2 * Performance event support - powerpc architecture code
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
24 #define BHRB_MAX_ENTRIES 32
25 #define BHRB_TARGET 0x0000000000000002
26 #define BHRB_PREDICTION 0x0000000000000001
27 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
29 struct cpu_hw_events {
36 struct perf_event *event[MAX_HWEVENTS];
37 u64 events[MAX_HWEVENTS];
38 unsigned int flags[MAX_HWEVENTS];
40 * The order of the MMCR array is:
41 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
42 * - 32-bit, MMCR0, MMCR1, MMCR2
44 unsigned long mmcr[4];
45 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
46 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
47 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
51 unsigned int txn_flags;
55 u64 bhrb_filter; /* BHRB HW branch filter */
56 unsigned int bhrb_users;
58 struct perf_branch_stack bhrb_stack;
59 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
62 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
64 static struct power_pmu *ppmu;
67 * Normally, to ignore kernel events we set the FCS (freeze counters
68 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
69 * hypervisor bit set in the MSR, or if we are running on a processor
70 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
71 * then we need to use the FCHV bit to ignore kernel events.
73 static unsigned int freeze_events_kernel = MMCR0_FCS;
76 * 32-bit doesn't have MMCRA but does have an MMCR2,
77 * and a few other names are different.
82 #define MMCR0_PMCjCE MMCR0_PMCnCE
88 #define MMCR0_PMCC_U6 0
90 #define SPRN_MMCRA SPRN_MMCR2
91 #define MMCRA_SAMPLE_ENABLE 0
93 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
97 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
98 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
102 static inline void perf_read_regs(struct pt_regs *regs)
106 static inline int perf_intr_is_nmi(struct pt_regs *regs)
111 static inline int siar_valid(struct pt_regs *regs)
116 static bool is_ebb_event(struct perf_event *event) { return false; }
117 static int ebb_event_check(struct perf_event *event) { return 0; }
118 static void ebb_event_add(struct perf_event *event) { }
119 static void ebb_switch_out(unsigned long mmcr0) { }
120 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
122 return cpuhw->mmcr[0];
125 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
126 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
127 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
128 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
129 static void pmao_restore_workaround(bool ebb) { }
130 #endif /* CONFIG_PPC32 */
132 static bool regs_use_siar(struct pt_regs *regs)
135 * When we take a performance monitor exception the regs are setup
136 * using perf_read_regs() which overloads some fields, in particular
137 * regs->result to tell us whether to use SIAR.
139 * However if the regs are from another exception, eg. a syscall, then
140 * they have not been setup using perf_read_regs() and so regs->result
141 * is something random.
143 return ((TRAP(regs) == 0xf00) && regs->result);
147 * Things that are specific to 64-bit implementations.
151 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
153 unsigned long mmcra = regs->dsisr;
155 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
156 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
158 return 4 * (slot - 1);
165 * The user wants a data address recorded.
166 * If we're not doing instruction sampling, give them the SDAR
167 * (sampled data address). If we are doing instruction sampling, then
168 * only give them the SDAR if it corresponds to the instruction
169 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
170 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
172 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
174 unsigned long mmcra = regs->dsisr;
177 if (ppmu->flags & PPMU_HAS_SIER)
178 sdar_valid = regs->dar & SIER_SDAR_VALID;
180 unsigned long sdsync;
182 if (ppmu->flags & PPMU_SIAR_VALID)
183 sdsync = POWER7P_MMCRA_SDAR_VALID;
184 else if (ppmu->flags & PPMU_ALT_SIPR)
185 sdsync = POWER6_MMCRA_SDSYNC;
187 sdsync = MMCRA_SDSYNC;
189 sdar_valid = mmcra & sdsync;
192 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
193 *addrp = mfspr(SPRN_SDAR);
196 static bool regs_sihv(struct pt_regs *regs)
198 unsigned long sihv = MMCRA_SIHV;
200 if (ppmu->flags & PPMU_HAS_SIER)
201 return !!(regs->dar & SIER_SIHV);
203 if (ppmu->flags & PPMU_ALT_SIPR)
204 sihv = POWER6_MMCRA_SIHV;
206 return !!(regs->dsisr & sihv);
209 static bool regs_sipr(struct pt_regs *regs)
211 unsigned long sipr = MMCRA_SIPR;
213 if (ppmu->flags & PPMU_HAS_SIER)
214 return !!(regs->dar & SIER_SIPR);
216 if (ppmu->flags & PPMU_ALT_SIPR)
217 sipr = POWER6_MMCRA_SIPR;
219 return !!(regs->dsisr & sipr);
222 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
224 if (regs->msr & MSR_PR)
225 return PERF_RECORD_MISC_USER;
226 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
227 return PERF_RECORD_MISC_HYPERVISOR;
228 return PERF_RECORD_MISC_KERNEL;
231 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
233 bool use_siar = regs_use_siar(regs);
236 return perf_flags_from_msr(regs);
239 * If we don't have flags in MMCRA, rather than using
240 * the MSR, we intuit the flags from the address in
241 * SIAR which should give slightly more reliable
244 if (ppmu->flags & PPMU_NO_SIPR) {
245 unsigned long siar = mfspr(SPRN_SIAR);
246 if (siar >= PAGE_OFFSET)
247 return PERF_RECORD_MISC_KERNEL;
248 return PERF_RECORD_MISC_USER;
251 /* PR has priority over HV, so order below is important */
253 return PERF_RECORD_MISC_USER;
255 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
256 return PERF_RECORD_MISC_HYPERVISOR;
258 return PERF_RECORD_MISC_KERNEL;
262 * Overload regs->dsisr to store MMCRA so we only need to read it once
264 * Overload regs->dar to store SIER if we have it.
265 * Overload regs->result to specify whether we should use the MSR (result
266 * is zero) or the SIAR (result is non zero).
268 static inline void perf_read_regs(struct pt_regs *regs)
270 unsigned long mmcra = mfspr(SPRN_MMCRA);
271 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
276 if (ppmu->flags & PPMU_HAS_SIER)
277 regs->dar = mfspr(SPRN_SIER);
280 * If this isn't a PMU exception (eg a software event) the SIAR is
281 * not valid. Use pt_regs.
283 * If it is a marked event use the SIAR.
285 * If the PMU doesn't update the SIAR for non marked events use
288 * If the PMU has HV/PR flags then check to see if they
289 * place the exception in userspace. If so, use pt_regs. In
290 * continuous sampling mode the SIAR and the PMU exception are
291 * not synchronised, so they may be many instructions apart.
292 * This can result in confusing backtraces. We still want
293 * hypervisor samples as well as samples in the kernel with
294 * interrupts off hence the userspace check.
296 if (TRAP(regs) != 0xf00)
298 else if ((ppmu->flags & PPMU_NO_SIAR))
302 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
304 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
309 regs->result = use_siar;
313 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
316 static inline int perf_intr_is_nmi(struct pt_regs *regs)
322 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
323 * must be sampled only if the SIAR-valid bit is set.
325 * For unmarked instructions and for processors that don't have the SIAR-Valid
326 * bit, assume that SIAR is valid.
328 static inline int siar_valid(struct pt_regs *regs)
330 unsigned long mmcra = regs->dsisr;
331 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
334 if (ppmu->flags & PPMU_HAS_SIER)
335 return regs->dar & SIER_SIAR_VALID;
337 if (ppmu->flags & PPMU_SIAR_VALID)
338 return mmcra & POWER7P_MMCRA_SIAR_VALID;
345 /* Reset all possible BHRB entries */
346 static void power_pmu_bhrb_reset(void)
348 asm volatile(PPC_CLRBHRB);
351 static void power_pmu_bhrb_enable(struct perf_event *event)
353 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
358 /* Clear BHRB if we changed task context to avoid data leaks */
359 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
360 power_pmu_bhrb_reset();
361 cpuhw->bhrb_context = event->ctx;
364 perf_sched_cb_inc(event->ctx->pmu);
367 static void power_pmu_bhrb_disable(struct perf_event *event)
369 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
374 WARN_ON_ONCE(!cpuhw->bhrb_users);
376 perf_sched_cb_dec(event->ctx->pmu);
378 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
379 /* BHRB cannot be turned off when other
380 * events are active on the PMU.
383 /* avoid stale pointer */
384 cpuhw->bhrb_context = NULL;
388 /* Called from ctxsw to prevent one process's branch entries to
389 * mingle with the other process's entries during context switch.
391 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
397 power_pmu_bhrb_reset();
399 /* Calculate the to address for a branch */
400 static __u64 power_pmu_bhrb_to(u64 addr)
406 if (is_kernel_addr(addr))
407 return branch_target((unsigned int *)addr);
409 /* Userspace: need copy instruction here then translate it */
411 ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
418 target = branch_target(&instr);
419 if ((!target) || (instr & BRANCH_ABSOLUTE))
422 /* Translate relative branch target from kernel to user address */
423 return target - (unsigned long)&instr + addr;
426 /* Processing BHRB entries */
427 static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
431 int r_index, u_index, pred;
435 while (r_index < ppmu->bhrb_nr) {
436 /* Assembly read function */
437 val = read_bhrb(r_index++);
439 /* Terminal marker: End of valid BHRB entries */
442 addr = val & BHRB_EA;
443 pred = val & BHRB_PREDICTION;
449 /* Branches are read most recent first (ie. mfbhrb 0 is
450 * the most recent branch).
451 * There are two types of valid entries:
452 * 1) a target entry which is the to address of a
453 * computed goto like a blr,bctr,btar. The next
454 * entry read from the bhrb will be branch
455 * corresponding to this target (ie. the actual
456 * blr/bctr/btar instruction).
457 * 2) a from address which is an actual branch. If a
458 * target entry proceeds this, then this is the
459 * matching branch for that target. If this is not
460 * following a target entry, then this is a branch
461 * where the target is given as an immediate field
462 * in the instruction (ie. an i or b form branch).
463 * In this case we need to read the instruction from
464 * memory to determine the target/to address.
467 if (val & BHRB_TARGET) {
468 /* Target branches use two entries
469 * (ie. computed gotos/XL form)
471 cpuhw->bhrb_entries[u_index].to = addr;
472 cpuhw->bhrb_entries[u_index].mispred = pred;
473 cpuhw->bhrb_entries[u_index].predicted = ~pred;
475 /* Get from address in next entry */
476 val = read_bhrb(r_index++);
477 addr = val & BHRB_EA;
478 if (val & BHRB_TARGET) {
479 /* Shouldn't have two targets in a
480 row.. Reset index and try again */
484 cpuhw->bhrb_entries[u_index].from = addr;
486 /* Branches to immediate field
488 cpuhw->bhrb_entries[u_index].from = addr;
489 cpuhw->bhrb_entries[u_index].to =
490 power_pmu_bhrb_to(addr);
491 cpuhw->bhrb_entries[u_index].mispred = pred;
492 cpuhw->bhrb_entries[u_index].predicted = ~pred;
498 cpuhw->bhrb_stack.nr = u_index;
502 static bool is_ebb_event(struct perf_event *event)
505 * This could be a per-PMU callback, but we'd rather avoid the cost. We
506 * check that the PMU supports EBB, meaning those that don't can still
507 * use bit 63 of the event code for something else if they wish.
509 return (ppmu->flags & PPMU_ARCH_207S) &&
510 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
513 static int ebb_event_check(struct perf_event *event)
515 struct perf_event *leader = event->group_leader;
517 /* Event and group leader must agree on EBB */
518 if (is_ebb_event(leader) != is_ebb_event(event))
521 if (is_ebb_event(event)) {
522 if (!(event->attach_state & PERF_ATTACH_TASK))
525 if (!leader->attr.pinned || !leader->attr.exclusive)
528 if (event->attr.freq ||
529 event->attr.inherit ||
530 event->attr.sample_type ||
531 event->attr.sample_period ||
532 event->attr.enable_on_exec)
539 static void ebb_event_add(struct perf_event *event)
541 if (!is_ebb_event(event) || current->thread.used_ebb)
545 * IFF this is the first time we've added an EBB event, set
546 * PMXE in the user MMCR0 so we can detect when it's cleared by
547 * userspace. We need this so that we can context switch while
548 * userspace is in the EBB handler (where PMXE is 0).
550 current->thread.used_ebb = 1;
551 current->thread.mmcr0 |= MMCR0_PMXE;
554 static void ebb_switch_out(unsigned long mmcr0)
556 if (!(mmcr0 & MMCR0_EBE))
559 current->thread.siar = mfspr(SPRN_SIAR);
560 current->thread.sier = mfspr(SPRN_SIER);
561 current->thread.sdar = mfspr(SPRN_SDAR);
562 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
563 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
566 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
568 unsigned long mmcr0 = cpuhw->mmcr[0];
573 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
574 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
577 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
578 * with pmao_restore_workaround() because we may add PMAO but we never
581 mmcr0 |= current->thread.mmcr0;
584 * Be careful not to set PMXE if userspace had it cleared. This is also
585 * compatible with pmao_restore_workaround() because it has already
586 * cleared PMXE and we leave PMAO alone.
588 if (!(current->thread.mmcr0 & MMCR0_PMXE))
589 mmcr0 &= ~MMCR0_PMXE;
591 mtspr(SPRN_SIAR, current->thread.siar);
592 mtspr(SPRN_SIER, current->thread.sier);
593 mtspr(SPRN_SDAR, current->thread.sdar);
596 * Merge the kernel & user values of MMCR2. The semantics we implement
597 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
598 * but not clear bits. If a task wants to be able to clear bits, ie.
599 * unfreeze counters, it should not set exclude_xxx in its events and
600 * instead manage the MMCR2 entirely by itself.
602 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
607 static void pmao_restore_workaround(bool ebb)
611 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
615 * On POWER8E there is a hardware defect which affects the PMU context
616 * switch logic, ie. power_pmu_disable/enable().
618 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
619 * by the hardware. Sometime later the actual PMU exception is
622 * If we context switch, or simply disable/enable, the PMU prior to the
623 * exception arriving, the exception will be lost when we clear PMAO.
625 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
626 * set, and this _should_ generate an exception. However because of the
627 * defect no exception is generated when we write PMAO, and we get
628 * stuck with no counters counting but no exception delivered.
630 * The workaround is to detect this case and tweak the hardware to
631 * create another pending PMU exception.
633 * We do that by setting up PMC6 (cycles) for an imminent overflow and
634 * enabling the PMU. That causes a new exception to be generated in the
635 * chip, but we don't take it yet because we have interrupts hard
636 * disabled. We then write back the PMU state as we want it to be seen
637 * by the exception handler. When we reenable interrupts the exception
638 * handler will be called and see the correct state.
640 * The logic is the same for EBB, except that the exception is gated by
641 * us having interrupts hard disabled as well as the fact that we are
642 * not in userspace. The exception is finally delivered when we return
646 /* Only if PMAO is set and PMAO_SYNC is clear */
647 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
650 /* If we're doing EBB, only if BESCR[GE] is set */
651 if (ebb && !(current->thread.bescr & BESCR_GE))
655 * We are already soft-disabled in power_pmu_enable(). We need to hard
656 * disable to actually prevent the PMU exception from firing.
661 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
662 * Using read/write_pmc() in a for loop adds 12 function calls and
663 * almost doubles our code size.
665 pmcs[0] = mfspr(SPRN_PMC1);
666 pmcs[1] = mfspr(SPRN_PMC2);
667 pmcs[2] = mfspr(SPRN_PMC3);
668 pmcs[3] = mfspr(SPRN_PMC4);
669 pmcs[4] = mfspr(SPRN_PMC5);
670 pmcs[5] = mfspr(SPRN_PMC6);
672 /* Ensure all freeze bits are unset */
673 mtspr(SPRN_MMCR2, 0);
675 /* Set up PMC6 to overflow in one cycle */
676 mtspr(SPRN_PMC6, 0x7FFFFFFE);
678 /* Enable exceptions and unfreeze PMC6 */
679 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
681 /* Now we need to refreeze and restore the PMCs */
682 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
684 mtspr(SPRN_PMC1, pmcs[0]);
685 mtspr(SPRN_PMC2, pmcs[1]);
686 mtspr(SPRN_PMC3, pmcs[2]);
687 mtspr(SPRN_PMC4, pmcs[3]);
688 mtspr(SPRN_PMC5, pmcs[4]);
689 mtspr(SPRN_PMC6, pmcs[5]);
691 #endif /* CONFIG_PPC64 */
693 static void perf_event_interrupt(struct pt_regs *regs);
696 * Read one performance monitor counter (PMC).
698 static unsigned long read_pmc(int idx)
704 val = mfspr(SPRN_PMC1);
707 val = mfspr(SPRN_PMC2);
710 val = mfspr(SPRN_PMC3);
713 val = mfspr(SPRN_PMC4);
716 val = mfspr(SPRN_PMC5);
719 val = mfspr(SPRN_PMC6);
723 val = mfspr(SPRN_PMC7);
726 val = mfspr(SPRN_PMC8);
728 #endif /* CONFIG_PPC64 */
730 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
739 static void write_pmc(int idx, unsigned long val)
743 mtspr(SPRN_PMC1, val);
746 mtspr(SPRN_PMC2, val);
749 mtspr(SPRN_PMC3, val);
752 mtspr(SPRN_PMC4, val);
755 mtspr(SPRN_PMC5, val);
758 mtspr(SPRN_PMC6, val);
762 mtspr(SPRN_PMC7, val);
765 mtspr(SPRN_PMC8, val);
767 #endif /* CONFIG_PPC64 */
769 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
773 /* Called from sysrq_handle_showregs() */
774 void perf_event_print_debug(void)
776 unsigned long sdar, sier, flags;
777 u32 pmcs[MAX_HWEVENTS];
780 if (!ppmu->n_counter)
783 local_irq_save(flags);
785 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
786 smp_processor_id(), ppmu->name, ppmu->n_counter);
788 for (i = 0; i < ppmu->n_counter; i++)
789 pmcs[i] = read_pmc(i + 1);
791 for (; i < MAX_HWEVENTS; i++)
792 pmcs[i] = 0xdeadbeef;
794 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
795 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
797 if (ppmu->n_counter > 4)
798 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
799 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
801 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
802 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
806 sdar = mfspr(SPRN_SDAR);
808 if (ppmu->flags & PPMU_HAS_SIER)
809 sier = mfspr(SPRN_SIER);
811 if (ppmu->flags & PPMU_ARCH_207S) {
812 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
813 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
814 pr_info("EBBRR: %016lx BESCR: %016lx\n",
815 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
818 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
819 mfspr(SPRN_SIAR), sdar, sier);
821 local_irq_restore(flags);
825 * Check if a set of events can all go on the PMU at once.
826 * If they can't, this will look at alternative codes for the events
827 * and see if any combination of alternative codes is feasible.
828 * The feasible set is returned in event_id[].
830 static int power_check_constraints(struct cpu_hw_events *cpuhw,
831 u64 event_id[], unsigned int cflags[],
834 unsigned long mask, value, nv;
835 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
836 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
838 unsigned long addf = ppmu->add_fields;
839 unsigned long tadd = ppmu->test_adder;
841 if (n_ev > ppmu->n_counter)
844 /* First see if the events will go on as-is */
845 for (i = 0; i < n_ev; ++i) {
846 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
847 && !ppmu->limited_pmc_event(event_id[i])) {
848 ppmu->get_alternatives(event_id[i], cflags[i],
849 cpuhw->alternatives[i]);
850 event_id[i] = cpuhw->alternatives[i][0];
852 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
853 &cpuhw->avalues[i][0]))
857 for (i = 0; i < n_ev; ++i) {
858 nv = (value | cpuhw->avalues[i][0]) +
859 (value & cpuhw->avalues[i][0] & addf);
860 if ((((nv + tadd) ^ value) & mask) != 0 ||
861 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
862 cpuhw->amasks[i][0]) != 0)
865 mask |= cpuhw->amasks[i][0];
868 return 0; /* all OK */
870 /* doesn't work, gather alternatives... */
871 if (!ppmu->get_alternatives)
873 for (i = 0; i < n_ev; ++i) {
875 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
876 cpuhw->alternatives[i]);
877 for (j = 1; j < n_alt[i]; ++j)
878 ppmu->get_constraint(cpuhw->alternatives[i][j],
879 &cpuhw->amasks[i][j],
880 &cpuhw->avalues[i][j]);
883 /* enumerate all possibilities and see if any will work */
886 value = mask = nv = 0;
889 /* we're backtracking, restore context */
895 * See if any alternative k for event_id i,
896 * where k > j, will satisfy the constraints.
898 while (++j < n_alt[i]) {
899 nv = (value | cpuhw->avalues[i][j]) +
900 (value & cpuhw->avalues[i][j] & addf);
901 if ((((nv + tadd) ^ value) & mask) == 0 &&
902 (((nv + tadd) ^ cpuhw->avalues[i][j])
903 & cpuhw->amasks[i][j]) == 0)
908 * No feasible alternative, backtrack
909 * to event_id i-1 and continue enumerating its
910 * alternatives from where we got up to.
916 * Found a feasible alternative for event_id i,
917 * remember where we got up to with this event_id,
918 * go on to the next event_id, and start with
919 * the first alternative for it.
925 mask |= cpuhw->amasks[i][j];
931 /* OK, we have a feasible combination, tell the caller the solution */
932 for (i = 0; i < n_ev; ++i)
933 event_id[i] = cpuhw->alternatives[i][choice[i]];
938 * Check if newly-added events have consistent settings for
939 * exclude_{user,kernel,hv} with each other and any previously
942 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
943 int n_prev, int n_new)
945 int eu = 0, ek = 0, eh = 0;
947 struct perf_event *event;
950 * If the PMU we're on supports per event exclude settings then we
951 * don't need to do any of this logic. NB. This assumes no PMU has both
952 * per event exclude and limited PMCs.
954 if (ppmu->flags & PPMU_ARCH_207S)
962 for (i = 0; i < n; ++i) {
963 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
964 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
969 eu = event->attr.exclude_user;
970 ek = event->attr.exclude_kernel;
971 eh = event->attr.exclude_hv;
973 } else if (event->attr.exclude_user != eu ||
974 event->attr.exclude_kernel != ek ||
975 event->attr.exclude_hv != eh) {
981 for (i = 0; i < n; ++i)
982 if (cflags[i] & PPMU_LIMITED_PMC_OK)
983 cflags[i] |= PPMU_LIMITED_PMC_REQD;
988 static u64 check_and_compute_delta(u64 prev, u64 val)
990 u64 delta = (val - prev) & 0xfffffffful;
993 * POWER7 can roll back counter values, if the new value is smaller
994 * than the previous value it will cause the delta and the counter to
995 * have bogus values unless we rolled a counter over. If a coutner is
996 * rolled back, it will be smaller, but within 256, which is the maximum
997 * number of events to rollback at once. If we detect a rollback
998 * return 0. This can lead to a small lack of precision in the
1001 if (prev > val && (prev - val) < 256)
1007 static void power_pmu_read(struct perf_event *event)
1009 s64 val, delta, prev;
1011 if (event->hw.state & PERF_HES_STOPPED)
1017 if (is_ebb_event(event)) {
1018 val = read_pmc(event->hw.idx);
1019 local64_set(&event->hw.prev_count, val);
1024 * Performance monitor interrupts come even when interrupts
1025 * are soft-disabled, as long as interrupts are hard-enabled.
1026 * Therefore we treat them like NMIs.
1029 prev = local64_read(&event->hw.prev_count);
1031 val = read_pmc(event->hw.idx);
1032 delta = check_and_compute_delta(prev, val);
1035 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1037 local64_add(delta, &event->count);
1040 * A number of places program the PMC with (0x80000000 - period_left).
1041 * We never want period_left to be less than 1 because we will program
1042 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1043 * roll around to 0 before taking an exception. We have seen this
1046 * To fix this, clamp the minimum value of period_left to 1.
1049 prev = local64_read(&event->hw.period_left);
1053 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1057 * On some machines, PMC5 and PMC6 can't be written, don't respect
1058 * the freeze conditions, and don't generate interrupts. This tells
1059 * us if `event' is using such a PMC.
1061 static int is_limited_pmc(int pmcnum)
1063 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1064 && (pmcnum == 5 || pmcnum == 6);
1067 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1068 unsigned long pmc5, unsigned long pmc6)
1070 struct perf_event *event;
1071 u64 val, prev, delta;
1074 for (i = 0; i < cpuhw->n_limited; ++i) {
1075 event = cpuhw->limited_counter[i];
1078 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1079 prev = local64_read(&event->hw.prev_count);
1081 delta = check_and_compute_delta(prev, val);
1083 local64_add(delta, &event->count);
1087 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1088 unsigned long pmc5, unsigned long pmc6)
1090 struct perf_event *event;
1094 for (i = 0; i < cpuhw->n_limited; ++i) {
1095 event = cpuhw->limited_counter[i];
1096 event->hw.idx = cpuhw->limited_hwidx[i];
1097 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1098 prev = local64_read(&event->hw.prev_count);
1099 if (check_and_compute_delta(prev, val))
1100 local64_set(&event->hw.prev_count, val);
1101 perf_event_update_userpage(event);
1106 * Since limited events don't respect the freeze conditions, we
1107 * have to read them immediately after freezing or unfreezing the
1108 * other events. We try to keep the values from the limited
1109 * events as consistent as possible by keeping the delay (in
1110 * cycles and instructions) between freezing/unfreezing and reading
1111 * the limited events as small and consistent as possible.
1112 * Therefore, if any limited events are in use, we read them
1113 * both, and always in the same order, to minimize variability,
1114 * and do it inside the same asm that writes MMCR0.
1116 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1118 unsigned long pmc5, pmc6;
1120 if (!cpuhw->n_limited) {
1121 mtspr(SPRN_MMCR0, mmcr0);
1126 * Write MMCR0, then read PMC5 and PMC6 immediately.
1127 * To ensure we don't get a performance monitor interrupt
1128 * between writing MMCR0 and freezing/thawing the limited
1129 * events, we first write MMCR0 with the event overflow
1130 * interrupt enable bits turned off.
1132 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1133 : "=&r" (pmc5), "=&r" (pmc6)
1134 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1136 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1138 if (mmcr0 & MMCR0_FC)
1139 freeze_limited_counters(cpuhw, pmc5, pmc6);
1141 thaw_limited_counters(cpuhw, pmc5, pmc6);
1144 * Write the full MMCR0 including the event overflow interrupt
1145 * enable bits, if necessary.
1147 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1148 mtspr(SPRN_MMCR0, mmcr0);
1152 * Disable all events to prevent PMU interrupts and to allow
1153 * events to be added or removed.
1155 static void power_pmu_disable(struct pmu *pmu)
1157 struct cpu_hw_events *cpuhw;
1158 unsigned long flags, mmcr0, val;
1162 local_irq_save(flags);
1163 cpuhw = this_cpu_ptr(&cpu_hw_events);
1165 if (!cpuhw->disabled) {
1167 * Check if we ever enabled the PMU on this cpu.
1169 if (!cpuhw->pmcs_enabled) {
1171 cpuhw->pmcs_enabled = 1;
1175 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1177 val = mmcr0 = mfspr(SPRN_MMCR0);
1179 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1183 * The barrier is to make sure the mtspr has been
1184 * executed and the PMU has frozen the events etc.
1187 write_mmcr0(cpuhw, val);
1191 * Disable instruction sampling if it was enabled
1193 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1195 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1199 cpuhw->disabled = 1;
1202 ebb_switch_out(mmcr0);
1205 local_irq_restore(flags);
1209 * Re-enable all events if disable == 0.
1210 * If we were previously disabled and events were added, then
1211 * put the new config on the PMU.
1213 static void power_pmu_enable(struct pmu *pmu)
1215 struct perf_event *event;
1216 struct cpu_hw_events *cpuhw;
1217 unsigned long flags;
1219 unsigned long val, mmcr0;
1221 unsigned int hwc_index[MAX_HWEVENTS];
1228 local_irq_save(flags);
1230 cpuhw = this_cpu_ptr(&cpu_hw_events);
1231 if (!cpuhw->disabled)
1234 if (cpuhw->n_events == 0) {
1235 ppc_set_pmu_inuse(0);
1239 cpuhw->disabled = 0;
1242 * EBB requires an exclusive group and all events must have the EBB
1243 * flag set, or not set, so we can just check a single event. Also we
1244 * know we have at least one event.
1246 ebb = is_ebb_event(cpuhw->event[0]);
1249 * If we didn't change anything, or only removed events,
1250 * no need to recalculate MMCR* settings and reset the PMCs.
1251 * Just reenable the PMU with the current MMCR* settings
1252 * (possibly updated for removal of events).
1254 if (!cpuhw->n_added) {
1255 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1256 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1261 * Clear all MMCR settings and recompute them for the new set of events.
1263 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1265 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1266 cpuhw->mmcr, cpuhw->event)) {
1267 /* shouldn't ever get here */
1268 printk(KERN_ERR "oops compute_mmcr failed\n");
1272 if (!(ppmu->flags & PPMU_ARCH_207S)) {
1274 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1275 * bits for the first event. We have already checked that all
1276 * events have the same value for these bits as the first event.
1278 event = cpuhw->event[0];
1279 if (event->attr.exclude_user)
1280 cpuhw->mmcr[0] |= MMCR0_FCP;
1281 if (event->attr.exclude_kernel)
1282 cpuhw->mmcr[0] |= freeze_events_kernel;
1283 if (event->attr.exclude_hv)
1284 cpuhw->mmcr[0] |= MMCR0_FCHV;
1288 * Write the new configuration to MMCR* with the freeze
1289 * bit set and set the hardware events to their initial values.
1290 * Then unfreeze the events.
1292 ppc_set_pmu_inuse(1);
1293 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1294 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1295 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1297 if (ppmu->flags & PPMU_ARCH_207S)
1298 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1301 * Read off any pre-existing events that need to move
1304 for (i = 0; i < cpuhw->n_events; ++i) {
1305 event = cpuhw->event[i];
1306 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1307 power_pmu_read(event);
1308 write_pmc(event->hw.idx, 0);
1314 * Initialize the PMCs for all the new and moved events.
1316 cpuhw->n_limited = n_lim = 0;
1317 for (i = 0; i < cpuhw->n_events; ++i) {
1318 event = cpuhw->event[i];
1321 idx = hwc_index[i] + 1;
1322 if (is_limited_pmc(idx)) {
1323 cpuhw->limited_counter[n_lim] = event;
1324 cpuhw->limited_hwidx[n_lim] = idx;
1330 val = local64_read(&event->hw.prev_count);
1333 if (event->hw.sample_period) {
1334 left = local64_read(&event->hw.period_left);
1335 if (left < 0x80000000L)
1336 val = 0x80000000L - left;
1338 local64_set(&event->hw.prev_count, val);
1341 event->hw.idx = idx;
1342 if (event->hw.state & PERF_HES_STOPPED)
1344 write_pmc(idx, val);
1346 perf_event_update_userpage(event);
1348 cpuhw->n_limited = n_lim;
1349 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1352 pmao_restore_workaround(ebb);
1354 mmcr0 = ebb_switch_in(ebb, cpuhw);
1357 if (cpuhw->bhrb_users)
1358 ppmu->config_bhrb(cpuhw->bhrb_filter);
1360 write_mmcr0(cpuhw, mmcr0);
1363 * Enable instruction sampling if necessary
1365 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1367 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1372 local_irq_restore(flags);
1375 static int collect_events(struct perf_event *group, int max_count,
1376 struct perf_event *ctrs[], u64 *events,
1377 unsigned int *flags)
1380 struct perf_event *event;
1382 if (!is_software_event(group)) {
1386 flags[n] = group->hw.event_base;
1387 events[n++] = group->hw.config;
1389 list_for_each_entry(event, &group->sibling_list, group_entry) {
1390 if (!is_software_event(event) &&
1391 event->state != PERF_EVENT_STATE_OFF) {
1395 flags[n] = event->hw.event_base;
1396 events[n++] = event->hw.config;
1403 * Add a event to the PMU.
1404 * If all events are not already frozen, then we disable and
1405 * re-enable the PMU in order to get hw_perf_enable to do the
1406 * actual work of reconfiguring the PMU.
1408 static int power_pmu_add(struct perf_event *event, int ef_flags)
1410 struct cpu_hw_events *cpuhw;
1411 unsigned long flags;
1415 local_irq_save(flags);
1416 perf_pmu_disable(event->pmu);
1419 * Add the event to the list (if there is room)
1420 * and check whether the total set is still feasible.
1422 cpuhw = this_cpu_ptr(&cpu_hw_events);
1423 n0 = cpuhw->n_events;
1424 if (n0 >= ppmu->n_counter)
1426 cpuhw->event[n0] = event;
1427 cpuhw->events[n0] = event->hw.config;
1428 cpuhw->flags[n0] = event->hw.event_base;
1431 * This event may have been disabled/stopped in record_and_restart()
1432 * because we exceeded the ->event_limit. If re-starting the event,
1433 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1434 * notification is re-enabled.
1436 if (!(ef_flags & PERF_EF_START))
1437 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1439 event->hw.state = 0;
1442 * If group events scheduling transaction was started,
1443 * skip the schedulability test here, it will be performed
1444 * at commit time(->commit_txn) as a whole
1446 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1449 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1451 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1453 event->hw.config = cpuhw->events[n0];
1456 ebb_event_add(event);
1463 if (has_branch_stack(event)) {
1464 power_pmu_bhrb_enable(event);
1465 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1466 event->attr.branch_sample_type);
1469 perf_pmu_enable(event->pmu);
1470 local_irq_restore(flags);
1475 * Remove a event from the PMU.
1477 static void power_pmu_del(struct perf_event *event, int ef_flags)
1479 struct cpu_hw_events *cpuhw;
1481 unsigned long flags;
1483 local_irq_save(flags);
1484 perf_pmu_disable(event->pmu);
1486 power_pmu_read(event);
1488 cpuhw = this_cpu_ptr(&cpu_hw_events);
1489 for (i = 0; i < cpuhw->n_events; ++i) {
1490 if (event == cpuhw->event[i]) {
1491 while (++i < cpuhw->n_events) {
1492 cpuhw->event[i-1] = cpuhw->event[i];
1493 cpuhw->events[i-1] = cpuhw->events[i];
1494 cpuhw->flags[i-1] = cpuhw->flags[i];
1497 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1498 if (event->hw.idx) {
1499 write_pmc(event->hw.idx, 0);
1502 perf_event_update_userpage(event);
1506 for (i = 0; i < cpuhw->n_limited; ++i)
1507 if (event == cpuhw->limited_counter[i])
1509 if (i < cpuhw->n_limited) {
1510 while (++i < cpuhw->n_limited) {
1511 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1512 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1516 if (cpuhw->n_events == 0) {
1517 /* disable exceptions if no events are running */
1518 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1521 if (has_branch_stack(event))
1522 power_pmu_bhrb_disable(event);
1524 perf_pmu_enable(event->pmu);
1525 local_irq_restore(flags);
1529 * POWER-PMU does not support disabling individual counters, hence
1530 * program their cycle counter to their max value and ignore the interrupts.
1533 static void power_pmu_start(struct perf_event *event, int ef_flags)
1535 unsigned long flags;
1539 if (!event->hw.idx || !event->hw.sample_period)
1542 if (!(event->hw.state & PERF_HES_STOPPED))
1545 if (ef_flags & PERF_EF_RELOAD)
1546 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1548 local_irq_save(flags);
1549 perf_pmu_disable(event->pmu);
1551 event->hw.state = 0;
1552 left = local64_read(&event->hw.period_left);
1555 if (left < 0x80000000L)
1556 val = 0x80000000L - left;
1558 write_pmc(event->hw.idx, val);
1560 perf_event_update_userpage(event);
1561 perf_pmu_enable(event->pmu);
1562 local_irq_restore(flags);
1565 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1567 unsigned long flags;
1569 if (!event->hw.idx || !event->hw.sample_period)
1572 if (event->hw.state & PERF_HES_STOPPED)
1575 local_irq_save(flags);
1576 perf_pmu_disable(event->pmu);
1578 power_pmu_read(event);
1579 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1580 write_pmc(event->hw.idx, 0);
1582 perf_event_update_userpage(event);
1583 perf_pmu_enable(event->pmu);
1584 local_irq_restore(flags);
1588 * Start group events scheduling transaction
1589 * Set the flag to make pmu::enable() not perform the
1590 * schedulability test, it will be performed at commit time
1592 * We only support PERF_PMU_TXN_ADD transactions. Save the
1593 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1596 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1598 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1600 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1602 cpuhw->txn_flags = txn_flags;
1603 if (txn_flags & ~PERF_PMU_TXN_ADD)
1606 perf_pmu_disable(pmu);
1607 cpuhw->n_txn_start = cpuhw->n_events;
1611 * Stop group events scheduling transaction
1612 * Clear the flag and pmu::enable() will perform the
1613 * schedulability test.
1615 static void power_pmu_cancel_txn(struct pmu *pmu)
1617 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1618 unsigned int txn_flags;
1620 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1622 txn_flags = cpuhw->txn_flags;
1623 cpuhw->txn_flags = 0;
1624 if (txn_flags & ~PERF_PMU_TXN_ADD)
1627 perf_pmu_enable(pmu);
1631 * Commit group events scheduling transaction
1632 * Perform the group schedulability test as a whole
1633 * Return 0 if success
1635 static int power_pmu_commit_txn(struct pmu *pmu)
1637 struct cpu_hw_events *cpuhw;
1643 cpuhw = this_cpu_ptr(&cpu_hw_events);
1644 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1646 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1647 cpuhw->txn_flags = 0;
1651 n = cpuhw->n_events;
1652 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1654 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1658 for (i = cpuhw->n_txn_start; i < n; ++i)
1659 cpuhw->event[i]->hw.config = cpuhw->events[i];
1661 cpuhw->txn_flags = 0;
1662 perf_pmu_enable(pmu);
1667 * Return 1 if we might be able to put event on a limited PMC,
1669 * A event can only go on a limited PMC if it counts something
1670 * that a limited PMC can count, doesn't require interrupts, and
1671 * doesn't exclude any processor mode.
1673 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1677 u64 alt[MAX_EVENT_ALTERNATIVES];
1679 if (event->attr.exclude_user
1680 || event->attr.exclude_kernel
1681 || event->attr.exclude_hv
1682 || event->attr.sample_period)
1685 if (ppmu->limited_pmc_event(ev))
1689 * The requested event_id isn't on a limited PMC already;
1690 * see if any alternative code goes on a limited PMC.
1692 if (!ppmu->get_alternatives)
1695 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1696 n = ppmu->get_alternatives(ev, flags, alt);
1702 * Find an alternative event_id that goes on a normal PMC, if possible,
1703 * and return the event_id code, or 0 if there is no such alternative.
1704 * (Note: event_id code 0 is "don't count" on all machines.)
1706 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1708 u64 alt[MAX_EVENT_ALTERNATIVES];
1711 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1712 n = ppmu->get_alternatives(ev, flags, alt);
1718 /* Number of perf_events counting hardware events */
1719 static atomic_t num_events;
1720 /* Used to avoid races in calling reserve/release_pmc_hardware */
1721 static DEFINE_MUTEX(pmc_reserve_mutex);
1724 * Release the PMU if this is the last perf_event.
1726 static void hw_perf_event_destroy(struct perf_event *event)
1728 if (!atomic_add_unless(&num_events, -1, 1)) {
1729 mutex_lock(&pmc_reserve_mutex);
1730 if (atomic_dec_return(&num_events) == 0)
1731 release_pmc_hardware();
1732 mutex_unlock(&pmc_reserve_mutex);
1737 * Translate a generic cache event_id config to a raw event_id code.
1739 static int hw_perf_cache_event(u64 config, u64 *eventp)
1741 unsigned long type, op, result;
1744 if (!ppmu->cache_events)
1748 type = config & 0xff;
1749 op = (config >> 8) & 0xff;
1750 result = (config >> 16) & 0xff;
1752 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1753 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1754 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1757 ev = (*ppmu->cache_events)[type][op][result];
1766 static int power_pmu_event_init(struct perf_event *event)
1769 unsigned long flags;
1770 struct perf_event *ctrs[MAX_HWEVENTS];
1771 u64 events[MAX_HWEVENTS];
1772 unsigned int cflags[MAX_HWEVENTS];
1775 struct cpu_hw_events *cpuhw;
1780 if (has_branch_stack(event)) {
1781 /* PMU has BHRB enabled */
1782 if (!(ppmu->flags & PPMU_ARCH_207S))
1786 switch (event->attr.type) {
1787 case PERF_TYPE_HARDWARE:
1788 ev = event->attr.config;
1789 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1791 ev = ppmu->generic_events[ev];
1793 case PERF_TYPE_HW_CACHE:
1794 err = hw_perf_cache_event(event->attr.config, &ev);
1799 ev = event->attr.config;
1805 event->hw.config_base = ev;
1809 * If we are not running on a hypervisor, force the
1810 * exclude_hv bit to 0 so that we don't care what
1811 * the user set it to.
1813 if (!firmware_has_feature(FW_FEATURE_LPAR))
1814 event->attr.exclude_hv = 0;
1817 * If this is a per-task event, then we can use
1818 * PM_RUN_* events interchangeably with their non RUN_*
1819 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1820 * XXX we should check if the task is an idle task.
1823 if (event->attach_state & PERF_ATTACH_TASK)
1824 flags |= PPMU_ONLY_COUNT_RUN;
1827 * If this machine has limited events, check whether this
1828 * event_id could go on a limited event.
1830 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1831 if (can_go_on_limited_pmc(event, ev, flags)) {
1832 flags |= PPMU_LIMITED_PMC_OK;
1833 } else if (ppmu->limited_pmc_event(ev)) {
1835 * The requested event_id is on a limited PMC,
1836 * but we can't use a limited PMC; see if any
1837 * alternative goes on a normal PMC.
1839 ev = normal_pmc_alternative(ev, flags);
1845 /* Extra checks for EBB */
1846 err = ebb_event_check(event);
1851 * If this is in a group, check if it can go on with all the
1852 * other hardware events in the group. We assume the event
1853 * hasn't been linked into its leader's sibling list at this point.
1856 if (event->group_leader != event) {
1857 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1858 ctrs, events, cflags);
1865 if (check_excludes(ctrs, cflags, n, 1))
1868 cpuhw = &get_cpu_var(cpu_hw_events);
1869 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1871 if (has_branch_stack(event)) {
1872 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1873 event->attr.branch_sample_type);
1875 if (cpuhw->bhrb_filter == -1) {
1876 put_cpu_var(cpu_hw_events);
1881 put_cpu_var(cpu_hw_events);
1885 event->hw.config = events[n];
1886 event->hw.event_base = cflags[n];
1887 event->hw.last_period = event->hw.sample_period;
1888 local64_set(&event->hw.period_left, event->hw.last_period);
1891 * For EBB events we just context switch the PMC value, we don't do any
1892 * of the sample_period logic. We use hw.prev_count for this.
1894 if (is_ebb_event(event))
1895 local64_set(&event->hw.prev_count, 0);
1898 * See if we need to reserve the PMU.
1899 * If no events are currently in use, then we have to take a
1900 * mutex to ensure that we don't race with another task doing
1901 * reserve_pmc_hardware or release_pmc_hardware.
1904 if (!atomic_inc_not_zero(&num_events)) {
1905 mutex_lock(&pmc_reserve_mutex);
1906 if (atomic_read(&num_events) == 0 &&
1907 reserve_pmc_hardware(perf_event_interrupt))
1910 atomic_inc(&num_events);
1911 mutex_unlock(&pmc_reserve_mutex);
1913 event->destroy = hw_perf_event_destroy;
1918 static int power_pmu_event_idx(struct perf_event *event)
1920 return event->hw.idx;
1923 ssize_t power_events_sysfs_show(struct device *dev,
1924 struct device_attribute *attr, char *page)
1926 struct perf_pmu_events_attr *pmu_attr;
1928 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1930 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1933 static struct pmu power_pmu = {
1934 .pmu_enable = power_pmu_enable,
1935 .pmu_disable = power_pmu_disable,
1936 .event_init = power_pmu_event_init,
1937 .add = power_pmu_add,
1938 .del = power_pmu_del,
1939 .start = power_pmu_start,
1940 .stop = power_pmu_stop,
1941 .read = power_pmu_read,
1942 .start_txn = power_pmu_start_txn,
1943 .cancel_txn = power_pmu_cancel_txn,
1944 .commit_txn = power_pmu_commit_txn,
1945 .event_idx = power_pmu_event_idx,
1946 .sched_task = power_pmu_sched_task,
1950 * A counter has overflowed; update its count and record
1951 * things if requested. Note that interrupts are hard-disabled
1952 * here so there is no possibility of being interrupted.
1954 static void record_and_restart(struct perf_event *event, unsigned long val,
1955 struct pt_regs *regs)
1957 u64 period = event->hw.sample_period;
1958 s64 prev, delta, left;
1961 if (event->hw.state & PERF_HES_STOPPED) {
1962 write_pmc(event->hw.idx, 0);
1966 /* we don't have to worry about interrupts here */
1967 prev = local64_read(&event->hw.prev_count);
1968 delta = check_and_compute_delta(prev, val);
1969 local64_add(delta, &event->count);
1972 * See if the total period for this event has expired,
1973 * and update for the next period.
1976 left = local64_read(&event->hw.period_left) - delta;
1984 record = siar_valid(regs);
1985 event->hw.last_period = event->hw.sample_period;
1987 if (left < 0x80000000LL)
1988 val = 0x80000000LL - left;
1991 write_pmc(event->hw.idx, val);
1992 local64_set(&event->hw.prev_count, val);
1993 local64_set(&event->hw.period_left, left);
1994 perf_event_update_userpage(event);
1997 * Finally record data if requested.
2000 struct perf_sample_data data;
2002 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2004 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
2005 perf_get_data_addr(regs, &data.addr);
2007 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2008 struct cpu_hw_events *cpuhw;
2009 cpuhw = this_cpu_ptr(&cpu_hw_events);
2010 power_pmu_bhrb_read(cpuhw);
2011 data.br_stack = &cpuhw->bhrb_stack;
2014 if (perf_event_overflow(event, &data, regs))
2015 power_pmu_stop(event, 0);
2020 * Called from generic code to get the misc flags (i.e. processor mode)
2023 unsigned long perf_misc_flags(struct pt_regs *regs)
2025 u32 flags = perf_get_misc_flags(regs);
2029 return user_mode(regs) ? PERF_RECORD_MISC_USER :
2030 PERF_RECORD_MISC_KERNEL;
2034 * Called from generic code to get the instruction pointer
2037 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2039 bool use_siar = regs_use_siar(regs);
2041 if (use_siar && siar_valid(regs))
2042 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2044 return 0; // no valid instruction pointer
2049 static bool pmc_overflow_power7(unsigned long val)
2052 * Events on POWER7 can roll back if a speculative event doesn't
2053 * eventually complete. Unfortunately in some rare cases they will
2054 * raise a performance monitor exception. We need to catch this to
2055 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2056 * cycles from overflow.
2058 * We only do this if the first pass fails to find any overflowing
2059 * PMCs because a user might set a period of less than 256 and we
2060 * don't want to mistakenly reset them.
2062 if ((0x80000000 - val) <= 256)
2068 static bool pmc_overflow(unsigned long val)
2077 * Performance monitor interrupt stuff
2079 static void perf_event_interrupt(struct pt_regs *regs)
2082 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2083 struct perf_event *event;
2084 unsigned long val[8];
2088 if (cpuhw->n_limited)
2089 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2092 perf_read_regs(regs);
2094 nmi = perf_intr_is_nmi(regs);
2100 /* Read all the PMCs since we'll need them a bunch of times */
2101 for (i = 0; i < ppmu->n_counter; ++i)
2102 val[i] = read_pmc(i + 1);
2104 /* Try to find what caused the IRQ */
2106 for (i = 0; i < ppmu->n_counter; ++i) {
2107 if (!pmc_overflow(val[i]))
2109 if (is_limited_pmc(i + 1))
2110 continue; /* these won't generate IRQs */
2112 * We've found one that's overflowed. For active
2113 * counters we need to log this. For inactive
2114 * counters, we need to reset it anyway
2118 for (j = 0; j < cpuhw->n_events; ++j) {
2119 event = cpuhw->event[j];
2120 if (event->hw.idx == (i + 1)) {
2122 record_and_restart(event, val[i], regs);
2127 /* reset non active counters that have overflowed */
2128 write_pmc(i + 1, 0);
2130 if (!found && pvr_version_is(PVR_POWER7)) {
2131 /* check active counters for special buggy p7 overflow */
2132 for (i = 0; i < cpuhw->n_events; ++i) {
2133 event = cpuhw->event[i];
2134 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2136 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2137 /* event has overflowed in a buggy way*/
2139 record_and_restart(event,
2140 val[event->hw.idx - 1],
2145 if (!found && !nmi && printk_ratelimit())
2146 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2149 * Reset MMCR0 to its normal value. This will set PMXE and
2150 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2151 * and thus allow interrupts to occur again.
2152 * XXX might want to use MSR.PM to keep the events frozen until
2153 * we get back out of this interrupt.
2155 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2163 static int power_pmu_prepare_cpu(unsigned int cpu)
2165 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2168 memset(cpuhw, 0, sizeof(*cpuhw));
2169 cpuhw->mmcr[0] = MMCR0_FC;
2174 int register_power_pmu(struct power_pmu *pmu)
2177 return -EBUSY; /* something's already registered */
2180 pr_info("%s performance monitor hardware support registered\n",
2183 power_pmu.attr_groups = ppmu->attr_groups;
2187 * Use FCHV to ignore kernel events if MSR.HV is set.
2189 if (mfmsr() & MSR_HV)
2190 freeze_events_kernel = MMCR0_FCHV;
2191 #endif /* CONFIG_PPC64 */
2193 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2194 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2195 power_pmu_prepare_cpu, NULL);