2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
26 #include <linux/sched.h>
27 #include <linux/smp.h>
28 #include <linux/spinlock.h>
29 #include <linux/kallsyms.h>
30 #include <linux/bootmem.h>
31 #include <linux/interrupt.h>
32 #include <linux/ptrace.h>
33 #include <linux/kgdb.h>
34 #include <linux/kdebug.h>
35 #include <linux/kprobes.h>
36 #include <linux/notifier.h>
37 #include <linux/kdb.h>
38 #include <linux/irq.h>
39 #include <linux/perf_event.h>
41 #include <asm/addrspace.h>
42 #include <asm/bootinfo.h>
43 #include <asm/branch.h>
44 #include <asm/break.h>
47 #include <asm/cpu-type.h>
50 #include <asm/fpu_emulator.h>
52 #include <asm/mips-cm.h>
53 #include <asm/mips-r2-to-r6-emul.h>
54 #include <asm/mips-cm.h>
55 #include <asm/mipsregs.h>
56 #include <asm/mipsmtregs.h>
57 #include <asm/module.h>
59 #include <asm/pgtable.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <linux/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
72 extern void check_wait(void);
73 extern asmlinkage void rollback_handle_int(void);
74 extern asmlinkage void handle_int(void);
75 extern u32 handle_tlbl[];
76 extern u32 handle_tlbs[];
77 extern u32 handle_tlbm[];
78 extern asmlinkage void handle_adel(void);
79 extern asmlinkage void handle_ades(void);
80 extern asmlinkage void handle_ibe(void);
81 extern asmlinkage void handle_dbe(void);
82 extern asmlinkage void handle_sys(void);
83 extern asmlinkage void handle_bp(void);
84 extern asmlinkage void handle_ri(void);
85 extern asmlinkage void handle_ri_rdhwr_vivt(void);
86 extern asmlinkage void handle_ri_rdhwr(void);
87 extern asmlinkage void handle_cpu(void);
88 extern asmlinkage void handle_ov(void);
89 extern asmlinkage void handle_tr(void);
90 extern asmlinkage void handle_msa_fpe(void);
91 extern asmlinkage void handle_fpe(void);
92 extern asmlinkage void handle_ftlb(void);
93 extern asmlinkage void handle_msa(void);
94 extern asmlinkage void handle_mdmx(void);
95 extern asmlinkage void handle_watch(void);
96 extern asmlinkage void handle_mt(void);
97 extern asmlinkage void handle_dsp(void);
98 extern asmlinkage void handle_mcheck(void);
99 extern asmlinkage void handle_reserved(void);
100 extern void tlb_do_page_fault_0(void);
102 void (*board_be_init)(void);
103 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
104 void (*board_nmi_handler_setup)(void);
105 void (*board_ejtag_handler_setup)(void);
106 void (*board_bind_eic_interrupt)(int irq, int regset);
107 void (*board_ebase_setup)(void);
108 void(*board_cache_error_setup)(void);
110 static void show_raw_backtrace(unsigned long reg29)
112 unsigned long *sp = (unsigned long *)(reg29 & ~3);
115 printk("Call Trace:");
116 #ifdef CONFIG_KALLSYMS
119 while (!kstack_end(sp)) {
120 unsigned long __user *p =
121 (unsigned long __user *)(unsigned long)sp++;
122 if (__get_user(addr, p)) {
123 printk(" (Bad stack address)");
126 if (__kernel_text_address(addr))
132 #ifdef CONFIG_KALLSYMS
134 static int __init set_raw_show_trace(char *str)
139 __setup("raw_show_trace", set_raw_show_trace);
142 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
144 unsigned long sp = regs->regs[29];
145 unsigned long ra = regs->regs[31];
146 unsigned long pc = regs->cp0_epc;
151 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
152 show_raw_backtrace(sp);
155 printk("Call Trace:\n");
158 pc = unwind_stack(task, &sp, pc, &ra);
164 * This routine abuses get_user()/put_user() to reference pointers
165 * with at least a bit of error checking ...
167 static void show_stacktrace(struct task_struct *task,
168 const struct pt_regs *regs)
170 const int field = 2 * sizeof(unsigned long);
173 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
177 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
178 if (i && ((i % (64 / field)) == 0)) {
187 if (__get_user(stackdata, sp++)) {
188 pr_cont(" (Bad stack address)");
192 pr_cont(" %0*lx", field, stackdata);
196 show_backtrace(task, regs);
199 void show_stack(struct task_struct *task, unsigned long *sp)
202 mm_segment_t old_fs = get_fs();
204 regs.regs[29] = (unsigned long)sp;
208 if (task && task != current) {
209 regs.regs[29] = task->thread.reg29;
211 regs.cp0_epc = task->thread.reg31;
212 #ifdef CONFIG_KGDB_KDB
213 } else if (atomic_read(&kgdb_active) != -1 &&
215 memcpy(®s, kdb_current_regs, sizeof(regs));
216 #endif /* CONFIG_KGDB_KDB */
218 prepare_frametrace(®s);
222 * show_stack() deals exclusively with kernel mode, so be sure to access
223 * the stack in the kernel (not user) address space.
226 show_stacktrace(task, ®s);
230 static void show_code(unsigned int __user *pc)
233 unsigned short __user *pc16 = NULL;
237 if ((unsigned long)pc & 1)
238 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
239 for(i = -3 ; i < 6 ; i++) {
241 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
242 pr_cont(" (Bad address in epc)\n");
245 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
250 static void __show_regs(const struct pt_regs *regs)
252 const int field = 2 * sizeof(unsigned long);
253 unsigned int cause = regs->cp0_cause;
254 unsigned int exccode;
257 show_regs_print_info(KERN_DEFAULT);
260 * Saved main processor registers
262 for (i = 0; i < 32; ) {
266 pr_cont(" %0*lx", field, 0UL);
267 else if (i == 26 || i == 27)
268 pr_cont(" %*s", field, "");
270 pr_cont(" %0*lx", field, regs->regs[i]);
277 #ifdef CONFIG_CPU_HAS_SMARTMIPS
278 printk("Acx : %0*lx\n", field, regs->acx);
280 printk("Hi : %0*lx\n", field, regs->hi);
281 printk("Lo : %0*lx\n", field, regs->lo);
284 * Saved cp0 registers
286 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
287 (void *) regs->cp0_epc);
288 printk("ra : %0*lx %pS\n", field, regs->regs[31],
289 (void *) regs->regs[31]);
291 printk("Status: %08x ", (uint32_t) regs->cp0_status);
294 if (regs->cp0_status & ST0_KUO)
296 if (regs->cp0_status & ST0_IEO)
298 if (regs->cp0_status & ST0_KUP)
300 if (regs->cp0_status & ST0_IEP)
302 if (regs->cp0_status & ST0_KUC)
304 if (regs->cp0_status & ST0_IEC)
306 } else if (cpu_has_4kex) {
307 if (regs->cp0_status & ST0_KX)
309 if (regs->cp0_status & ST0_SX)
311 if (regs->cp0_status & ST0_UX)
313 switch (regs->cp0_status & ST0_KSU) {
318 pr_cont("SUPERVISOR ");
324 pr_cont("BAD_MODE ");
327 if (regs->cp0_status & ST0_ERL)
329 if (regs->cp0_status & ST0_EXL)
331 if (regs->cp0_status & ST0_IE)
336 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
337 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
339 if (1 <= exccode && exccode <= 5)
340 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
342 printk("PrId : %08x (%s)\n", read_c0_prid(),
347 * FIXME: really the generic show_regs should take a const pointer argument.
349 void show_regs(struct pt_regs *regs)
351 __show_regs((struct pt_regs *)regs);
354 void show_registers(struct pt_regs *regs)
356 const int field = 2 * sizeof(unsigned long);
357 mm_segment_t old_fs = get_fs();
361 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
362 current->comm, current->pid, current_thread_info(), current,
363 field, current_thread_info()->tp_value);
364 if (cpu_has_userlocal) {
367 tls = read_c0_userlocal();
368 if (tls != current_thread_info()->tp_value)
369 printk("*HwTLS: %0*lx\n", field, tls);
372 if (!user_mode(regs))
373 /* Necessary for getting the correct stack content */
375 show_stacktrace(current, regs);
376 show_code((unsigned int __user *) regs->cp0_epc);
381 static DEFINE_RAW_SPINLOCK(die_lock);
383 void __noreturn die(const char *str, struct pt_regs *regs)
385 static int die_counter;
390 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
391 SIGSEGV) == NOTIFY_STOP)
395 raw_spin_lock_irq(&die_lock);
398 printk("%s[#%d]:\n", str, ++die_counter);
399 show_registers(regs);
400 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
401 raw_spin_unlock_irq(&die_lock);
406 panic("Fatal exception in interrupt");
409 panic("Fatal exception");
411 if (regs && kexec_should_crash(current))
417 extern struct exception_table_entry __start___dbe_table[];
418 extern struct exception_table_entry __stop___dbe_table[];
421 " .section __dbe_table, \"a\"\n"
424 /* Given an address, look for it in the exception tables. */
425 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
427 const struct exception_table_entry *e;
429 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
431 e = search_module_dbetables(addr);
435 asmlinkage void do_be(struct pt_regs *regs)
437 const int field = 2 * sizeof(unsigned long);
438 const struct exception_table_entry *fixup = NULL;
439 int data = regs->cp0_cause & 4;
440 int action = MIPS_BE_FATAL;
441 enum ctx_state prev_state;
443 prev_state = exception_enter();
444 /* XXX For now. Fixme, this searches the wrong table ... */
445 if (data && !user_mode(regs))
446 fixup = search_dbe_tables(exception_epc(regs));
449 action = MIPS_BE_FIXUP;
451 if (board_be_handler)
452 action = board_be_handler(regs, fixup != NULL);
454 mips_cm_error_report();
457 case MIPS_BE_DISCARD:
461 regs->cp0_epc = fixup->nextinsn;
470 * Assume it would be too dangerous to continue ...
472 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
473 data ? "Data" : "Instruction",
474 field, regs->cp0_epc, field, regs->regs[31]);
475 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
476 SIGBUS) == NOTIFY_STOP)
479 die_if_kernel("Oops", regs);
480 force_sig(SIGBUS, current);
483 exception_exit(prev_state);
487 * ll/sc, rdhwr, sync emulation
490 #define OPCODE 0xfc000000
491 #define BASE 0x03e00000
492 #define RT 0x001f0000
493 #define OFFSET 0x0000ffff
494 #define LL 0xc0000000
495 #define SC 0xe0000000
496 #define SPEC0 0x00000000
497 #define SPEC3 0x7c000000
498 #define RD 0x0000f800
499 #define FUNC 0x0000003f
500 #define SYNC 0x0000000f
501 #define RDHWR 0x0000003b
503 /* microMIPS definitions */
504 #define MM_POOL32A_FUNC 0xfc00ffff
505 #define MM_RDHWR 0x00006b3c
506 #define MM_RS 0x001f0000
507 #define MM_RT 0x03e00000
510 * The ll_bit is cleared by r*_switch.S
514 struct task_struct *ll_task;
516 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
518 unsigned long value, __user *vaddr;
522 * analyse the ll instruction that just caused a ri exception
523 * and put the referenced address to addr.
526 /* sign extend offset */
527 offset = opcode & OFFSET;
531 vaddr = (unsigned long __user *)
532 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
534 if ((unsigned long)vaddr & 3)
536 if (get_user(value, vaddr))
541 if (ll_task == NULL || ll_task == current) {
550 regs->regs[(opcode & RT) >> 16] = value;
555 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
557 unsigned long __user *vaddr;
562 * analyse the sc instruction that just caused a ri exception
563 * and put the referenced address to addr.
566 /* sign extend offset */
567 offset = opcode & OFFSET;
571 vaddr = (unsigned long __user *)
572 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
573 reg = (opcode & RT) >> 16;
575 if ((unsigned long)vaddr & 3)
580 if (ll_bit == 0 || ll_task != current) {
588 if (put_user(regs->regs[reg], vaddr))
597 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
598 * opcodes are supposed to result in coprocessor unusable exceptions if
599 * executed on ll/sc-less processors. That's the theory. In practice a
600 * few processors such as NEC's VR4100 throw reserved instruction exceptions
601 * instead, so we're doing the emulation thing in both exception handlers.
603 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
605 if ((opcode & OPCODE) == LL) {
606 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
608 return simulate_ll(regs, opcode);
610 if ((opcode & OPCODE) == SC) {
611 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
613 return simulate_sc(regs, opcode);
616 return -1; /* Must be something else ... */
620 * Simulate trapping 'rdhwr' instructions to provide user accessible
621 * registers not implemented in hardware.
623 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
625 struct thread_info *ti = task_thread_info(current);
627 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
630 case MIPS_HWR_CPUNUM: /* CPU number */
631 regs->regs[rt] = smp_processor_id();
633 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
634 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
635 current_cpu_data.icache.linesz);
637 case MIPS_HWR_CC: /* Read count register */
638 regs->regs[rt] = read_c0_count();
640 case MIPS_HWR_CCRES: /* Count register resolution */
641 switch (current_cpu_type()) {
650 case MIPS_HWR_ULR: /* Read UserLocal register */
651 regs->regs[rt] = ti->tp_value;
658 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
660 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
661 int rd = (opcode & RD) >> 11;
662 int rt = (opcode & RT) >> 16;
664 simulate_rdhwr(regs, rd, rt);
672 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
674 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
675 int rd = (opcode & MM_RS) >> 16;
676 int rt = (opcode & MM_RT) >> 21;
677 simulate_rdhwr(regs, rd, rt);
685 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
687 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
688 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
693 return -1; /* Must be something else ... */
696 asmlinkage void do_ov(struct pt_regs *regs)
698 enum ctx_state prev_state;
701 .si_code = FPE_INTOVF,
702 .si_addr = (void __user *)regs->cp0_epc,
705 prev_state = exception_enter();
706 die_if_kernel("Integer overflow", regs);
708 force_sig_info(SIGFPE, &info, current);
709 exception_exit(prev_state);
713 * Send SIGFPE according to FCSR Cause bits, which must have already
714 * been masked against Enable bits. This is impotant as Inexact can
715 * happen together with Overflow or Underflow, and `ptrace' can set
718 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
719 struct task_struct *tsk)
721 struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE };
723 if (fcr31 & FPU_CSR_INV_X)
724 si.si_code = FPE_FLTINV;
725 else if (fcr31 & FPU_CSR_DIV_X)
726 si.si_code = FPE_FLTDIV;
727 else if (fcr31 & FPU_CSR_OVF_X)
728 si.si_code = FPE_FLTOVF;
729 else if (fcr31 & FPU_CSR_UDF_X)
730 si.si_code = FPE_FLTUND;
731 else if (fcr31 & FPU_CSR_INE_X)
732 si.si_code = FPE_FLTRES;
734 si.si_code = __SI_FAULT;
735 force_sig_info(SIGFPE, &si, tsk);
738 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
740 struct siginfo si = { 0 };
741 struct vm_area_struct *vma;
748 force_fcr31_sig(fcr31, fault_addr, current);
752 si.si_addr = fault_addr;
754 si.si_code = BUS_ADRERR;
755 force_sig_info(sig, &si, current);
759 si.si_addr = fault_addr;
761 down_read(¤t->mm->mmap_sem);
762 vma = find_vma(current->mm, (unsigned long)fault_addr);
763 if (vma && (vma->vm_start <= (unsigned long)fault_addr))
764 si.si_code = SEGV_ACCERR;
766 si.si_code = SEGV_MAPERR;
767 up_read(¤t->mm->mmap_sem);
768 force_sig_info(sig, &si, current);
772 force_sig(sig, current);
777 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
778 unsigned long old_epc, unsigned long old_ra)
780 union mips_instruction inst = { .word = opcode };
781 void __user *fault_addr;
785 /* If it's obviously not an FP instruction, skip it */
786 switch (inst.i_format.opcode) {
800 * do_ri skipped over the instruction via compute_return_epc, undo
801 * that for the FPU emulator.
803 regs->cp0_epc = old_epc;
804 regs->regs[31] = old_ra;
806 /* Save the FP context to struct thread_struct */
809 /* Run the emulator */
810 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
814 * We can't allow the emulated instruction to leave any
815 * enabled Cause bits set in $fcr31.
817 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
818 current->thread.fpu.fcr31 &= ~fcr31;
820 /* Restore the hardware register state */
823 /* Send a signal if required. */
824 process_fpemu_return(sig, fault_addr, fcr31);
830 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
832 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
834 enum ctx_state prev_state;
835 void __user *fault_addr;
838 prev_state = exception_enter();
839 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
840 SIGFPE) == NOTIFY_STOP)
843 /* Clear FCSR.Cause before enabling interrupts */
844 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
847 die_if_kernel("FP exception in kernel code", regs);
849 if (fcr31 & FPU_CSR_UNI_X) {
851 * Unimplemented operation exception. If we've got the full
852 * software emulator on-board, let's use it...
854 * Force FPU to dump state into task/thread context. We're
855 * moving a lot of data here for what is probably a single
856 * instruction, but the alternative is to pre-decode the FP
857 * register operands before invoking the emulator, which seems
858 * a bit extreme for what should be an infrequent event.
860 /* Ensure 'resume' not overwrite saved fp context again. */
863 /* Run the emulator */
864 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
868 * We can't allow the emulated instruction to leave any
869 * enabled Cause bits set in $fcr31.
871 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
872 current->thread.fpu.fcr31 &= ~fcr31;
874 /* Restore the hardware register state */
875 own_fpu(1); /* Using the FPU again. */
878 fault_addr = (void __user *) regs->cp0_epc;
881 /* Send a signal if required. */
882 process_fpemu_return(sig, fault_addr, fcr31);
885 exception_exit(prev_state);
888 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
891 siginfo_t info = { 0 };
894 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
895 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
896 SIGTRAP) == NOTIFY_STOP)
898 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
900 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
901 SIGTRAP) == NOTIFY_STOP)
905 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
906 * insns, even for trap and break codes that indicate arithmetic
907 * failures. Weird ...
908 * But should we continue the brokenness??? --macro
913 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
914 die_if_kernel(b, regs);
915 if (code == BRK_DIVZERO)
916 info.si_code = FPE_INTDIV;
918 info.si_code = FPE_INTOVF;
919 info.si_signo = SIGFPE;
920 info.si_addr = (void __user *) regs->cp0_epc;
921 force_sig_info(SIGFPE, &info, current);
924 die_if_kernel("Kernel bug detected", regs);
925 force_sig(SIGTRAP, current);
929 * This breakpoint code is used by the FPU emulator to retake
930 * control of the CPU after executing the instruction from the
931 * delay slot of an emulated branch.
933 * Terminate if exception was recognized as a delay slot return
934 * otherwise handle as normal.
936 if (do_dsemulret(regs))
939 die_if_kernel("Math emu break/trap", regs);
940 force_sig(SIGTRAP, current);
943 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
944 die_if_kernel(b, regs);
946 info.si_signo = SIGTRAP;
947 info.si_code = si_code;
948 force_sig_info(SIGTRAP, &info, current);
950 force_sig(SIGTRAP, current);
955 asmlinkage void do_bp(struct pt_regs *regs)
957 unsigned long epc = msk_isa16_mode(exception_epc(regs));
958 unsigned int opcode, bcode;
959 enum ctx_state prev_state;
963 if (!user_mode(regs))
966 prev_state = exception_enter();
967 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
968 if (get_isa16_mode(regs->cp0_epc)) {
971 if (__get_user(instr[0], (u16 __user *)epc))
974 if (!cpu_has_mmips) {
976 bcode = (instr[0] >> 5) & 0x3f;
977 } else if (mm_insn_16bit(instr[0])) {
978 /* 16-bit microMIPS BREAK */
979 bcode = instr[0] & 0xf;
981 /* 32-bit microMIPS BREAK */
982 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
984 opcode = (instr[0] << 16) | instr[1];
985 bcode = (opcode >> 6) & ((1 << 20) - 1);
988 if (__get_user(opcode, (unsigned int __user *)epc))
990 bcode = (opcode >> 6) & ((1 << 20) - 1);
994 * There is the ancient bug in the MIPS assemblers that the break
995 * code starts left to bit 16 instead to bit 6 in the opcode.
996 * Gas is bug-compatible, but not always, grrr...
997 * We handle both cases with a simple heuristics. --macro
999 if (bcode >= (1 << 10))
1000 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1003 * notify the kprobe handlers, if instruction is likely to
1008 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1009 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1013 case BRK_UPROBE_XOL:
1014 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1015 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1020 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1021 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1025 case BRK_KPROBE_SSTEPBP:
1026 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1027 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1035 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1039 exception_exit(prev_state);
1043 force_sig(SIGSEGV, current);
1047 asmlinkage void do_tr(struct pt_regs *regs)
1049 u32 opcode, tcode = 0;
1050 enum ctx_state prev_state;
1053 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1056 if (!user_mode(regs))
1059 prev_state = exception_enter();
1060 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1061 if (get_isa16_mode(regs->cp0_epc)) {
1062 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1063 __get_user(instr[1], (u16 __user *)(epc + 2)))
1065 opcode = (instr[0] << 16) | instr[1];
1066 /* Immediate versions don't provide a code. */
1067 if (!(opcode & OPCODE))
1068 tcode = (opcode >> 12) & ((1 << 4) - 1);
1070 if (__get_user(opcode, (u32 __user *)epc))
1072 /* Immediate versions don't provide a code. */
1073 if (!(opcode & OPCODE))
1074 tcode = (opcode >> 6) & ((1 << 10) - 1);
1077 do_trap_or_bp(regs, tcode, 0, "Trap");
1081 exception_exit(prev_state);
1085 force_sig(SIGSEGV, current);
1089 asmlinkage void do_ri(struct pt_regs *regs)
1091 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1092 unsigned long old_epc = regs->cp0_epc;
1093 unsigned long old31 = regs->regs[31];
1094 enum ctx_state prev_state;
1095 unsigned int opcode = 0;
1099 * Avoid any kernel code. Just emulate the R2 instruction
1100 * as quickly as possible.
1102 if (mipsr2_emulation && cpu_has_mips_r6 &&
1103 likely(user_mode(regs)) &&
1104 likely(get_user(opcode, epc) >= 0)) {
1105 unsigned long fcr31 = 0;
1107 status = mipsr2_decoder(regs, opcode, &fcr31);
1115 process_fpemu_return(status,
1116 ¤t->thread.cp0_baduaddr,
1124 prev_state = exception_enter();
1125 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1127 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1128 SIGILL) == NOTIFY_STOP)
1131 die_if_kernel("Reserved instruction in kernel code", regs);
1133 if (unlikely(compute_return_epc(regs) < 0))
1136 if (!get_isa16_mode(regs->cp0_epc)) {
1137 if (unlikely(get_user(opcode, epc) < 0))
1140 if (!cpu_has_llsc && status < 0)
1141 status = simulate_llsc(regs, opcode);
1144 status = simulate_rdhwr_normal(regs, opcode);
1147 status = simulate_sync(regs, opcode);
1150 status = simulate_fp(regs, opcode, old_epc, old31);
1151 } else if (cpu_has_mmips) {
1152 unsigned short mmop[2] = { 0 };
1154 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1156 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1159 opcode = (opcode << 16) | mmop[1];
1162 status = simulate_rdhwr_mm(regs, opcode);
1168 if (unlikely(status > 0)) {
1169 regs->cp0_epc = old_epc; /* Undo skip-over. */
1170 regs->regs[31] = old31;
1171 force_sig(status, current);
1175 exception_exit(prev_state);
1179 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1180 * emulated more than some threshold number of instructions, force migration to
1181 * a "CPU" that has FP support.
1183 static void mt_ase_fp_affinity(void)
1185 #ifdef CONFIG_MIPS_MT_FPAFF
1186 if (mt_fpemul_threshold > 0 &&
1187 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1189 * If there's no FPU present, or if the application has already
1190 * restricted the allowed set to exclude any CPUs with FPUs,
1191 * we'll skip the procedure.
1193 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) {
1196 current->thread.user_cpus_allowed
1197 = current->cpus_allowed;
1198 cpumask_and(&tmask, ¤t->cpus_allowed,
1200 set_cpus_allowed_ptr(current, &tmask);
1201 set_thread_flag(TIF_FPUBOUND);
1204 #endif /* CONFIG_MIPS_MT_FPAFF */
1208 * No lock; only written during early bootup by CPU 0.
1210 static RAW_NOTIFIER_HEAD(cu2_chain);
1212 int __ref register_cu2_notifier(struct notifier_block *nb)
1214 return raw_notifier_chain_register(&cu2_chain, nb);
1217 int cu2_notifier_call_chain(unsigned long val, void *v)
1219 return raw_notifier_call_chain(&cu2_chain, val, v);
1222 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1225 struct pt_regs *regs = data;
1227 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1228 "instruction", regs);
1229 force_sig(SIGILL, current);
1234 static int wait_on_fp_mode_switch(atomic_t *p)
1237 * The FP mode for this task is currently being switched. That may
1238 * involve modifications to the format of this tasks FP context which
1239 * make it unsafe to proceed with execution for the moment. Instead,
1240 * schedule some other task.
1246 static int enable_restore_fp_context(int msa)
1248 int err, was_fpu_owner, prior_msa;
1251 * If an FP mode switch is currently underway, wait for it to
1252 * complete before proceeding.
1254 wait_on_atomic_t(¤t->mm->context.fp_mode_switching,
1255 wait_on_fp_mode_switch, TASK_KILLABLE);
1258 /* First time FP context user. */
1264 set_thread_flag(TIF_USEDMSA);
1265 set_thread_flag(TIF_MSA_CTX_LIVE);
1274 * This task has formerly used the FP context.
1276 * If this thread has no live MSA vector context then we can simply
1277 * restore the scalar FP context. If it has live MSA vector context
1278 * (that is, it has or may have used MSA since last performing a
1279 * function call) then we'll need to restore the vector context. This
1280 * applies even if we're currently only executing a scalar FP
1281 * instruction. This is because if we were to later execute an MSA
1282 * instruction then we'd either have to:
1284 * - Restore the vector context & clobber any registers modified by
1285 * scalar FP instructions between now & then.
1289 * - Not restore the vector context & lose the most significant bits
1290 * of all vector registers.
1292 * Neither of those options is acceptable. We cannot restore the least
1293 * significant bits of the registers now & only restore the most
1294 * significant bits later because the most significant bits of any
1295 * vector registers whose aliased FP register is modified now will have
1296 * been zeroed. We'd have no way to know that when restoring the vector
1297 * context & thus may load an outdated value for the most significant
1298 * bits of a vector register.
1300 if (!msa && !thread_msa_context_live())
1304 * This task is using or has previously used MSA. Thus we require
1305 * that Status.FR == 1.
1308 was_fpu_owner = is_fpu_owner();
1309 err = own_fpu_inatomic(0);
1314 write_msa_csr(current->thread.fpu.msacsr);
1315 set_thread_flag(TIF_USEDMSA);
1318 * If this is the first time that the task is using MSA and it has
1319 * previously used scalar FP in this time slice then we already nave
1320 * FP context which we shouldn't clobber. We do however need to clear
1321 * the upper 64b of each vector register so that this task has no
1322 * opportunity to see data left behind by another.
1324 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1325 if (!prior_msa && was_fpu_owner) {
1333 * Restore the least significant 64b of each vector register
1334 * from the existing scalar FP context.
1336 _restore_fp(current);
1339 * The task has not formerly used MSA, so clear the upper 64b
1340 * of each vector register such that it cannot see data left
1341 * behind by another task.
1345 /* We need to restore the vector context. */
1346 restore_msa(current);
1348 /* Restore the scalar FP control & status register */
1350 write_32bit_cp1_register(CP1_STATUS,
1351 current->thread.fpu.fcr31);
1360 asmlinkage void do_cpu(struct pt_regs *regs)
1362 enum ctx_state prev_state;
1363 unsigned int __user *epc;
1364 unsigned long old_epc, old31;
1365 void __user *fault_addr;
1366 unsigned int opcode;
1367 unsigned long fcr31;
1372 prev_state = exception_enter();
1373 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1376 die_if_kernel("do_cpu invoked from kernel context!", regs);
1380 epc = (unsigned int __user *)exception_epc(regs);
1381 old_epc = regs->cp0_epc;
1382 old31 = regs->regs[31];
1386 if (unlikely(compute_return_epc(regs) < 0))
1389 if (!get_isa16_mode(regs->cp0_epc)) {
1390 if (unlikely(get_user(opcode, epc) < 0))
1393 if (!cpu_has_llsc && status < 0)
1394 status = simulate_llsc(regs, opcode);
1400 if (unlikely(status > 0)) {
1401 regs->cp0_epc = old_epc; /* Undo skip-over. */
1402 regs->regs[31] = old31;
1403 force_sig(status, current);
1410 * The COP3 opcode space and consequently the CP0.Status.CU3
1411 * bit and the CP0.Cause.CE=3 encoding have been removed as
1412 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1413 * up the space has been reused for COP1X instructions, that
1414 * are enabled by the CP0.Status.CU1 bit and consequently
1415 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1416 * exceptions. Some FPU-less processors that implement one
1417 * of these ISAs however use this code erroneously for COP1X
1418 * instructions. Therefore we redirect this trap to the FP
1421 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1422 force_sig(SIGILL, current);
1428 err = enable_restore_fp_context(0);
1430 if (raw_cpu_has_fpu && !err)
1433 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
1437 * We can't allow the emulated instruction to leave
1438 * any enabled Cause bits set in $fcr31.
1440 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1441 current->thread.fpu.fcr31 &= ~fcr31;
1443 /* Send a signal if required. */
1444 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1445 mt_ase_fp_affinity();
1450 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1454 exception_exit(prev_state);
1457 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1459 enum ctx_state prev_state;
1461 prev_state = exception_enter();
1462 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1463 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1464 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1467 /* Clear MSACSR.Cause before enabling interrupts */
1468 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1471 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1472 force_sig(SIGFPE, current);
1474 exception_exit(prev_state);
1477 asmlinkage void do_msa(struct pt_regs *regs)
1479 enum ctx_state prev_state;
1482 prev_state = exception_enter();
1484 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1485 force_sig(SIGILL, current);
1489 die_if_kernel("do_msa invoked from kernel context!", regs);
1491 err = enable_restore_fp_context(1);
1493 force_sig(SIGILL, current);
1495 exception_exit(prev_state);
1498 asmlinkage void do_mdmx(struct pt_regs *regs)
1500 enum ctx_state prev_state;
1502 prev_state = exception_enter();
1503 force_sig(SIGILL, current);
1504 exception_exit(prev_state);
1508 * Called with interrupts disabled.
1510 asmlinkage void do_watch(struct pt_regs *regs)
1512 siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1513 enum ctx_state prev_state;
1515 prev_state = exception_enter();
1517 * Clear WP (bit 22) bit of cause register so we don't loop
1520 clear_c0_cause(CAUSEF_WP);
1523 * If the current thread has the watch registers loaded, save
1524 * their values and send SIGTRAP. Otherwise another thread
1525 * left the registers set, clear them and continue.
1527 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1528 mips_read_watch_registers();
1530 force_sig_info(SIGTRAP, &info, current);
1532 mips_clear_watch_registers();
1535 exception_exit(prev_state);
1538 asmlinkage void do_mcheck(struct pt_regs *regs)
1540 int multi_match = regs->cp0_status & ST0_TS;
1541 enum ctx_state prev_state;
1542 mm_segment_t old_fs = get_fs();
1544 prev_state = exception_enter();
1553 if (!user_mode(regs))
1556 show_code((unsigned int __user *) regs->cp0_epc);
1561 * Some chips may have other causes of machine check (e.g. SB1
1564 panic("Caught Machine Check exception - %scaused by multiple "
1565 "matching entries in the TLB.",
1566 (multi_match) ? "" : "not ");
1569 asmlinkage void do_mt(struct pt_regs *regs)
1573 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1574 >> VPECONTROL_EXCPT_SHIFT;
1577 printk(KERN_DEBUG "Thread Underflow\n");
1580 printk(KERN_DEBUG "Thread Overflow\n");
1583 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1586 printk(KERN_DEBUG "Gating Storage Exception\n");
1589 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1592 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1595 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1599 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1601 force_sig(SIGILL, current);
1605 asmlinkage void do_dsp(struct pt_regs *regs)
1608 panic("Unexpected DSP exception");
1610 force_sig(SIGILL, current);
1613 asmlinkage void do_reserved(struct pt_regs *regs)
1616 * Game over - no way to handle this if it ever occurs. Most probably
1617 * caused by a new unknown cpu type or after another deadly
1618 * hard/software error.
1621 panic("Caught reserved exception %ld - should not happen.",
1622 (regs->cp0_cause & 0x7f) >> 2);
1625 static int __initdata l1parity = 1;
1626 static int __init nol1parity(char *s)
1631 __setup("nol1par", nol1parity);
1632 static int __initdata l2parity = 1;
1633 static int __init nol2parity(char *s)
1638 __setup("nol2par", nol2parity);
1641 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1642 * it different ways.
1644 static inline void parity_protection_init(void)
1646 #define ERRCTL_PE 0x80000000
1647 #define ERRCTL_L2P 0x00800000
1649 if (mips_cm_revision() >= CM_REV_CM3) {
1650 ulong gcr_ectl, cp0_ectl;
1653 * With CM3 systems we need to ensure that the L1 & L2
1654 * parity enables are set to the same value, since this
1655 * is presumed by the hardware engineers.
1657 * If the user disabled either of L1 or L2 ECC checking,
1660 l1parity &= l2parity;
1661 l2parity &= l1parity;
1663 /* Probe L1 ECC support */
1664 cp0_ectl = read_c0_ecc();
1665 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1666 back_to_back_c0_hazard();
1667 cp0_ectl = read_c0_ecc();
1669 /* Probe L2 ECC support */
1670 gcr_ectl = read_gcr_err_control();
1672 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT_MSK) ||
1673 !(cp0_ectl & ERRCTL_PE)) {
1675 * One of L1 or L2 ECC checking isn't supported,
1676 * so we cannot enable either.
1678 l1parity = l2parity = 0;
1681 /* Configure L1 ECC checking */
1683 cp0_ectl |= ERRCTL_PE;
1685 cp0_ectl &= ~ERRCTL_PE;
1686 write_c0_ecc(cp0_ectl);
1687 back_to_back_c0_hazard();
1688 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1690 /* Configure L2 ECC checking */
1692 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1694 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1695 write_gcr_err_control(gcr_ectl);
1696 gcr_ectl = read_gcr_err_control();
1697 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1698 WARN_ON(!!gcr_ectl != l2parity);
1700 pr_info("Cache parity protection %sabled\n",
1701 l1parity ? "en" : "dis");
1705 switch (current_cpu_type()) {
1711 case CPU_INTERAPTIV:
1714 case CPU_QEMU_GENERIC:
1717 unsigned long errctl;
1718 unsigned int l1parity_present, l2parity_present;
1720 errctl = read_c0_ecc();
1721 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1723 /* probe L1 parity support */
1724 write_c0_ecc(errctl | ERRCTL_PE);
1725 back_to_back_c0_hazard();
1726 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1728 /* probe L2 parity support */
1729 write_c0_ecc(errctl|ERRCTL_L2P);
1730 back_to_back_c0_hazard();
1731 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1733 if (l1parity_present && l2parity_present) {
1735 errctl |= ERRCTL_PE;
1736 if (l1parity ^ l2parity)
1737 errctl |= ERRCTL_L2P;
1738 } else if (l1parity_present) {
1740 errctl |= ERRCTL_PE;
1741 } else if (l2parity_present) {
1743 errctl |= ERRCTL_L2P;
1745 /* No parity available */
1748 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1750 write_c0_ecc(errctl);
1751 back_to_back_c0_hazard();
1752 errctl = read_c0_ecc();
1753 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1755 if (l1parity_present)
1756 printk(KERN_INFO "Cache parity protection %sabled\n",
1757 (errctl & ERRCTL_PE) ? "en" : "dis");
1759 if (l2parity_present) {
1760 if (l1parity_present && l1parity)
1761 errctl ^= ERRCTL_L2P;
1762 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1763 (errctl & ERRCTL_L2P) ? "en" : "dis");
1771 write_c0_ecc(0x80000000);
1772 back_to_back_c0_hazard();
1773 /* Set the PE bit (bit 31) in the c0_errctl register. */
1774 printk(KERN_INFO "Cache parity protection %sabled\n",
1775 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1779 /* Clear the DE bit (bit 16) in the c0_status register. */
1780 printk(KERN_INFO "Enable cache parity protection for "
1781 "MIPS 20KC/25KF CPUs.\n");
1782 clear_c0_status(ST0_DE);
1789 asmlinkage void cache_parity_error(void)
1791 const int field = 2 * sizeof(unsigned long);
1792 unsigned int reg_val;
1794 /* For the moment, report the problem and hang. */
1795 printk("Cache error exception:\n");
1796 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1797 reg_val = read_c0_cacheerr();
1798 printk("c0_cacheerr == %08x\n", reg_val);
1800 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1801 reg_val & (1<<30) ? "secondary" : "primary",
1802 reg_val & (1<<31) ? "data" : "insn");
1803 if ((cpu_has_mips_r2_r6) &&
1804 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1805 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1806 reg_val & (1<<29) ? "ED " : "",
1807 reg_val & (1<<28) ? "ET " : "",
1808 reg_val & (1<<27) ? "ES " : "",
1809 reg_val & (1<<26) ? "EE " : "",
1810 reg_val & (1<<25) ? "EB " : "",
1811 reg_val & (1<<24) ? "EI " : "",
1812 reg_val & (1<<23) ? "E1 " : "",
1813 reg_val & (1<<22) ? "E0 " : "");
1815 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1816 reg_val & (1<<29) ? "ED " : "",
1817 reg_val & (1<<28) ? "ET " : "",
1818 reg_val & (1<<26) ? "EE " : "",
1819 reg_val & (1<<25) ? "EB " : "",
1820 reg_val & (1<<24) ? "EI " : "",
1821 reg_val & (1<<23) ? "E1 " : "",
1822 reg_val & (1<<22) ? "E0 " : "");
1824 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1826 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1827 if (reg_val & (1<<22))
1828 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1830 if (reg_val & (1<<23))
1831 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1834 panic("Can't handle the cache error!");
1837 asmlinkage void do_ftlb(void)
1839 const int field = 2 * sizeof(unsigned long);
1840 unsigned int reg_val;
1842 /* For the moment, report the problem and hang. */
1843 if ((cpu_has_mips_r2_r6) &&
1844 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1845 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1846 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1848 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1849 reg_val = read_c0_cacheerr();
1850 pr_err("c0_cacheerr == %08x\n", reg_val);
1852 if ((reg_val & 0xc0000000) == 0xc0000000) {
1853 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1855 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1856 reg_val & (1<<30) ? "secondary" : "primary",
1857 reg_val & (1<<31) ? "data" : "insn");
1860 pr_err("FTLB error exception\n");
1862 /* Just print the cacheerr bits for now */
1863 cache_parity_error();
1867 * SDBBP EJTAG debug exception handler.
1868 * We skip the instruction and return to the next instruction.
1870 void ejtag_exception_handler(struct pt_regs *regs)
1872 const int field = 2 * sizeof(unsigned long);
1873 unsigned long depc, old_epc, old_ra;
1876 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1877 depc = read_c0_depc();
1878 debug = read_c0_debug();
1879 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1880 if (debug & 0x80000000) {
1882 * In branch delay slot.
1883 * We cheat a little bit here and use EPC to calculate the
1884 * debug return address (DEPC). EPC is restored after the
1887 old_epc = regs->cp0_epc;
1888 old_ra = regs->regs[31];
1889 regs->cp0_epc = depc;
1890 compute_return_epc(regs);
1891 depc = regs->cp0_epc;
1892 regs->cp0_epc = old_epc;
1893 regs->regs[31] = old_ra;
1896 write_c0_depc(depc);
1899 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1900 write_c0_debug(debug | 0x100);
1905 * NMI exception handler.
1906 * No lock; only written during early bootup by CPU 0.
1908 static RAW_NOTIFIER_HEAD(nmi_chain);
1910 int register_nmi_notifier(struct notifier_block *nb)
1912 return raw_notifier_chain_register(&nmi_chain, nb);
1915 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1920 raw_notifier_call_chain(&nmi_chain, 0, regs);
1922 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1923 smp_processor_id(), regs->cp0_epc);
1924 regs->cp0_epc = read_c0_errorepc();
1929 #define VECTORSPACING 0x100 /* for EI/VI mode */
1931 unsigned long ebase;
1932 EXPORT_SYMBOL_GPL(ebase);
1933 unsigned long exception_handlers[32];
1934 unsigned long vi_handlers[64];
1936 void __init *set_except_vector(int n, void *addr)
1938 unsigned long handler = (unsigned long) addr;
1939 unsigned long old_handler;
1941 #ifdef CONFIG_CPU_MICROMIPS
1943 * Only the TLB handlers are cache aligned with an even
1944 * address. All other handlers are on an odd address and
1945 * require no modification. Otherwise, MIPS32 mode will
1946 * be entered when handling any TLB exceptions. That
1947 * would be bad...since we must stay in microMIPS mode.
1949 if (!(handler & 0x1))
1952 old_handler = xchg(&exception_handlers[n], handler);
1954 if (n == 0 && cpu_has_divec) {
1955 #ifdef CONFIG_CPU_MICROMIPS
1956 unsigned long jump_mask = ~((1 << 27) - 1);
1958 unsigned long jump_mask = ~((1 << 28) - 1);
1960 u32 *buf = (u32 *)(ebase + 0x200);
1961 unsigned int k0 = 26;
1962 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1963 uasm_i_j(&buf, handler & ~jump_mask);
1966 UASM_i_LA(&buf, k0, handler);
1967 uasm_i_jr(&buf, k0);
1970 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1972 return (void *)old_handler;
1975 static void do_default_vi(void)
1977 show_regs(get_irq_regs());
1978 panic("Caught unexpected vectored interrupt.");
1981 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1983 unsigned long handler;
1984 unsigned long old_handler = vi_handlers[n];
1985 int srssets = current_cpu_data.srsets;
1989 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1992 handler = (unsigned long) do_default_vi;
1995 handler = (unsigned long) addr;
1996 vi_handlers[n] = handler;
1998 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2001 panic("Shadow register set %d not supported", srs);
2004 if (board_bind_eic_interrupt)
2005 board_bind_eic_interrupt(n, srs);
2006 } else if (cpu_has_vint) {
2007 /* SRSMap is only defined if shadow sets are implemented */
2009 change_c0_srsmap(0xf << n*4, srs << n*4);
2014 * If no shadow set is selected then use the default handler
2015 * that does normal register saving and standard interrupt exit
2017 extern char except_vec_vi, except_vec_vi_lui;
2018 extern char except_vec_vi_ori, except_vec_vi_end;
2019 extern char rollback_except_vec_vi;
2020 char *vec_start = using_rollback_handler() ?
2021 &rollback_except_vec_vi : &except_vec_vi;
2022 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2023 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2024 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2026 const int lui_offset = &except_vec_vi_lui - vec_start;
2027 const int ori_offset = &except_vec_vi_ori - vec_start;
2029 const int handler_len = &except_vec_vi_end - vec_start;
2031 if (handler_len > VECTORSPACING) {
2033 * Sigh... panicing won't help as the console
2034 * is probably not configured :(
2036 panic("VECTORSPACING too small");
2039 set_handler(((unsigned long)b - ebase), vec_start,
2040 #ifdef CONFIG_CPU_MICROMIPS
2045 h = (u16 *)(b + lui_offset);
2046 *h = (handler >> 16) & 0xffff;
2047 h = (u16 *)(b + ori_offset);
2048 *h = (handler & 0xffff);
2049 local_flush_icache_range((unsigned long)b,
2050 (unsigned long)(b+handler_len));
2054 * In other cases jump directly to the interrupt handler. It
2055 * is the handler's responsibility to save registers if required
2056 * (eg hi/lo) and return from the exception using "eret".
2062 #ifdef CONFIG_CPU_MICROMIPS
2063 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2065 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2067 h[0] = (insn >> 16) & 0xffff;
2068 h[1] = insn & 0xffff;
2071 local_flush_icache_range((unsigned long)b,
2072 (unsigned long)(b+8));
2075 return (void *)old_handler;
2078 void *set_vi_handler(int n, vi_handler_t addr)
2080 return set_vi_srs_handler(n, addr, 0);
2083 extern void tlb_init(void);
2088 int cp0_compare_irq;
2089 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2090 int cp0_compare_irq_shift;
2093 * Performance counter IRQ or -1 if shared with timer
2095 int cp0_perfcount_irq;
2096 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2099 * Fast debug channel IRQ or -1 if not present
2102 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2106 static int __init ulri_disable(char *s)
2108 pr_info("Disabling ulri\n");
2113 __setup("noulri", ulri_disable);
2115 /* configure STATUS register */
2116 static void configure_status(void)
2119 * Disable coprocessors and select 32-bit or 64-bit addressing
2120 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2121 * flag that some firmware may have left set and the TS bit (for
2122 * IP27). Set XX for ISA IV code to work.
2124 unsigned int status_set = ST0_CU0;
2126 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2128 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2129 status_set |= ST0_XX;
2131 status_set |= ST0_MX;
2133 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2137 unsigned int hwrena;
2138 EXPORT_SYMBOL_GPL(hwrena);
2140 /* configure HWRENA register */
2141 static void configure_hwrena(void)
2143 hwrena = cpu_hwrena_impl_bits;
2145 if (cpu_has_mips_r2_r6)
2146 hwrena |= MIPS_HWRENA_CPUNUM |
2147 MIPS_HWRENA_SYNCISTEP |
2151 if (!noulri && cpu_has_userlocal)
2152 hwrena |= MIPS_HWRENA_ULR;
2155 write_c0_hwrena(hwrena);
2158 static void configure_exception_vector(void)
2160 if (cpu_has_veic || cpu_has_vint) {
2161 unsigned long sr = set_c0_status(ST0_BEV);
2162 /* If available, use WG to set top bits of EBASE */
2163 if (cpu_has_ebase_wg) {
2165 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2167 write_c0_ebase(ebase | MIPS_EBASE_WG);
2170 write_c0_ebase(ebase);
2171 write_c0_status(sr);
2172 /* Setting vector spacing enables EI/VI mode */
2173 change_c0_intctl(0x3e0, VECTORSPACING);
2175 if (cpu_has_divec) {
2176 if (cpu_has_mipsmt) {
2177 unsigned int vpflags = dvpe();
2178 set_c0_cause(CAUSEF_IV);
2181 set_c0_cause(CAUSEF_IV);
2185 void per_cpu_trap_init(bool is_boot_cpu)
2187 unsigned int cpu = smp_processor_id();
2192 configure_exception_vector();
2195 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2197 * o read IntCtl.IPTI to determine the timer interrupt
2198 * o read IntCtl.IPPCI to determine the performance counter interrupt
2199 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2201 if (cpu_has_mips_r2_r6) {
2203 * We shouldn't trust a secondary core has a sane EBASE register
2204 * so use the one calculated by the boot CPU.
2207 /* If available, use WG to set top bits of EBASE */
2208 if (cpu_has_ebase_wg) {
2210 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2212 write_c0_ebase(ebase | MIPS_EBASE_WG);
2215 write_c0_ebase(ebase);
2218 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2219 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2220 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2221 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2226 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2227 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2228 cp0_perfcount_irq = -1;
2232 if (!cpu_data[cpu].asid_cache)
2233 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2236 current->active_mm = &init_mm;
2237 BUG_ON(current->mm);
2238 enter_lazy_tlb(&init_mm, current);
2240 /* Boot CPU's cache setup in setup_arch(). */
2244 TLBMISS_HANDLER_SETUP();
2247 /* Install CPU exception handler */
2248 void set_handler(unsigned long offset, void *addr, unsigned long size)
2250 #ifdef CONFIG_CPU_MICROMIPS
2251 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2253 memcpy((void *)(ebase + offset), addr, size);
2255 local_flush_icache_range(ebase + offset, ebase + offset + size);
2258 static char panic_null_cerr[] =
2259 "Trying to set NULL cache error exception handler";
2262 * Install uncached CPU exception handler.
2263 * This is suitable only for the cache error exception which is the only
2264 * exception handler that is being run uncached.
2266 void set_uncached_handler(unsigned long offset, void *addr,
2269 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2272 panic(panic_null_cerr);
2274 memcpy((void *)(uncached_ebase + offset), addr, size);
2277 static int __initdata rdhwr_noopt;
2278 static int __init set_rdhwr_noopt(char *str)
2284 __setup("rdhwr_noopt", set_rdhwr_noopt);
2286 void __init trap_init(void)
2288 extern char except_vec3_generic;
2289 extern char except_vec4;
2290 extern char except_vec3_r4000;
2295 if (cpu_has_veic || cpu_has_vint) {
2296 unsigned long size = 0x200 + VECTORSPACING*64;
2297 phys_addr_t ebase_pa;
2299 ebase = (unsigned long)
2300 __alloc_bootmem(size, 1 << fls(size), 0);
2303 * Try to ensure ebase resides in KSeg0 if possible.
2305 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2306 * hitting a poorly defined exception base for Cache Errors.
2307 * The allocation is likely to be in the low 512MB of physical,
2308 * in which case we should be able to convert to KSeg0.
2310 * EVA is special though as it allows segments to be rearranged
2311 * and to become uncached during cache error handling.
2313 ebase_pa = __pa(ebase);
2314 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2315 ebase = CKSEG0ADDR(ebase_pa);
2319 if (cpu_has_mips_r2_r6) {
2320 if (cpu_has_ebase_wg) {
2322 ebase = (read_c0_ebase_64() & ~0xfff);
2324 ebase = (read_c0_ebase() & ~0xfff);
2327 ebase += (read_c0_ebase() & 0x3ffff000);
2332 if (cpu_has_mmips) {
2333 unsigned int config3 = read_c0_config3();
2335 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2336 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2338 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2341 if (board_ebase_setup)
2342 board_ebase_setup();
2343 per_cpu_trap_init(true);
2346 * Copy the generic exception handlers to their final destination.
2347 * This will be overridden later as suitable for a particular
2350 set_handler(0x180, &except_vec3_generic, 0x80);
2353 * Setup default vectors
2355 for (i = 0; i <= 31; i++)
2356 set_except_vector(i, handle_reserved);
2359 * Copy the EJTAG debug exception vector handler code to it's final
2362 if (cpu_has_ejtag && board_ejtag_handler_setup)
2363 board_ejtag_handler_setup();
2366 * Only some CPUs have the watch exceptions.
2369 set_except_vector(EXCCODE_WATCH, handle_watch);
2372 * Initialise interrupt handlers
2374 if (cpu_has_veic || cpu_has_vint) {
2375 int nvec = cpu_has_veic ? 64 : 8;
2376 for (i = 0; i < nvec; i++)
2377 set_vi_handler(i, NULL);
2379 else if (cpu_has_divec)
2380 set_handler(0x200, &except_vec4, 0x8);
2383 * Some CPUs can enable/disable for cache parity detection, but does
2384 * it different ways.
2386 parity_protection_init();
2389 * The Data Bus Errors / Instruction Bus Errors are signaled
2390 * by external hardware. Therefore these two exceptions
2391 * may have board specific handlers.
2396 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2397 rollback_handle_int : handle_int);
2398 set_except_vector(EXCCODE_MOD, handle_tlbm);
2399 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2400 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2402 set_except_vector(EXCCODE_ADEL, handle_adel);
2403 set_except_vector(EXCCODE_ADES, handle_ades);
2405 set_except_vector(EXCCODE_IBE, handle_ibe);
2406 set_except_vector(EXCCODE_DBE, handle_dbe);
2408 set_except_vector(EXCCODE_SYS, handle_sys);
2409 set_except_vector(EXCCODE_BP, handle_bp);
2410 set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri :
2411 (cpu_has_vtag_icache ?
2412 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2413 set_except_vector(EXCCODE_CPU, handle_cpu);
2414 set_except_vector(EXCCODE_OV, handle_ov);
2415 set_except_vector(EXCCODE_TR, handle_tr);
2416 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2418 if (current_cpu_type() == CPU_R6000 ||
2419 current_cpu_type() == CPU_R6000A) {
2421 * The R6000 is the only R-series CPU that features a machine
2422 * check exception (similar to the R4000 cache error) and
2423 * unaligned ldc1/sdc1 exception. The handlers have not been
2424 * written yet. Well, anyway there is no R6000 machine on the
2425 * current list of targets for Linux/MIPS.
2426 * (Duh, crap, there is someone with a triple R6k machine)
2428 //set_except_vector(14, handle_mc);
2429 //set_except_vector(15, handle_ndc);
2433 if (board_nmi_handler_setup)
2434 board_nmi_handler_setup();
2436 if (cpu_has_fpu && !cpu_has_nofpuex)
2437 set_except_vector(EXCCODE_FPE, handle_fpe);
2439 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2441 if (cpu_has_rixiex) {
2442 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2443 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2446 set_except_vector(EXCCODE_MSADIS, handle_msa);
2447 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2450 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2453 set_except_vector(EXCCODE_THREAD, handle_mt);
2455 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2457 if (board_cache_error_setup)
2458 board_cache_error_setup();
2461 /* Special exception: R4[04]00 uses also the divec space. */
2462 set_handler(0x180, &except_vec3_r4000, 0x100);
2463 else if (cpu_has_4kex)
2464 set_handler(0x180, &except_vec3_generic, 0x80);
2466 set_handler(0x080, &except_vec3_generic, 0x80);
2468 local_flush_icache_range(ebase, ebase + 0x400);
2470 sort_extable(__start___dbe_table, __stop___dbe_table);
2472 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2475 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2479 case CPU_PM_ENTER_FAILED:
2483 configure_exception_vector();
2485 /* Restore register with CPU number for TLB handlers */
2486 TLBMISS_HANDLER_RESTORE();
2494 static struct notifier_block trap_pm_notifier_block = {
2495 .notifier_call = trap_pm_notifier,
2498 static int __init trap_pm_init(void)
2500 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2502 arch_initcall(trap_pm_init);