]> Git Repo - linux.git/blob - arch/mips/kvm/mips.c
Input: rmi4 - f30: detect INPUT_PROP_BUTTONPAD from the button count
[linux.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <[email protected]>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/fs.h>
20 #include <linux/bootmem.h>
21 #include <asm/fpu.h>
22 #include <asm/page.h>
23 #include <asm/cacheflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27
28 #include <linux/kvm_host.h>
29
30 #include "interrupt.h"
31 #include "commpage.h"
32
33 #define CREATE_TRACE_POINTS
34 #include "trace.h"
35
36 #ifndef VECTORSPACING
37 #define VECTORSPACING 0x100     /* for EI/VI mode */
38 #endif
39
40 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
41 struct kvm_stats_debugfs_item debugfs_entries[] = {
42         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
43         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
44         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
45         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
46         { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
47         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
48         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
49         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
50         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
51         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
52         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
53         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
54         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
55         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
56         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
57         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
58         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
59         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
60         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
61         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
62         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
63         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
64         {NULL}
65 };
66
67 /*
68  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
69  * Config7, so we are "runnable" if interrupts are pending
70  */
71 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
72 {
73         return !!(vcpu->arch.pending_exceptions);
74 }
75
76 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
77 {
78         return 1;
79 }
80
81 int kvm_arch_hardware_enable(void)
82 {
83         return 0;
84 }
85
86 int kvm_arch_hardware_setup(void)
87 {
88         return 0;
89 }
90
91 void kvm_arch_check_processor_compat(void *rtn)
92 {
93         *(int *)rtn = 0;
94 }
95
96 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
97 {
98         /* Allocate page table to map GPA -> RPA */
99         kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
100         if (!kvm->arch.gpa_mm.pgd)
101                 return -ENOMEM;
102
103         return 0;
104 }
105
106 bool kvm_arch_has_vcpu_debugfs(void)
107 {
108         return false;
109 }
110
111 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
112 {
113         return 0;
114 }
115
116 void kvm_mips_free_vcpus(struct kvm *kvm)
117 {
118         unsigned int i;
119         struct kvm_vcpu *vcpu;
120
121         kvm_for_each_vcpu(i, vcpu, kvm) {
122                 kvm_arch_vcpu_free(vcpu);
123         }
124
125         mutex_lock(&kvm->lock);
126
127         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
128                 kvm->vcpus[i] = NULL;
129
130         atomic_set(&kvm->online_vcpus, 0);
131
132         mutex_unlock(&kvm->lock);
133 }
134
135 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
136 {
137         /* It should always be safe to remove after flushing the whole range */
138         WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
139         pgd_free(NULL, kvm->arch.gpa_mm.pgd);
140 }
141
142 void kvm_arch_destroy_vm(struct kvm *kvm)
143 {
144         kvm_mips_free_vcpus(kvm);
145         kvm_mips_free_gpa_pt(kvm);
146 }
147
148 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
149                         unsigned long arg)
150 {
151         return -ENOIOCTLCMD;
152 }
153
154 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
155                             unsigned long npages)
156 {
157         return 0;
158 }
159
160 void kvm_arch_flush_shadow_all(struct kvm *kvm)
161 {
162         /* Flush whole GPA */
163         kvm_mips_flush_gpa_pt(kvm, 0, ~0);
164
165         /* Let implementation do the rest */
166         kvm_mips_callbacks->flush_shadow_all(kvm);
167 }
168
169 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
170                                    struct kvm_memory_slot *slot)
171 {
172         /*
173          * The slot has been made invalid (ready for moving or deletion), so we
174          * need to ensure that it can no longer be accessed by any guest VCPUs.
175          */
176
177         spin_lock(&kvm->mmu_lock);
178         /* Flush slot from GPA */
179         kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
180                               slot->base_gfn + slot->npages - 1);
181         /* Let implementation do the rest */
182         kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
183         spin_unlock(&kvm->mmu_lock);
184 }
185
186 int kvm_arch_prepare_memory_region(struct kvm *kvm,
187                                    struct kvm_memory_slot *memslot,
188                                    const struct kvm_userspace_memory_region *mem,
189                                    enum kvm_mr_change change)
190 {
191         return 0;
192 }
193
194 void kvm_arch_commit_memory_region(struct kvm *kvm,
195                                    const struct kvm_userspace_memory_region *mem,
196                                    const struct kvm_memory_slot *old,
197                                    const struct kvm_memory_slot *new,
198                                    enum kvm_mr_change change)
199 {
200         int needs_flush;
201
202         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
203                   __func__, kvm, mem->slot, mem->guest_phys_addr,
204                   mem->memory_size, mem->userspace_addr);
205
206         /*
207          * If dirty page logging is enabled, write protect all pages in the slot
208          * ready for dirty logging.
209          *
210          * There is no need to do this in any of the following cases:
211          * CREATE:      No dirty mappings will already exist.
212          * MOVE/DELETE: The old mappings will already have been cleaned up by
213          *              kvm_arch_flush_shadow_memslot()
214          */
215         if (change == KVM_MR_FLAGS_ONLY &&
216             (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
217              new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
218                 spin_lock(&kvm->mmu_lock);
219                 /* Write protect GPA page table entries */
220                 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
221                                         new->base_gfn + new->npages - 1);
222                 /* Let implementation do the rest */
223                 if (needs_flush)
224                         kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
225                 spin_unlock(&kvm->mmu_lock);
226         }
227 }
228
229 static inline void dump_handler(const char *symbol, void *start, void *end)
230 {
231         u32 *p;
232
233         pr_debug("LEAF(%s)\n", symbol);
234
235         pr_debug("\t.set push\n");
236         pr_debug("\t.set noreorder\n");
237
238         for (p = start; p < (u32 *)end; ++p)
239                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
240
241         pr_debug("\t.set\tpop\n");
242
243         pr_debug("\tEND(%s)\n", symbol);
244 }
245
246 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
247 {
248         int err, size;
249         void *gebase, *p, *handler, *refill_start, *refill_end;
250         int i;
251
252         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
253
254         if (!vcpu) {
255                 err = -ENOMEM;
256                 goto out;
257         }
258
259         err = kvm_vcpu_init(vcpu, kvm, id);
260
261         if (err)
262                 goto out_free_cpu;
263
264         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
265
266         /*
267          * Allocate space for host mode exception handlers that handle
268          * guest mode exits
269          */
270         if (cpu_has_veic || cpu_has_vint)
271                 size = 0x200 + VECTORSPACING * 64;
272         else
273                 size = 0x4000;
274
275         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
276
277         if (!gebase) {
278                 err = -ENOMEM;
279                 goto out_uninit_cpu;
280         }
281         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
282                   ALIGN(size, PAGE_SIZE), gebase);
283
284         /*
285          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
286          * limits us to the low 512MB of physical address space. If the memory
287          * we allocate is out of range, just give up now.
288          */
289         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
290                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
291                         gebase);
292                 err = -ENOMEM;
293                 goto out_free_gebase;
294         }
295
296         /* Save new ebase */
297         vcpu->arch.guest_ebase = gebase;
298
299         /* Build guest exception vectors dynamically in unmapped memory */
300         handler = gebase + 0x2000;
301
302         /* TLB refill */
303         refill_start = gebase;
304         refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
305
306         /* General Exception Entry point */
307         kvm_mips_build_exception(gebase + 0x180, handler);
308
309         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
310         for (i = 0; i < 8; i++) {
311                 kvm_debug("L1 Vectored handler @ %p\n",
312                           gebase + 0x200 + (i * VECTORSPACING));
313                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
314                                          handler);
315         }
316
317         /* General exit handler */
318         p = handler;
319         p = kvm_mips_build_exit(p);
320
321         /* Guest entry routine */
322         vcpu->arch.vcpu_run = p;
323         p = kvm_mips_build_vcpu_run(p);
324
325         /* Dump the generated code */
326         pr_debug("#include <asm/asm.h>\n");
327         pr_debug("#include <asm/regdef.h>\n");
328         pr_debug("\n");
329         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
330         dump_handler("kvm_tlb_refill", refill_start, refill_end);
331         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
332         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
333
334         /* Invalidate the icache for these ranges */
335         flush_icache_range((unsigned long)gebase,
336                            (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
337
338         /*
339          * Allocate comm page for guest kernel, a TLB will be reserved for
340          * mapping GVA @ 0xFFFF8000 to this page
341          */
342         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
343
344         if (!vcpu->arch.kseg0_commpage) {
345                 err = -ENOMEM;
346                 goto out_free_gebase;
347         }
348
349         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
350         kvm_mips_commpage_init(vcpu);
351
352         /* Init */
353         vcpu->arch.last_sched_cpu = -1;
354
355         /* Start off the timer */
356         kvm_mips_init_count(vcpu);
357
358         return vcpu;
359
360 out_free_gebase:
361         kfree(gebase);
362
363 out_uninit_cpu:
364         kvm_vcpu_uninit(vcpu);
365
366 out_free_cpu:
367         kfree(vcpu);
368
369 out:
370         return ERR_PTR(err);
371 }
372
373 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
374 {
375         hrtimer_cancel(&vcpu->arch.comparecount_timer);
376
377         kvm_vcpu_uninit(vcpu);
378
379         kvm_mips_dump_stats(vcpu);
380
381         kvm_mmu_free_memory_caches(vcpu);
382         kfree(vcpu->arch.guest_ebase);
383         kfree(vcpu->arch.kseg0_commpage);
384         kfree(vcpu);
385 }
386
387 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
388 {
389         kvm_arch_vcpu_free(vcpu);
390 }
391
392 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
393                                         struct kvm_guest_debug *dbg)
394 {
395         return -ENOIOCTLCMD;
396 }
397
398 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
399 {
400         int r = -EINTR;
401         sigset_t sigsaved;
402
403         if (vcpu->sigset_active)
404                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
405
406         if (vcpu->mmio_needed) {
407                 if (!vcpu->mmio_is_write)
408                         kvm_mips_complete_mmio_load(vcpu, run);
409                 vcpu->mmio_needed = 0;
410         }
411
412         if (run->immediate_exit)
413                 goto out;
414
415         lose_fpu(1);
416
417         local_irq_disable();
418         guest_enter_irqoff();
419         trace_kvm_enter(vcpu);
420
421         /*
422          * Make sure the read of VCPU requests in vcpu_run() callback is not
423          * reordered ahead of the write to vcpu->mode, or we could miss a TLB
424          * flush request while the requester sees the VCPU as outside of guest
425          * mode and not needing an IPI.
426          */
427         smp_store_mb(vcpu->mode, IN_GUEST_MODE);
428
429         r = kvm_mips_callbacks->vcpu_run(run, vcpu);
430
431         trace_kvm_out(vcpu);
432         guest_exit_irqoff();
433         local_irq_enable();
434
435 out:
436         if (vcpu->sigset_active)
437                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
438
439         return r;
440 }
441
442 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
443                              struct kvm_mips_interrupt *irq)
444 {
445         int intr = (int)irq->irq;
446         struct kvm_vcpu *dvcpu = NULL;
447
448         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
449                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
450                           (int)intr);
451
452         if (irq->cpu == -1)
453                 dvcpu = vcpu;
454         else
455                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
456
457         if (intr == 2 || intr == 3 || intr == 4) {
458                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
459
460         } else if (intr == -2 || intr == -3 || intr == -4) {
461                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
462         } else {
463                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
464                         irq->cpu, irq->irq);
465                 return -EINVAL;
466         }
467
468         dvcpu->arch.wait = 0;
469
470         if (swait_active(&dvcpu->wq))
471                 swake_up(&dvcpu->wq);
472
473         return 0;
474 }
475
476 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
477                                     struct kvm_mp_state *mp_state)
478 {
479         return -ENOIOCTLCMD;
480 }
481
482 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
483                                     struct kvm_mp_state *mp_state)
484 {
485         return -ENOIOCTLCMD;
486 }
487
488 static u64 kvm_mips_get_one_regs[] = {
489         KVM_REG_MIPS_R0,
490         KVM_REG_MIPS_R1,
491         KVM_REG_MIPS_R2,
492         KVM_REG_MIPS_R3,
493         KVM_REG_MIPS_R4,
494         KVM_REG_MIPS_R5,
495         KVM_REG_MIPS_R6,
496         KVM_REG_MIPS_R7,
497         KVM_REG_MIPS_R8,
498         KVM_REG_MIPS_R9,
499         KVM_REG_MIPS_R10,
500         KVM_REG_MIPS_R11,
501         KVM_REG_MIPS_R12,
502         KVM_REG_MIPS_R13,
503         KVM_REG_MIPS_R14,
504         KVM_REG_MIPS_R15,
505         KVM_REG_MIPS_R16,
506         KVM_REG_MIPS_R17,
507         KVM_REG_MIPS_R18,
508         KVM_REG_MIPS_R19,
509         KVM_REG_MIPS_R20,
510         KVM_REG_MIPS_R21,
511         KVM_REG_MIPS_R22,
512         KVM_REG_MIPS_R23,
513         KVM_REG_MIPS_R24,
514         KVM_REG_MIPS_R25,
515         KVM_REG_MIPS_R26,
516         KVM_REG_MIPS_R27,
517         KVM_REG_MIPS_R28,
518         KVM_REG_MIPS_R29,
519         KVM_REG_MIPS_R30,
520         KVM_REG_MIPS_R31,
521
522 #ifndef CONFIG_CPU_MIPSR6
523         KVM_REG_MIPS_HI,
524         KVM_REG_MIPS_LO,
525 #endif
526         KVM_REG_MIPS_PC,
527 };
528
529 static u64 kvm_mips_get_one_regs_fpu[] = {
530         KVM_REG_MIPS_FCR_IR,
531         KVM_REG_MIPS_FCR_CSR,
532 };
533
534 static u64 kvm_mips_get_one_regs_msa[] = {
535         KVM_REG_MIPS_MSA_IR,
536         KVM_REG_MIPS_MSA_CSR,
537 };
538
539 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
540 {
541         unsigned long ret;
542
543         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
544         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
545                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
546                 /* odd doubles */
547                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
548                         ret += 16;
549         }
550         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
551                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
552         ret += kvm_mips_callbacks->num_regs(vcpu);
553
554         return ret;
555 }
556
557 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
558 {
559         u64 index;
560         unsigned int i;
561
562         if (copy_to_user(indices, kvm_mips_get_one_regs,
563                          sizeof(kvm_mips_get_one_regs)))
564                 return -EFAULT;
565         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
566
567         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
568                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
569                                  sizeof(kvm_mips_get_one_regs_fpu)))
570                         return -EFAULT;
571                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
572
573                 for (i = 0; i < 32; ++i) {
574                         index = KVM_REG_MIPS_FPR_32(i);
575                         if (copy_to_user(indices, &index, sizeof(index)))
576                                 return -EFAULT;
577                         ++indices;
578
579                         /* skip odd doubles if no F64 */
580                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
581                                 continue;
582
583                         index = KVM_REG_MIPS_FPR_64(i);
584                         if (copy_to_user(indices, &index, sizeof(index)))
585                                 return -EFAULT;
586                         ++indices;
587                 }
588         }
589
590         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
591                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
592                                  sizeof(kvm_mips_get_one_regs_msa)))
593                         return -EFAULT;
594                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
595
596                 for (i = 0; i < 32; ++i) {
597                         index = KVM_REG_MIPS_VEC_128(i);
598                         if (copy_to_user(indices, &index, sizeof(index)))
599                                 return -EFAULT;
600                         ++indices;
601                 }
602         }
603
604         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
605 }
606
607 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
608                             const struct kvm_one_reg *reg)
609 {
610         struct mips_coproc *cop0 = vcpu->arch.cop0;
611         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
612         int ret;
613         s64 v;
614         s64 vs[2];
615         unsigned int idx;
616
617         switch (reg->id) {
618         /* General purpose registers */
619         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
620                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
621                 break;
622 #ifndef CONFIG_CPU_MIPSR6
623         case KVM_REG_MIPS_HI:
624                 v = (long)vcpu->arch.hi;
625                 break;
626         case KVM_REG_MIPS_LO:
627                 v = (long)vcpu->arch.lo;
628                 break;
629 #endif
630         case KVM_REG_MIPS_PC:
631                 v = (long)vcpu->arch.pc;
632                 break;
633
634         /* Floating point registers */
635         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
636                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
637                         return -EINVAL;
638                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
639                 /* Odd singles in top of even double when FR=0 */
640                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
641                         v = get_fpr32(&fpu->fpr[idx], 0);
642                 else
643                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
644                 break;
645         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
646                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
647                         return -EINVAL;
648                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
649                 /* Can't access odd doubles in FR=0 mode */
650                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
651                         return -EINVAL;
652                 v = get_fpr64(&fpu->fpr[idx], 0);
653                 break;
654         case KVM_REG_MIPS_FCR_IR:
655                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
656                         return -EINVAL;
657                 v = boot_cpu_data.fpu_id;
658                 break;
659         case KVM_REG_MIPS_FCR_CSR:
660                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
661                         return -EINVAL;
662                 v = fpu->fcr31;
663                 break;
664
665         /* MIPS SIMD Architecture (MSA) registers */
666         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
667                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
668                         return -EINVAL;
669                 /* Can't access MSA registers in FR=0 mode */
670                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
671                         return -EINVAL;
672                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
673 #ifdef CONFIG_CPU_LITTLE_ENDIAN
674                 /* least significant byte first */
675                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
676                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
677 #else
678                 /* most significant byte first */
679                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
680                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
681 #endif
682                 break;
683         case KVM_REG_MIPS_MSA_IR:
684                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
685                         return -EINVAL;
686                 v = boot_cpu_data.msa_id;
687                 break;
688         case KVM_REG_MIPS_MSA_CSR:
689                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
690                         return -EINVAL;
691                 v = fpu->msacsr;
692                 break;
693
694         /* registers to be handled specially */
695         default:
696                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
697                 if (ret)
698                         return ret;
699                 break;
700         }
701         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
702                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
703
704                 return put_user(v, uaddr64);
705         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
706                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
707                 u32 v32 = (u32)v;
708
709                 return put_user(v32, uaddr32);
710         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
711                 void __user *uaddr = (void __user *)(long)reg->addr;
712
713                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
714         } else {
715                 return -EINVAL;
716         }
717 }
718
719 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
720                             const struct kvm_one_reg *reg)
721 {
722         struct mips_coproc *cop0 = vcpu->arch.cop0;
723         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
724         s64 v;
725         s64 vs[2];
726         unsigned int idx;
727
728         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
729                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
730
731                 if (get_user(v, uaddr64) != 0)
732                         return -EFAULT;
733         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
734                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
735                 s32 v32;
736
737                 if (get_user(v32, uaddr32) != 0)
738                         return -EFAULT;
739                 v = (s64)v32;
740         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
741                 void __user *uaddr = (void __user *)(long)reg->addr;
742
743                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
744         } else {
745                 return -EINVAL;
746         }
747
748         switch (reg->id) {
749         /* General purpose registers */
750         case KVM_REG_MIPS_R0:
751                 /* Silently ignore requests to set $0 */
752                 break;
753         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
754                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
755                 break;
756 #ifndef CONFIG_CPU_MIPSR6
757         case KVM_REG_MIPS_HI:
758                 vcpu->arch.hi = v;
759                 break;
760         case KVM_REG_MIPS_LO:
761                 vcpu->arch.lo = v;
762                 break;
763 #endif
764         case KVM_REG_MIPS_PC:
765                 vcpu->arch.pc = v;
766                 break;
767
768         /* Floating point registers */
769         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
770                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
771                         return -EINVAL;
772                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
773                 /* Odd singles in top of even double when FR=0 */
774                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
775                         set_fpr32(&fpu->fpr[idx], 0, v);
776                 else
777                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
778                 break;
779         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
780                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
781                         return -EINVAL;
782                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
783                 /* Can't access odd doubles in FR=0 mode */
784                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
785                         return -EINVAL;
786                 set_fpr64(&fpu->fpr[idx], 0, v);
787                 break;
788         case KVM_REG_MIPS_FCR_IR:
789                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
790                         return -EINVAL;
791                 /* Read-only */
792                 break;
793         case KVM_REG_MIPS_FCR_CSR:
794                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
795                         return -EINVAL;
796                 fpu->fcr31 = v;
797                 break;
798
799         /* MIPS SIMD Architecture (MSA) registers */
800         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
801                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
802                         return -EINVAL;
803                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
804 #ifdef CONFIG_CPU_LITTLE_ENDIAN
805                 /* least significant byte first */
806                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
807                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
808 #else
809                 /* most significant byte first */
810                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
811                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
812 #endif
813                 break;
814         case KVM_REG_MIPS_MSA_IR:
815                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
816                         return -EINVAL;
817                 /* Read-only */
818                 break;
819         case KVM_REG_MIPS_MSA_CSR:
820                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
821                         return -EINVAL;
822                 fpu->msacsr = v;
823                 break;
824
825         /* registers to be handled specially */
826         default:
827                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
828         }
829         return 0;
830 }
831
832 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
833                                      struct kvm_enable_cap *cap)
834 {
835         int r = 0;
836
837         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
838                 return -EINVAL;
839         if (cap->flags)
840                 return -EINVAL;
841         if (cap->args[0])
842                 return -EINVAL;
843
844         switch (cap->cap) {
845         case KVM_CAP_MIPS_FPU:
846                 vcpu->arch.fpu_enabled = true;
847                 break;
848         case KVM_CAP_MIPS_MSA:
849                 vcpu->arch.msa_enabled = true;
850                 break;
851         default:
852                 r = -EINVAL;
853                 break;
854         }
855
856         return r;
857 }
858
859 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
860                          unsigned long arg)
861 {
862         struct kvm_vcpu *vcpu = filp->private_data;
863         void __user *argp = (void __user *)arg;
864         long r;
865
866         switch (ioctl) {
867         case KVM_SET_ONE_REG:
868         case KVM_GET_ONE_REG: {
869                 struct kvm_one_reg reg;
870
871                 if (copy_from_user(&reg, argp, sizeof(reg)))
872                         return -EFAULT;
873                 if (ioctl == KVM_SET_ONE_REG)
874                         return kvm_mips_set_reg(vcpu, &reg);
875                 else
876                         return kvm_mips_get_reg(vcpu, &reg);
877         }
878         case KVM_GET_REG_LIST: {
879                 struct kvm_reg_list __user *user_list = argp;
880                 struct kvm_reg_list reg_list;
881                 unsigned n;
882
883                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
884                         return -EFAULT;
885                 n = reg_list.n;
886                 reg_list.n = kvm_mips_num_regs(vcpu);
887                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
888                         return -EFAULT;
889                 if (n < reg_list.n)
890                         return -E2BIG;
891                 return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
892         }
893         case KVM_INTERRUPT:
894                 {
895                         struct kvm_mips_interrupt irq;
896
897                         if (copy_from_user(&irq, argp, sizeof(irq)))
898                                 return -EFAULT;
899                         kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
900                                   irq.irq);
901
902                         r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
903                         break;
904                 }
905         case KVM_ENABLE_CAP: {
906                 struct kvm_enable_cap cap;
907
908                 if (copy_from_user(&cap, argp, sizeof(cap)))
909                         return -EFAULT;
910                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
911                 break;
912         }
913         default:
914                 r = -ENOIOCTLCMD;
915         }
916         return r;
917 }
918
919 /**
920  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
921  * @kvm: kvm instance
922  * @log: slot id and address to which we copy the log
923  *
924  * Steps 1-4 below provide general overview of dirty page logging. See
925  * kvm_get_dirty_log_protect() function description for additional details.
926  *
927  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
928  * always flush the TLB (step 4) even if previous step failed  and the dirty
929  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
930  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
931  * writes will be marked dirty for next log read.
932  *
933  *   1. Take a snapshot of the bit and clear it if needed.
934  *   2. Write protect the corresponding page.
935  *   3. Copy the snapshot to the userspace.
936  *   4. Flush TLB's if needed.
937  */
938 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
939 {
940         struct kvm_memslots *slots;
941         struct kvm_memory_slot *memslot;
942         bool is_dirty = false;
943         int r;
944
945         mutex_lock(&kvm->slots_lock);
946
947         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
948
949         if (is_dirty) {
950                 slots = kvm_memslots(kvm);
951                 memslot = id_to_memslot(slots, log->slot);
952
953                 /* Let implementation handle TLB/GVA invalidation */
954                 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
955         }
956
957         mutex_unlock(&kvm->slots_lock);
958         return r;
959 }
960
961 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
962 {
963         long r;
964
965         switch (ioctl) {
966         default:
967                 r = -ENOIOCTLCMD;
968         }
969
970         return r;
971 }
972
973 int kvm_arch_init(void *opaque)
974 {
975         if (kvm_mips_callbacks) {
976                 kvm_err("kvm: module already exists\n");
977                 return -EEXIST;
978         }
979
980         return kvm_mips_emulation_init(&kvm_mips_callbacks);
981 }
982
983 void kvm_arch_exit(void)
984 {
985         kvm_mips_callbacks = NULL;
986 }
987
988 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
989                                   struct kvm_sregs *sregs)
990 {
991         return -ENOIOCTLCMD;
992 }
993
994 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
995                                   struct kvm_sregs *sregs)
996 {
997         return -ENOIOCTLCMD;
998 }
999
1000 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1001 {
1002 }
1003
1004 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1005 {
1006         return -ENOIOCTLCMD;
1007 }
1008
1009 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1010 {
1011         return -ENOIOCTLCMD;
1012 }
1013
1014 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1015 {
1016         return VM_FAULT_SIGBUS;
1017 }
1018
1019 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1020 {
1021         int r;
1022
1023         switch (ext) {
1024         case KVM_CAP_ONE_REG:
1025         case KVM_CAP_ENABLE_CAP:
1026         case KVM_CAP_READONLY_MEM:
1027         case KVM_CAP_SYNC_MMU:
1028         case KVM_CAP_IMMEDIATE_EXIT:
1029                 r = 1;
1030                 break;
1031         case KVM_CAP_COALESCED_MMIO:
1032                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1033                 break;
1034         case KVM_CAP_NR_VCPUS:
1035                 r = num_online_cpus();
1036                 break;
1037         case KVM_CAP_MAX_VCPUS:
1038                 r = KVM_MAX_VCPUS;
1039                 break;
1040         case KVM_CAP_MIPS_FPU:
1041                 /* We don't handle systems with inconsistent cpu_has_fpu */
1042                 r = !!raw_cpu_has_fpu;
1043                 break;
1044         case KVM_CAP_MIPS_MSA:
1045                 /*
1046                  * We don't support MSA vector partitioning yet:
1047                  * 1) It would require explicit support which can't be tested
1048                  *    yet due to lack of support in current hardware.
1049                  * 2) It extends the state that would need to be saved/restored
1050                  *    by e.g. QEMU for migration.
1051                  *
1052                  * When vector partitioning hardware becomes available, support
1053                  * could be added by requiring a flag when enabling
1054                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1055                  * to save/restore the appropriate extra state.
1056                  */
1057                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1058                 break;
1059         default:
1060                 r = 0;
1061                 break;
1062         }
1063         return r;
1064 }
1065
1066 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1067 {
1068         return kvm_mips_pending_timer(vcpu);
1069 }
1070
1071 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1072 {
1073         int i;
1074         struct mips_coproc *cop0;
1075
1076         if (!vcpu)
1077                 return -1;
1078
1079         kvm_debug("VCPU Register Dump:\n");
1080         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1081         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1082
1083         for (i = 0; i < 32; i += 4) {
1084                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1085                        vcpu->arch.gprs[i],
1086                        vcpu->arch.gprs[i + 1],
1087                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1088         }
1089         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1090         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1091
1092         cop0 = vcpu->arch.cop0;
1093         kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1094                   kvm_read_c0_guest_status(cop0),
1095                   kvm_read_c0_guest_cause(cop0));
1096
1097         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1098
1099         return 0;
1100 }
1101
1102 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1103 {
1104         int i;
1105
1106         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1107                 vcpu->arch.gprs[i] = regs->gpr[i];
1108         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1109         vcpu->arch.hi = regs->hi;
1110         vcpu->arch.lo = regs->lo;
1111         vcpu->arch.pc = regs->pc;
1112
1113         return 0;
1114 }
1115
1116 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1117 {
1118         int i;
1119
1120         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1121                 regs->gpr[i] = vcpu->arch.gprs[i];
1122
1123         regs->hi = vcpu->arch.hi;
1124         regs->lo = vcpu->arch.lo;
1125         regs->pc = vcpu->arch.pc;
1126
1127         return 0;
1128 }
1129
1130 static void kvm_mips_comparecount_func(unsigned long data)
1131 {
1132         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1133
1134         kvm_mips_callbacks->queue_timer_int(vcpu);
1135
1136         vcpu->arch.wait = 0;
1137         if (swait_active(&vcpu->wq))
1138                 swake_up(&vcpu->wq);
1139 }
1140
1141 /* low level hrtimer wake routine */
1142 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1143 {
1144         struct kvm_vcpu *vcpu;
1145
1146         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1147         kvm_mips_comparecount_func((unsigned long) vcpu);
1148         return kvm_mips_count_timeout(vcpu);
1149 }
1150
1151 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1152 {
1153         int err;
1154
1155         err = kvm_mips_callbacks->vcpu_init(vcpu);
1156         if (err)
1157                 return err;
1158
1159         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1160                      HRTIMER_MODE_REL);
1161         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1162         return 0;
1163 }
1164
1165 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1166 {
1167         kvm_mips_callbacks->vcpu_uninit(vcpu);
1168 }
1169
1170 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1171                                   struct kvm_translation *tr)
1172 {
1173         return 0;
1174 }
1175
1176 /* Initial guest state */
1177 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1178 {
1179         return kvm_mips_callbacks->vcpu_setup(vcpu);
1180 }
1181
1182 static void kvm_mips_set_c0_status(void)
1183 {
1184         u32 status = read_c0_status();
1185
1186         if (cpu_has_dsp)
1187                 status |= (ST0_MX);
1188
1189         write_c0_status(status);
1190         ehb();
1191 }
1192
1193 /*
1194  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1195  */
1196 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1197 {
1198         u32 cause = vcpu->arch.host_cp0_cause;
1199         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1200         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1201         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1202         enum emulation_result er = EMULATE_DONE;
1203         u32 inst;
1204         int ret = RESUME_GUEST;
1205
1206         vcpu->mode = OUTSIDE_GUEST_MODE;
1207
1208         /* re-enable HTW before enabling interrupts */
1209         htw_start();
1210
1211         /* Set a default exit reason */
1212         run->exit_reason = KVM_EXIT_UNKNOWN;
1213         run->ready_for_interrupt_injection = 1;
1214
1215         /*
1216          * Set the appropriate status bits based on host CPU features,
1217          * before we hit the scheduler
1218          */
1219         kvm_mips_set_c0_status();
1220
1221         local_irq_enable();
1222
1223         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1224                         cause, opc, run, vcpu);
1225         trace_kvm_exit(vcpu, exccode);
1226
1227         /*
1228          * Do a privilege check, if in UM most of these exit conditions end up
1229          * causing an exception to be delivered to the Guest Kernel
1230          */
1231         er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1232         if (er == EMULATE_PRIV_FAIL) {
1233                 goto skip_emul;
1234         } else if (er == EMULATE_FAIL) {
1235                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1236                 ret = RESUME_HOST;
1237                 goto skip_emul;
1238         }
1239
1240         switch (exccode) {
1241         case EXCCODE_INT:
1242                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1243
1244                 ++vcpu->stat.int_exits;
1245
1246                 if (need_resched())
1247                         cond_resched();
1248
1249                 ret = RESUME_GUEST;
1250                 break;
1251
1252         case EXCCODE_CPU:
1253                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1254
1255                 ++vcpu->stat.cop_unusable_exits;
1256                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1257                 /* XXXKYMA: Might need to return to user space */
1258                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1259                         ret = RESUME_HOST;
1260                 break;
1261
1262         case EXCCODE_MOD:
1263                 ++vcpu->stat.tlbmod_exits;
1264                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1265                 break;
1266
1267         case EXCCODE_TLBS:
1268                 kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1269                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1270                           badvaddr);
1271
1272                 ++vcpu->stat.tlbmiss_st_exits;
1273                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1274                 break;
1275
1276         case EXCCODE_TLBL:
1277                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1278                           cause, opc, badvaddr);
1279
1280                 ++vcpu->stat.tlbmiss_ld_exits;
1281                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1282                 break;
1283
1284         case EXCCODE_ADES:
1285                 ++vcpu->stat.addrerr_st_exits;
1286                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1287                 break;
1288
1289         case EXCCODE_ADEL:
1290                 ++vcpu->stat.addrerr_ld_exits;
1291                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1292                 break;
1293
1294         case EXCCODE_SYS:
1295                 ++vcpu->stat.syscall_exits;
1296                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1297                 break;
1298
1299         case EXCCODE_RI:
1300                 ++vcpu->stat.resvd_inst_exits;
1301                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1302                 break;
1303
1304         case EXCCODE_BP:
1305                 ++vcpu->stat.break_inst_exits;
1306                 ret = kvm_mips_callbacks->handle_break(vcpu);
1307                 break;
1308
1309         case EXCCODE_TR:
1310                 ++vcpu->stat.trap_inst_exits;
1311                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1312                 break;
1313
1314         case EXCCODE_MSAFPE:
1315                 ++vcpu->stat.msa_fpe_exits;
1316                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1317                 break;
1318
1319         case EXCCODE_FPE:
1320                 ++vcpu->stat.fpe_exits;
1321                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1322                 break;
1323
1324         case EXCCODE_MSADIS:
1325                 ++vcpu->stat.msa_disabled_exits;
1326                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1327                 break;
1328
1329         default:
1330                 if (cause & CAUSEF_BD)
1331                         opc += 1;
1332                 inst = 0;
1333                 kvm_get_badinstr(opc, vcpu, &inst);
1334                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1335                         exccode, opc, inst, badvaddr,
1336                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1337                 kvm_arch_vcpu_dump_regs(vcpu);
1338                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1339                 ret = RESUME_HOST;
1340                 break;
1341
1342         }
1343
1344 skip_emul:
1345         local_irq_disable();
1346
1347         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1348                 kvm_mips_deliver_interrupts(vcpu, cause);
1349
1350         if (!(ret & RESUME_HOST)) {
1351                 /* Only check for signals if not already exiting to userspace */
1352                 if (signal_pending(current)) {
1353                         run->exit_reason = KVM_EXIT_INTR;
1354                         ret = (-EINTR << 2) | RESUME_HOST;
1355                         ++vcpu->stat.signal_exits;
1356                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1357                 }
1358         }
1359
1360         if (ret == RESUME_GUEST) {
1361                 trace_kvm_reenter(vcpu);
1362
1363                 /*
1364                  * Make sure the read of VCPU requests in vcpu_reenter()
1365                  * callback is not reordered ahead of the write to vcpu->mode,
1366                  * or we could miss a TLB flush request while the requester sees
1367                  * the VCPU as outside of guest mode and not needing an IPI.
1368                  */
1369                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1370
1371                 kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1372
1373                 /*
1374                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1375                  * is live), restore FCR31 / MSACSR.
1376                  *
1377                  * This should be before returning to the guest exception
1378                  * vector, as it may well cause an [MSA] FP exception if there
1379                  * are pending exception bits unmasked. (see
1380                  * kvm_mips_csr_die_notifier() for how that is handled).
1381                  */
1382                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1383                     read_c0_status() & ST0_CU1)
1384                         __kvm_restore_fcsr(&vcpu->arch);
1385
1386                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1387                     read_c0_config5() & MIPS_CONF5_MSAEN)
1388                         __kvm_restore_msacsr(&vcpu->arch);
1389         }
1390
1391         /* Disable HTW before returning to guest or host */
1392         htw_stop();
1393
1394         return ret;
1395 }
1396
1397 /* Enable FPU for guest and restore context */
1398 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1399 {
1400         struct mips_coproc *cop0 = vcpu->arch.cop0;
1401         unsigned int sr, cfg5;
1402
1403         preempt_disable();
1404
1405         sr = kvm_read_c0_guest_status(cop0);
1406
1407         /*
1408          * If MSA state is already live, it is undefined how it interacts with
1409          * FR=0 FPU state, and we don't want to hit reserved instruction
1410          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1411          * play it safe and save it first.
1412          *
1413          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1414          * get called when guest CU1 is set, however we can't trust the guest
1415          * not to clobber the status register directly via the commpage.
1416          */
1417         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1418             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1419                 kvm_lose_fpu(vcpu);
1420
1421         /*
1422          * Enable FPU for guest
1423          * We set FR and FRE according to guest context
1424          */
1425         change_c0_status(ST0_CU1 | ST0_FR, sr);
1426         if (cpu_has_fre) {
1427                 cfg5 = kvm_read_c0_guest_config5(cop0);
1428                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1429         }
1430         enable_fpu_hazard();
1431
1432         /* If guest FPU state not active, restore it now */
1433         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1434                 __kvm_restore_fpu(&vcpu->arch);
1435                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1436                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1437         } else {
1438                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1439         }
1440
1441         preempt_enable();
1442 }
1443
1444 #ifdef CONFIG_CPU_HAS_MSA
1445 /* Enable MSA for guest and restore context */
1446 void kvm_own_msa(struct kvm_vcpu *vcpu)
1447 {
1448         struct mips_coproc *cop0 = vcpu->arch.cop0;
1449         unsigned int sr, cfg5;
1450
1451         preempt_disable();
1452
1453         /*
1454          * Enable FPU if enabled in guest, since we're restoring FPU context
1455          * anyway. We set FR and FRE according to guest context.
1456          */
1457         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1458                 sr = kvm_read_c0_guest_status(cop0);
1459
1460                 /*
1461                  * If FR=0 FPU state is already live, it is undefined how it
1462                  * interacts with MSA state, so play it safe and save it first.
1463                  */
1464                 if (!(sr & ST0_FR) &&
1465                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1466                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1467                         kvm_lose_fpu(vcpu);
1468
1469                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1470                 if (sr & ST0_CU1 && cpu_has_fre) {
1471                         cfg5 = kvm_read_c0_guest_config5(cop0);
1472                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1473                 }
1474         }
1475
1476         /* Enable MSA for guest */
1477         set_c0_config5(MIPS_CONF5_MSAEN);
1478         enable_fpu_hazard();
1479
1480         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1481         case KVM_MIPS_AUX_FPU:
1482                 /*
1483                  * Guest FPU state already loaded, only restore upper MSA state
1484                  */
1485                 __kvm_restore_msa_upper(&vcpu->arch);
1486                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1487                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1488                 break;
1489         case 0:
1490                 /* Neither FPU or MSA already active, restore full MSA state */
1491                 __kvm_restore_msa(&vcpu->arch);
1492                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1493                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1494                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1495                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1496                               KVM_TRACE_AUX_FPU_MSA);
1497                 break;
1498         default:
1499                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1500                 break;
1501         }
1502
1503         preempt_enable();
1504 }
1505 #endif
1506
1507 /* Drop FPU & MSA without saving it */
1508 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1509 {
1510         preempt_disable();
1511         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1512                 disable_msa();
1513                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1514                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1515         }
1516         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1517                 clear_c0_status(ST0_CU1 | ST0_FR);
1518                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1519                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1520         }
1521         preempt_enable();
1522 }
1523
1524 /* Save and disable FPU & MSA */
1525 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1526 {
1527         /*
1528          * FPU & MSA get disabled in root context (hardware) when it is disabled
1529          * in guest context (software), but the register state in the hardware
1530          * may still be in use. This is why we explicitly re-enable the hardware
1531          * before saving.
1532          */
1533
1534         preempt_disable();
1535         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1536                 set_c0_config5(MIPS_CONF5_MSAEN);
1537                 enable_fpu_hazard();
1538
1539                 __kvm_save_msa(&vcpu->arch);
1540                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1541
1542                 /* Disable MSA & FPU */
1543                 disable_msa();
1544                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1545                         clear_c0_status(ST0_CU1 | ST0_FR);
1546                         disable_fpu_hazard();
1547                 }
1548                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1549         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1550                 set_c0_status(ST0_CU1);
1551                 enable_fpu_hazard();
1552
1553                 __kvm_save_fpu(&vcpu->arch);
1554                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1555                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1556
1557                 /* Disable FPU */
1558                 clear_c0_status(ST0_CU1 | ST0_FR);
1559                 disable_fpu_hazard();
1560         }
1561         preempt_enable();
1562 }
1563
1564 /*
1565  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1566  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1567  * exception if cause bits are set in the value being written.
1568  */
1569 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1570                                    unsigned long cmd, void *ptr)
1571 {
1572         struct die_args *args = (struct die_args *)ptr;
1573         struct pt_regs *regs = args->regs;
1574         unsigned long pc;
1575
1576         /* Only interested in FPE and MSAFPE */
1577         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1578                 return NOTIFY_DONE;
1579
1580         /* Return immediately if guest context isn't active */
1581         if (!(current->flags & PF_VCPU))
1582                 return NOTIFY_DONE;
1583
1584         /* Should never get here from user mode */
1585         BUG_ON(user_mode(regs));
1586
1587         pc = instruction_pointer(regs);
1588         switch (cmd) {
1589         case DIE_FP:
1590                 /* match 2nd instruction in __kvm_restore_fcsr */
1591                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1592                         return NOTIFY_DONE;
1593                 break;
1594         case DIE_MSAFP:
1595                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1596                 if (!cpu_has_msa ||
1597                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1598                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1599                         return NOTIFY_DONE;
1600                 break;
1601         }
1602
1603         /* Move PC forward a little and continue executing */
1604         instruction_pointer(regs) += 4;
1605
1606         return NOTIFY_STOP;
1607 }
1608
1609 static struct notifier_block kvm_mips_csr_die_notifier = {
1610         .notifier_call = kvm_mips_csr_die_notify,
1611 };
1612
1613 static int __init kvm_mips_init(void)
1614 {
1615         int ret;
1616
1617         ret = kvm_mips_entry_setup();
1618         if (ret)
1619                 return ret;
1620
1621         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1622
1623         if (ret)
1624                 return ret;
1625
1626         register_die_notifier(&kvm_mips_csr_die_notifier);
1627
1628         return 0;
1629 }
1630
1631 static void __exit kvm_mips_exit(void)
1632 {
1633         kvm_exit();
1634
1635         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1636 }
1637
1638 module_init(kvm_mips_init);
1639 module_exit(kvm_mips_exit);
1640
1641 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
This page took 0.128791 seconds and 4 git commands to generate.