]> Git Repo - linux.git/blob - include/linux/sched.h
Merge tag 'ceph-for-6.1-rc1' of https://github.com/ceph/ceph-client
[linux.git] / include / linux / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kmsan_types.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/syscall_user_dispatch.h>
32 #include <linux/mm_types_task.h>
33 #include <linux/task_io_accounting.h>
34 #include <linux/posix-timers.h>
35 #include <linux/rseq.h>
36 #include <linux/seqlock.h>
37 #include <linux/kcsan.h>
38 #include <linux/rv.h>
39 #include <asm/kmap_size.h>
40
41 /* task_struct member predeclarations (sorted alphabetically): */
42 struct audit_context;
43 struct backing_dev_info;
44 struct bio_list;
45 struct blk_plug;
46 struct bpf_local_storage;
47 struct bpf_run_ctx;
48 struct capture_control;
49 struct cfs_rq;
50 struct fs_struct;
51 struct futex_pi_state;
52 struct io_context;
53 struct io_uring_task;
54 struct mempolicy;
55 struct nameidata;
56 struct nsproxy;
57 struct perf_event_context;
58 struct pid_namespace;
59 struct pipe_inode_info;
60 struct rcu_node;
61 struct reclaim_state;
62 struct robust_list_head;
63 struct root_domain;
64 struct rq;
65 struct sched_attr;
66 struct sched_param;
67 struct seq_file;
68 struct sighand_struct;
69 struct signal_struct;
70 struct task_delay_info;
71 struct task_group;
72
73 /*
74  * Task state bitmask. NOTE! These bits are also
75  * encoded in fs/proc/array.c: get_task_state().
76  *
77  * We have two separate sets of flags: task->state
78  * is about runnability, while task->exit_state are
79  * about the task exiting. Confusing, but this way
80  * modifying one set can't modify the other one by
81  * mistake.
82  */
83
84 /* Used in tsk->state: */
85 #define TASK_RUNNING                    0x00000000
86 #define TASK_INTERRUPTIBLE              0x00000001
87 #define TASK_UNINTERRUPTIBLE            0x00000002
88 #define __TASK_STOPPED                  0x00000004
89 #define __TASK_TRACED                   0x00000008
90 /* Used in tsk->exit_state: */
91 #define EXIT_DEAD                       0x00000010
92 #define EXIT_ZOMBIE                     0x00000020
93 #define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
94 /* Used in tsk->state again: */
95 #define TASK_PARKED                     0x00000040
96 #define TASK_DEAD                       0x00000080
97 #define TASK_WAKEKILL                   0x00000100
98 #define TASK_WAKING                     0x00000200
99 #define TASK_NOLOAD                     0x00000400
100 #define TASK_NEW                        0x00000800
101 #define TASK_RTLOCK_WAIT                0x00001000
102 #define TASK_FREEZABLE                  0x00002000
103 #define __TASK_FREEZABLE_UNSAFE        (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
104 #define TASK_FROZEN                     0x00008000
105 #define TASK_STATE_MAX                  0x00010000
106
107 #define TASK_ANY                        (TASK_STATE_MAX-1)
108
109 /*
110  * DO NOT ADD ANY NEW USERS !
111  */
112 #define TASK_FREEZABLE_UNSAFE           (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
113
114 /* Convenience macros for the sake of set_current_state: */
115 #define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
116 #define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
117 #define TASK_TRACED                     __TASK_TRACED
118
119 #define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
120
121 /* Convenience macros for the sake of wake_up(): */
122 #define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
123
124 /* get_task_state(): */
125 #define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
126                                          TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
127                                          __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
128                                          TASK_PARKED)
129
130 #define task_is_running(task)           (READ_ONCE((task)->__state) == TASK_RUNNING)
131
132 #define task_is_traced(task)            ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
133 #define task_is_stopped(task)           ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
134 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
135
136 /*
137  * Special states are those that do not use the normal wait-loop pattern. See
138  * the comment with set_special_state().
139  */
140 #define is_special_task_state(state)                            \
141         ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
142
143 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
144 # define debug_normal_state_change(state_value)                         \
145         do {                                                            \
146                 WARN_ON_ONCE(is_special_task_state(state_value));       \
147                 current->task_state_change = _THIS_IP_;                 \
148         } while (0)
149
150 # define debug_special_state_change(state_value)                        \
151         do {                                                            \
152                 WARN_ON_ONCE(!is_special_task_state(state_value));      \
153                 current->task_state_change = _THIS_IP_;                 \
154         } while (0)
155
156 # define debug_rtlock_wait_set_state()                                  \
157         do {                                                             \
158                 current->saved_state_change = current->task_state_change;\
159                 current->task_state_change = _THIS_IP_;                  \
160         } while (0)
161
162 # define debug_rtlock_wait_restore_state()                              \
163         do {                                                             \
164                 current->task_state_change = current->saved_state_change;\
165         } while (0)
166
167 #else
168 # define debug_normal_state_change(cond)        do { } while (0)
169 # define debug_special_state_change(cond)       do { } while (0)
170 # define debug_rtlock_wait_set_state()          do { } while (0)
171 # define debug_rtlock_wait_restore_state()      do { } while (0)
172 #endif
173
174 /*
175  * set_current_state() includes a barrier so that the write of current->state
176  * is correctly serialised wrt the caller's subsequent test of whether to
177  * actually sleep:
178  *
179  *   for (;;) {
180  *      set_current_state(TASK_UNINTERRUPTIBLE);
181  *      if (CONDITION)
182  *         break;
183  *
184  *      schedule();
185  *   }
186  *   __set_current_state(TASK_RUNNING);
187  *
188  * If the caller does not need such serialisation (because, for instance, the
189  * CONDITION test and condition change and wakeup are under the same lock) then
190  * use __set_current_state().
191  *
192  * The above is typically ordered against the wakeup, which does:
193  *
194  *   CONDITION = 1;
195  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
196  *
197  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
198  * accessing p->state.
199  *
200  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
201  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
202  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
203  *
204  * However, with slightly different timing the wakeup TASK_RUNNING store can
205  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
206  * a problem either because that will result in one extra go around the loop
207  * and our @cond test will save the day.
208  *
209  * Also see the comments of try_to_wake_up().
210  */
211 #define __set_current_state(state_value)                                \
212         do {                                                            \
213                 debug_normal_state_change((state_value));               \
214                 WRITE_ONCE(current->__state, (state_value));            \
215         } while (0)
216
217 #define set_current_state(state_value)                                  \
218         do {                                                            \
219                 debug_normal_state_change((state_value));               \
220                 smp_store_mb(current->__state, (state_value));          \
221         } while (0)
222
223 /*
224  * set_special_state() should be used for those states when the blocking task
225  * can not use the regular condition based wait-loop. In that case we must
226  * serialize against wakeups such that any possible in-flight TASK_RUNNING
227  * stores will not collide with our state change.
228  */
229 #define set_special_state(state_value)                                  \
230         do {                                                            \
231                 unsigned long flags; /* may shadow */                   \
232                                                                         \
233                 raw_spin_lock_irqsave(&current->pi_lock, flags);        \
234                 debug_special_state_change((state_value));              \
235                 WRITE_ONCE(current->__state, (state_value));            \
236                 raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
237         } while (0)
238
239 /*
240  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
241  *
242  * RT's spin/rwlock substitutions are state preserving. The state of the
243  * task when blocking on the lock is saved in task_struct::saved_state and
244  * restored after the lock has been acquired.  These operations are
245  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
246  * lock related wakeups while the task is blocked on the lock are
247  * redirected to operate on task_struct::saved_state to ensure that these
248  * are not dropped. On restore task_struct::saved_state is set to
249  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
250  *
251  * The lock operation looks like this:
252  *
253  *      current_save_and_set_rtlock_wait_state();
254  *      for (;;) {
255  *              if (try_lock())
256  *                      break;
257  *              raw_spin_unlock_irq(&lock->wait_lock);
258  *              schedule_rtlock();
259  *              raw_spin_lock_irq(&lock->wait_lock);
260  *              set_current_state(TASK_RTLOCK_WAIT);
261  *      }
262  *      current_restore_rtlock_saved_state();
263  */
264 #define current_save_and_set_rtlock_wait_state()                        \
265         do {                                                            \
266                 lockdep_assert_irqs_disabled();                         \
267                 raw_spin_lock(&current->pi_lock);                       \
268                 current->saved_state = current->__state;                \
269                 debug_rtlock_wait_set_state();                          \
270                 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);         \
271                 raw_spin_unlock(&current->pi_lock);                     \
272         } while (0);
273
274 #define current_restore_rtlock_saved_state()                            \
275         do {                                                            \
276                 lockdep_assert_irqs_disabled();                         \
277                 raw_spin_lock(&current->pi_lock);                       \
278                 debug_rtlock_wait_restore_state();                      \
279                 WRITE_ONCE(current->__state, current->saved_state);     \
280                 current->saved_state = TASK_RUNNING;                    \
281                 raw_spin_unlock(&current->pi_lock);                     \
282         } while (0);
283
284 #define get_current_state()     READ_ONCE(current->__state)
285
286 /*
287  * Define the task command name length as enum, then it can be visible to
288  * BPF programs.
289  */
290 enum {
291         TASK_COMM_LEN = 16,
292 };
293
294 extern void scheduler_tick(void);
295
296 #define MAX_SCHEDULE_TIMEOUT            LONG_MAX
297
298 extern long schedule_timeout(long timeout);
299 extern long schedule_timeout_interruptible(long timeout);
300 extern long schedule_timeout_killable(long timeout);
301 extern long schedule_timeout_uninterruptible(long timeout);
302 extern long schedule_timeout_idle(long timeout);
303 asmlinkage void schedule(void);
304 extern void schedule_preempt_disabled(void);
305 asmlinkage void preempt_schedule_irq(void);
306 #ifdef CONFIG_PREEMPT_RT
307  extern void schedule_rtlock(void);
308 #endif
309
310 extern int __must_check io_schedule_prepare(void);
311 extern void io_schedule_finish(int token);
312 extern long io_schedule_timeout(long timeout);
313 extern void io_schedule(void);
314
315 /**
316  * struct prev_cputime - snapshot of system and user cputime
317  * @utime: time spent in user mode
318  * @stime: time spent in system mode
319  * @lock: protects the above two fields
320  *
321  * Stores previous user/system time values such that we can guarantee
322  * monotonicity.
323  */
324 struct prev_cputime {
325 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
326         u64                             utime;
327         u64                             stime;
328         raw_spinlock_t                  lock;
329 #endif
330 };
331
332 enum vtime_state {
333         /* Task is sleeping or running in a CPU with VTIME inactive: */
334         VTIME_INACTIVE = 0,
335         /* Task is idle */
336         VTIME_IDLE,
337         /* Task runs in kernelspace in a CPU with VTIME active: */
338         VTIME_SYS,
339         /* Task runs in userspace in a CPU with VTIME active: */
340         VTIME_USER,
341         /* Task runs as guests in a CPU with VTIME active: */
342         VTIME_GUEST,
343 };
344
345 struct vtime {
346         seqcount_t              seqcount;
347         unsigned long long      starttime;
348         enum vtime_state        state;
349         unsigned int            cpu;
350         u64                     utime;
351         u64                     stime;
352         u64                     gtime;
353 };
354
355 /*
356  * Utilization clamp constraints.
357  * @UCLAMP_MIN: Minimum utilization
358  * @UCLAMP_MAX: Maximum utilization
359  * @UCLAMP_CNT: Utilization clamp constraints count
360  */
361 enum uclamp_id {
362         UCLAMP_MIN = 0,
363         UCLAMP_MAX,
364         UCLAMP_CNT
365 };
366
367 #ifdef CONFIG_SMP
368 extern struct root_domain def_root_domain;
369 extern struct mutex sched_domains_mutex;
370 #endif
371
372 struct sched_info {
373 #ifdef CONFIG_SCHED_INFO
374         /* Cumulative counters: */
375
376         /* # of times we have run on this CPU: */
377         unsigned long                   pcount;
378
379         /* Time spent waiting on a runqueue: */
380         unsigned long long              run_delay;
381
382         /* Timestamps: */
383
384         /* When did we last run on a CPU? */
385         unsigned long long              last_arrival;
386
387         /* When were we last queued to run? */
388         unsigned long long              last_queued;
389
390 #endif /* CONFIG_SCHED_INFO */
391 };
392
393 /*
394  * Integer metrics need fixed point arithmetic, e.g., sched/fair
395  * has a few: load, load_avg, util_avg, freq, and capacity.
396  *
397  * We define a basic fixed point arithmetic range, and then formalize
398  * all these metrics based on that basic range.
399  */
400 # define SCHED_FIXEDPOINT_SHIFT         10
401 # define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
402
403 /* Increase resolution of cpu_capacity calculations */
404 # define SCHED_CAPACITY_SHIFT           SCHED_FIXEDPOINT_SHIFT
405 # define SCHED_CAPACITY_SCALE           (1L << SCHED_CAPACITY_SHIFT)
406
407 struct load_weight {
408         unsigned long                   weight;
409         u32                             inv_weight;
410 };
411
412 /**
413  * struct util_est - Estimation utilization of FAIR tasks
414  * @enqueued: instantaneous estimated utilization of a task/cpu
415  * @ewma:     the Exponential Weighted Moving Average (EWMA)
416  *            utilization of a task
417  *
418  * Support data structure to track an Exponential Weighted Moving Average
419  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
420  * average each time a task completes an activation. Sample's weight is chosen
421  * so that the EWMA will be relatively insensitive to transient changes to the
422  * task's workload.
423  *
424  * The enqueued attribute has a slightly different meaning for tasks and cpus:
425  * - task:   the task's util_avg at last task dequeue time
426  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
427  * Thus, the util_est.enqueued of a task represents the contribution on the
428  * estimated utilization of the CPU where that task is currently enqueued.
429  *
430  * Only for tasks we track a moving average of the past instantaneous
431  * estimated utilization. This allows to absorb sporadic drops in utilization
432  * of an otherwise almost periodic task.
433  *
434  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
435  * updates. When a task is dequeued, its util_est should not be updated if its
436  * util_avg has not been updated in the meantime.
437  * This information is mapped into the MSB bit of util_est.enqueued at dequeue
438  * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
439  * for a task) it is safe to use MSB.
440  */
441 struct util_est {
442         unsigned int                    enqueued;
443         unsigned int                    ewma;
444 #define UTIL_EST_WEIGHT_SHIFT           2
445 #define UTIL_AVG_UNCHANGED              0x80000000
446 } __attribute__((__aligned__(sizeof(u64))));
447
448 /*
449  * The load/runnable/util_avg accumulates an infinite geometric series
450  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
451  *
452  * [load_avg definition]
453  *
454  *   load_avg = runnable% * scale_load_down(load)
455  *
456  * [runnable_avg definition]
457  *
458  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
459  *
460  * [util_avg definition]
461  *
462  *   util_avg = running% * SCHED_CAPACITY_SCALE
463  *
464  * where runnable% is the time ratio that a sched_entity is runnable and
465  * running% the time ratio that a sched_entity is running.
466  *
467  * For cfs_rq, they are the aggregated values of all runnable and blocked
468  * sched_entities.
469  *
470  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
471  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
472  * for computing those signals (see update_rq_clock_pelt())
473  *
474  * N.B., the above ratios (runnable% and running%) themselves are in the
475  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
476  * to as large a range as necessary. This is for example reflected by
477  * util_avg's SCHED_CAPACITY_SCALE.
478  *
479  * [Overflow issue]
480  *
481  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
482  * with the highest load (=88761), always runnable on a single cfs_rq,
483  * and should not overflow as the number already hits PID_MAX_LIMIT.
484  *
485  * For all other cases (including 32-bit kernels), struct load_weight's
486  * weight will overflow first before we do, because:
487  *
488  *    Max(load_avg) <= Max(load.weight)
489  *
490  * Then it is the load_weight's responsibility to consider overflow
491  * issues.
492  */
493 struct sched_avg {
494         u64                             last_update_time;
495         u64                             load_sum;
496         u64                             runnable_sum;
497         u32                             util_sum;
498         u32                             period_contrib;
499         unsigned long                   load_avg;
500         unsigned long                   runnable_avg;
501         unsigned long                   util_avg;
502         struct util_est                 util_est;
503 } ____cacheline_aligned;
504
505 struct sched_statistics {
506 #ifdef CONFIG_SCHEDSTATS
507         u64                             wait_start;
508         u64                             wait_max;
509         u64                             wait_count;
510         u64                             wait_sum;
511         u64                             iowait_count;
512         u64                             iowait_sum;
513
514         u64                             sleep_start;
515         u64                             sleep_max;
516         s64                             sum_sleep_runtime;
517
518         u64                             block_start;
519         u64                             block_max;
520         s64                             sum_block_runtime;
521
522         u64                             exec_max;
523         u64                             slice_max;
524
525         u64                             nr_migrations_cold;
526         u64                             nr_failed_migrations_affine;
527         u64                             nr_failed_migrations_running;
528         u64                             nr_failed_migrations_hot;
529         u64                             nr_forced_migrations;
530
531         u64                             nr_wakeups;
532         u64                             nr_wakeups_sync;
533         u64                             nr_wakeups_migrate;
534         u64                             nr_wakeups_local;
535         u64                             nr_wakeups_remote;
536         u64                             nr_wakeups_affine;
537         u64                             nr_wakeups_affine_attempts;
538         u64                             nr_wakeups_passive;
539         u64                             nr_wakeups_idle;
540
541 #ifdef CONFIG_SCHED_CORE
542         u64                             core_forceidle_sum;
543 #endif
544 #endif /* CONFIG_SCHEDSTATS */
545 } ____cacheline_aligned;
546
547 struct sched_entity {
548         /* For load-balancing: */
549         struct load_weight              load;
550         struct rb_node                  run_node;
551         struct list_head                group_node;
552         unsigned int                    on_rq;
553
554         u64                             exec_start;
555         u64                             sum_exec_runtime;
556         u64                             vruntime;
557         u64                             prev_sum_exec_runtime;
558
559         u64                             nr_migrations;
560
561 #ifdef CONFIG_FAIR_GROUP_SCHED
562         int                             depth;
563         struct sched_entity             *parent;
564         /* rq on which this entity is (to be) queued: */
565         struct cfs_rq                   *cfs_rq;
566         /* rq "owned" by this entity/group: */
567         struct cfs_rq                   *my_q;
568         /* cached value of my_q->h_nr_running */
569         unsigned long                   runnable_weight;
570 #endif
571
572 #ifdef CONFIG_SMP
573         /*
574          * Per entity load average tracking.
575          *
576          * Put into separate cache line so it does not
577          * collide with read-mostly values above.
578          */
579         struct sched_avg                avg;
580 #endif
581 };
582
583 struct sched_rt_entity {
584         struct list_head                run_list;
585         unsigned long                   timeout;
586         unsigned long                   watchdog_stamp;
587         unsigned int                    time_slice;
588         unsigned short                  on_rq;
589         unsigned short                  on_list;
590
591         struct sched_rt_entity          *back;
592 #ifdef CONFIG_RT_GROUP_SCHED
593         struct sched_rt_entity          *parent;
594         /* rq on which this entity is (to be) queued: */
595         struct rt_rq                    *rt_rq;
596         /* rq "owned" by this entity/group: */
597         struct rt_rq                    *my_q;
598 #endif
599 } __randomize_layout;
600
601 struct sched_dl_entity {
602         struct rb_node                  rb_node;
603
604         /*
605          * Original scheduling parameters. Copied here from sched_attr
606          * during sched_setattr(), they will remain the same until
607          * the next sched_setattr().
608          */
609         u64                             dl_runtime;     /* Maximum runtime for each instance    */
610         u64                             dl_deadline;    /* Relative deadline of each instance   */
611         u64                             dl_period;      /* Separation of two instances (period) */
612         u64                             dl_bw;          /* dl_runtime / dl_period               */
613         u64                             dl_density;     /* dl_runtime / dl_deadline             */
614
615         /*
616          * Actual scheduling parameters. Initialized with the values above,
617          * they are continuously updated during task execution. Note that
618          * the remaining runtime could be < 0 in case we are in overrun.
619          */
620         s64                             runtime;        /* Remaining runtime for this instance  */
621         u64                             deadline;       /* Absolute deadline for this instance  */
622         unsigned int                    flags;          /* Specifying the scheduler behaviour   */
623
624         /*
625          * Some bool flags:
626          *
627          * @dl_throttled tells if we exhausted the runtime. If so, the
628          * task has to wait for a replenishment to be performed at the
629          * next firing of dl_timer.
630          *
631          * @dl_yielded tells if task gave up the CPU before consuming
632          * all its available runtime during the last job.
633          *
634          * @dl_non_contending tells if the task is inactive while still
635          * contributing to the active utilization. In other words, it
636          * indicates if the inactive timer has been armed and its handler
637          * has not been executed yet. This flag is useful to avoid race
638          * conditions between the inactive timer handler and the wakeup
639          * code.
640          *
641          * @dl_overrun tells if the task asked to be informed about runtime
642          * overruns.
643          */
644         unsigned int                    dl_throttled      : 1;
645         unsigned int                    dl_yielded        : 1;
646         unsigned int                    dl_non_contending : 1;
647         unsigned int                    dl_overrun        : 1;
648
649         /*
650          * Bandwidth enforcement timer. Each -deadline task has its
651          * own bandwidth to be enforced, thus we need one timer per task.
652          */
653         struct hrtimer                  dl_timer;
654
655         /*
656          * Inactive timer, responsible for decreasing the active utilization
657          * at the "0-lag time". When a -deadline task blocks, it contributes
658          * to GRUB's active utilization until the "0-lag time", hence a
659          * timer is needed to decrease the active utilization at the correct
660          * time.
661          */
662         struct hrtimer inactive_timer;
663
664 #ifdef CONFIG_RT_MUTEXES
665         /*
666          * Priority Inheritance. When a DEADLINE scheduling entity is boosted
667          * pi_se points to the donor, otherwise points to the dl_se it belongs
668          * to (the original one/itself).
669          */
670         struct sched_dl_entity *pi_se;
671 #endif
672 };
673
674 #ifdef CONFIG_UCLAMP_TASK
675 /* Number of utilization clamp buckets (shorter alias) */
676 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
677
678 /*
679  * Utilization clamp for a scheduling entity
680  * @value:              clamp value "assigned" to a se
681  * @bucket_id:          bucket index corresponding to the "assigned" value
682  * @active:             the se is currently refcounted in a rq's bucket
683  * @user_defined:       the requested clamp value comes from user-space
684  *
685  * The bucket_id is the index of the clamp bucket matching the clamp value
686  * which is pre-computed and stored to avoid expensive integer divisions from
687  * the fast path.
688  *
689  * The active bit is set whenever a task has got an "effective" value assigned,
690  * which can be different from the clamp value "requested" from user-space.
691  * This allows to know a task is refcounted in the rq's bucket corresponding
692  * to the "effective" bucket_id.
693  *
694  * The user_defined bit is set whenever a task has got a task-specific clamp
695  * value requested from userspace, i.e. the system defaults apply to this task
696  * just as a restriction. This allows to relax default clamps when a less
697  * restrictive task-specific value has been requested, thus allowing to
698  * implement a "nice" semantic. For example, a task running with a 20%
699  * default boost can still drop its own boosting to 0%.
700  */
701 struct uclamp_se {
702         unsigned int value              : bits_per(SCHED_CAPACITY_SCALE);
703         unsigned int bucket_id          : bits_per(UCLAMP_BUCKETS);
704         unsigned int active             : 1;
705         unsigned int user_defined       : 1;
706 };
707 #endif /* CONFIG_UCLAMP_TASK */
708
709 union rcu_special {
710         struct {
711                 u8                      blocked;
712                 u8                      need_qs;
713                 u8                      exp_hint; /* Hint for performance. */
714                 u8                      need_mb; /* Readers need smp_mb(). */
715         } b; /* Bits. */
716         u32 s; /* Set of bits. */
717 };
718
719 enum perf_event_task_context {
720         perf_invalid_context = -1,
721         perf_hw_context = 0,
722         perf_sw_context,
723         perf_nr_task_contexts,
724 };
725
726 struct wake_q_node {
727         struct wake_q_node *next;
728 };
729
730 struct kmap_ctrl {
731 #ifdef CONFIG_KMAP_LOCAL
732         int                             idx;
733         pte_t                           pteval[KM_MAX_IDX];
734 #endif
735 };
736
737 struct task_struct {
738 #ifdef CONFIG_THREAD_INFO_IN_TASK
739         /*
740          * For reasons of header soup (see current_thread_info()), this
741          * must be the first element of task_struct.
742          */
743         struct thread_info              thread_info;
744 #endif
745         unsigned int                    __state;
746
747 #ifdef CONFIG_PREEMPT_RT
748         /* saved state for "spinlock sleepers" */
749         unsigned int                    saved_state;
750 #endif
751
752         /*
753          * This begins the randomizable portion of task_struct. Only
754          * scheduling-critical items should be added above here.
755          */
756         randomized_struct_fields_start
757
758         void                            *stack;
759         refcount_t                      usage;
760         /* Per task flags (PF_*), defined further below: */
761         unsigned int                    flags;
762         unsigned int                    ptrace;
763
764 #ifdef CONFIG_SMP
765         int                             on_cpu;
766         struct __call_single_node       wake_entry;
767         unsigned int                    wakee_flips;
768         unsigned long                   wakee_flip_decay_ts;
769         struct task_struct              *last_wakee;
770
771         /*
772          * recent_used_cpu is initially set as the last CPU used by a task
773          * that wakes affine another task. Waker/wakee relationships can
774          * push tasks around a CPU where each wakeup moves to the next one.
775          * Tracking a recently used CPU allows a quick search for a recently
776          * used CPU that may be idle.
777          */
778         int                             recent_used_cpu;
779         int                             wake_cpu;
780 #endif
781         int                             on_rq;
782
783         int                             prio;
784         int                             static_prio;
785         int                             normal_prio;
786         unsigned int                    rt_priority;
787
788         struct sched_entity             se;
789         struct sched_rt_entity          rt;
790         struct sched_dl_entity          dl;
791         const struct sched_class        *sched_class;
792
793 #ifdef CONFIG_SCHED_CORE
794         struct rb_node                  core_node;
795         unsigned long                   core_cookie;
796         unsigned int                    core_occupation;
797 #endif
798
799 #ifdef CONFIG_CGROUP_SCHED
800         struct task_group               *sched_task_group;
801 #endif
802
803 #ifdef CONFIG_UCLAMP_TASK
804         /*
805          * Clamp values requested for a scheduling entity.
806          * Must be updated with task_rq_lock() held.
807          */
808         struct uclamp_se                uclamp_req[UCLAMP_CNT];
809         /*
810          * Effective clamp values used for a scheduling entity.
811          * Must be updated with task_rq_lock() held.
812          */
813         struct uclamp_se                uclamp[UCLAMP_CNT];
814 #endif
815
816         struct sched_statistics         stats;
817
818 #ifdef CONFIG_PREEMPT_NOTIFIERS
819         /* List of struct preempt_notifier: */
820         struct hlist_head               preempt_notifiers;
821 #endif
822
823 #ifdef CONFIG_BLK_DEV_IO_TRACE
824         unsigned int                    btrace_seq;
825 #endif
826
827         unsigned int                    policy;
828         int                             nr_cpus_allowed;
829         const cpumask_t                 *cpus_ptr;
830         cpumask_t                       *user_cpus_ptr;
831         cpumask_t                       cpus_mask;
832         void                            *migration_pending;
833 #ifdef CONFIG_SMP
834         unsigned short                  migration_disabled;
835 #endif
836         unsigned short                  migration_flags;
837
838 #ifdef CONFIG_PREEMPT_RCU
839         int                             rcu_read_lock_nesting;
840         union rcu_special               rcu_read_unlock_special;
841         struct list_head                rcu_node_entry;
842         struct rcu_node                 *rcu_blocked_node;
843 #endif /* #ifdef CONFIG_PREEMPT_RCU */
844
845 #ifdef CONFIG_TASKS_RCU
846         unsigned long                   rcu_tasks_nvcsw;
847         u8                              rcu_tasks_holdout;
848         u8                              rcu_tasks_idx;
849         int                             rcu_tasks_idle_cpu;
850         struct list_head                rcu_tasks_holdout_list;
851 #endif /* #ifdef CONFIG_TASKS_RCU */
852
853 #ifdef CONFIG_TASKS_TRACE_RCU
854         int                             trc_reader_nesting;
855         int                             trc_ipi_to_cpu;
856         union rcu_special               trc_reader_special;
857         struct list_head                trc_holdout_list;
858         struct list_head                trc_blkd_node;
859         int                             trc_blkd_cpu;
860 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
861
862         struct sched_info               sched_info;
863
864         struct list_head                tasks;
865 #ifdef CONFIG_SMP
866         struct plist_node               pushable_tasks;
867         struct rb_node                  pushable_dl_tasks;
868 #endif
869
870         struct mm_struct                *mm;
871         struct mm_struct                *active_mm;
872
873         /* Per-thread vma caching: */
874
875 #ifdef SPLIT_RSS_COUNTING
876         struct task_rss_stat            rss_stat;
877 #endif
878         int                             exit_state;
879         int                             exit_code;
880         int                             exit_signal;
881         /* The signal sent when the parent dies: */
882         int                             pdeath_signal;
883         /* JOBCTL_*, siglock protected: */
884         unsigned long                   jobctl;
885
886         /* Used for emulating ABI behavior of previous Linux versions: */
887         unsigned int                    personality;
888
889         /* Scheduler bits, serialized by scheduler locks: */
890         unsigned                        sched_reset_on_fork:1;
891         unsigned                        sched_contributes_to_load:1;
892         unsigned                        sched_migrated:1;
893 #ifdef CONFIG_PSI
894         unsigned                        sched_psi_wake_requeue:1;
895 #endif
896
897         /* Force alignment to the next boundary: */
898         unsigned                        :0;
899
900         /* Unserialized, strictly 'current' */
901
902         /*
903          * This field must not be in the scheduler word above due to wakelist
904          * queueing no longer being serialized by p->on_cpu. However:
905          *
906          * p->XXX = X;                  ttwu()
907          * schedule()                     if (p->on_rq && ..) // false
908          *   smp_mb__after_spinlock();    if (smp_load_acquire(&p->on_cpu) && //true
909          *   deactivate_task()                ttwu_queue_wakelist())
910          *     p->on_rq = 0;                    p->sched_remote_wakeup = Y;
911          *
912          * guarantees all stores of 'current' are visible before
913          * ->sched_remote_wakeup gets used, so it can be in this word.
914          */
915         unsigned                        sched_remote_wakeup:1;
916
917         /* Bit to tell LSMs we're in execve(): */
918         unsigned                        in_execve:1;
919         unsigned                        in_iowait:1;
920 #ifndef TIF_RESTORE_SIGMASK
921         unsigned                        restore_sigmask:1;
922 #endif
923 #ifdef CONFIG_MEMCG
924         unsigned                        in_user_fault:1;
925 #endif
926 #ifdef CONFIG_LRU_GEN
927         /* whether the LRU algorithm may apply to this access */
928         unsigned                        in_lru_fault:1;
929 #endif
930 #ifdef CONFIG_COMPAT_BRK
931         unsigned                        brk_randomized:1;
932 #endif
933 #ifdef CONFIG_CGROUPS
934         /* disallow userland-initiated cgroup migration */
935         unsigned                        no_cgroup_migration:1;
936         /* task is frozen/stopped (used by the cgroup freezer) */
937         unsigned                        frozen:1;
938 #endif
939 #ifdef CONFIG_BLK_CGROUP
940         unsigned                        use_memdelay:1;
941 #endif
942 #ifdef CONFIG_PSI
943         /* Stalled due to lack of memory */
944         unsigned                        in_memstall:1;
945 #endif
946 #ifdef CONFIG_PAGE_OWNER
947         /* Used by page_owner=on to detect recursion in page tracking. */
948         unsigned                        in_page_owner:1;
949 #endif
950 #ifdef CONFIG_EVENTFD
951         /* Recursion prevention for eventfd_signal() */
952         unsigned                        in_eventfd:1;
953 #endif
954 #ifdef CONFIG_IOMMU_SVA
955         unsigned                        pasid_activated:1;
956 #endif
957 #ifdef  CONFIG_CPU_SUP_INTEL
958         unsigned                        reported_split_lock:1;
959 #endif
960 #ifdef CONFIG_TASK_DELAY_ACCT
961         /* delay due to memory thrashing */
962         unsigned                        in_thrashing:1;
963 #endif
964
965         unsigned long                   atomic_flags; /* Flags requiring atomic access. */
966
967         struct restart_block            restart_block;
968
969         pid_t                           pid;
970         pid_t                           tgid;
971
972 #ifdef CONFIG_STACKPROTECTOR
973         /* Canary value for the -fstack-protector GCC feature: */
974         unsigned long                   stack_canary;
975 #endif
976         /*
977          * Pointers to the (original) parent process, youngest child, younger sibling,
978          * older sibling, respectively.  (p->father can be replaced with
979          * p->real_parent->pid)
980          */
981
982         /* Real parent process: */
983         struct task_struct __rcu        *real_parent;
984
985         /* Recipient of SIGCHLD, wait4() reports: */
986         struct task_struct __rcu        *parent;
987
988         /*
989          * Children/sibling form the list of natural children:
990          */
991         struct list_head                children;
992         struct list_head                sibling;
993         struct task_struct              *group_leader;
994
995         /*
996          * 'ptraced' is the list of tasks this task is using ptrace() on.
997          *
998          * This includes both natural children and PTRACE_ATTACH targets.
999          * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1000          */
1001         struct list_head                ptraced;
1002         struct list_head                ptrace_entry;
1003
1004         /* PID/PID hash table linkage. */
1005         struct pid                      *thread_pid;
1006         struct hlist_node               pid_links[PIDTYPE_MAX];
1007         struct list_head                thread_group;
1008         struct list_head                thread_node;
1009
1010         struct completion               *vfork_done;
1011
1012         /* CLONE_CHILD_SETTID: */
1013         int __user                      *set_child_tid;
1014
1015         /* CLONE_CHILD_CLEARTID: */
1016         int __user                      *clear_child_tid;
1017
1018         /* PF_KTHREAD | PF_IO_WORKER */
1019         void                            *worker_private;
1020
1021         u64                             utime;
1022         u64                             stime;
1023 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1024         u64                             utimescaled;
1025         u64                             stimescaled;
1026 #endif
1027         u64                             gtime;
1028         struct prev_cputime             prev_cputime;
1029 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1030         struct vtime                    vtime;
1031 #endif
1032
1033 #ifdef CONFIG_NO_HZ_FULL
1034         atomic_t                        tick_dep_mask;
1035 #endif
1036         /* Context switch counts: */
1037         unsigned long                   nvcsw;
1038         unsigned long                   nivcsw;
1039
1040         /* Monotonic time in nsecs: */
1041         u64                             start_time;
1042
1043         /* Boot based time in nsecs: */
1044         u64                             start_boottime;
1045
1046         /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1047         unsigned long                   min_flt;
1048         unsigned long                   maj_flt;
1049
1050         /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1051         struct posix_cputimers          posix_cputimers;
1052
1053 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1054         struct posix_cputimers_work     posix_cputimers_work;
1055 #endif
1056
1057         /* Process credentials: */
1058
1059         /* Tracer's credentials at attach: */
1060         const struct cred __rcu         *ptracer_cred;
1061
1062         /* Objective and real subjective task credentials (COW): */
1063         const struct cred __rcu         *real_cred;
1064
1065         /* Effective (overridable) subjective task credentials (COW): */
1066         const struct cred __rcu         *cred;
1067
1068 #ifdef CONFIG_KEYS
1069         /* Cached requested key. */
1070         struct key                      *cached_requested_key;
1071 #endif
1072
1073         /*
1074          * executable name, excluding path.
1075          *
1076          * - normally initialized setup_new_exec()
1077          * - access it with [gs]et_task_comm()
1078          * - lock it with task_lock()
1079          */
1080         char                            comm[TASK_COMM_LEN];
1081
1082         struct nameidata                *nameidata;
1083
1084 #ifdef CONFIG_SYSVIPC
1085         struct sysv_sem                 sysvsem;
1086         struct sysv_shm                 sysvshm;
1087 #endif
1088 #ifdef CONFIG_DETECT_HUNG_TASK
1089         unsigned long                   last_switch_count;
1090         unsigned long                   last_switch_time;
1091 #endif
1092         /* Filesystem information: */
1093         struct fs_struct                *fs;
1094
1095         /* Open file information: */
1096         struct files_struct             *files;
1097
1098 #ifdef CONFIG_IO_URING
1099         struct io_uring_task            *io_uring;
1100 #endif
1101
1102         /* Namespaces: */
1103         struct nsproxy                  *nsproxy;
1104
1105         /* Signal handlers: */
1106         struct signal_struct            *signal;
1107         struct sighand_struct __rcu             *sighand;
1108         sigset_t                        blocked;
1109         sigset_t                        real_blocked;
1110         /* Restored if set_restore_sigmask() was used: */
1111         sigset_t                        saved_sigmask;
1112         struct sigpending               pending;
1113         unsigned long                   sas_ss_sp;
1114         size_t                          sas_ss_size;
1115         unsigned int                    sas_ss_flags;
1116
1117         struct callback_head            *task_works;
1118
1119 #ifdef CONFIG_AUDIT
1120 #ifdef CONFIG_AUDITSYSCALL
1121         struct audit_context            *audit_context;
1122 #endif
1123         kuid_t                          loginuid;
1124         unsigned int                    sessionid;
1125 #endif
1126         struct seccomp                  seccomp;
1127         struct syscall_user_dispatch    syscall_dispatch;
1128
1129         /* Thread group tracking: */
1130         u64                             parent_exec_id;
1131         u64                             self_exec_id;
1132
1133         /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1134         spinlock_t                      alloc_lock;
1135
1136         /* Protection of the PI data structures: */
1137         raw_spinlock_t                  pi_lock;
1138
1139         struct wake_q_node              wake_q;
1140
1141 #ifdef CONFIG_RT_MUTEXES
1142         /* PI waiters blocked on a rt_mutex held by this task: */
1143         struct rb_root_cached           pi_waiters;
1144         /* Updated under owner's pi_lock and rq lock */
1145         struct task_struct              *pi_top_task;
1146         /* Deadlock detection and priority inheritance handling: */
1147         struct rt_mutex_waiter          *pi_blocked_on;
1148 #endif
1149
1150 #ifdef CONFIG_DEBUG_MUTEXES
1151         /* Mutex deadlock detection: */
1152         struct mutex_waiter             *blocked_on;
1153 #endif
1154
1155 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1156         int                             non_block_count;
1157 #endif
1158
1159 #ifdef CONFIG_TRACE_IRQFLAGS
1160         struct irqtrace_events          irqtrace;
1161         unsigned int                    hardirq_threaded;
1162         u64                             hardirq_chain_key;
1163         int                             softirqs_enabled;
1164         int                             softirq_context;
1165         int                             irq_config;
1166 #endif
1167 #ifdef CONFIG_PREEMPT_RT
1168         int                             softirq_disable_cnt;
1169 #endif
1170
1171 #ifdef CONFIG_LOCKDEP
1172 # define MAX_LOCK_DEPTH                 48UL
1173         u64                             curr_chain_key;
1174         int                             lockdep_depth;
1175         unsigned int                    lockdep_recursion;
1176         struct held_lock                held_locks[MAX_LOCK_DEPTH];
1177 #endif
1178
1179 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1180         unsigned int                    in_ubsan;
1181 #endif
1182
1183         /* Journalling filesystem info: */
1184         void                            *journal_info;
1185
1186         /* Stacked block device info: */
1187         struct bio_list                 *bio_list;
1188
1189         /* Stack plugging: */
1190         struct blk_plug                 *plug;
1191
1192         /* VM state: */
1193         struct reclaim_state            *reclaim_state;
1194
1195         struct backing_dev_info         *backing_dev_info;
1196
1197         struct io_context               *io_context;
1198
1199 #ifdef CONFIG_COMPACTION
1200         struct capture_control          *capture_control;
1201 #endif
1202         /* Ptrace state: */
1203         unsigned long                   ptrace_message;
1204         kernel_siginfo_t                *last_siginfo;
1205
1206         struct task_io_accounting       ioac;
1207 #ifdef CONFIG_PSI
1208         /* Pressure stall state */
1209         unsigned int                    psi_flags;
1210 #endif
1211 #ifdef CONFIG_TASK_XACCT
1212         /* Accumulated RSS usage: */
1213         u64                             acct_rss_mem1;
1214         /* Accumulated virtual memory usage: */
1215         u64                             acct_vm_mem1;
1216         /* stime + utime since last update: */
1217         u64                             acct_timexpd;
1218 #endif
1219 #ifdef CONFIG_CPUSETS
1220         /* Protected by ->alloc_lock: */
1221         nodemask_t                      mems_allowed;
1222         /* Sequence number to catch updates: */
1223         seqcount_spinlock_t             mems_allowed_seq;
1224         int                             cpuset_mem_spread_rotor;
1225         int                             cpuset_slab_spread_rotor;
1226 #endif
1227 #ifdef CONFIG_CGROUPS
1228         /* Control Group info protected by css_set_lock: */
1229         struct css_set __rcu            *cgroups;
1230         /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1231         struct list_head                cg_list;
1232 #endif
1233 #ifdef CONFIG_X86_CPU_RESCTRL
1234         u32                             closid;
1235         u32                             rmid;
1236 #endif
1237 #ifdef CONFIG_FUTEX
1238         struct robust_list_head __user  *robust_list;
1239 #ifdef CONFIG_COMPAT
1240         struct compat_robust_list_head __user *compat_robust_list;
1241 #endif
1242         struct list_head                pi_state_list;
1243         struct futex_pi_state           *pi_state_cache;
1244         struct mutex                    futex_exit_mutex;
1245         unsigned int                    futex_state;
1246 #endif
1247 #ifdef CONFIG_PERF_EVENTS
1248         struct perf_event_context       *perf_event_ctxp[perf_nr_task_contexts];
1249         struct mutex                    perf_event_mutex;
1250         struct list_head                perf_event_list;
1251 #endif
1252 #ifdef CONFIG_DEBUG_PREEMPT
1253         unsigned long                   preempt_disable_ip;
1254 #endif
1255 #ifdef CONFIG_NUMA
1256         /* Protected by alloc_lock: */
1257         struct mempolicy                *mempolicy;
1258         short                           il_prev;
1259         short                           pref_node_fork;
1260 #endif
1261 #ifdef CONFIG_NUMA_BALANCING
1262         int                             numa_scan_seq;
1263         unsigned int                    numa_scan_period;
1264         unsigned int                    numa_scan_period_max;
1265         int                             numa_preferred_nid;
1266         unsigned long                   numa_migrate_retry;
1267         /* Migration stamp: */
1268         u64                             node_stamp;
1269         u64                             last_task_numa_placement;
1270         u64                             last_sum_exec_runtime;
1271         struct callback_head            numa_work;
1272
1273         /*
1274          * This pointer is only modified for current in syscall and
1275          * pagefault context (and for tasks being destroyed), so it can be read
1276          * from any of the following contexts:
1277          *  - RCU read-side critical section
1278          *  - current->numa_group from everywhere
1279          *  - task's runqueue locked, task not running
1280          */
1281         struct numa_group __rcu         *numa_group;
1282
1283         /*
1284          * numa_faults is an array split into four regions:
1285          * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1286          * in this precise order.
1287          *
1288          * faults_memory: Exponential decaying average of faults on a per-node
1289          * basis. Scheduling placement decisions are made based on these
1290          * counts. The values remain static for the duration of a PTE scan.
1291          * faults_cpu: Track the nodes the process was running on when a NUMA
1292          * hinting fault was incurred.
1293          * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1294          * during the current scan window. When the scan completes, the counts
1295          * in faults_memory and faults_cpu decay and these values are copied.
1296          */
1297         unsigned long                   *numa_faults;
1298         unsigned long                   total_numa_faults;
1299
1300         /*
1301          * numa_faults_locality tracks if faults recorded during the last
1302          * scan window were remote/local or failed to migrate. The task scan
1303          * period is adapted based on the locality of the faults with different
1304          * weights depending on whether they were shared or private faults
1305          */
1306         unsigned long                   numa_faults_locality[3];
1307
1308         unsigned long                   numa_pages_migrated;
1309 #endif /* CONFIG_NUMA_BALANCING */
1310
1311 #ifdef CONFIG_RSEQ
1312         struct rseq __user *rseq;
1313         u32 rseq_sig;
1314         /*
1315          * RmW on rseq_event_mask must be performed atomically
1316          * with respect to preemption.
1317          */
1318         unsigned long rseq_event_mask;
1319 #endif
1320
1321         struct tlbflush_unmap_batch     tlb_ubc;
1322
1323         union {
1324                 refcount_t              rcu_users;
1325                 struct rcu_head         rcu;
1326         };
1327
1328         /* Cache last used pipe for splice(): */
1329         struct pipe_inode_info          *splice_pipe;
1330
1331         struct page_frag                task_frag;
1332
1333 #ifdef CONFIG_TASK_DELAY_ACCT
1334         struct task_delay_info          *delays;
1335 #endif
1336
1337 #ifdef CONFIG_FAULT_INJECTION
1338         int                             make_it_fail;
1339         unsigned int                    fail_nth;
1340 #endif
1341         /*
1342          * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1343          * balance_dirty_pages() for a dirty throttling pause:
1344          */
1345         int                             nr_dirtied;
1346         int                             nr_dirtied_pause;
1347         /* Start of a write-and-pause period: */
1348         unsigned long                   dirty_paused_when;
1349
1350 #ifdef CONFIG_LATENCYTOP
1351         int                             latency_record_count;
1352         struct latency_record           latency_record[LT_SAVECOUNT];
1353 #endif
1354         /*
1355          * Time slack values; these are used to round up poll() and
1356          * select() etc timeout values. These are in nanoseconds.
1357          */
1358         u64                             timer_slack_ns;
1359         u64                             default_timer_slack_ns;
1360
1361 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1362         unsigned int                    kasan_depth;
1363 #endif
1364
1365 #ifdef CONFIG_KCSAN
1366         struct kcsan_ctx                kcsan_ctx;
1367 #ifdef CONFIG_TRACE_IRQFLAGS
1368         struct irqtrace_events          kcsan_save_irqtrace;
1369 #endif
1370 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1371         int                             kcsan_stack_depth;
1372 #endif
1373 #endif
1374
1375 #ifdef CONFIG_KMSAN
1376         struct kmsan_ctx                kmsan_ctx;
1377 #endif
1378
1379 #if IS_ENABLED(CONFIG_KUNIT)
1380         struct kunit                    *kunit_test;
1381 #endif
1382
1383 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1384         /* Index of current stored address in ret_stack: */
1385         int                             curr_ret_stack;
1386         int                             curr_ret_depth;
1387
1388         /* Stack of return addresses for return function tracing: */
1389         struct ftrace_ret_stack         *ret_stack;
1390
1391         /* Timestamp for last schedule: */
1392         unsigned long long              ftrace_timestamp;
1393
1394         /*
1395          * Number of functions that haven't been traced
1396          * because of depth overrun:
1397          */
1398         atomic_t                        trace_overrun;
1399
1400         /* Pause tracing: */
1401         atomic_t                        tracing_graph_pause;
1402 #endif
1403
1404 #ifdef CONFIG_TRACING
1405         /* Bitmask and counter of trace recursion: */
1406         unsigned long                   trace_recursion;
1407 #endif /* CONFIG_TRACING */
1408
1409 #ifdef CONFIG_KCOV
1410         /* See kernel/kcov.c for more details. */
1411
1412         /* Coverage collection mode enabled for this task (0 if disabled): */
1413         unsigned int                    kcov_mode;
1414
1415         /* Size of the kcov_area: */
1416         unsigned int                    kcov_size;
1417
1418         /* Buffer for coverage collection: */
1419         void                            *kcov_area;
1420
1421         /* KCOV descriptor wired with this task or NULL: */
1422         struct kcov                     *kcov;
1423
1424         /* KCOV common handle for remote coverage collection: */
1425         u64                             kcov_handle;
1426
1427         /* KCOV sequence number: */
1428         int                             kcov_sequence;
1429
1430         /* Collect coverage from softirq context: */
1431         unsigned int                    kcov_softirq;
1432 #endif
1433
1434 #ifdef CONFIG_MEMCG
1435         struct mem_cgroup               *memcg_in_oom;
1436         gfp_t                           memcg_oom_gfp_mask;
1437         int                             memcg_oom_order;
1438
1439         /* Number of pages to reclaim on returning to userland: */
1440         unsigned int                    memcg_nr_pages_over_high;
1441
1442         /* Used by memcontrol for targeted memcg charge: */
1443         struct mem_cgroup               *active_memcg;
1444 #endif
1445
1446 #ifdef CONFIG_BLK_CGROUP
1447         struct request_queue            *throttle_queue;
1448 #endif
1449
1450 #ifdef CONFIG_UPROBES
1451         struct uprobe_task              *utask;
1452 #endif
1453 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1454         unsigned int                    sequential_io;
1455         unsigned int                    sequential_io_avg;
1456 #endif
1457         struct kmap_ctrl                kmap_ctrl;
1458 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1459         unsigned long                   task_state_change;
1460 # ifdef CONFIG_PREEMPT_RT
1461         unsigned long                   saved_state_change;
1462 # endif
1463 #endif
1464         int                             pagefault_disabled;
1465 #ifdef CONFIG_MMU
1466         struct task_struct              *oom_reaper_list;
1467         struct timer_list               oom_reaper_timer;
1468 #endif
1469 #ifdef CONFIG_VMAP_STACK
1470         struct vm_struct                *stack_vm_area;
1471 #endif
1472 #ifdef CONFIG_THREAD_INFO_IN_TASK
1473         /* A live task holds one reference: */
1474         refcount_t                      stack_refcount;
1475 #endif
1476 #ifdef CONFIG_LIVEPATCH
1477         int patch_state;
1478 #endif
1479 #ifdef CONFIG_SECURITY
1480         /* Used by LSM modules for access restriction: */
1481         void                            *security;
1482 #endif
1483 #ifdef CONFIG_BPF_SYSCALL
1484         /* Used by BPF task local storage */
1485         struct bpf_local_storage __rcu  *bpf_storage;
1486         /* Used for BPF run context */
1487         struct bpf_run_ctx              *bpf_ctx;
1488 #endif
1489
1490 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1491         unsigned long                   lowest_stack;
1492         unsigned long                   prev_lowest_stack;
1493 #endif
1494
1495 #ifdef CONFIG_X86_MCE
1496         void __user                     *mce_vaddr;
1497         __u64                           mce_kflags;
1498         u64                             mce_addr;
1499         __u64                           mce_ripv : 1,
1500                                         mce_whole_page : 1,
1501                                         __mce_reserved : 62;
1502         struct callback_head            mce_kill_me;
1503         int                             mce_count;
1504 #endif
1505
1506 #ifdef CONFIG_KRETPROBES
1507         struct llist_head               kretprobe_instances;
1508 #endif
1509 #ifdef CONFIG_RETHOOK
1510         struct llist_head               rethooks;
1511 #endif
1512
1513 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1514         /*
1515          * If L1D flush is supported on mm context switch
1516          * then we use this callback head to queue kill work
1517          * to kill tasks that are not running on SMT disabled
1518          * cores
1519          */
1520         struct callback_head            l1d_flush_kill;
1521 #endif
1522
1523 #ifdef CONFIG_RV
1524         /*
1525          * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1526          * If we find justification for more monitors, we can think
1527          * about adding more or developing a dynamic method. So far,
1528          * none of these are justified.
1529          */
1530         union rv_task_monitor           rv[RV_PER_TASK_MONITORS];
1531 #endif
1532
1533         /*
1534          * New fields for task_struct should be added above here, so that
1535          * they are included in the randomized portion of task_struct.
1536          */
1537         randomized_struct_fields_end
1538
1539         /* CPU-specific state of this task: */
1540         struct thread_struct            thread;
1541
1542         /*
1543          * WARNING: on x86, 'thread_struct' contains a variable-sized
1544          * structure.  It *MUST* be at the end of 'task_struct'.
1545          *
1546          * Do not put anything below here!
1547          */
1548 };
1549
1550 static inline struct pid *task_pid(struct task_struct *task)
1551 {
1552         return task->thread_pid;
1553 }
1554
1555 /*
1556  * the helpers to get the task's different pids as they are seen
1557  * from various namespaces
1558  *
1559  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1560  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1561  *                     current.
1562  * task_xid_nr_ns()  : id seen from the ns specified;
1563  *
1564  * see also pid_nr() etc in include/linux/pid.h
1565  */
1566 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1567
1568 static inline pid_t task_pid_nr(struct task_struct *tsk)
1569 {
1570         return tsk->pid;
1571 }
1572
1573 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1574 {
1575         return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1576 }
1577
1578 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1579 {
1580         return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1581 }
1582
1583
1584 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1585 {
1586         return tsk->tgid;
1587 }
1588
1589 /**
1590  * pid_alive - check that a task structure is not stale
1591  * @p: Task structure to be checked.
1592  *
1593  * Test if a process is not yet dead (at most zombie state)
1594  * If pid_alive fails, then pointers within the task structure
1595  * can be stale and must not be dereferenced.
1596  *
1597  * Return: 1 if the process is alive. 0 otherwise.
1598  */
1599 static inline int pid_alive(const struct task_struct *p)
1600 {
1601         return p->thread_pid != NULL;
1602 }
1603
1604 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1605 {
1606         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1607 }
1608
1609 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1610 {
1611         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1612 }
1613
1614
1615 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1616 {
1617         return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1618 }
1619
1620 static inline pid_t task_session_vnr(struct task_struct *tsk)
1621 {
1622         return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1623 }
1624
1625 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1626 {
1627         return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1628 }
1629
1630 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1631 {
1632         return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1633 }
1634
1635 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1636 {
1637         pid_t pid = 0;
1638
1639         rcu_read_lock();
1640         if (pid_alive(tsk))
1641                 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1642         rcu_read_unlock();
1643
1644         return pid;
1645 }
1646
1647 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1648 {
1649         return task_ppid_nr_ns(tsk, &init_pid_ns);
1650 }
1651
1652 /* Obsolete, do not use: */
1653 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1654 {
1655         return task_pgrp_nr_ns(tsk, &init_pid_ns);
1656 }
1657
1658 #define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1659 #define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1660
1661 static inline unsigned int __task_state_index(unsigned int tsk_state,
1662                                               unsigned int tsk_exit_state)
1663 {
1664         unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1665
1666         BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1667
1668         if (tsk_state == TASK_IDLE)
1669                 state = TASK_REPORT_IDLE;
1670
1671         /*
1672          * We're lying here, but rather than expose a completely new task state
1673          * to userspace, we can make this appear as if the task has gone through
1674          * a regular rt_mutex_lock() call.
1675          */
1676         if (tsk_state == TASK_RTLOCK_WAIT)
1677                 state = TASK_UNINTERRUPTIBLE;
1678
1679         return fls(state);
1680 }
1681
1682 static inline unsigned int task_state_index(struct task_struct *tsk)
1683 {
1684         return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1685 }
1686
1687 static inline char task_index_to_char(unsigned int state)
1688 {
1689         static const char state_char[] = "RSDTtXZPI";
1690
1691         BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1692
1693         return state_char[state];
1694 }
1695
1696 static inline char task_state_to_char(struct task_struct *tsk)
1697 {
1698         return task_index_to_char(task_state_index(tsk));
1699 }
1700
1701 /**
1702  * is_global_init - check if a task structure is init. Since init
1703  * is free to have sub-threads we need to check tgid.
1704  * @tsk: Task structure to be checked.
1705  *
1706  * Check if a task structure is the first user space task the kernel created.
1707  *
1708  * Return: 1 if the task structure is init. 0 otherwise.
1709  */
1710 static inline int is_global_init(struct task_struct *tsk)
1711 {
1712         return task_tgid_nr(tsk) == 1;
1713 }
1714
1715 extern struct pid *cad_pid;
1716
1717 /*
1718  * Per process flags
1719  */
1720 #define PF_VCPU                 0x00000001      /* I'm a virtual CPU */
1721 #define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1722 #define PF_EXITING              0x00000004      /* Getting shut down */
1723 #define PF_POSTCOREDUMP         0x00000008      /* Coredumps should ignore this task */
1724 #define PF_IO_WORKER            0x00000010      /* Task is an IO worker */
1725 #define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1726 #define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1727 #define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1728 #define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1729 #define PF_DUMPCORE             0x00000200      /* Dumped core */
1730 #define PF_SIGNALED             0x00000400      /* Killed by a signal */
1731 #define PF_MEMALLOC             0x00000800      /* Allocating memory */
1732 #define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1733 #define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1734 #define PF__HOLE__00004000      0x00004000
1735 #define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1736 #define PF__HOLE__00010000      0x00010000
1737 #define PF_KSWAPD               0x00020000      /* I am kswapd */
1738 #define PF_MEMALLOC_NOFS        0x00040000      /* All allocation requests will inherit GFP_NOFS */
1739 #define PF_MEMALLOC_NOIO        0x00080000      /* All allocation requests will inherit GFP_NOIO */
1740 #define PF_LOCAL_THROTTLE       0x00100000      /* Throttle writes only against the bdi I write to,
1741                                                  * I am cleaning dirty pages from some other bdi. */
1742 #define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1743 #define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1744 #define PF__HOLE__00800000      0x00800000
1745 #define PF__HOLE__01000000      0x01000000
1746 #define PF__HOLE__02000000      0x02000000
1747 #define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_mask */
1748 #define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1749 #define PF_MEMALLOC_PIN         0x10000000      /* Allocation context constrained to zones which allow long term pinning. */
1750 #define PF__HOLE__20000000      0x20000000
1751 #define PF__HOLE__40000000      0x40000000
1752 #define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1753
1754 /*
1755  * Only the _current_ task can read/write to tsk->flags, but other
1756  * tasks can access tsk->flags in readonly mode for example
1757  * with tsk_used_math (like during threaded core dumping).
1758  * There is however an exception to this rule during ptrace
1759  * or during fork: the ptracer task is allowed to write to the
1760  * child->flags of its traced child (same goes for fork, the parent
1761  * can write to the child->flags), because we're guaranteed the
1762  * child is not running and in turn not changing child->flags
1763  * at the same time the parent does it.
1764  */
1765 #define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1766 #define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1767 #define clear_used_math()                       clear_stopped_child_used_math(current)
1768 #define set_used_math()                         set_stopped_child_used_math(current)
1769
1770 #define conditional_stopped_child_used_math(condition, child) \
1771         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1772
1773 #define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1774
1775 #define copy_to_stopped_child_used_math(child) \
1776         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1777
1778 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1779 #define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1780 #define used_math()                             tsk_used_math(current)
1781
1782 static __always_inline bool is_percpu_thread(void)
1783 {
1784 #ifdef CONFIG_SMP
1785         return (current->flags & PF_NO_SETAFFINITY) &&
1786                 (current->nr_cpus_allowed  == 1);
1787 #else
1788         return true;
1789 #endif
1790 }
1791
1792 /* Per-process atomic flags. */
1793 #define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1794 #define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1795 #define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1796 #define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1797 #define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1798 #define PFA_SPEC_IB_DISABLE             5       /* Indirect branch speculation restricted */
1799 #define PFA_SPEC_IB_FORCE_DISABLE       6       /* Indirect branch speculation permanently restricted */
1800 #define PFA_SPEC_SSB_NOEXEC             7       /* Speculative Store Bypass clear on execve() */
1801
1802 #define TASK_PFA_TEST(name, func)                                       \
1803         static inline bool task_##func(struct task_struct *p)           \
1804         { return test_bit(PFA_##name, &p->atomic_flags); }
1805
1806 #define TASK_PFA_SET(name, func)                                        \
1807         static inline void task_set_##func(struct task_struct *p)       \
1808         { set_bit(PFA_##name, &p->atomic_flags); }
1809
1810 #define TASK_PFA_CLEAR(name, func)                                      \
1811         static inline void task_clear_##func(struct task_struct *p)     \
1812         { clear_bit(PFA_##name, &p->atomic_flags); }
1813
1814 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1815 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1816
1817 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1818 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1819 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1820
1821 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1822 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1823 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1824
1825 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1826 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1827 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1828
1829 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1830 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1831 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1832
1833 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1834 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1835
1836 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1837 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1838 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1839
1840 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1841 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1842
1843 static inline void
1844 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1845 {
1846         current->flags &= ~flags;
1847         current->flags |= orig_flags & flags;
1848 }
1849
1850 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1851 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_effective_cpus);
1852 #ifdef CONFIG_SMP
1853 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1854 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1855 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1856 extern void release_user_cpus_ptr(struct task_struct *p);
1857 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1858 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1859 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1860 #else
1861 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1862 {
1863 }
1864 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1865 {
1866         if (!cpumask_test_cpu(0, new_mask))
1867                 return -EINVAL;
1868         return 0;
1869 }
1870 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1871 {
1872         if (src->user_cpus_ptr)
1873                 return -EINVAL;
1874         return 0;
1875 }
1876 static inline void release_user_cpus_ptr(struct task_struct *p)
1877 {
1878         WARN_ON(p->user_cpus_ptr);
1879 }
1880
1881 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1882 {
1883         return 0;
1884 }
1885 #endif
1886
1887 extern int yield_to(struct task_struct *p, bool preempt);
1888 extern void set_user_nice(struct task_struct *p, long nice);
1889 extern int task_prio(const struct task_struct *p);
1890
1891 /**
1892  * task_nice - return the nice value of a given task.
1893  * @p: the task in question.
1894  *
1895  * Return: The nice value [ -20 ... 0 ... 19 ].
1896  */
1897 static inline int task_nice(const struct task_struct *p)
1898 {
1899         return PRIO_TO_NICE((p)->static_prio);
1900 }
1901
1902 extern int can_nice(const struct task_struct *p, const int nice);
1903 extern int task_curr(const struct task_struct *p);
1904 extern int idle_cpu(int cpu);
1905 extern int available_idle_cpu(int cpu);
1906 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1907 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1908 extern void sched_set_fifo(struct task_struct *p);
1909 extern void sched_set_fifo_low(struct task_struct *p);
1910 extern void sched_set_normal(struct task_struct *p, int nice);
1911 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1912 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1913 extern struct task_struct *idle_task(int cpu);
1914
1915 /**
1916  * is_idle_task - is the specified task an idle task?
1917  * @p: the task in question.
1918  *
1919  * Return: 1 if @p is an idle task. 0 otherwise.
1920  */
1921 static __always_inline bool is_idle_task(const struct task_struct *p)
1922 {
1923         return !!(p->flags & PF_IDLE);
1924 }
1925
1926 extern struct task_struct *curr_task(int cpu);
1927 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1928
1929 void yield(void);
1930
1931 union thread_union {
1932 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1933         struct task_struct task;
1934 #endif
1935 #ifndef CONFIG_THREAD_INFO_IN_TASK
1936         struct thread_info thread_info;
1937 #endif
1938         unsigned long stack[THREAD_SIZE/sizeof(long)];
1939 };
1940
1941 #ifndef CONFIG_THREAD_INFO_IN_TASK
1942 extern struct thread_info init_thread_info;
1943 #endif
1944
1945 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1946
1947 #ifdef CONFIG_THREAD_INFO_IN_TASK
1948 # define task_thread_info(task) (&(task)->thread_info)
1949 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1950 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1951 #endif
1952
1953 /*
1954  * find a task by one of its numerical ids
1955  *
1956  * find_task_by_pid_ns():
1957  *      finds a task by its pid in the specified namespace
1958  * find_task_by_vpid():
1959  *      finds a task by its virtual pid
1960  *
1961  * see also find_vpid() etc in include/linux/pid.h
1962  */
1963
1964 extern struct task_struct *find_task_by_vpid(pid_t nr);
1965 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1966
1967 /*
1968  * find a task by its virtual pid and get the task struct
1969  */
1970 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1971
1972 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1973 extern int wake_up_process(struct task_struct *tsk);
1974 extern void wake_up_new_task(struct task_struct *tsk);
1975
1976 #ifdef CONFIG_SMP
1977 extern void kick_process(struct task_struct *tsk);
1978 #else
1979 static inline void kick_process(struct task_struct *tsk) { }
1980 #endif
1981
1982 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1983
1984 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1985 {
1986         __set_task_comm(tsk, from, false);
1987 }
1988
1989 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1990 #define get_task_comm(buf, tsk) ({                      \
1991         BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);     \
1992         __get_task_comm(buf, sizeof(buf), tsk);         \
1993 })
1994
1995 #ifdef CONFIG_SMP
1996 static __always_inline void scheduler_ipi(void)
1997 {
1998         /*
1999          * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2000          * TIF_NEED_RESCHED remotely (for the first time) will also send
2001          * this IPI.
2002          */
2003         preempt_fold_need_resched();
2004 }
2005 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2006 #else
2007 static inline void scheduler_ipi(void) { }
2008 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2009 {
2010         return 1;
2011 }
2012 #endif
2013
2014 /*
2015  * Set thread flags in other task's structures.
2016  * See asm/thread_info.h for TIF_xxxx flags available:
2017  */
2018 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2019 {
2020         set_ti_thread_flag(task_thread_info(tsk), flag);
2021 }
2022
2023 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2024 {
2025         clear_ti_thread_flag(task_thread_info(tsk), flag);
2026 }
2027
2028 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2029                                           bool value)
2030 {
2031         update_ti_thread_flag(task_thread_info(tsk), flag, value);
2032 }
2033
2034 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2035 {
2036         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2037 }
2038
2039 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2040 {
2041         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2042 }
2043
2044 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2045 {
2046         return test_ti_thread_flag(task_thread_info(tsk), flag);
2047 }
2048
2049 static inline void set_tsk_need_resched(struct task_struct *tsk)
2050 {
2051         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2052 }
2053
2054 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2055 {
2056         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2057 }
2058
2059 static inline int test_tsk_need_resched(struct task_struct *tsk)
2060 {
2061         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2062 }
2063
2064 /*
2065  * cond_resched() and cond_resched_lock(): latency reduction via
2066  * explicit rescheduling in places that are safe. The return
2067  * value indicates whether a reschedule was done in fact.
2068  * cond_resched_lock() will drop the spinlock before scheduling,
2069  */
2070 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2071 extern int __cond_resched(void);
2072
2073 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2074
2075 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2076
2077 static __always_inline int _cond_resched(void)
2078 {
2079         return static_call_mod(cond_resched)();
2080 }
2081
2082 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2083 extern int dynamic_cond_resched(void);
2084
2085 static __always_inline int _cond_resched(void)
2086 {
2087         return dynamic_cond_resched();
2088 }
2089
2090 #else
2091
2092 static inline int _cond_resched(void)
2093 {
2094         return __cond_resched();
2095 }
2096
2097 #endif /* CONFIG_PREEMPT_DYNAMIC */
2098
2099 #else
2100
2101 static inline int _cond_resched(void) { return 0; }
2102
2103 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2104
2105 #define cond_resched() ({                       \
2106         __might_resched(__FILE__, __LINE__, 0); \
2107         _cond_resched();                        \
2108 })
2109
2110 extern int __cond_resched_lock(spinlock_t *lock);
2111 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2112 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2113
2114 #define MIGHT_RESCHED_RCU_SHIFT         8
2115 #define MIGHT_RESCHED_PREEMPT_MASK      ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2116
2117 #ifndef CONFIG_PREEMPT_RT
2118 /*
2119  * Non RT kernels have an elevated preempt count due to the held lock,
2120  * but are not allowed to be inside a RCU read side critical section
2121  */
2122 # define PREEMPT_LOCK_RESCHED_OFFSETS   PREEMPT_LOCK_OFFSET
2123 #else
2124 /*
2125  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2126  * cond_resched*lock() has to take that into account because it checks for
2127  * preempt_count() and rcu_preempt_depth().
2128  */
2129 # define PREEMPT_LOCK_RESCHED_OFFSETS   \
2130         (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2131 #endif
2132
2133 #define cond_resched_lock(lock) ({                                              \
2134         __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2135         __cond_resched_lock(lock);                                              \
2136 })
2137
2138 #define cond_resched_rwlock_read(lock) ({                                       \
2139         __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2140         __cond_resched_rwlock_read(lock);                                       \
2141 })
2142
2143 #define cond_resched_rwlock_write(lock) ({                                      \
2144         __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2145         __cond_resched_rwlock_write(lock);                                      \
2146 })
2147
2148 static inline void cond_resched_rcu(void)
2149 {
2150 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2151         rcu_read_unlock();
2152         cond_resched();
2153         rcu_read_lock();
2154 #endif
2155 }
2156
2157 #ifdef CONFIG_PREEMPT_DYNAMIC
2158
2159 extern bool preempt_model_none(void);
2160 extern bool preempt_model_voluntary(void);
2161 extern bool preempt_model_full(void);
2162
2163 #else
2164
2165 static inline bool preempt_model_none(void)
2166 {
2167         return IS_ENABLED(CONFIG_PREEMPT_NONE);
2168 }
2169 static inline bool preempt_model_voluntary(void)
2170 {
2171         return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2172 }
2173 static inline bool preempt_model_full(void)
2174 {
2175         return IS_ENABLED(CONFIG_PREEMPT);
2176 }
2177
2178 #endif
2179
2180 static inline bool preempt_model_rt(void)
2181 {
2182         return IS_ENABLED(CONFIG_PREEMPT_RT);
2183 }
2184
2185 /*
2186  * Does the preemption model allow non-cooperative preemption?
2187  *
2188  * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2189  * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2190  * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2191  * PREEMPT_NONE model.
2192  */
2193 static inline bool preempt_model_preemptible(void)
2194 {
2195         return preempt_model_full() || preempt_model_rt();
2196 }
2197
2198 /*
2199  * Does a critical section need to be broken due to another
2200  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2201  * but a general need for low latency)
2202  */
2203 static inline int spin_needbreak(spinlock_t *lock)
2204 {
2205 #ifdef CONFIG_PREEMPTION
2206         return spin_is_contended(lock);
2207 #else
2208         return 0;
2209 #endif
2210 }
2211
2212 /*
2213  * Check if a rwlock is contended.
2214  * Returns non-zero if there is another task waiting on the rwlock.
2215  * Returns zero if the lock is not contended or the system / underlying
2216  * rwlock implementation does not support contention detection.
2217  * Technically does not depend on CONFIG_PREEMPTION, but a general need
2218  * for low latency.
2219  */
2220 static inline int rwlock_needbreak(rwlock_t *lock)
2221 {
2222 #ifdef CONFIG_PREEMPTION
2223         return rwlock_is_contended(lock);
2224 #else
2225         return 0;
2226 #endif
2227 }
2228
2229 static __always_inline bool need_resched(void)
2230 {
2231         return unlikely(tif_need_resched());
2232 }
2233
2234 /*
2235  * Wrappers for p->thread_info->cpu access. No-op on UP.
2236  */
2237 #ifdef CONFIG_SMP
2238
2239 static inline unsigned int task_cpu(const struct task_struct *p)
2240 {
2241         return READ_ONCE(task_thread_info(p)->cpu);
2242 }
2243
2244 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2245
2246 #else
2247
2248 static inline unsigned int task_cpu(const struct task_struct *p)
2249 {
2250         return 0;
2251 }
2252
2253 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2254 {
2255 }
2256
2257 #endif /* CONFIG_SMP */
2258
2259 extern bool sched_task_on_rq(struct task_struct *p);
2260 extern unsigned long get_wchan(struct task_struct *p);
2261 extern struct task_struct *cpu_curr_snapshot(int cpu);
2262
2263 /*
2264  * In order to reduce various lock holder preemption latencies provide an
2265  * interface to see if a vCPU is currently running or not.
2266  *
2267  * This allows us to terminate optimistic spin loops and block, analogous to
2268  * the native optimistic spin heuristic of testing if the lock owner task is
2269  * running or not.
2270  */
2271 #ifndef vcpu_is_preempted
2272 static inline bool vcpu_is_preempted(int cpu)
2273 {
2274         return false;
2275 }
2276 #endif
2277
2278 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2279 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2280
2281 #ifndef TASK_SIZE_OF
2282 #define TASK_SIZE_OF(tsk)       TASK_SIZE
2283 #endif
2284
2285 #ifdef CONFIG_SMP
2286 static inline bool owner_on_cpu(struct task_struct *owner)
2287 {
2288         /*
2289          * As lock holder preemption issue, we both skip spinning if
2290          * task is not on cpu or its cpu is preempted
2291          */
2292         return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2293 }
2294
2295 /* Returns effective CPU energy utilization, as seen by the scheduler */
2296 unsigned long sched_cpu_util(int cpu);
2297 #endif /* CONFIG_SMP */
2298
2299 #ifdef CONFIG_RSEQ
2300
2301 /*
2302  * Map the event mask on the user-space ABI enum rseq_cs_flags
2303  * for direct mask checks.
2304  */
2305 enum rseq_event_mask_bits {
2306         RSEQ_EVENT_PREEMPT_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2307         RSEQ_EVENT_SIGNAL_BIT   = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2308         RSEQ_EVENT_MIGRATE_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2309 };
2310
2311 enum rseq_event_mask {
2312         RSEQ_EVENT_PREEMPT      = (1U << RSEQ_EVENT_PREEMPT_BIT),
2313         RSEQ_EVENT_SIGNAL       = (1U << RSEQ_EVENT_SIGNAL_BIT),
2314         RSEQ_EVENT_MIGRATE      = (1U << RSEQ_EVENT_MIGRATE_BIT),
2315 };
2316
2317 static inline void rseq_set_notify_resume(struct task_struct *t)
2318 {
2319         if (t->rseq)
2320                 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2321 }
2322
2323 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2324
2325 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2326                                              struct pt_regs *regs)
2327 {
2328         if (current->rseq)
2329                 __rseq_handle_notify_resume(ksig, regs);
2330 }
2331
2332 static inline void rseq_signal_deliver(struct ksignal *ksig,
2333                                        struct pt_regs *regs)
2334 {
2335         preempt_disable();
2336         __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2337         preempt_enable();
2338         rseq_handle_notify_resume(ksig, regs);
2339 }
2340
2341 /* rseq_preempt() requires preemption to be disabled. */
2342 static inline void rseq_preempt(struct task_struct *t)
2343 {
2344         __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2345         rseq_set_notify_resume(t);
2346 }
2347
2348 /* rseq_migrate() requires preemption to be disabled. */
2349 static inline void rseq_migrate(struct task_struct *t)
2350 {
2351         __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2352         rseq_set_notify_resume(t);
2353 }
2354
2355 /*
2356  * If parent process has a registered restartable sequences area, the
2357  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2358  */
2359 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2360 {
2361         if (clone_flags & CLONE_VM) {
2362                 t->rseq = NULL;
2363                 t->rseq_sig = 0;
2364                 t->rseq_event_mask = 0;
2365         } else {
2366                 t->rseq = current->rseq;
2367                 t->rseq_sig = current->rseq_sig;
2368                 t->rseq_event_mask = current->rseq_event_mask;
2369         }
2370 }
2371
2372 static inline void rseq_execve(struct task_struct *t)
2373 {
2374         t->rseq = NULL;
2375         t->rseq_sig = 0;
2376         t->rseq_event_mask = 0;
2377 }
2378
2379 #else
2380
2381 static inline void rseq_set_notify_resume(struct task_struct *t)
2382 {
2383 }
2384 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2385                                              struct pt_regs *regs)
2386 {
2387 }
2388 static inline void rseq_signal_deliver(struct ksignal *ksig,
2389                                        struct pt_regs *regs)
2390 {
2391 }
2392 static inline void rseq_preempt(struct task_struct *t)
2393 {
2394 }
2395 static inline void rseq_migrate(struct task_struct *t)
2396 {
2397 }
2398 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2399 {
2400 }
2401 static inline void rseq_execve(struct task_struct *t)
2402 {
2403 }
2404
2405 #endif
2406
2407 #ifdef CONFIG_DEBUG_RSEQ
2408
2409 void rseq_syscall(struct pt_regs *regs);
2410
2411 #else
2412
2413 static inline void rseq_syscall(struct pt_regs *regs)
2414 {
2415 }
2416
2417 #endif
2418
2419 #ifdef CONFIG_SCHED_CORE
2420 extern void sched_core_free(struct task_struct *tsk);
2421 extern void sched_core_fork(struct task_struct *p);
2422 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2423                                 unsigned long uaddr);
2424 #else
2425 static inline void sched_core_free(struct task_struct *tsk) { }
2426 static inline void sched_core_fork(struct task_struct *p) { }
2427 #endif
2428
2429 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2430
2431 #endif
This page took 0.168485 seconds and 4 git commands to generate.