4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License, version 2, as
6 * published by the Free Software Foundation.
10 #include <linux/kvm_host.h>
11 #include <linux/preempt.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/sizes.h>
18 #include <linux/cma.h>
19 #include <linux/bitops.h>
21 #include <asm/cputable.h>
22 #include <asm/kvm_ppc.h>
23 #include <asm/kvm_book3s.h>
24 #include <asm/archrandom.h>
26 #include <asm/dbell.h>
27 #include <asm/cputhreads.h>
32 #define KVM_CMA_CHUNK_ORDER 18
35 * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
36 * should be power of 2.
38 #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */
40 * By default we reserve 5% of memory for hash pagetable allocation.
42 static unsigned long kvm_cma_resv_ratio = 5;
44 static struct cma *kvm_cma;
46 static int __init early_parse_kvm_cma_resv(char *p)
48 pr_debug("%s(%s)\n", __func__, p);
51 return kstrtoul(p, 0, &kvm_cma_resv_ratio);
53 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
55 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
57 VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
59 return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
62 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
64 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
66 cma_release(kvm_cma, page, nr_pages);
68 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
71 * kvm_cma_reserve() - reserve area for kvm hash pagetable
73 * This function reserves memory from early allocator. It should be
74 * called by arch specific code once the memblock allocator
75 * has been activated and all other subsystems have already allocated/reserved
78 void __init kvm_cma_reserve(void)
80 unsigned long align_size;
81 struct memblock_region *reg;
82 phys_addr_t selected_size = 0;
85 * We need CMA reservation only when we are in HV mode
87 if (!cpu_has_feature(CPU_FTR_HVMODE))
90 * We cannot use memblock_phys_mem_size() here, because
91 * memblock_analyze() has not been called yet.
93 for_each_memblock(memory, reg)
94 selected_size += memblock_region_memory_end_pfn(reg) -
95 memblock_region_memory_base_pfn(reg);
97 selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
99 pr_debug("%s: reserving %ld MiB for global area\n", __func__,
100 (unsigned long)selected_size / SZ_1M);
101 align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
102 cma_declare_contiguous(0, selected_size, 0, align_size,
103 KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, &kvm_cma);
108 * Real-mode H_CONFER implementation.
109 * We check if we are the only vcpu out of this virtual core
110 * still running in the guest and not ceded. If so, we pop up
111 * to the virtual-mode implementation; if not, just return to
114 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
115 unsigned int yield_count)
117 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
118 int ptid = local_paca->kvm_hstate.ptid;
121 int threads_conferring;
122 u64 stop = get_tb() + 10 * tb_ticks_per_usec;
123 int rv = H_SUCCESS; /* => don't yield */
125 set_bit(ptid, &vc->conferring_threads);
126 while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
127 threads_running = VCORE_ENTRY_MAP(vc);
128 threads_ceded = vc->napping_threads;
129 threads_conferring = vc->conferring_threads;
130 if ((threads_ceded | threads_conferring) == threads_running) {
131 rv = H_TOO_HARD; /* => do yield */
135 clear_bit(ptid, &vc->conferring_threads);
140 * When running HV mode KVM we need to block certain operations while KVM VMs
141 * exist in the system. We use a counter of VMs to track this.
143 * One of the operations we need to block is onlining of secondaries, so we
144 * protect hv_vm_count with get/put_online_cpus().
146 static atomic_t hv_vm_count;
148 void kvm_hv_vm_activated(void)
151 atomic_inc(&hv_vm_count);
154 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
156 void kvm_hv_vm_deactivated(void)
159 atomic_dec(&hv_vm_count);
162 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
164 bool kvm_hv_mode_active(void)
166 return atomic_read(&hv_vm_count) != 0;
169 extern int hcall_real_table[], hcall_real_table_end[];
171 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
174 if (cmd < hcall_real_table_end - hcall_real_table &&
175 hcall_real_table[cmd])
180 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
182 int kvmppc_hwrng_present(void)
184 return powernv_hwrng_present();
186 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
188 long kvmppc_h_random(struct kvm_vcpu *vcpu)
190 if (powernv_get_random_real_mode(&vcpu->arch.gpr[4]))
196 static inline void rm_writeb(unsigned long paddr, u8 val)
198 __asm__ __volatile__("stbcix %0,0,%1"
199 : : "r" (val), "r" (paddr) : "memory");
203 * Send an interrupt or message to another CPU.
204 * The caller needs to include any barrier needed to order writes
205 * to memory vs. the IPI/message.
207 void kvmhv_rm_send_ipi(int cpu)
209 unsigned long xics_phys;
210 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
212 /* On POWER9 we can use msgsnd for any destination cpu. */
213 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
214 msg |= get_hard_smp_processor_id(cpu);
215 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
218 /* On POWER8 for IPIs to threads in the same core, use msgsnd. */
219 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
220 cpu_first_thread_sibling(cpu) ==
221 cpu_first_thread_sibling(raw_smp_processor_id())) {
222 msg |= cpu_thread_in_core(cpu);
223 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
227 /* Else poke the target with an IPI */
228 xics_phys = paca[cpu].kvm_hstate.xics_phys;
230 rm_writeb(xics_phys + XICS_MFRR, IPI_PRIORITY);
232 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
236 * The following functions are called from the assembly code
237 * in book3s_hv_rmhandlers.S.
239 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
243 /* Order setting of exit map vs. msgsnd/IPI */
245 for (; active; active >>= 1, ++cpu)
247 kvmhv_rm_send_ipi(cpu);
250 void kvmhv_commence_exit(int trap)
252 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
253 int ptid = local_paca->kvm_hstate.ptid;
254 struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
257 /* Set our bit in the threads-exiting-guest map in the 0xff00
258 bits of vcore->entry_exit_map */
261 ee = vc->entry_exit_map;
262 } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
264 /* Are we the first here? */
269 * Trigger the other threads in this vcore to exit the guest.
270 * If this is a hypervisor decrementer interrupt then they
271 * will be already on their way out of the guest.
273 if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
274 kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
277 * If we are doing dynamic micro-threading, interrupt the other
278 * subcores to pull them out of their guests too.
283 for (i = 0; i < MAX_SUBCORES; ++i) {
284 vc = sip->master_vcs[i];
288 ee = vc->entry_exit_map;
289 /* Already asked to exit? */
292 } while (cmpxchg(&vc->entry_exit_map, ee,
293 ee | VCORE_EXIT_REQ) != ee);
295 kvmhv_interrupt_vcore(vc, ee);
299 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
300 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
302 #ifdef CONFIG_KVM_XICS
303 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
309 * We access the mapped array here without a lock. That
310 * is safe because we never reduce the number of entries
311 * in the array and we never change the v_hwirq field of
312 * an entry once it is set.
314 * We have also carefully ordered the stores in the writer
315 * and the loads here in the reader, so that if we find a matching
316 * hwirq here, the associated GSI and irq_desc fields are valid.
318 for (i = 0; i < pimap->n_mapped; i++) {
319 if (xisr == pimap->mapped[i].r_hwirq) {
321 * Order subsequent reads in the caller to serialize
325 return &pimap->mapped[i];
332 * If we have an interrupt that's not an IPI, check if we have a
333 * passthrough adapter and if so, check if this external interrupt
334 * is for the adapter.
335 * We will attempt to deliver the IRQ directly to the target VCPU's
336 * ICP, the virtual ICP (based on affinity - the xive value in ICS).
338 * If the delivery fails or if this is not for a passthrough adapter,
339 * return to the host to handle this interrupt. We earlier
340 * saved a copy of the XIRR in the PACA, it will be picked up by
341 * the host ICP driver.
343 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
345 struct kvmppc_passthru_irqmap *pimap;
346 struct kvmppc_irq_map *irq_map;
347 struct kvm_vcpu *vcpu;
349 vcpu = local_paca->kvm_hstate.kvm_vcpu;
352 pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
355 irq_map = get_irqmap(pimap, xisr);
359 /* We're handling this interrupt, generic code doesn't need to */
360 local_paca->kvm_hstate.saved_xirr = 0;
362 return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
366 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
373 * Determine what sort of external interrupt is pending (if any).
375 * 0 if no interrupt is pending
376 * 1 if an interrupt is pending that needs to be handled by the host
377 * 2 Passthrough that needs completion in the host
378 * -1 if there was a guest wakeup IPI (which has now been cleared)
379 * -2 if there is PCI passthrough external interrupt that was handled
381 static long kvmppc_read_one_intr(bool *again);
383 long kvmppc_read_intr(void)
391 rc = kvmppc_read_one_intr(&again);
392 if (rc && (ret == 0 || rc > ret))
398 static long kvmppc_read_one_intr(bool *again)
400 unsigned long xics_phys;
407 /* see if a host IPI is pending */
408 host_ipi = local_paca->kvm_hstate.host_ipi;
412 /* Now read the interrupt from the ICP */
413 xics_phys = local_paca->kvm_hstate.xics_phys;
416 rc = opal_int_get_xirr(&xirr, false);
418 xirr = _lwzcix(xics_phys + XICS_XIRR);
423 * Save XIRR for later. Since we get control in reverse endian
424 * on LE systems, save it byte reversed and fetch it back in
425 * host endian. Note that xirr is the value read from the
426 * XIRR register, while h_xirr is the host endian version.
428 h_xirr = be32_to_cpu(xirr);
429 local_paca->kvm_hstate.saved_xirr = h_xirr;
430 xisr = h_xirr & 0xffffff;
432 * Ensure that the store/load complete to guarantee all side
433 * effects of loading from XIRR has completed
437 /* if nothing pending in the ICP */
441 /* We found something in the ICP...
443 * If it is an IPI, clear the MFRR and EOI it.
445 if (xisr == XICS_IPI) {
448 _stbcix(xics_phys + XICS_MFRR, 0xff);
449 _stwcix(xics_phys + XICS_XIRR, xirr);
451 opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
452 rc = opal_int_eoi(h_xirr);
454 /* If rc > 0, there is another interrupt pending */
458 * Need to ensure side effects of above stores
459 * complete before proceeding.
464 * We need to re-check host IPI now in case it got set in the
465 * meantime. If it's clear, we bounce the interrupt to the
468 host_ipi = local_paca->kvm_hstate.host_ipi;
469 if (unlikely(host_ipi != 0)) {
470 /* We raced with the host,
471 * we need to resend that IPI, bummer
474 _stbcix(xics_phys + XICS_MFRR, IPI_PRIORITY);
476 opal_int_set_mfrr(hard_smp_processor_id(),
478 /* Let side effects complete */
483 /* OK, it's an IPI for us */
484 local_paca->kvm_hstate.saved_xirr = 0;
488 return kvmppc_check_passthru(xisr, xirr, again);