpu->arch.mtrr_state.def_type +
2124 (vcpu->arch.mtrr_state.enabled << 10);
2125 else if (msr == MSR_MTRRfix64K_00000)
2127 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2128 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2129 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2130 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2131 else if (msr == MSR_IA32_CR_PAT)
2132 *pdata = vcpu->arch.pat;
2133 else { /* Variable MTRRs */
2134 int idx, is_mtrr_mask;
2137 idx = (msr - 0x200) / 2;
2138 is_mtrr_mask = msr - 0x200 - 2 * idx;
2141 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2144 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2151 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2154 u64 mcg_cap = vcpu->arch.mcg_cap;
2155 unsigned bank_num = mcg_cap & 0xff;
2158 case MSR_IA32_P5_MC_ADDR:
2159 case MSR_IA32_P5_MC_TYPE:
2162 case MSR_IA32_MCG_CAP:
2163 data = vcpu->arch.mcg_cap;
2165 case MSR_IA32_MCG_CTL:
2166 if (!(mcg_cap & MCG_CTL_P))
2168 data = vcpu->arch.mcg_ctl;
2170 case MSR_IA32_MCG_STATUS:
2171 data = vcpu->arch.mcg_status;
2174 if (msr >= MSR_IA32_MC0_CTL &&
2175 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2176 u32 offset = msr - MSR_IA32_MC0_CTL;
2177 data = vcpu->arch.mce_banks[offset];
2186 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2189 struct kvm *kvm = vcpu->kvm;
2192 case HV_X64_MSR_GUEST_OS_ID:
2193 data = kvm->arch.hv_guest_os_id;
2195 case HV_X64_MSR_HYPERCALL:
2196 data = kvm->arch.hv_hypercall;
2199 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2207 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2212 case HV_X64_MSR_VP_INDEX: {
2215 kvm_for_each_vcpu(r, v, vcpu->kvm)
2220 case HV_X64_MSR_EOI:
2221 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2222 case HV_X64_MSR_ICR:
2223 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2224 case HV_X64_MSR_TPR:
2225 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2226 case HV_X64_MSR_APIC_ASSIST_PAGE:
2227 data = vcpu->arch.hv_vapic;
2230 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2237 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2242 case MSR_IA32_PLATFORM_ID:
2243 case MSR_IA32_EBL_CR_POWERON:
2244 case MSR_IA32_DEBUGCTLMSR:
2245 case MSR_IA32_LASTBRANCHFROMIP:
2246 case MSR_IA32_LASTBRANCHTOIP:
2247 case MSR_IA32_LASTINTFROMIP:
2248 case MSR_IA32_LASTINTTOIP:
2251 case MSR_VM_HSAVE_PA:
2252 case MSR_K7_EVNTSEL0:
2253 case MSR_K7_PERFCTR0:
2254 case MSR_K8_INT_PENDING_MSG:
2255 case MSR_AMD64_NB_CFG:
2256 case MSR_FAM10H_MMIO_CONF_BASE:
2257 case MSR_AMD64_BU_CFG2:
2260 case MSR_P6_PERFCTR0:
2261 case MSR_P6_PERFCTR1:
2262 case MSR_P6_EVNTSEL0:
2263 case MSR_P6_EVNTSEL1:
2264 if (kvm_pmu_msr(vcpu, msr))
2265 return kvm_pmu_get_msr(vcpu, msr, pdata);
2268 case MSR_IA32_UCODE_REV:
2269 data = 0x100000000ULL;
2272 data = 0x500 | KVM_NR_VAR_MTRR;
2274 case 0x200 ... 0x2ff:
2275 return get_msr_mtrr(vcpu, msr, pdata);
2276 case 0xcd: /* fsb frequency */
2280 * MSR_EBC_FREQUENCY_ID
2281 * Conservative value valid for even the basic CPU models.
2282 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2283 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2284 * and 266MHz for model 3, or 4. Set Core Clock
2285 * Frequency to System Bus Frequency Ratio to 1 (bits
2286 * 31:24) even though these are only valid for CPU
2287 * models > 2, however guests may end up dividing or
2288 * multiplying by zero otherwise.
2290 case MSR_EBC_FREQUENCY_ID:
2293 case MSR_IA32_APICBASE:
2294 data = kvm_get_apic_base(vcpu);
2296 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2297 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2299 case MSR_IA32_TSCDEADLINE:
2300 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2302 case MSR_IA32_TSC_ADJUST:
2303 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2305 case MSR_IA32_MISC_ENABLE:
2306 data = vcpu->arch.ia32_misc_enable_msr;
2308 case MSR_IA32_PERF_STATUS:
2309 /* TSC increment by tick */
2311 /* CPU multiplier */
2312 data |= (((uint64_t)4ULL) << 40);
2315 data = vcpu->arch.efer;
2317 case MSR_KVM_WALL_CLOCK:
2318 case MSR_KVM_WALL_CLOCK_NEW:
2319 data = vcpu->kvm->arch.wall_clock;
2321 case MSR_KVM_SYSTEM_TIME:
2322 case MSR_KVM_SYSTEM_TIME_NEW:
2323 data = vcpu->arch.time;
2325 case MSR_KVM_ASYNC_PF_EN:
2326 data = vcpu->arch.apf.msr_val;
2328 case MSR_KVM_STEAL_TIME:
2329 data = vcpu->arch.st.msr_val;
2331 case MSR_KVM_PV_EOI_EN:
2332 data = vcpu->arch.pv_eoi.msr_val;
2334 case MSR_IA32_P5_MC_ADDR:
2335 case MSR_IA32_P5_MC_TYPE:
2336 case MSR_IA32_MCG_CAP:
2337 case MSR_IA32_MCG_CTL:
2338 case MSR_IA32_MCG_STATUS:
2339 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2340 return get_msr_mce(vcpu, msr, pdata);
2341 case MSR_K7_CLK_CTL:
2343 * Provide expected ramp-up count for K7. All other
2344 * are set to zero, indicating minimum divisors for
2347 * This prevents guest kernels on AMD host with CPU
2348 * type 6, model 8 and higher from exploding due to
2349 * the rdmsr failing.
2353 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2354 if (kvm_hv_msr_partition_wide(msr)) {
2356 mutex_lock(&vcpu->kvm->lock);
2357 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2358 mutex_unlock(&vcpu->kvm->lock);
2361 return get_msr_hyperv(vcpu, msr, pdata);
2363 case MSR_IA32_BBL_CR_CTL3:
2364 /* This legacy MSR exists but isn't fully documented in current
2365 * silicon. It is however accessed by winxp in very narrow
2366 * scenarios where it sets bit #19, itself documented as
2367 * a "reserved" bit. Best effort attempt to source coherent
2368 * read data here should the balance of the register be
2369 * interpreted by the guest:
2371 * L2 cache control register 3: 64GB range, 256KB size,
2372 * enabled, latency 0x1, configured
2376 case MSR_AMD64_OSVW_ID_LENGTH:
2377 if (!guest_cpuid_has_osvw(vcpu))
2379 data = vcpu->arch.osvw.length;
2381 case MSR_AMD64_OSVW_STATUS:
2382 if (!guest_cpuid_has_osvw(vcpu))
2384 data = vcpu->arch.osvw.status;
2387 if (kvm_pmu_msr(vcpu, msr))
2388 return kvm_pmu_get_msr(vcpu, msr, pdata);
2390 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2393 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2401 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2404 * Read or write a bunch of msrs. All parameters are kernel addresses.
2406 * @return number of msrs set successfully.
2408 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2409 struct kvm_msr_entry *entries,
2410 int (*do_msr)(struct kvm_vcpu *vcpu,
2411 unsigned index, u64 *data))
2415 idx = srcu_read_lock(&vcpu->kvm->srcu);
2416 for (i = 0; i < msrs->nmsrs; ++i)
2417 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2419 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2425 * Read or write a bunch of msrs. Parameters are user addresses.
2427 * @return number of msrs set successfully.
2429 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2430 int (*do_msr)(struct kvm_vcpu *vcpu,
2431 unsigned index, u64 *data),
2434 struct kvm_msrs msrs;
2435 struct kvm_msr_entry *entries;
2440 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2444 if (msrs.nmsrs >= MAX_IO_MSRS)
2447 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2448 entries = memdup_user(user_msrs->entries, size);
2449 if (IS_ERR(entries)) {
2450 r = PTR_ERR(entries);
2454 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2459 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2470 int kvm_dev_ioctl_check_extension(long ext)
2475 case KVM_CAP_IRQCHIP:
2477 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2478 case KVM_CAP_SET_TSS_ADDR:
2479 case KVM_CAP_EXT_CPUID:
2480 case KVM_CAP_CLOCKSOURCE:
2482 case KVM_CAP_NOP_IO_DELAY:
2483 case KVM_CAP_MP_STATE:
2484 case KVM_CAP_SYNC_MMU:
2485 case KVM_CAP_USER_NMI:
2486 case KVM_CAP_REINJECT_CONTROL:
2487 case KVM_CAP_IRQ_INJECT_STATUS:
2488 case KVM_CAP_ASSIGN_DEV_IRQ:
2490 case KVM_CAP_IOEVENTFD:
2492 case KVM_CAP_PIT_STATE2:
2493 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2494 case KVM_CAP_XEN_HVM:
2495 case KVM_CAP_ADJUST_CLOCK:
2496 case KVM_CAP_VCPU_EVENTS:
2497 case KVM_CAP_HYPERV:
2498 case KVM_CAP_HYPERV_VAPIC:
2499 case KVM_CAP_HYPERV_SPIN:
2500 case KVM_CAP_PCI_SEGMENT:
2501 case KVM_CAP_DEBUGREGS:
2502 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2504 case KVM_CAP_ASYNC_PF:
2505 case KVM_CAP_GET_TSC_KHZ:
2506 case KVM_CAP_PCI_2_3:
2507 case KVM_CAP_KVMCLOCK_CTRL:
2508 case KVM_CAP_READONLY_MEM:
2509 case KVM_CAP_IRQFD_RESAMPLE:
2512 case KVM_CAP_COALESCED_MMIO:
2513 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2516 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2518 case KVM_CAP_NR_VCPUS:
2519 r = KVM_SOFT_MAX_VCPUS;
2521 case KVM_CAP_MAX_VCPUS:
2524 case KVM_CAP_NR_MEMSLOTS:
2525 r = KVM_MEMORY_SLOTS;
2527 case KVM_CAP_PV_MMU: /* obsolete */
2531 r = iommu_present(&pci_bus_type);
2534 r = KVM_MAX_MCE_BANKS;
2539 case KVM_CAP_TSC_CONTROL:
2540 r = kvm_has_tsc_control;
2542 case KVM_CAP_TSC_DEADLINE_TIMER:
2543 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2553 long kvm_arch_dev_ioctl(struct file *filp,
2554 unsigned int ioctl, unsigned long arg)
2556 void __user *argp = (void __user *)arg;
2560 case KVM_GET_MSR_INDEX_LIST: {
2561 struct kvm_msr_list __user *user_msr_list = argp;
2562 struct kvm_msr_list msr_list;
2566 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2569 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2570 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2573 if (n < msr_list.nmsrs)
2576 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2577 num_msrs_to_save * sizeof(u32)))
2579 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2581 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2586 case KVM_GET_SUPPORTED_CPUID: {
2587 struct kvm_cpuid2 __user *cpuid_arg = argp;
2588 struct kvm_cpuid2 cpuid;
2591 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2593 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2594 cpuid_arg->entries);
2599 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2604 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2607 mce_cap = KVM_MCE_CAP_SUPPORTED;
2609 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2621 static void wbinvd_ipi(void *garbage)
2626 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2628 return vcpu->kvm->arch.iommu_domain &&
2629 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2632 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2634 /* Address WBINVD may be executed by guest */
2635 if (need_emulate_wbinvd(vcpu)) {
2636 if (kvm_x86_ops->has_wbinvd_exit())
2637 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2638 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2639 smp_call_function_single(vcpu->cpu,
2640 wbinvd_ipi, NULL, 1);
2643 kvm_x86_ops->vcpu_load(vcpu, cpu);
2645 /* Apply any externally detected TSC adjustments (due to suspend) */
2646 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2647 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2648 vcpu->arch.tsc_offset_adjustment = 0;
2649 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2652 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2653 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2654 native_read_tsc() - vcpu->arch.last_host_tsc;
2656 mark_tsc_unstable("KVM discovered backwards TSC");
2657 if (check_tsc_unstable()) {
2658 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2659 vcpu->arch.last_guest_tsc);
2660 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2661 vcpu->arch.tsc_catchup = 1;
2664 * On a host with synchronized TSC, there is no need to update
2665 * kvmclock on vcpu->cpu migration
2667 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2668 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2669 if (vcpu->cpu != cpu)
2670 kvm_migrate_timers(vcpu);
2674 accumulate_steal_time(vcpu);
2675 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2678 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2680 kvm_x86_ops->vcpu_put(vcpu);
2681 kvm_put_guest_fpu(vcpu);
2682 vcpu->arch.last_host_tsc = native_read_tsc();
2685 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2686 struct kvm_lapic_state *s)
2688 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2693 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2694 struct kvm_lapic_state *s)
2696 kvm_apic_post_state_restore(vcpu, s);
2697 update_cr8_intercept(vcpu);
2702 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2703 struct kvm_interrupt *irq)
2705 if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
2707 if (irqchip_in_kernel(vcpu->kvm))
2710 kvm_queue_interrupt(vcpu, irq->irq, false);
2711 kvm_make_request(KVM_REQ_EVENT, vcpu);
2716 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2718 kvm_inject_nmi(vcpu);
2723 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2724 struct kvm_tpr_access_ctl *tac)
2728 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2732 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2736 unsigned bank_num = mcg_cap & 0xff, bank;
2739 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2741 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2744 vcpu->arch.mcg_cap = mcg_cap;
2745 /* Init IA32_MCG_CTL to all 1s */
2746 if (mcg_cap & MCG_CTL_P)
2747 vcpu->arch.mcg_ctl = ~(u64)0;
2748 /* Init IA32_MCi_CTL to all 1s */
2749 for (bank = 0; bank < bank_num; bank++)
2750 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2755 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2756 struct kvm_x86_mce *mce)
2758 u64 mcg_cap = vcpu->arch.mcg_cap;
2759 unsigned bank_num = mcg_cap & 0xff;
2760 u64 *banks = vcpu->arch.mce_banks;
2762 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2765 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2766 * reporting is disabled
2768 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2769 vcpu->arch.mcg_ctl != ~(u64)0)
2771 banks += 4 * mce->bank;
2773 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2774 * reporting is disabled for the bank
2776 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2778 if (mce->status & MCI_STATUS_UC) {
2779 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2780 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2781 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2784 if (banks[1] & MCI_STATUS_VAL)
2785 mce->status |= MCI_STATUS_OVER;
2786 banks[2] = mce->addr;
2787 banks[3] = mce->misc;
2788 vcpu->arch.mcg_status = mce->mcg_status;
2789 banks[1] = mce->status;
2790 kvm_queue_exception(vcpu, MC_VECTOR);
2791 } else if (!(banks[1] & MCI_STATUS_VAL)
2792 || !(banks[1] & MCI_STATUS_UC)) {
2793 if (banks[1] & MCI_STATUS_VAL)
2794 mce->status |= MCI_STATUS_OVER;
2795 banks[2] = mce->addr;
2796 banks[3] = mce->misc;
2797 banks[1] = mce->status;
2799 banks[1] |= MCI_STATUS_OVER;
2803 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2804 struct kvm_vcpu_events *events)
2807 events->exception.injected =
2808 vcpu->arch.exception.pending &&
2809 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2810 events->exception.nr = vcpu->arch.exception.nr;
2811 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2812 events->exception.pad = 0;
2813 events->exception.error_code = vcpu->arch.exception.error_code;
2815 events->interrupt.injected =
2816 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2817 events->interrupt.nr = vcpu->arch.interrupt.nr;
2818 events->interrupt.soft = 0;
2819 events->interrupt.shadow =
2820 kvm_x86_ops->get_interrupt_shadow(vcpu,
2821 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2823 events->nmi.injected = vcpu->arch.nmi_injected;
2824 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2825 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2826 events->nmi.pad = 0;
2828 events->sipi_vector = vcpu->arch.sipi_vector;
2830 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2831 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2832 | KVM_VCPUEVENT_VALID_SHADOW);
2833 memset(&events->reserved, 0, sizeof(events->reserved));
2836 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2837 struct kvm_vcpu_events *events)
2839 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2840 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2841 | KVM_VCPUEVENT_VALID_SHADOW))
2845 vcpu->arch.exception.pending = events->exception.injected;
2846 vcpu->arch.exception.nr = events->exception.nr;
2847 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2848 vcpu->arch.exception.error_code = events->exception.error_code;
2850 vcpu->arch.interrupt.pending = events->interrupt.injected;
2851 vcpu->arch.interrupt.nr = events->interrupt.nr;
2852 vcpu->arch.interrupt.soft = events->interrupt.soft;
2853 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2854 kvm_x86_ops->set_interrupt_shadow(vcpu,
2855 events->interrupt.shadow);
2857 vcpu->arch.nmi_injected = events->nmi.injected;
2858 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2859 vcpu->arch.nmi_pending = events->nmi.pending;
2860 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2862 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2863 vcpu->arch.sipi_vector = events->sipi_vector;
2865 kvm_make_request(KVM_REQ_EVENT, vcpu);
2870 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2871 struct kvm_debugregs *dbgregs)
2873 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2874 dbgregs->dr6 = vcpu->arch.dr6;
2875 dbgregs->dr7 = vcpu->arch.dr7;
2877 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2880 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2881 struct kvm_debugregs *dbgregs)
2886 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2887 vcpu->arch.dr6 = dbgregs->dr6;
2888 vcpu->arch.dr7 = dbgregs->dr7;
2893 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2894 struct kvm_xsave *guest_xsave)
2897 memcpy(guest_xsave->region,
2898 &vcpu->arch.guest_fpu.state->xsave,
2901 memcpy(guest_xsave->region,
2902 &vcpu->arch.guest_fpu.state->fxsave,
2903 sizeof(struct i387_fxsave_struct));
2904 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2909 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2910 struct kvm_xsave *guest_xsave)
2913 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2916 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2917 guest_xsave->region, xstate_size);
2919 if (xstate_bv & ~XSTATE_FPSSE)
2921 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2922 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2927 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2928 struct kvm_xcrs *guest_xcrs)
2930 if (!cpu_has_xsave) {
2931 guest_xcrs->nr_xcrs = 0;
2935 guest_xcrs->nr_xcrs = 1;
2936 guest_xcrs->flags = 0;
2937 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2938 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2941 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2942 struct kvm_xcrs *guest_xcrs)
2949 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2952 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2953 /* Only support XCR0 currently */
2954 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2955 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2956 guest_xcrs->xcrs[0].value);
2965 * kvm_set_guest_paused() indicates to the guest kernel that it has been
2966 * stopped by the hypervisor. This function will be called from the host only.
2967 * EINVAL is returned when the host attempts to set the flag for a guest that
2968 * does not support pv clocks.
2970 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2972 if (!vcpu->arch.time_page)
2974 vcpu->arch.pvclock_set_guest_stopped_request = true;
2975 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2979 long kvm_arch_vcpu_ioctl(struct file *filp,
2980 unsigned int ioctl, unsigned long arg)
2982 struct kvm_vcpu *vcpu = filp->private_data;
2983 void __user *argp = (void __user *)arg;
2986 struct kvm_lapic_state *lapic;
2987 struct kvm_xsave *xsave;
2988 struct kvm_xcrs *xcrs;
2994 case KVM_GET_LAPIC: {
2996 if (!vcpu->arch.apic)
2998 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3003 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3007 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3012 case KVM_SET_LAPIC: {
3014 if (!vcpu->arch.apic)
3016 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3017 if (IS_ERR(u.lapic))
3018 return PTR_ERR(u.lapic);
3020 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3023 case KVM_INTERRUPT: {
3024 struct kvm_interrupt irq;
3027 if (copy_from_user(&irq, argp, sizeof irq))
3029 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3033 r = kvm_vcpu_ioctl_nmi(vcpu);
3036 case KVM_SET_CPUID: {
3037 struct kvm_cpuid __user *cpuid_arg = argp;
3038 struct kvm_cpuid cpuid;
3041 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3043 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3046 case KVM_SET_CPUID2: {
3047 struct kvm_cpuid2 __user *cpuid_arg = argp;
3048 struct kvm_cpuid2 cpuid;
3051 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3053 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3054 cpuid_arg->entries);
3057 case KVM_GET_CPUID2: {
3058 struct kvm_cpuid2 __user *cpuid_arg = argp;
3059 struct kvm_cpuid2 cpuid;
3062 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3064 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3065 cpuid_arg->entries);
3069 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3075 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3078 r = msr_io(vcpu, argp, do_set_msr, 0);
3080 case KVM_TPR_ACCESS_REPORTING: {
3081 struct kvm_tpr_access_ctl tac;
3084 if (copy_from_user(&tac, argp, sizeof tac))
3086 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3090 if (copy_to_user(argp, &tac, sizeof tac))
3095 case KVM_SET_VAPIC_ADDR: {
3096 struct kvm_vapic_addr va;
3099 if (!irqchip_in_kernel(vcpu->kvm))
3102 if (copy_from_user(&va, argp, sizeof va))
3105 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3108 case KVM_X86_SETUP_MCE: {
3112 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3114 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3117 case KVM_X86_SET_MCE: {
3118 struct kvm_x86_mce mce;
3121 if (copy_from_user(&mce, argp, sizeof mce))
3123 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3126 case KVM_GET_VCPU_EVENTS: {
3127 struct kvm_vcpu_events events;
3129 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3132 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3137 case KVM_SET_VCPU_EVENTS: {
3138 struct kvm_vcpu_events events;
3141 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3144 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3147 case KVM_GET_DEBUGREGS: {
3148 struct kvm_debugregs dbgregs;
3150 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3153 if (copy_to_user(argp, &dbgregs,
3154 sizeof(struct kvm_debugregs)))
3159 case KVM_SET_DEBUGREGS: {
3160 struct kvm_debugregs dbgregs;
3163 if (copy_from_user(&dbgregs, argp,
3164 sizeof(struct kvm_debugregs)))
3167 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3170 case KVM_GET_XSAVE: {
3171 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3176 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3179 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3184 case KVM_SET_XSAVE: {
3185 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3186 if (IS_ERR(u.xsave))
3187 return PTR_ERR(u.xsave);
3189 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3192 case KVM_GET_XCRS: {
3193 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3198 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3201 if (copy_to_user(argp, u.xcrs,
3202 sizeof(struct kvm_xcrs)))
3207 case KVM_SET_XCRS: {
3208 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3210 return PTR_ERR(u.xcrs);
3212 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3215 case KVM_SET_TSC_KHZ: {
3219 user_tsc_khz = (u32)arg;
3221 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3224 if (user_tsc_khz == 0)
3225 user_tsc_khz = tsc_khz;
3227 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3232 case KVM_GET_TSC_KHZ: {
3233 r = vcpu->arch.virtual_tsc_khz;
3236 case KVM_KVMCLOCK_CTRL: {
3237 r = kvm_set_guest_paused(vcpu);
3248 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3250 return VM_FAULT_SIGBUS;
3253 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3257 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3259 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3263 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3266 kvm->arch.ept_identity_map_addr = ident_addr;
3270 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3271 u32 kvm_nr_mmu_pages)
3273 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3276 mutex_lock(&kvm->slots_lock);
3277 spin_lock(&kvm->mmu_lock);
3279 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3280 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3282 spin_unlock(&kvm->mmu_lock);
3283 mutex_unlock(&kvm->slots_lock);
3287 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3289 return kvm->arch.n_max_mmu_pages;
3292 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3297 switch (chip->chip_id) {
3298 case KVM_IRQCHIP_PIC_MASTER:
3299 memcpy(&chip->chip.pic,
3300 &pic_irqchip(kvm)->pics[0],
3301 sizeof(struct kvm_pic_state));
3303 case KVM_IRQCHIP_PIC_SLAVE:
3304 memcpy(&chip->chip.pic,
3305 &pic_irqchip(kvm)->pics[1],
3306 sizeof(struct kvm_pic_state));
3308 case KVM_IRQCHIP_IOAPIC:
3309 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3318 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3323 switch (chip->chip_id) {
3324 case KVM_IRQCHIP_PIC_MASTER:
3325 spin_lock(&pic_irqchip(kvm)->lock);
3326 memcpy(&pic_irqchip(kvm)->pics[0],
3328 sizeof(struct kvm_pic_state));
3329 spin_unlock(&pic_irqchip(kvm)->lock);
3331 case KVM_IRQCHIP_PIC_SLAVE:
3332 spin_lock(&pic_irqchip(kvm)->lock);
3333 memcpy(&pic_irqchip(kvm)->pics[1],
3335 sizeof(struct kvm_pic_state));
3336 spin_unlock(&pic_irqchip(kvm)->lock);
3338 case KVM_IRQCHIP_IOAPIC:
3339 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3345 kvm_pic_update_irq(pic_irqchip(kvm));
3349 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3353 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3354 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3355 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3359 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3363 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3364 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3365 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3366 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3370 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3374 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3375 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3376 sizeof(ps->channels));
3377 ps->flags = kvm->arch.vpit->pit_state.flags;
3378 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3379 memset(&ps->reserved, 0, sizeof(ps->reserved));
3383 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3385 int r = 0, start = 0;
3386 u32 prev_legacy, cur_legacy;
3387 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3388 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3389 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3390 if (!prev_legacy && cur_legacy)
3392 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3393 sizeof(kvm->arch.vpit->pit_state.channels));
3394 kvm->arch.vpit->pit_state.flags = ps->flags;
3395 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3396 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3400 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3401 struct kvm_reinject_control *control)
3403 if (!kvm->arch.vpit)
3405 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3406 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3407 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3412 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3413 * @kvm: kvm instance
3414 * @log: slot id and address to which we copy the log
3416 * We need to keep it in mind that VCPU threads can write to the bitmap
3417 * concurrently. So, to avoid losing data, we keep the following order for
3420 * 1. Take a snapshot of the bit and clear it if needed.
3421 * 2. Write protect the corresponding page.
3422 * 3. Flush TLB's if needed.
3423 * 4. Copy the snapshot to the userspace.
3425 * Between 2 and 3, the guest may write to the page using the remaining TLB
3426 * entry. This is not a problem because the page will be reported dirty at
3427 * step 4 using the snapshot taken before and step 3 ensures that successive
3428 * writes will be logged for the next call.
3430 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3433 struct kvm_memory_slot *memslot;
3435 unsigned long *dirty_bitmap;
3436 unsigned long *dirty_bitmap_buffer;
3437 bool is_dirty = false;
3439 mutex_lock(&kvm->slots_lock);
3442 if (log->slot >= KVM_MEMORY_SLOTS)
3445 memslot = id_to_memslot(kvm->memslots, log->slot);
3447 dirty_bitmap = memslot->dirty_bitmap;
3452 n = kvm_dirty_bitmap_bytes(memslot);
3454 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3455 memset(dirty_bitmap_buffer, 0, n);
3457 spin_lock(&kvm->mmu_lock);
3459 for (i = 0; i < n / sizeof(long); i++) {
3463 if (!dirty_bitmap[i])
3468 mask = xchg(&dirty_bitmap[i], 0);
3469 dirty_bitmap_buffer[i] = mask;
3471 offset = i * BITS_PER_LONG;
3472 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3475 kvm_flush_remote_tlbs(kvm);
3477 spin_unlock(&kvm->mmu_lock);
3480 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3485 mutex_unlock(&kvm->slots_lock);
3489 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
3491 if (!irqchip_in_kernel(kvm))
3494 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3495 irq_event->irq, irq_event->level);
3499 long kvm_arch_vm_ioctl(struct file *filp,
3500 unsigned int ioctl, unsigned long arg)
3502 struct kvm *kvm = filp->private_data;
3503 void __user *argp = (void __user *)arg;
3506 * This union makes it completely explicit to gcc-3.x
3507 * that these two variables' stack usage should be
3508 * combined, not added together.
3511 struct kvm_pit_state ps;
3512 struct kvm_pit_state2 ps2;
3513 struct kvm_pit_config pit_config;
3517 case KVM_SET_TSS_ADDR:
3518 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3520 case KVM_SET_IDENTITY_MAP_ADDR: {
3524 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3526 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3529 case KVM_SET_NR_MMU_PAGES:
3530 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3532 case KVM_GET_NR_MMU_PAGES:
3533 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3535 case KVM_CREATE_IRQCHIP: {
3536 struct kvm_pic *vpic;
3538 mutex_lock(&kvm->lock);
3541 goto create_irqchip_unlock;
3543 if (atomic_read(&kvm->online_vcpus))
3544 goto create_irqchip_unlock;
3546 vpic = kvm_create_pic(kvm);
3548 r = kvm_ioapic_init(kvm);
3550 mutex_lock(&kvm->slots_lock);
3551 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3553 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3555 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3557 mutex_unlock(&kvm->slots_lock);
3559 goto create_irqchip_unlock;
3562 goto create_irqchip_unlock;
3564 kvm->arch.vpic = vpic;
3566 r = kvm_setup_default_irq_routing(kvm);
3568 mutex_lock(&kvm->slots_lock);
3569 mutex_lock(&kvm->irq_lock);
3570 kvm_ioapic_destroy(kvm);
3571 kvm_destroy_pic(kvm);
3572 mutex_unlock(&kvm->irq_lock);
3573 mutex_unlock(&kvm->slots_lock);
3575 create_irqchip_unlock:
3576 mutex_unlock(&kvm->lock);
3579 case KVM_CREATE_PIT:
3580 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3582 case KVM_CREATE_PIT2:
3584 if (copy_from_user(&u.pit_config, argp,
3585 sizeof(struct kvm_pit_config)))
3588 mutex_lock(&kvm->slots_lock);
3591 goto create_pit_unlock;
3593 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3597 mutex_unlock(&kvm->slots_lock);
3599 case KVM_GET_IRQCHIP: {
3600 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3601 struct kvm_irqchip *chip;
3603 chip = memdup_user(argp, sizeof(*chip));
3610 if (!irqchip_in_kernel(kvm))
3611 goto get_irqchip_out;
3612 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3614 goto get_irqchip_out;
3616 if (copy_to_user(argp, chip, sizeof *chip))
3617 goto get_irqchip_out;
3623 case KVM_SET_IRQCHIP: {
3624 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3625 struct kvm_irqchip *chip;
3627 chip = memdup_user(argp, sizeof(*chip));
3634 if (!irqchip_in_kernel(kvm))
3635 goto set_irqchip_out;
3636 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3638 goto set_irqchip_out;
3646 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3649 if (!kvm->arch.vpit)
3651 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3655 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3662 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3665 if (!kvm->arch.vpit)
3667 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3670 case KVM_GET_PIT2: {
3672 if (!kvm->arch.vpit)
3674 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3678 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3683 case KVM_SET_PIT2: {
3685 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3688 if (!kvm->arch.vpit)
3690 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3693 case KVM_REINJECT_CONTROL: {
3694 struct kvm_reinject_control control;
3696 if (copy_from_user(&control, argp, sizeof(control)))
3698 r = kvm_vm_ioctl_reinject(kvm, &control);
3701 case KVM_XEN_HVM_CONFIG: {
3703 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3704 sizeof(struct kvm_xen_hvm_config)))
3707 if (kvm->arch.xen_hvm_config.flags)
3712 case KVM_SET_CLOCK: {
3713 struct kvm_clock_data user_ns;
3718 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3726 local_irq_disable();
3727 now_ns = get_kernel_ns();
3728 delta = user_ns.clock - now_ns;
3730 kvm->arch.kvmclock_offset = delta;
3733 case KVM_GET_CLOCK: {
3734 struct kvm_clock_data user_ns;
3737 local_irq_disable();
3738 now_ns = get_kernel_ns();
3739 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3742 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3745 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3758 static void kvm_init_msr_list(void)
3763 /* skip the first msrs in the list. KVM-specific */
3764 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3765 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3768 msrs_to_save[j] = msrs_to_save[i];
3771 num_msrs_to_save = j;
3774 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3782 if (!(vcpu->arch.apic &&
3783 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3784 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3795 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3802 if (!(vcpu->arch.apic &&
3803 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3804 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3806 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3816 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3817 struct kvm_segment *var, int seg)
3819 kvm_x86_ops->set_segment(vcpu, var, seg);
3822 void kvm_get_segment(struct kvm_vcpu *vcpu,
3823 struct kvm_segment *var, int seg)
3825 kvm_x86_ops->get_segment(vcpu, var, seg);
3828 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3831 struct x86_exception exception;
3833 BUG_ON(!mmu_is_nested(vcpu));
3835 /* NPT walks are always user-walks */
3836 access |= PFERR_USER_MASK;
3837 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3842 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3843 struct x86_exception *exception)
3845 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3846 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3849 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3850 struct x86_exception *exception)
3852 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3853 access |= PFERR_FETCH_MASK;
3854 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3857 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3858 struct x86_exception *exception)
3860 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3861 access |= PFERR_WRITE_MASK;
3862 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3865 /* uses this to access any guest's mapped memory without checking CPL */
3866 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3867 struct x86_exception *exception)
3869 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3872 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3873 struct kvm_vcpu *vcpu, u32 access,
3874 struct x86_exception *exception)
3877 int r = X86EMUL_CONTINUE;
3880 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3882 unsigned offset = addr & (PAGE_SIZE-1);
3883 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3886 if (gpa == UNMAPPED_GVA)
3887 return X86EMUL_PROPAGATE_FAULT;
3888 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3890 r = X86EMUL_IO_NEEDED;
3902 /* used for instruction fetching */
3903 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3904 gva_t addr, void *val, unsigned int bytes,
3905 struct x86_exception *exception)
3907 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3908 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3910 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3911 access | PFERR_FETCH_MASK,
3915 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3916 gva_t addr, void *val, unsigned int bytes,
3917 struct x86_exception *exception)
3919 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3920 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3922 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3925 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3927 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3928 gva_t addr, void *val, unsigned int bytes,
3929 struct x86_exception *exception)
3931 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3932 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3935 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3936 gva_t addr, void *val,
3938 struct x86_exception *exception)
3940 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3942 int r = X86EMUL_CONTINUE;
3945 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3948 unsigned offset = addr & (PAGE_SIZE-1);
3949 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3952 if (gpa == UNMAPPED_GVA)
3953 return X86EMUL_PROPAGATE_FAULT;
3954 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3956 r = X86EMUL_IO_NEEDED;
3967 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3969 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3970 gpa_t *gpa, struct x86_exception *exception,
3973 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
3974 | (write ? PFERR_WRITE_MASK : 0);
3976 if (vcpu_match_mmio_gva(vcpu, gva)
3977 && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
3978 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3979 (gva & (PAGE_SIZE - 1));
3980 trace_vcpu_match_mmio(gva, *gpa, write, false);
3984 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3986 if (*gpa == UNMAPPED_GVA)
3989 /* For APIC access vmexit */
3990 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3993 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3994 trace_vcpu_match_mmio(gva, *gpa, write, true);
4001 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4002 const void *val, int bytes)
4006 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4009 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4013 struct read_write_emulator_ops {
4014 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4016 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4017 void *val, int bytes);
4018 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4019 int bytes, void *val);
4020 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4021 void *val, int bytes);
4025 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4027 if (vcpu->mmio_read_completed) {
4028 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4029 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4030 vcpu->mmio_read_completed = 0;
4037 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4038 void *val, int bytes)
4040 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4043 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4044 void *val, int bytes)
4046 return emulator_write_phys(vcpu, gpa, val, bytes);
4049 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4051 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4052 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4055 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4056 void *val, int bytes)
4058 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4059 return X86EMUL_IO_NEEDED;
4062 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4063 void *val, int bytes)
4065 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4067 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4068 return X86EMUL_CONTINUE;
4071 static const struct read_write_emulator_ops read_emultor = {
4072 .read_write_prepare = read_prepare,
4073 .read_write_emulate = read_emulate,
4074 .read_write_mmio = vcpu_mmio_read,
4075 .read_write_exit_mmio = read_exit_mmio,
4078 static const struct read_write_emulator_ops write_emultor = {
4079 .read_write_emulate = write_emulate,
4080 .read_write_mmio = write_mmio,
4081 .read_write_exit_mmio = write_exit_mmio,
4085 static int emulator_read_write_onepage(unsigned long addr, void *val,
4087 struct x86_exception *exception,
4088 struct kvm_vcpu *vcpu,
4089 const struct read_write_emulator_ops *ops)
4093 bool write = ops->write;
4094 struct kvm_mmio_fragment *frag;
4096 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4099 return X86EMUL_PROPAGATE_FAULT;
4101 /* For APIC access vmexit */
4105 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4106 return X86EMUL_CONTINUE;
4110 * Is this MMIO handled locally?
4112 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4113 if (handled == bytes)
4114 return X86EMUL_CONTINUE;
4120 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4121 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4125 return X86EMUL_CONTINUE;
4128 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4129 void *val, unsigned int bytes,
4130 struct x86_exception *exception,
4131 const struct read_write_emulator_ops *ops)
4133 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4137 if (ops->read_write_prepare &&
4138 ops->read_write_prepare(vcpu, val, bytes))
4139 return X86EMUL_CONTINUE;
4141 vcpu->mmio_nr_fragments = 0;
4143 /* Crossing a page boundary? */
4144 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4147 now = -addr & ~PAGE_MASK;
4148 rc = emulator_read_write_onepage(addr, val, now, exception,
4151 if (rc != X86EMUL_CONTINUE)
4158 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4160 if (rc != X86EMUL_CONTINUE)
4163 if (!vcpu->mmio_nr_fragments)
4166 gpa = vcpu->mmio_fragments[0].gpa;
4168 vcpu->mmio_needed = 1;
4169 vcpu->mmio_cur_fragment = 0;
4171 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4172 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4173 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4174 vcpu->run->mmio.phys_addr = gpa;
4176 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4179 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4183 struct x86_exception *exception)
4185 return emulator_read_write(ctxt, addr, val, bytes,
4186 exception, &read_emultor);
4189 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4193 struct x86_exception *exception)
4195 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4196 exception, &write_emultor);
4199 #define CMPXCHG_TYPE(t, ptr, old, new) \
4200 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4202 #ifdef CONFIG_X86_64
4203 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4205 # define CMPXCHG64(ptr, old, new) \
4206 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4209 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4214 struct x86_exception *exception)
4216 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4222 /* guests cmpxchg8b have to be emulated atomically */
4223 if (bytes > 8 || (bytes & (bytes - 1)))
4226 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4228 if (gpa == UNMAPPED_GVA ||
4229 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4232 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4235 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4236 if (is_error_page(page))
4239 kaddr = kmap_atomic(page);
4240 kaddr += offset_in_page(gpa);
4243 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4246 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4249 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4252 exchanged = CMPXCHG64(kaddr, old, new);
4257 kunmap_atomic(kaddr);
4258 kvm_release_page_dirty(page);
4261 return X86EMUL_CMPXCHG_FAILED;
4263 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4265 return X86EMUL_CONTINUE;
4268 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4270 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4273 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4275 /* TODO: String I/O for in kernel device */
4278 if (vcpu->arch.pio.in)
4279 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4280 vcpu->arch.pio.size, pd);
4282 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4283 vcpu->arch.pio.port, vcpu->arch.pio.size,
4288 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4289 unsigned short port, void *val,
4290 unsigned int count, bool in)
4292 trace_kvm_pio(!in, port, size, count);
4294 vcpu->arch.pio.port = port;
4295 vcpu->arch.pio.in = in;
4296 vcpu->arch.pio.count = count;
4297 vcpu->arch.pio.size = size;
4299 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4300 vcpu->arch.pio.count = 0;
4304 vcpu->run->exit_reason = KVM_EXIT_IO;
4305 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4306 vcpu->run->io.size = size;
4307 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4308 vcpu->run->io.count = count;
4309 vcpu->run->io.port = port;
4314 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4315 int size, unsigned short port, void *val,
4318 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4321 if (vcpu->arch.pio.count)
4324 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4327 memcpy(val, vcpu->arch.pio_data, size * count);
4328 vcpu->arch.pio.count = 0;
4335 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4336 int size, unsigned short port,
4337 const void *val, unsigned int count)
4339 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4341 memcpy(vcpu->arch.pio_data, val, size * count);
4342 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4345 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4347 return kvm_x86_ops->get_segment_base(vcpu, seg);
4350 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4352 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4355 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4357 if (!need_emulate_wbinvd(vcpu))
4358 return X86EMUL_CONTINUE;
4360 if (kvm_x86_ops->has_wbinvd_exit()) {
4361 int cpu = get_cpu();
4363 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4364 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4365 wbinvd_ipi, NULL, 1);
4367 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4370 return X86EMUL_CONTINUE;
4372 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4374 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4376 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4379 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4381 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4384 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4387 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4390 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4392 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4395 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4397 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4398 unsigned long value;
4402 value = kvm_read_cr0(vcpu);
4405 value = vcpu->arch.cr2;
4408 value = kvm_read_cr3(vcpu);
4411 value = kvm_read_cr4(vcpu);
4414 value = kvm_get_cr8(vcpu);
4417 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4424 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4426 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4431 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4434 vcpu->arch.cr2 = val;
4437 res = kvm_set_cr3(vcpu, val);
4440 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4443 res = kvm_set_cr8(vcpu, val);
4446 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4453 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4455 kvm_set_rflags(emul_to_vcpu(ctxt), val);
4458 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4460 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4463 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4465 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4468 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4470 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4473 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4475 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4478 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4480 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4483 static unsigned long emulator_get_cached_segment_base(
4484 struct x86_emulate_ctxt *ctxt, int seg)
4486 return get_segment_base(emul_to_vcpu(ctxt), seg);
4489 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4490 struct desc_struct *desc, u32 *base3,
4493 struct kvm_segment var;
4495 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4496 *selector = var.selector;
4503 set_desc_limit(desc, var.limit);
4504 set_desc_base(desc, (unsigned long)var.base);
4505 #ifdef CONFIG_X86_64
4507 *base3 = var.base >> 32;
4509 desc->type = var.type;
4511 desc->dpl = var.dpl;
4512 desc->p = var.present;
4513 desc->avl = var.avl;
4521 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4522 struct desc_struct *desc, u32 base3,
4525 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4526 struct kvm_segment var;
4528 var.selector = selector;
4529 var.base = get_desc_base(desc);
4530 #ifdef CONFIG_X86_64
4531 var.base |= ((u64)base3) << 32;
4533 var.limit = get_desc_limit(desc);
4535 var.limit = (var.limit << 12) | 0xfff;
4536 var.type = desc->type;
4537 var.present = desc->p;
4538 var.dpl = desc->dpl;
4543 var.avl = desc->avl;
4544 var.present = desc->p;
4545 var.unusable = !var.present;
4548 kvm_set_segment(vcpu, &var, seg);
4552 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4553 u32 msr_index, u64 *pdata)
4555 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4558 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4559 u32 msr_index, u64 data)
4561 struct msr_data msr;
4564 msr.index = msr_index;
4565 msr.host_initiated = false;
4566 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4569 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4570 u32 pmc, u64 *pdata)
4572 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4575 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4577 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4580 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4583 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4585 * CR0.TS may reference the host fpu state, not the guest fpu state,
4586 * so it may be clear at this point.
4591 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4596 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4597 struct x86_instruction_info *info,
4598 enum x86_intercept_stage stage)
4600 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4603 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4604 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4606 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4609 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4611 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4614 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4616 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4619 static const struct x86_emulate_ops emulate_ops = {
4620 .read_gpr = emulator_read_gpr,
4621 .write_gpr = emulator_write_gpr,
4622 .read_std = kvm_read_guest_virt_system,
4623 .write_std = kvm_write_guest_virt_system,
4624 .fetch = kvm_fetch_guest_virt,
4625 .read_emulated = emulator_read_emulated,
4626 .write_emulated = emulator_write_emulated,
4627 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4628 .invlpg = emulator_invlpg,
4629 .pio_in_emulated = emulator_pio_in_emulated,
4630 .pio_out_emulated = emulator_pio_out_emulated,
4631 .get_segment = emulator_get_segment,
4632 .set_segment = emulator_set_segment,
4633 .get_cached_segment_base = emulator_get_cached_segment_base,
4634 .get_gdt = emulator_get_gdt,
4635 .get_idt = emulator_get_idt,
4636 .set_gdt = emulator_set_gdt,
4637 .set_idt = emulator_set_idt,
4638 .get_cr = emulator_get_cr,
4639 .set_cr = emulator_set_cr,
4640 .set_rflags = emulator_set_rflags,
4641 .cpl = emulator_get_cpl,
4642 .get_dr = emulator_get_dr,
4643 .set_dr = emulator_set_dr,
4644 .set_msr = emulator_set_msr,
4645 .get_msr = emulator_get_msr,
4646 .read_pmc = emulator_read_pmc,
4647 .halt = emulator_halt,
4648 .wbinvd = emulator_wbinvd,
4649 .fix_hypercall = emulator_fix_hypercall,
4650 .get_fpu = emulator_get_fpu,
4651 .put_fpu = emulator_put_fpu,
4652 .intercept = emulator_intercept,
4653 .get_cpuid = emulator_get_cpuid,
4656 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4658 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4660 * an sti; sti; sequence only disable interrupts for the first
4661 * instruction. So, if the last instruction, be it emulated or
4662 * not, left the system with the INT_STI flag enabled, it
4663 * means that the last instruction is an sti. We should not
4664 * leave the flag on in this case. The same goes for mov ss
4666 if (!(int_shadow & mask))
4667 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4670 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4672 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4673 if (ctxt->exception.vector == PF_VECTOR)
4674 kvm_propagate_fault(vcpu, &ctxt->exception);
4675 else if (ctxt->exception.error_code_valid)
4676 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4677 ctxt->exception.error_code);
4679 kvm_queue_exception(vcpu, ctxt->exception.vector);
4682 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4684 memset(&ctxt->twobyte, 0,
4685 (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4687 ctxt->fetch.start = 0;
4688 ctxt->fetch.end = 0;
4689 ctxt->io_read.pos = 0;
4690 ctxt->io_read.end = 0;
4691 ctxt->mem_read.pos = 0;
4692 ctxt->mem_read.end = 0;
4695 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4697 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4700 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4702 ctxt->eflags = kvm_get_rflags(vcpu);
4703 ctxt->eip = kvm_rip_read(vcpu);
4704 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4705 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4706 cs_l ? X86EMUL_MODE_PROT64 :
4707 cs_db ? X86EMUL_MODE_PROT32 :
4708 X86EMUL_MODE_PROT16;
4709 ctxt->guest_mode = is_guest_mode(vcpu);
4711 init_decode_cache(ctxt);
4712 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4715 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4717 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4720 init_emulate_ctxt(vcpu);
4724 ctxt->_eip = ctxt->eip + inc_eip;
4725 ret = emulate_int_real(ctxt, irq);
4727 if (ret != X86EMUL_CONTINUE)
4728 return EMULATE_FAIL;
4730 ctxt->eip = ctxt->_eip;
4731 kvm_rip_write(vcpu, ctxt->eip);
4732 kvm_set_rflags(vcpu, ctxt->eflags);
4734 if (irq == NMI_VECTOR)
4735 vcpu->arch.nmi_pending = 0;
4737 vcpu->arch.interrupt.pending = false;
4739 return EMULATE_DONE;
4741 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4743 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4745 int r = EMULATE_DONE;
4747 ++vcpu->stat.insn_emulation_fail;
4748 trace_kvm_emulate_insn_failed(vcpu);
4749 if (!is_guest_mode(vcpu)) {
4750 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4751 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4752 vcpu->run->internal.ndata = 0;
4755 kvm_queue_exception(vcpu, UD_VECTOR);
4760 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4769 * if emulation was due to access to shadowed page table
4770 * and it failed try to unshadow page and re-enter the
4771 * guest to let CPU execute the instruction.
4773 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4776 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4778 if (gpa == UNMAPPED_GVA)
4779 return true; /* let cpu generate fault */
4782 * Do not retry the unhandleable instruction if it faults on the
4783 * readonly host memory, otherwise it will goto a infinite loop:
4784 * retry instruction -> write #PF -> emulation fail -> retry
4785 * instruction -> ...
4787 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4788 if (!is_error_noslot_pfn(pfn)) {
4789 kvm_release_pfn_clean(pfn);
4796 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4797 unsigned long cr2, int emulation_type)
4799 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4800 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4802 last_retry_eip = vcpu->arch.last_retry_eip;
4803 last_retry_addr = vcpu->arch.last_retry_addr;
4806 * If the emulation is caused by #PF and it is non-page_table
4807 * writing instruction, it means the VM-EXIT is caused by shadow
4808 * page protected, we can zap the shadow page and retry this
4809 * instruction directly.
4811 * Note: if the guest uses a non-page-table modifying instruction
4812 * on the PDE that points to the instruction, then we will unmap
4813 * the instruction and go to an infinite loop. So, we cache the
4814 * last retried eip and the last fault address, if we meet the eip
4815 * and the address again, we can break out of the potential infinite
4818 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4820 if (!(emulation_type & EMULTYPE_RETRY))
4823 if (x86_page_table_writing_insn(ctxt))
4826 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4829 vcpu->arch.last_retry_eip = ctxt->eip;
4830 vcpu->arch.last_retry_addr = cr2;
4832 if (!vcpu->arch.mmu.direct_map)
4833 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4835 kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4840 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4841 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4843 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4850 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4851 bool writeback = true;
4853 kvm_clear_exception_queue(vcpu);
4855 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4856 init_emulate_ctxt(vcpu);
4857 ctxt->interruptibility = 0;
4858 ctxt->have_exception = false;
4859 ctxt->perm_ok = false;
4861 ctxt->only_vendor_specific_insn
4862 = emulation_type & EMULTYPE_TRAP_UD;
4864 r = x86_decode_insn(ctxt, insn, insn_len);
4866 trace_kvm_emulate_insn_start(vcpu);
4867 ++vcpu->stat.insn_emulation;
4868 if (r != EMULATION_OK) {
4869 if (emulation_type & EMULTYPE_TRAP_UD)
4870 return EMULATE_FAIL;
4871 if (reexecute_instruction(vcpu, cr2))
4872 return EMULATE_DONE;
4873 if (emulation_type & EMULTYPE_SKIP)
4874 return EMULATE_FAIL;
4875 return handle_emulation_failure(vcpu);
4879 if (emulation_type & EMULTYPE_SKIP) {
4880 kvm_rip_write(vcpu, ctxt->_eip);
4881 return EMULATE_DONE;
4884 if (retry_instruction(ctxt, cr2, emulation_type))
4885 return EMULATE_DONE;
4887 /* this is needed for vmware backdoor interface to work since it
4888 changes registers values during IO operation */
4889 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4890 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4891 emulator_invalidate_register_cache(ctxt);
4895 r = x86_emulate_insn(ctxt);
4897 if (r == EMULATION_INTERCEPTED)
4898 return EMULATE_DONE;
4900 if (r == EMULATION_FAILED) {
4901 if (reexecute_instruction(vcpu, cr2))
4902 return EMULATE_DONE;
4904 return handle_emulation_failure(vcpu);
4907 if (ctxt->have_exception) {
4908 inject_emulated_exception(vcpu);
4910 } else if (vcpu->arch.pio.count) {
4911 if (!vcpu->arch.pio.in)
4912 vcpu->arch.pio.count = 0;
4915 vcpu->arch.complete_userspace_io = complete_emulated_pio;
4917 r = EMULATE_DO_MMIO;
4918 } else if (vcpu->mmio_needed) {
4919 if (!vcpu->mmio_is_write)
4921 r = EMULATE_DO_MMIO;
4922 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
4923 } else if (r == EMULATION_RESTART)
4929 toggle_interruptibility(vcpu, ctxt->interruptibility);
4930 kvm_set_rflags(vcpu, ctxt->eflags);
4931 kvm_make_request(KVM_REQ_EVENT, vcpu);
4932 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4933 kvm_rip_write(vcpu, ctxt->eip);
4935 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4939 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4941 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4943 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4944 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4945 size, port, &val, 1);
4946 /* do not return to emulator after return from userspace */
4947 vcpu->arch.pio.count = 0;
4950 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4952 static void tsc_bad(void *info)
4954 __this_cpu_write(cpu_tsc_khz, 0);
4957 static void tsc_khz_changed(void *data)
4959 struct cpufreq_freqs *freq = data;
4960 unsigned long khz = 0;
4964 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4965 khz = cpufreq_quick_get(raw_smp_processor_id());
4968 __this_cpu_write(cpu_tsc_khz, khz);
4971 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4974 struct cpufreq_freqs *freq = data;
4976 struct kvm_vcpu *vcpu;
4977 int i, send_ipi = 0;
4980 * We allow guests to temporarily run on slowing clocks,
4981 * provided we notify them after, or to run on accelerating
4982 * clocks, provided we notify them before. Thus time never
4985 * However, we have a problem. We can't atomically update
4986 * the frequency of a given CPU from this function; it is
4987 * merely a notifier, which can be called from any CPU.
4988 * Changing the TSC frequency at arbitrary points in time
4989 * requires a recomputation of local variables related to
4990 * the TSC for each VCPU. We must flag these local variables
4991 * to be updated and be sure the update takes place with the
4992 * new frequency before any guests proceed.
4994 * Unfortunately, the combination of hotplug CPU and frequency
4995 * change creates an intractable locking scenario; the order
4996 * of when these callouts happen is undefined with respect to
4997 * CPU hotplug, and they can race with each other. As such,
4998 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4999 * undefined; you can actually have a CPU frequency change take
5000 * place in between the computation of X and the setting of the
5001 * variable. To protect against this problem, all updates of
5002 * the per_cpu tsc_khz variable are done in an interrupt
5003 * protected IPI, and all callers wishing to update the value
5004 * must wait for a synchronous IPI to complete (which is trivial
5005 * if the caller is on the CPU already). This establishes the
5006 * necessary total order on variable updates.
5008 * Note that because a guest time update may take place
5009 * anytime after the setting of the VCPU's request bit, the
5010 * correct TSC value must be set before the request. However,
5011 * to ensure the update actually makes it to any guest which
5012 * starts running in hardware virtualization between the set
5013 * and the acquisition of the spinlock, we must also ping the
5014 * CPU after setting the request bit.
5018 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5020 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5023 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5025 raw_spin_lock(&kvm_lock);
5026 list_for_each_entry(kvm, &vm_list, vm_list) {
5027 kvm_for_each_vcpu(i, vcpu, kvm) {
5028 if (vcpu->cpu != freq->cpu)
5030 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5031 if (vcpu->cpu != smp_processor_id())
5035 raw_spin_unlock(&kvm_lock);
5037 if (freq->old < freq->new && send_ipi) {
5039 * We upscale the frequency. Must make the guest
5040 * doesn't see old kvmclock values while running with
5041 * the new frequency, otherwise we risk the guest sees
5042 * time go backwards.
5044 * In case we update the frequency for another cpu
5045 * (which might be in guest context) send an interrupt
5046 * to kick the cpu out of guest context. Next time
5047 * guest context is entered kvmclock will be updated,
5048 * so the guest will not see stale values.
5050 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5055 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5056 .notifier_call = kvmclock_cpufreq_notifier
5059 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5060 unsigned long action, void *hcpu)
5062 unsigned int cpu = (unsigned long)hcpu;
5066 case CPU_DOWN_FAILED:
5067 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5069 case CPU_DOWN_PREPARE:
5070 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5076 static struct notifier_block kvmclock_cpu_notifier_block = {
5077 .notifier_call = kvmclock_cpu_notifier,
5078 .priority = -INT_MAX
5081 static void kvm_timer_init(void)
5085 max_tsc_khz = tsc_khz;
5086 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5087 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5088 #ifdef CONFIG_CPU_FREQ
5089 struct cpufreq_policy policy;
5090 memset(&policy, 0, sizeof(policy));
5092 cpufreq_get_policy(&policy, cpu);
5093 if (policy.cpuinfo.max_freq)
5094 max_tsc_khz = policy.cpuinfo.max_freq;
5097 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5098 CPUFREQ_TRANSITION_NOTIFIER);
5100 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5101 for_each_online_cpu(cpu)
5102 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5105 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5107 int kvm_is_in_guest(void)
5109 return __this_cpu_read(current_vcpu) != NULL;
5112 static int kvm_is_user_mode(void)
5116 if (__this_cpu_read(current_vcpu))
5117 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5119 return user_mode != 0;
5122 static unsigned long kvm_get_guest_ip(void)
5124 unsigned long ip = 0;
5126 if (__this_cpu_read(current_vcpu))
5127 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5132 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5133 .is_in_guest = kvm_is_in_guest,
5134 .is_user_mode = kvm_is_user_mode,
5135 .get_guest_ip = kvm_get_guest_ip,
5138 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5140 __this_cpu_write(current_vcpu, vcpu);
5142 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5144 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5146 __this_cpu_write(current_vcpu, NULL);
5148 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5150 static void kvm_set_mmio_spte_mask(void)
5153 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5156 * Set the reserved bits and the present bit of an paging-structure
5157 * entry to generate page fault with PFER.RSV = 1.
5159 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5162 #ifdef CONFIG_X86_64
5164 * If reserved bit is not supported, clear the present bit to disable
5167 if (maxphyaddr == 52)
5171 kvm_mmu_set_mmio_spte_mask(mask);
5174 #ifdef CONFIG_X86_64
5175 static void pvclock_gtod_update_fn(struct work_struct *work)
5179 struct kvm_vcpu *vcpu;
5182 raw_spin_lock(&kvm_lock);
5183 list_for_each_entry(kvm, &vm_list, vm_list)
5184 kvm_for_each_vcpu(i, vcpu, kvm)
5185 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5186 atomic_set(&kvm_guest_has_master_clock, 0);
5187 raw_spin_unlock(&kvm_lock);
5190 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5193 * Notification about pvclock gtod data update.
5195 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5198 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5199 struct timekeeper *tk = priv;
5201 update_pvclock_gtod(tk);
5203 /* disable master clock if host does not trust, or does not
5204 * use, TSC clocksource
5206 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5207 atomic_read(&kvm_guest_has_master_clock) != 0)
5208 queue_work(system_long_wq, &pvclock_gtod_work);
5213 static struct notifier_block pvclock_gtod_notifier = {
5214 .notifier_call = pvclock_gtod_notify,
5218 int kvm_arch_init(void *opaque)
5221 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5224 printk(KERN_ERR "kvm: already loaded the other module\n");
5229 if (!ops->cpu_has_kvm_support()) {
5230 printk(KERN_ERR "kvm: no hardware support\n");
5234 if (ops->disabled_by_bios()) {
5235 printk(KERN_ERR "kvm: disabled by bios\n");
5241 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5243 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5247 r = kvm_mmu_module_init();
5249 goto out_free_percpu;
5251 kvm_set_mmio_spte_mask();
5252 kvm_init_msr_list();
5255 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5256 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5260 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5263 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5266 #ifdef CONFIG_X86_64
5267 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5273 free_percpu(shared_msrs);
5278 void kvm_arch_exit(void)
5280 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5282 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5283 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5284 CPUFREQ_TRANSITION_NOTIFIER);
5285 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5286 #ifdef CONFIG_X86_64
5287 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5290 kvm_mmu_module_exit();
5291 free_percpu(shared_msrs);
5294 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5296 ++vcpu->stat.halt_exits;
5297 if (irqchip_in_kernel(vcpu->kvm)) {
5298 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5301 vcpu->run->exit_reason = KVM_EXIT_HLT;
5305 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5307 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5309 u64 param, ingpa, outgpa, ret;
5310 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5311 bool fast, longmode;
5315 * hypercall generates UD from non zero cpl and real mode
5318 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5319 kvm_queue_exception(vcpu, UD_VECTOR);
5323 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5324 longmode = is_long_mode(vcpu) && cs_l == 1;
5327 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5328 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5329 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5330 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5331 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5332 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5334 #ifdef CONFIG_X86_64
5336 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5337 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5338 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5342 code = param & 0xffff;
5343 fast = (param >> 16) & 0x1;
5344 rep_cnt = (param >> 32) & 0xfff;
5345 rep_idx = (param >> 48) & 0xfff;
5347 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5350 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5351 kvm_vcpu_on_spin(vcpu);
5354 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5358 ret = res | (((u64)rep_done & 0xfff) << 32);
5360 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5362 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5363 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5369 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5371 unsigned long nr, a0, a1, a2, a3, ret;
5374 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5375 return kvm_hv_hypercall(vcpu);
5377 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5378 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5379 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5380 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5381 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5383 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5385 if (!is_long_mode(vcpu)) {
5393 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5399 case KVM_HC_VAPIC_POLL_IRQ:
5407 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5408 ++vcpu->stat.hypercalls;
5411 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5413 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5415 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5416 char instruction[3];
5417 unsigned long rip = kvm_rip_read(vcpu);
5420 * Blow out the MMU to ensure that no other VCPU has an active mapping
5421 * to ensure that the updated hypercall appears atomically across all
5424 kvm_mmu_zap_all(vcpu->kvm);
5426 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5428 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5432 * Check if userspace requested an interrupt window, and that the
5433 * interrupt window is open.
5435 * No need to exit to userspace if we already have an interrupt queued.
5437 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5439 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5440 vcpu->run->request_interrupt_window &&
5441 kvm_arch_interrupt_allowed(vcpu));
5444 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5446 struct kvm_run *kvm_run = vcpu->run;
5448 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5449 kvm_run->cr8 = kvm_get_cr8(vcpu);
5450 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5451 if (irqchip_in_kernel(vcpu->kvm))
5452 kvm_run->ready_for_interrupt_injection = 1;
5454 kvm_run->ready_for_interrupt_injection =
5455 kvm_arch_interrupt_allowed(vcpu) &&
5456 !kvm_cpu_has_interrupt(vcpu) &&
5457 !kvm_event_needs_reinjection(vcpu);
5460 static int vapic_enter(struct kvm_vcpu *vcpu)
5462 struct kvm_lapic *apic = vcpu->arch.apic;
5465 if (!apic || !apic->vapic_addr)
5468 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5469 if (is_error_page(page))
5472 vcpu->arch.apic->vapic_page = page;
5476 static void vapic_exit(struct kvm_vcpu *vcpu)
5478 struct kvm_lapic *apic = vcpu->arch.apic;
5481 if (!apic || !apic->vapic_addr)
5484 idx = srcu_read_lock(&vcpu->kvm->srcu);
5485 kvm_release_page_dirty(apic->vapic_page);
5486 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5487 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5490 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5494 if (!kvm_x86_ops->update_cr8_intercept)
5497 if (!vcpu->arch.apic)
5500 if (!vcpu->arch.apic->vapic_addr)
5501 max_irr = kvm_lapic_find_highest_irr(vcpu);
5508 tpr = kvm_lapic_get_cr8(vcpu);
5510 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5513 static void inject_pending_event(struct kvm_vcpu *vcpu)
5515 /* try to reinject previous events if any */
5516 if (vcpu->arch.exception.pending) {
5517 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5518 vcpu->arch.exception.has_error_code,
5519 vcpu->arch.exception.error_code);
5520 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5521 vcpu->arch.exception.has_error_code,
5522 vcpu->arch.exception.error_code,
5523 vcpu->arch.exception.reinject);
5527 if (vcpu->arch.nmi_injected) {
5528 kvm_x86_ops->set_nmi(vcpu);
5532 if (vcpu->arch.interrupt.pending) {
5533 kvm_x86_ops->set_irq(vcpu);
5537 /* try to inject new event if pending */
5538 if (vcpu->arch.nmi_pending) {
5539 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5540 --vcpu->arch.nmi_pending;
5541 vcpu->arch.nmi_injected = true;
5542 kvm_x86_ops->set_nmi(vcpu);
5544 } else if (kvm_cpu_has_interrupt(vcpu)) {
5545 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5546 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5548 kvm_x86_ops->set_irq(vcpu);
5553 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5555 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5556 !vcpu->guest_xcr0_loaded) {
5557 /* kvm_set_xcr() also depends on this */
5558 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5559 vcpu->guest_xcr0_loaded = 1;
5563 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5565 if (vcpu->guest_xcr0_loaded) {
5566 if (vcpu->arch.xcr0 != host_xcr0)
5567 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5568 vcpu->guest_xcr0_loaded = 0;
5572 static void process_nmi(struct kvm_vcpu *vcpu)
5577 * x86 is limited to one NMI running, and one NMI pending after it.
5578 * If an NMI is already in progress, limit further NMIs to just one.
5579 * Otherwise, allow two (and we'll inject the first one immediately).
5581 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5584 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5585 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5586 kvm_make_request(KVM_REQ_EVENT, vcpu);
5589 static void kvm_gen_update_masterclock(struct kvm *kvm)
5591 #ifdef CONFIG_X86_64
5593 struct kvm_vcpu *vcpu;
5594 struct kvm_arch *ka = &kvm->arch;
5596 spin_lock(&ka->pvclock_gtod_sync_lock);
5597 kvm_make_mclock_inprogress_request(kvm);
5598 /* no guest entries from this point */
5599 pvclock_update_vm_gtod_copy(kvm);
5601 kvm_for_each_vcpu(i, vcpu, kvm)
5602 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5604 /* guest entries allowed */
5605 kvm_for_each_vcpu(i, vcpu, kvm)
5606 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5608 spin_unlock(&ka->pvclock_gtod_sync_lock);
5612 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5615 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5616 vcpu->run->request_interrupt_window;
5617 bool req_immediate_exit = 0;
5619 if (vcpu->requests) {
5620 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5621 kvm_mmu_unload(vcpu);
5622 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5623 __kvm_migrate_timers(vcpu);
5624 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5625 kvm_gen_update_masterclock(vcpu->kvm);
5626 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5627 r = kvm_guest_time_update(vcpu);
5631 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5632 kvm_mmu_sync_roots(vcpu);
5633 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5634 kvm_x86_ops->tlb_flush(vcpu);
5635 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5636 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5640 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5641 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5645 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5646 vcpu->fpu_active = 0;
5647 kvm_x86_ops->fpu_deactivate(vcpu);
5649 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5650 /* Page is swapped out. Do synthetic halt */
5651 vcpu->arch.apf.halted = true;
5655 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5656 record_steal_time(vcpu);
5657 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5659 req_immediate_exit =
5660 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5661 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5662 kvm_handle_pmu_event(vcpu);
5663 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5664 kvm_deliver_pmi(vcpu);
5667 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5668 inject_pending_event(vcpu);
5670 /* enable NMI/IRQ window open exits if needed */
5671 if (vcpu->arch.nmi_pending)
5672 kvm_x86_ops->enable_nmi_window(vcpu);
5673 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5674 kvm_x86_ops->enable_irq_window(vcpu);
5676 if (kvm_lapic_enabled(vcpu)) {
5677 update_cr8_intercept(vcpu);
5678 kvm_lapic_sync_to_vapic(vcpu);
5682 r = kvm_mmu_reload(vcpu);
5684 goto cancel_injection;
5689 kvm_x86_ops->prepare_guest_switch(vcpu);
5690 if (vcpu->fpu_active)
5691 kvm_load_guest_fpu(vcpu);
5692 kvm_load_guest_xcr0(vcpu);
5694 vcpu->mode = IN_GUEST_MODE;
5696 /* We should set ->mode before check ->requests,
5697 * see the comment in make_all_cpus_request.
5701 local_irq_disable();
5703 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5704 || need_resched() || signal_pending(current)) {
5705 vcpu->mode = OUTSIDE_GUEST_MODE;
5710 goto cancel_injection;
5713 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5715 if (req_immediate_exit)
5716 smp_send_reschedule(vcpu->cpu);
5720 if (unlikely(vcpu->arch.switch_db_regs)) {
5722 set_debugreg(vcpu->arch.eff_db[0], 0);
5723 set_debugreg(vcpu->arch.eff_db[1], 1);
5724 set_debugreg(vcpu->arch.eff_db[2], 2);
5725 set_debugreg(vcpu->arch.eff_db[3], 3);
5728 trace_kvm_entry(vcpu->vcpu_id);
5729 kvm_x86_ops->run(vcpu);
5732 * If the guest has used debug registers, at least dr7
5733 * will be disabled while returning to the host.
5734 * If we don't have active breakpoints in the host, we don't
5735 * care about the messed up debug address registers. But if
5736 * we have some of them active, restore the old state.
5738 if (hw_breakpoint_active())
5739 hw_breakpoint_restore();
5741 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5744 vcpu->mode = OUTSIDE_GUEST_MODE;
5751 * We must have an instruction between local_irq_enable() and
5752 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5753 * the interrupt shadow. The stat.exits increment will do nicely.
5754 * But we need to prevent reordering, hence this barrier():
5762 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5765 * Profile KVM exit RIPs:
5767 if (unlikely(prof_on == KVM_PROFILING)) {
5768 unsigned long rip = kvm_rip_read(vcpu);
5769 profile_hit(KVM_PROFILING, (void *)rip);
5772 if (unlikely(vcpu->arch.tsc_always_catchup))
5773 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5775 if (vcpu->arch.apic_attention)
5776 kvm_lapic_sync_from_vapic(vcpu);
5778 r = kvm_x86_ops->handle_exit(vcpu);
5782 kvm_x86_ops->cancel_injection(vcpu);
5783 if (unlikely(vcpu->arch.apic_attention))
5784 kvm_lapic_sync_from_vapic(vcpu);
5790 static int __vcpu_run(struct kvm_vcpu *vcpu)
5793 struct kvm *kvm = vcpu->kvm;
5795 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5796 pr_debug("vcpu %d received sipi with vector # %x\n",
5797 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5798 kvm_lapic_reset(vcpu);
5799 r = kvm_vcpu_reset(vcpu);
5802 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5805 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5806 r = vapic_enter(vcpu);
5808 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5814 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5815 !vcpu->arch.apf.halted)
5816 r = vcpu_enter_guest(vcpu);
5818 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5819 kvm_vcpu_block(vcpu);
5820 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5821 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5823 switch(vcpu->arch.mp_state) {
5824 case KVM_MP_STATE_HALTED:
5825 vcpu->arch.mp_state =
5826 KVM_MP_STATE_RUNNABLE;
5827 case KVM_MP_STATE_RUNNABLE:
5828 vcpu->arch.apf.halted = false;
5830 case KVM_MP_STATE_SIPI_RECEIVED:
5841 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5842 if (kvm_cpu_has_pending_timer(vcpu))
5843 kvm_inject_pending_timer_irqs(vcpu);
5845 if (dm_request_for_irq_injection(vcpu)) {
5847 vcpu->run->exit_reason = KVM_EXIT_INTR;
5848 ++vcpu->stat.request_irq_exits;
5851 kvm_check_async_pf_completion(vcpu);
5853 if (signal_pending(current)) {
5855 vcpu->run->exit_reason = KVM_EXIT_INTR;
5856 ++vcpu->stat.signal_exits;
5858 if (need_resched()) {
5859 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5861 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5865 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5872 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5875 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5876 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5877 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5878 if (r != EMULATE_DONE)
5883 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5885 BUG_ON(!vcpu->arch.pio.count);
5887 return complete_emulated_io(vcpu);
5891 * Implements the following, as a state machine:
5895 * for each mmio piece in the fragment
5903 * for each mmio piece in the fragment
5908 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5910 struct kvm_run *run = vcpu->run;
5911 struct kvm_mmio_fragment *frag;
5914 BUG_ON(!vcpu->mmio_needed);
5916 /* Complete previous fragment */
5917 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
5918 len = min(8u, frag->len);
5919 if (!vcpu->mmio_is_write)
5920 memcpy(frag->data, run->mmio.data, len);
5922 if (frag->len <= 8) {
5923 /* Switch to the next fragment. */
5925 vcpu->mmio_cur_fragment++;
5927 /* Go forward to the next mmio piece. */
5933 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5934 vcpu->mmio_needed = 0;
5935 if (vcpu->mmio_is_write)
5937 vcpu->mmio_read_completed = 1;
5938 return complete_emulated_io(vcpu);
5941 run->exit_reason = KVM_EXIT_MMIO;
5942 run->mmio.phys_addr = frag->gpa;
5943 if (vcpu->mmio_is_write)
5944 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
5945 run->mmio.len = min(8u, frag->len);
5946 run->mmio.is_write = vcpu->mmio_is_write;
5947 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5952 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5957 if (!tsk_used_math(current) && init_fpu(current))
5960 if (vcpu->sigset_active)
5961 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5963 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5964 kvm_vcpu_block(vcpu);
5965 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5970 /* re-sync apic's tpr */
5971 if (!irqchip_in_kernel(vcpu->kvm)) {
5972 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5978 if (unlikely(vcpu->arch.complete_userspace_io)) {
5979 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
5980 vcpu->arch.complete_userspace_io = NULL;
5985 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
5987 r = __vcpu_run(vcpu);
5990 post_kvm_run_save(vcpu);
5991 if (vcpu->sigset_active)
5992 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5997 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5999 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6001 * We are here if userspace calls get_regs() in the middle of
6002 * instruction emulation. Registers state needs to be copied
6003 * back from emulation context to vcpu. Userspace shouldn't do
6004 * that usually, but some bad designed PV devices (vmware
6005 * backdoor interface) need this to work
6007 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6008 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6010 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6011 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6012 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6013 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6014 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6015 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6016 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6017 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6018 #ifdef CONFIG_X86_64
6019 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6020 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6021 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6022 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6023 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6024 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6025 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6026 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6029 regs->rip = kvm_rip_read(vcpu);
6030 regs->rflags = kvm_get_rflags(vcpu);
6035 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6037 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6038 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6040 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6041 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6042 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6043 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6044 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6045 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6046 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6047 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6048 #ifdef CONFIG_X86_64
6049 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6050 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6051 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6052 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6053 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6054 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6055 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6056 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6059 kvm_rip_write(vcpu, regs->rip);
6060 kvm_set_rflags(vcpu, regs->rflags);
6062 vcpu->arch.exception.pending = false;
6064 kvm_make_request(KVM_REQ_EVENT, vcpu);
6069 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6071 struct kvm_segment cs;
6073 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6077 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6079 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6080 struct kvm_sregs *sregs)
6084 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6085 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6086 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6087 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6088 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6089 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6091 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6092 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6094 kvm_x86_ops->get_idt(vcpu, &dt);
6095 sregs->idt.limit = dt.size;
6096 sregs->idt.base = dt.address;
6097 kvm_x86_ops->get_gdt(vcpu, &dt);
6098 sregs->gdt.limit = dt.size;
6099 sregs->gdt.base = dt.address;
6101 sregs->cr0 = kvm_read_cr0(vcpu);
6102 sregs->cr2 = vcpu->arch.cr2;
6103 sregs->cr3 = kvm_read_cr3(vcpu);
6104 sregs->cr4 = kvm_read_cr4(vcpu);
6105 sregs->cr8 = kvm_get_cr8(vcpu);
6106 sregs->efer = vcpu->arch.efer;
6107 sregs->apic_base = kvm_get_apic_base(vcpu);
6109 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6111 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6112 set_bit(vcpu->arch.interrupt.nr,
6113 (unsigned long *)sregs->interrupt_bitmap);
6118 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6119 struct kvm_mp_state *mp_state)
6121 mp_state->mp_state = vcpu->arch.mp_state;
6125 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6126 struct kvm_mp_state *mp_state)
6128 vcpu->arch.mp_state = mp_state->mp_state;
6129 kvm_make_request(KVM_REQ_EVENT, vcpu);
6133 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6134 int reason, bool has_error_code, u32 error_code)
6136 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6139 init_emulate_ctxt(vcpu);
6141 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6142 has_error_code, error_code);
6145 return EMULATE_FAIL;
6147 kvm_rip_write(vcpu, ctxt->eip);
6148 kvm_set_rflags(vcpu, ctxt->eflags);
6149 kvm_make_request(KVM_REQ_EVENT, vcpu);
6150 return EMULATE_DONE;
6152 EXPORT_SYMBOL_GPL(kvm_task_switch);
6154 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6155 struct kvm_sregs *sregs)
6157 int mmu_reset_needed = 0;
6158 int pending_vec, max_bits, idx;
6161 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6164 dt.size = sregs->idt.limit;
6165 dt.address = sregs->idt.base;
6166 kvm_x86_ops->set_idt(vcpu, &dt);
6167 dt.size = sregs->gdt.limit;
6168 dt.address = sregs->gdt.base;
6169 kvm_x86_ops->set_gdt(vcpu, &dt);
6171 vcpu->arch.cr2 = sregs->cr2;
6172 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6173 vcpu->arch.cr3 = sregs->cr3;
6174 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6176 kvm_set_cr8(vcpu, sregs->cr8);
6178 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6179 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6180 kvm_set_apic_base(vcpu, sregs->apic_base);
6182 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6183 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6184 vcpu->arch.cr0 = sregs->cr0;
6186 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6187 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6188 if (sregs->cr4 & X86_CR4_OSXSAVE)
6189 kvm_update_cpuid(vcpu);
6191 idx = srcu_read_lock(&vcpu->kvm->srcu);
6192 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6193 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6194 mmu_reset_needed = 1;
6196 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6198 if (mmu_reset_needed)
6199 kvm_mmu_reset_context(vcpu);
6201 max_bits = KVM_NR_INTERRUPTS;
6202 pending_vec = find_first_bit(
6203 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6204 if (pending_vec < max_bits) {
6205 kvm_queue_interrupt(vcpu, pending_vec, false);
6206 pr_debug("Set back pending irq %d\n", pending_vec);
6209 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6210 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6211 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6212 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6213 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6214 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6216 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6217 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6219 update_cr8_intercept(vcpu);
6221 /* Older userspace won't unhalt the vcpu on reset. */
6222 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6223 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6225 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6227 kvm_make_request(KVM_REQ_EVENT, vcpu);
6232 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6233 struct kvm_guest_debug *dbg)
6235 unsigned long rflags;
6238 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6240 if (vcpu->arch.exception.pending)
6242 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6243 kvm_queue_exception(vcpu, DB_VECTOR);
6245 kvm_queue_exception(vcpu, BP_VECTOR);
6249 * Read rflags as long as potentially injected trace flags are still
6252 rflags = kvm_get_rflags(vcpu);
6254 vcpu->guest_debug = dbg->control;
6255 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6256 vcpu->guest_debug = 0;
6258 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6259 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6260 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6261 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6263 for (i = 0; i < KVM_NR_DB_REGS; i++)
6264 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6266 kvm_update_dr7(vcpu);
6268 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6269 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6270 get_segment_base(vcpu, VCPU_SREG_CS);
6273 * Trigger an rflags update that will inject or remove the trace
6276 kvm_set_rflags(vcpu, rflags);
6278 kvm_x86_ops->update_db_bp_intercept(vcpu);
6288 * Translate a guest virtual address to a guest physical address.
6290 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6291 struct kvm_translation *tr)
6293 unsigned long vaddr = tr->linear_address;
6297 idx = srcu_read_lock(&vcpu->kvm->srcu);
6298 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6299 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6300 tr->physical_address = gpa;
6301 tr->valid = gpa != UNMAPPED_GVA;
6308 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6310 struct i387_fxsave_struct *fxsave =
6311 &vcpu->arch.guest_fpu.state->fxsave;
6313 memcpy(fpu->fpr, fxsave->st_space, 128);
6314 fpu->fcw = fxsave->cwd;
6315 fpu->fsw = fxsave->swd;
6316 fpu->ftwx = fxsave->twd;
6317 fpu->last_opcode = fxsave->fop;
6318 fpu->last_ip = fxsave->rip;
6319 fpu->last_dp = fxsave->rdp;
6320 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6325 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6327 struct i387_fxsave_struct *fxsave =
6328 &vcpu->arch.guest_fpu.state->fxsave;
6330 memcpy(fxsave->st_space, fpu->fpr, 128);
6331 fxsave->cwd = fpu->fcw;
6332 fxsave->swd = fpu->fsw;
6333 fxsave->twd = fpu->ftwx;
6334 fxsave->fop = fpu->last_opcode;
6335 fxsave->rip = fpu->last_ip;
6336 fxsave->rdp = fpu->last_dp;
6337 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6342 int fx_init(struct kvm_vcpu *vcpu)
6346 err = fpu_alloc(&vcpu->arch.guest_fpu);
6350 fpu_finit(&vcpu->arch.guest_fpu);
6353 * Ensure guest xcr0 is valid for loading
6355 vcpu->arch.xcr0 = XSTATE_FP;
6357 vcpu->arch.cr0 |= X86_CR0_ET;
6361 EXPORT_SYMBOL_GPL(fx_init);
6363 static void fx_free(struct kvm_vcpu *vcpu)
6365 fpu_free(&vcpu->arch.guest_fpu);
6368 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6370 if (vcpu->guest_fpu_loaded)
6374 * Restore all possible states in the guest,
6375 * and assume host would use all available bits.
6376 * Guest xcr0 would be loaded later.
6378 kvm_put_guest_xcr0(vcpu);
6379 vcpu->guest_fpu_loaded = 1;
6380 __kernel_fpu_begin();
6381 fpu_restore_checking(&vcpu->arch.guest_fpu);
6385 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6387 kvm_put_guest_xcr0(vcpu);
6389 if (!vcpu->guest_fpu_loaded)
6392 vcpu->guest_fpu_loaded = 0;
6393 fpu_save_init(&vcpu->arch.guest_fpu);
6395 ++vcpu->stat.fpu_reload;
6396 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6400 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6402 kvmclock_reset(vcpu);
6404 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6406 kvm_x86_ops->vcpu_free(vcpu);
6409 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6412 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6413 printk_once(KERN_WARNING
6414 "kvm: SMP vm created on host with unstable TSC; "
6415 "guest TSC will not be reliable\n");
6416 return kvm_x86_ops->vcpu_create(kvm, id);
6419 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6423 vcpu->arch.mtrr_state.have_fixed = 1;
6424 r = vcpu_load(vcpu);
6427 r = kvm_vcpu_reset(vcpu);
6429 r = kvm_mmu_setup(vcpu);
6435 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6438 struct msr_data msr;
6440 r = vcpu_load(vcpu);
6444 msr.index = MSR_IA32_TSC;
6445 msr.host_initiated = true;
6446 kvm_write_tsc(vcpu, &msr);
6452 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6455 vcpu->arch.apf.msr_val = 0;
6457 r = vcpu_load(vcpu);
6459 kvm_mmu_unload(vcpu);
6463 kvm_x86_ops->vcpu_free(vcpu);
6466 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6468 atomic_set(&vcpu->arch.nmi_queued, 0);
6469 vcpu->arch.nmi_pending = 0;
6470 vcpu->arch.nmi_injected = false;
6472 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6473 vcpu->arch.dr6 = DR6_FIXED_1;
6474 vcpu->arch.dr7 = DR7_FIXED_1;
6475 kvm_update_dr7(vcpu);
6477 kvm_make_request(KVM_REQ_EVENT, vcpu);
6478 vcpu->arch.apf.msr_val = 0;
6479 vcpu->arch.st.msr_val = 0;
6481 kvmclock_reset(vcpu);
6483 kvm_clear_async_pf_completion_queue(vcpu);
6484 kvm_async_pf_hash_reset(vcpu);
6485 vcpu->arch.apf.halted = false;
6487 kvm_pmu_reset(vcpu);
6489 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6490 vcpu->arch.regs_avail = ~0;
6491 vcpu->arch.regs_dirty = ~0;
6493 return kvm_x86_ops->vcpu_reset(vcpu);
6496 int kvm_arch_hardware_enable(void *garbage)
6499 struct kvm_vcpu *vcpu;
6504 bool stable, backwards_tsc = false;
6506 kvm_shared_msr_cpu_online();
6507 ret = kvm_x86_ops->hardware_enable(garbage);
6511 local_tsc = native_read_tsc();
6512 stable = !check_tsc_unstable();
6513 list_for_each_entry(kvm, &vm_list, vm_list) {
6514 kvm_for_each_vcpu(i, vcpu, kvm) {
6515 if (!stable && vcpu->cpu == smp_processor_id())
6516 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6517 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6518 backwards_tsc = true;
6519 if (vcpu->arch.last_host_tsc > max_tsc)
6520 max_tsc = vcpu->arch.last_host_tsc;
6526 * Sometimes, even reliable TSCs go backwards. This happens on
6527 * platforms that reset TSC during suspend or hibernate actions, but
6528 * maintain synchronization. We must compensate. Fortunately, we can
6529 * detect that condition here, which happens early in CPU bringup,
6530 * before any KVM threads can be running. Unfortunately, we can't
6531 * bring the TSCs fully up to date with real time, as we aren't yet far
6532 * enough into CPU bringup that we know how much real time has actually
6533 * elapsed; our helper function, get_kernel_ns() will be using boot
6534 * variables that haven't been updated yet.
6536 * So we simply find the maximum observed TSC above, then record the
6537 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6538 * the adjustment will be applied. Note that we accumulate
6539 * adjustments, in case multiple suspend cycles happen before some VCPU
6540 * gets a chance to run again. In the event that no KVM threads get a
6541 * chance to run, we will miss the entire elapsed period, as we'll have
6542 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6543 * loose cycle time. This isn't too big a deal, since the loss will be
6544 * uniform across all VCPUs (not to mention the scenario is extremely
6545 * unlikely). It is possible that a second hibernate recovery happens
6546 * much faster than a first, causing the observed TSC here to be
6547 * smaller; this would require additional padding adjustment, which is
6548 * why we set last_host_tsc to the local tsc observed here.
6550 * N.B. - this code below runs only on platforms with reliable TSC,
6551 * as that is the only way backwards_tsc is set above. Also note
6552 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6553 * have the same delta_cyc adjustment applied if backwards_tsc
6554 * is detected. Note further, this adjustment is only done once,
6555 * as we reset last_host_tsc on all VCPUs to stop this from being
6556 * called multiple times (one for each physical CPU bringup).
6558 * Platforms with unreliable TSCs don't have to deal with this, they
6559 * will be compensated by the logic in vcpu_load, which sets the TSC to
6560 * catchup mode. This will catchup all VCPUs to real time, but cannot
6561 * guarantee that they stay in perfect synchronization.
6563 if (backwards_tsc) {
6564 u64 delta_cyc = max_tsc - local_tsc;
6565 list_for_each_entry(kvm, &vm_list, vm_list) {
6566 kvm_for_each_vcpu(i, vcpu, kvm) {
6567 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6568 vcpu->arch.last_host_tsc = local_tsc;
6569 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6574 * We have to disable TSC offset matching.. if you were
6575 * booting a VM while issuing an S4 host suspend....
6576 * you may have some problem. Solving this issue is
6577 * left as an exercise to the reader.
6579 kvm->arch.last_tsc_nsec = 0;
6580 kvm->arch.last_tsc_write = 0;
6587 void kvm_arch_hardware_disable(void *garbage)
6589 kvm_x86_ops->hardware_disable(garbage);
6590 drop_user_return_notifiers(garbage);
6593 int kvm_arch_hardware_setup(void)
6595 return kvm_x86_ops->hardware_setup();
6598 void kvm_arch_hardware_unsetup(void)
6600 kvm_x86_ops->hardware_unsetup();
6603 void kvm_arch_check_processor_compat(void *rtn)
6605 kvm_x86_ops->check_processor_compatibility(rtn);
6608 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6610 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6613 struct static_key kvm_no_apic_vcpu __read_mostly;
6615 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6621 BUG_ON(vcpu->kvm == NULL);
6624 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6625 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6626 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6628 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6630 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6635 vcpu->arch.pio_data = page_address(page);
6637 kvm_set_tsc_khz(vcpu, max_tsc_khz);
6639 r = kvm_mmu_create(vcpu);
6641 goto fail_free_pio_data;
6643 if (irqchip_in_kernel(kvm)) {
6644 r = kvm_create_lapic(vcpu);
6646 goto fail_mmu_destroy;
6648 static_key_slow_inc(&kvm_no_apic_vcpu);
6650 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6652 if (!vcpu->arch.mce_banks) {
6654 goto fail_free_lapic;
6656 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6658 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6659 goto fail_free_mce_banks;
6663 goto fail_free_wbinvd_dirty_mask;
6665 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6666 kvm_async_pf_hash_reset(vcpu);
6670 fail_free_wbinvd_dirty_mask:
6671 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6672 fail_free_mce_banks:
6673 kfree(vcpu->arch.mce_banks);
6675 kvm_free_lapic(vcpu);
6677 kvm_mmu_destroy(vcpu);
6679 free_page((unsigned long)vcpu->arch.pio_data);
6684 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6688 kvm_pmu_destroy(vcpu);
6689 kfree(vcpu->arch.mce_banks);
6690 kvm_free_lapic(vcpu);
6691 idx = srcu_read_lock(&vcpu->kvm->srcu);
6692 kvm_mmu_destroy(vcpu);
6693 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6694 free_page((unsigned long)vcpu->arch.pio_data);
6695 if (!irqchip_in_kernel(vcpu->kvm))
6696 static_key_slow_dec(&kvm_no_apic_vcpu);
6699 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6704 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6705 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6707 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6708 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6709 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6710 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6711 &kvm->arch.irq_sources_bitmap);
6713 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6714 mutex_init(&kvm->arch.apic_map_lock);
6715 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6717 pvclock_update_vm_gtod_copy(kvm);
6722 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6725 r = vcpu_load(vcpu);
6727 kvm_mmu_unload(vcpu);
6731 static void kvm_free_vcpus(struct kvm *kvm)
6734 struct kvm_vcpu *vcpu;
6737 * Unpin any mmu pages first.
6739 kvm_for_each_vcpu(i, vcpu, kvm) {
6740 kvm_clear_async_pf_completion_queue(vcpu);
6741 kvm_unload_vcpu_mmu(vcpu);
6743 kvm_for_each_vcpu(i, vcpu, kvm)
6744 kvm_arch_vcpu_free(vcpu);
6746 mutex_lock(&kvm->lock);
6747 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6748 kvm->vcpus[i] = NULL;
6750 atomic_set(&kvm->online_vcpus, 0);
6751 mutex_unlock(&kvm->lock);
6754 void kvm_arch_sync_events(struct kvm *kvm)
6756 kvm_free_all_assigned_devices(kvm);
6760 void kvm_arch_destroy_vm(struct kvm *kvm)
6762 kvm_iommu_unmap_guest(kvm);
6763 kfree(kvm->arch.vpic);
6764 kfree(kvm->arch.vioapic);
6765 kvm_free_vcpus(kvm);
6766 if (kvm->arch.apic_access_page)
6767 put_page(kvm->arch.apic_access_page);
6768 if (kvm->arch.ept_identity_pagetable)
6769 put_page(kvm->arch.ept_identity_pagetable);
6770 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6773 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6774 struct kvm_memory_slot *dont)
6778 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6779 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6780 kvm_kvfree(free->arch.rmap[i]);
6781 free->arch.rmap[i] = NULL;
6786 if (!dont || free->arch.lpage_info[i - 1] !=
6787 dont->arch.lpage_info[i - 1]) {
6788 kvm_kvfree(free->arch.lpage_info[i - 1]);
6789 free->arch.lpage_info[i - 1] = NULL;
6794 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6798 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6803 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6804 slot->base_gfn, level) + 1;
6806 slot->arch.rmap[i] =
6807 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6808 if (!slot->arch.rmap[i])
6813 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6814 sizeof(*slot->arch.lpage_info[i - 1]));
6815 if (!slot->arch.lpage_info[i - 1])
6818 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6819 slot->arch.lpage_info[i - 1][0].write_count = 1;
6820 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6821 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6822 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6824 * If the gfn and userspace address are not aligned wrt each
6825 * other, or if explicitly asked to, disable large page
6826 * support for this slot
6828 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6829 !kvm_largepages_enabled()) {
6832 for (j = 0; j < lpages; ++j)
6833 slot->arch.lpage_info[i - 1][j].write_count = 1;
6840 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6841 kvm_kvfree(slot->arch.rmap[i]);
6842 slot->arch.rmap[i] = NULL;
6846 kvm_kvfree(slot->arch.lpage_info[i - 1]);
6847 slot->arch.lpage_info[i - 1] = NULL;
6852 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6853 struct kvm_memory_slot *memslot,
6854 struct kvm_memory_slot old,
6855 struct kvm_userspace_memory_region *mem,
6858 int npages = memslot->npages;
6859 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6861 /* Prevent internal slot pages from being moved by fork()/COW. */
6862 if (memslot->id >= KVM_MEMORY_SLOTS)
6863 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6865 /*To keep backward compatibility with older userspace,
6866 *x86 needs to handle !user_alloc case.
6869 if (npages && !old.npages) {
6870 unsigned long userspace_addr;
6872 userspace_addr = vm_mmap(NULL, 0,
6874 PROT_READ | PROT_WRITE,
6878 if (IS_ERR((void *)userspace_addr))
6879 return PTR_ERR((void *)userspace_addr);
6881 memslot->userspace_addr = userspace_addr;
6889 void kvm_arch_commit_memory_region(struct kvm *kvm,
6890 struct kvm_userspace_memory_region *mem,
6891 struct kvm_memory_slot old,
6895 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6897 if (!user_alloc && !old.user_alloc && old.npages && !npages) {
6900 ret = vm_munmap(old.userspace_addr,
6901 old.npages * PAGE_SIZE);
6904 "kvm_vm_ioctl_set_memory_region: "
6905 "failed to munmap memory\n");
6908 if (!kvm->arch.n_requested_mmu_pages)
6909 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6911 spin_lock(&kvm->mmu_lock);
6913 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6914 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6915 spin_unlock(&kvm->mmu_lock);
6917 * If memory slot is created, or moved, we need to clear all
6920 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) {
6921 kvm_mmu_zap_all(kvm);
6922 kvm_reload_remote_mmus(kvm);
6926 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6928 kvm_mmu_zap_all(kvm);
6929 kvm_reload_remote_mmus(kvm);
6932 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6933 struct kvm_memory_slot *slot)
6935 kvm_arch_flush_shadow_all(kvm);
6938 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6940 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6941 !vcpu->arch.apf.halted)
6942 || !list_empty_careful(&vcpu->async_pf.done)
6943 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6944 || atomic_read(&vcpu->arch.nmi_queued) ||
6945 (kvm_arch_interrupt_allowed(vcpu) &&
6946 kvm_cpu_has_interrupt(vcpu));
6949 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
6951 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
6954 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6956 return kvm_x86_ops->interrupt_allowed(vcpu);
6959 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6961 unsigned long current_rip = kvm_rip_read(vcpu) +
6962 get_segment_base(vcpu, VCPU_SREG_CS);
6964 return current_rip == linear_rip;
6966 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6968 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6970 unsigned long rflags;
6972 rflags = kvm_x86_ops->get_rflags(vcpu);
6973 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6974 rflags &= ~X86_EFLAGS_TF;
6977 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6979 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6981 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6982 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6983 rflags |= X86_EFLAGS_TF;
6984 kvm_x86_ops->set_rflags(vcpu, rflags);
6985 kvm_make_request(KVM_REQ_EVENT, vcpu);
6987 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6989 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6993 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6994 is_error_page(work->page))
6997 r = kvm_mmu_reload(vcpu);
7001 if (!vcpu->arch.mmu.direct_map &&
7002 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7005 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7008 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7010 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7013 static inline u32 kvm_async_pf_next_probe(u32 key)
7015 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7018 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7020 u32 key = kvm_async_pf_hash_fn(gfn);
7022 while (vcpu->arch.apf.gfns[key] != ~0)
7023 key = kvm_async_pf_next_probe(key);
7025 vcpu->arch.apf.gfns[key] = gfn;
7028 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7031 u32 key = kvm_async_pf_hash_fn(gfn);
7033 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7034 (vcpu->arch.apf.gfns[key] != gfn &&
7035 vcpu->arch.apf.gfns[key] != ~0); i++)
7036 key = kvm_async_pf_next_probe(key);
7041 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7043 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7046 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7050 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7052 vcpu->arch.apf.gfns[i] = ~0;
7054 j = kvm_async_pf_next_probe(j);
7055 if (vcpu->arch.apf.gfns[j] == ~0)
7057 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7059 * k lies cyclically in ]i,j]
7061 * |....j i.k.| or |.k..j i...|
7063 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7064 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7069 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7072 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7076 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7077 struct kvm_async_pf *work)
7079 struct x86_exception fault;
7081 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7082 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7084 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7085 (vcpu->arch.apf.send_user_only &&
7086 kvm_x86_ops->get_cpl(vcpu) == 0))
7087 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7088 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7089 fault.vector = PF_VECTOR;
7090 fault.error_code_valid = true;
7091 fault.error_code = 0;
7092 fault.nested_page_fault = false;
7093 fault.address = work->arch.token;
7094 kvm_inject_page_fault(vcpu, &fault);
7098 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7099 struct kvm_async_pf *work)
7101 struct x86_exception fault;
7103 trace_kvm_async_pf_ready(work->arch.token, work->gva);
7104 if (is_error_page(work->page))
7105 work->arch.token = ~0; /* broadcast wakeup */
7107 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7109 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7110 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7111 fault.vector = PF_VECTOR;
7112 fault.error_code_valid = true;
7113 fault.error_code = 0;
7114 fault.nested_page_fault = false;
7115 fault.address = work->arch.token;
7116 kvm_inject_page_fault(vcpu, &fault);
7118 vcpu->arch.apf.halted = false;
7119 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7122 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7124 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7127 return !kvm_event_needs_reinjection(vcpu) &&
7128 kvm_x86_ops->interrupt_allowed(vcpu);
7131 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7132 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7133 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7134 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7135 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7136 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7137 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7138 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7139 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7140 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7141 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7142 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);