1 /* SPDX-License-Identifier: GPL-2.0 */
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
10 #include <uapi/linux/sched.h>
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask.h>
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/syscall_user_dispatch_types.h>
38 #include <linux/mm_types_task.h>
39 #include <linux/netdevice_xmit.h>
40 #include <linux/task_io_accounting.h>
41 #include <linux/posix-timers_types.h>
42 #include <linux/restart_block.h>
43 #include <uapi/linux/rseq.h>
44 #include <linux/seqlock_types.h>
45 #include <linux/kcsan.h>
47 #include <linux/livepatch_sched.h>
48 #include <linux/uidgid_types.h>
49 #include <asm/kmap_size.h>
51 /* task_struct member predeclarations (sorted alphabetically): */
55 struct bpf_local_storage;
57 struct bpf_net_context;
58 struct capture_control;
61 struct futex_pi_state;
67 struct perf_event_context;
69 struct pipe_inode_info;
72 struct robust_list_head;
76 struct sched_dl_entity;
78 struct sighand_struct;
80 struct task_delay_info;
86 * Task state bitmask. NOTE! These bits are also
87 * encoded in fs/proc/array.c: get_task_state().
89 * We have two separate sets of flags: task->__state
90 * is about runnability, while task->exit_state are
91 * about the task exiting. Confusing, but this way
92 * modifying one set can't modify the other one by
96 /* Used in tsk->__state: */
97 #define TASK_RUNNING 0x00000000
98 #define TASK_INTERRUPTIBLE 0x00000001
99 #define TASK_UNINTERRUPTIBLE 0x00000002
100 #define __TASK_STOPPED 0x00000004
101 #define __TASK_TRACED 0x00000008
102 /* Used in tsk->exit_state: */
103 #define EXIT_DEAD 0x00000010
104 #define EXIT_ZOMBIE 0x00000020
105 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
106 /* Used in tsk->__state again: */
107 #define TASK_PARKED 0x00000040
108 #define TASK_DEAD 0x00000080
109 #define TASK_WAKEKILL 0x00000100
110 #define TASK_WAKING 0x00000200
111 #define TASK_NOLOAD 0x00000400
112 #define TASK_NEW 0x00000800
113 #define TASK_RTLOCK_WAIT 0x00001000
114 #define TASK_FREEZABLE 0x00002000
115 #define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
116 #define TASK_FROZEN 0x00008000
117 #define TASK_STATE_MAX 0x00010000
119 #define TASK_ANY (TASK_STATE_MAX-1)
122 * DO NOT ADD ANY NEW USERS !
124 #define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
126 /* Convenience macros for the sake of set_current_state: */
127 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
128 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
129 #define TASK_TRACED __TASK_TRACED
131 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
133 /* Convenience macros for the sake of wake_up(): */
134 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
136 /* get_task_state(): */
137 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
138 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
139 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
142 #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
144 #define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
145 #define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
146 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
149 * Special states are those that do not use the normal wait-loop pattern. See
150 * the comment with set_special_state().
152 #define is_special_task_state(state) \
153 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
155 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
156 # define debug_normal_state_change(state_value) \
158 WARN_ON_ONCE(is_special_task_state(state_value)); \
159 current->task_state_change = _THIS_IP_; \
162 # define debug_special_state_change(state_value) \
164 WARN_ON_ONCE(!is_special_task_state(state_value)); \
165 current->task_state_change = _THIS_IP_; \
168 # define debug_rtlock_wait_set_state() \
170 current->saved_state_change = current->task_state_change;\
171 current->task_state_change = _THIS_IP_; \
174 # define debug_rtlock_wait_restore_state() \
176 current->task_state_change = current->saved_state_change;\
180 # define debug_normal_state_change(cond) do { } while (0)
181 # define debug_special_state_change(cond) do { } while (0)
182 # define debug_rtlock_wait_set_state() do { } while (0)
183 # define debug_rtlock_wait_restore_state() do { } while (0)
187 * set_current_state() includes a barrier so that the write of current->__state
188 * is correctly serialised wrt the caller's subsequent test of whether to
192 * set_current_state(TASK_UNINTERRUPTIBLE);
198 * __set_current_state(TASK_RUNNING);
200 * If the caller does not need such serialisation (because, for instance, the
201 * CONDITION test and condition change and wakeup are under the same lock) then
202 * use __set_current_state().
204 * The above is typically ordered against the wakeup, which does:
207 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
209 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
210 * accessing p->__state.
212 * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
213 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
214 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
216 * However, with slightly different timing the wakeup TASK_RUNNING store can
217 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
218 * a problem either because that will result in one extra go around the loop
219 * and our @cond test will save the day.
221 * Also see the comments of try_to_wake_up().
223 #define __set_current_state(state_value) \
225 debug_normal_state_change((state_value)); \
226 WRITE_ONCE(current->__state, (state_value)); \
229 #define set_current_state(state_value) \
231 debug_normal_state_change((state_value)); \
232 smp_store_mb(current->__state, (state_value)); \
236 * set_special_state() should be used for those states when the blocking task
237 * can not use the regular condition based wait-loop. In that case we must
238 * serialize against wakeups such that any possible in-flight TASK_RUNNING
239 * stores will not collide with our state change.
241 #define set_special_state(state_value) \
243 unsigned long flags; /* may shadow */ \
245 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
246 debug_special_state_change((state_value)); \
247 WRITE_ONCE(current->__state, (state_value)); \
248 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
252 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
254 * RT's spin/rwlock substitutions are state preserving. The state of the
255 * task when blocking on the lock is saved in task_struct::saved_state and
256 * restored after the lock has been acquired. These operations are
257 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
258 * lock related wakeups while the task is blocked on the lock are
259 * redirected to operate on task_struct::saved_state to ensure that these
260 * are not dropped. On restore task_struct::saved_state is set to
261 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
263 * The lock operation looks like this:
265 * current_save_and_set_rtlock_wait_state();
269 * raw_spin_unlock_irq(&lock->wait_lock);
271 * raw_spin_lock_irq(&lock->wait_lock);
272 * set_current_state(TASK_RTLOCK_WAIT);
274 * current_restore_rtlock_saved_state();
276 #define current_save_and_set_rtlock_wait_state() \
278 lockdep_assert_irqs_disabled(); \
279 raw_spin_lock(¤t->pi_lock); \
280 current->saved_state = current->__state; \
281 debug_rtlock_wait_set_state(); \
282 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
283 raw_spin_unlock(¤t->pi_lock); \
286 #define current_restore_rtlock_saved_state() \
288 lockdep_assert_irqs_disabled(); \
289 raw_spin_lock(¤t->pi_lock); \
290 debug_rtlock_wait_restore_state(); \
291 WRITE_ONCE(current->__state, current->saved_state); \
292 current->saved_state = TASK_RUNNING; \
293 raw_spin_unlock(¤t->pi_lock); \
296 #define get_current_state() READ_ONCE(current->__state)
299 * Define the task command name length as enum, then it can be visible to
306 extern void sched_tick(void);
308 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
310 extern long schedule_timeout(long timeout);
311 extern long schedule_timeout_interruptible(long timeout);
312 extern long schedule_timeout_killable(long timeout);
313 extern long schedule_timeout_uninterruptible(long timeout);
314 extern long schedule_timeout_idle(long timeout);
315 asmlinkage void schedule(void);
316 extern void schedule_preempt_disabled(void);
317 asmlinkage void preempt_schedule_irq(void);
318 #ifdef CONFIG_PREEMPT_RT
319 extern void schedule_rtlock(void);
322 extern int __must_check io_schedule_prepare(void);
323 extern void io_schedule_finish(int token);
324 extern long io_schedule_timeout(long timeout);
325 extern void io_schedule(void);
328 * struct prev_cputime - snapshot of system and user cputime
329 * @utime: time spent in user mode
330 * @stime: time spent in system mode
331 * @lock: protects the above two fields
333 * Stores previous user/system time values such that we can guarantee
336 struct prev_cputime {
337 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
345 /* Task is sleeping or running in a CPU with VTIME inactive: */
349 /* Task runs in kernelspace in a CPU with VTIME active: */
351 /* Task runs in userspace in a CPU with VTIME active: */
353 /* Task runs as guests in a CPU with VTIME active: */
359 unsigned long long starttime;
360 enum vtime_state state;
368 * Utilization clamp constraints.
369 * @UCLAMP_MIN: Minimum utilization
370 * @UCLAMP_MAX: Maximum utilization
371 * @UCLAMP_CNT: Utilization clamp constraints count
380 extern struct root_domain def_root_domain;
381 extern struct mutex sched_domains_mutex;
389 #ifdef CONFIG_SCHED_INFO
390 /* Cumulative counters: */
392 /* # of times we have run on this CPU: */
393 unsigned long pcount;
395 /* Time spent waiting on a runqueue: */
396 unsigned long long run_delay;
400 /* When did we last run on a CPU? */
401 unsigned long long last_arrival;
403 /* When were we last queued to run? */
404 unsigned long long last_queued;
406 #endif /* CONFIG_SCHED_INFO */
410 * Integer metrics need fixed point arithmetic, e.g., sched/fair
411 * has a few: load, load_avg, util_avg, freq, and capacity.
413 * We define a basic fixed point arithmetic range, and then formalize
414 * all these metrics based on that basic range.
416 # define SCHED_FIXEDPOINT_SHIFT 10
417 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
419 /* Increase resolution of cpu_capacity calculations */
420 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
421 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
424 unsigned long weight;
429 * The load/runnable/util_avg accumulates an infinite geometric series
430 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
432 * [load_avg definition]
434 * load_avg = runnable% * scale_load_down(load)
436 * [runnable_avg definition]
438 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
440 * [util_avg definition]
442 * util_avg = running% * SCHED_CAPACITY_SCALE
444 * where runnable% is the time ratio that a sched_entity is runnable and
445 * running% the time ratio that a sched_entity is running.
447 * For cfs_rq, they are the aggregated values of all runnable and blocked
450 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
451 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
452 * for computing those signals (see update_rq_clock_pelt())
454 * N.B., the above ratios (runnable% and running%) themselves are in the
455 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
456 * to as large a range as necessary. This is for example reflected by
457 * util_avg's SCHED_CAPACITY_SCALE.
461 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
462 * with the highest load (=88761), always runnable on a single cfs_rq,
463 * and should not overflow as the number already hits PID_MAX_LIMIT.
465 * For all other cases (including 32-bit kernels), struct load_weight's
466 * weight will overflow first before we do, because:
468 * Max(load_avg) <= Max(load.weight)
470 * Then it is the load_weight's responsibility to consider overflow
474 u64 last_update_time;
479 unsigned long load_avg;
480 unsigned long runnable_avg;
481 unsigned long util_avg;
482 unsigned int util_est;
483 } ____cacheline_aligned;
486 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
487 * updates. When a task is dequeued, its util_est should not be updated if its
488 * util_avg has not been updated in the meantime.
489 * This information is mapped into the MSB bit of util_est at dequeue time.
490 * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
491 * it is safe to use MSB.
493 #define UTIL_EST_WEIGHT_SHIFT 2
494 #define UTIL_AVG_UNCHANGED 0x80000000
496 struct sched_statistics {
497 #ifdef CONFIG_SCHEDSTATS
507 s64 sum_sleep_runtime;
511 s64 sum_block_runtime;
516 u64 nr_migrations_cold;
517 u64 nr_failed_migrations_affine;
518 u64 nr_failed_migrations_running;
519 u64 nr_failed_migrations_hot;
520 u64 nr_forced_migrations;
524 u64 nr_wakeups_migrate;
525 u64 nr_wakeups_local;
526 u64 nr_wakeups_remote;
527 u64 nr_wakeups_affine;
528 u64 nr_wakeups_affine_attempts;
529 u64 nr_wakeups_passive;
532 #ifdef CONFIG_SCHED_CORE
533 u64 core_forceidle_sum;
535 #endif /* CONFIG_SCHEDSTATS */
536 } ____cacheline_aligned;
538 struct sched_entity {
539 /* For load-balancing: */
540 struct load_weight load;
541 struct rb_node run_node;
545 struct list_head group_node;
549 u64 sum_exec_runtime;
550 u64 prev_sum_exec_runtime;
557 #ifdef CONFIG_FAIR_GROUP_SCHED
559 struct sched_entity *parent;
560 /* rq on which this entity is (to be) queued: */
561 struct cfs_rq *cfs_rq;
562 /* rq "owned" by this entity/group: */
564 /* cached value of my_q->h_nr_running */
565 unsigned long runnable_weight;
570 * Per entity load average tracking.
572 * Put into separate cache line so it does not
573 * collide with read-mostly values above.
575 struct sched_avg avg;
579 struct sched_rt_entity {
580 struct list_head run_list;
581 unsigned long timeout;
582 unsigned long watchdog_stamp;
583 unsigned int time_slice;
584 unsigned short on_rq;
585 unsigned short on_list;
587 struct sched_rt_entity *back;
588 #ifdef CONFIG_RT_GROUP_SCHED
589 struct sched_rt_entity *parent;
590 /* rq on which this entity is (to be) queued: */
592 /* rq "owned" by this entity/group: */
595 } __randomize_layout;
597 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
598 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
600 struct sched_dl_entity {
601 struct rb_node rb_node;
604 * Original scheduling parameters. Copied here from sched_attr
605 * during sched_setattr(), they will remain the same until
606 * the next sched_setattr().
608 u64 dl_runtime; /* Maximum runtime for each instance */
609 u64 dl_deadline; /* Relative deadline of each instance */
610 u64 dl_period; /* Separation of two instances (period) */
611 u64 dl_bw; /* dl_runtime / dl_period */
612 u64 dl_density; /* dl_runtime / dl_deadline */
615 * Actual scheduling parameters. Initialized with the values above,
616 * they are continuously updated during task execution. Note that
617 * the remaining runtime could be < 0 in case we are in overrun.
619 s64 runtime; /* Remaining runtime for this instance */
620 u64 deadline; /* Absolute deadline for this instance */
621 unsigned int flags; /* Specifying the scheduler behaviour */
626 * @dl_throttled tells if we exhausted the runtime. If so, the
627 * task has to wait for a replenishment to be performed at the
628 * next firing of dl_timer.
630 * @dl_yielded tells if task gave up the CPU before consuming
631 * all its available runtime during the last job.
633 * @dl_non_contending tells if the task is inactive while still
634 * contributing to the active utilization. In other words, it
635 * indicates if the inactive timer has been armed and its handler
636 * has not been executed yet. This flag is useful to avoid race
637 * conditions between the inactive timer handler and the wakeup
640 * @dl_overrun tells if the task asked to be informed about runtime
643 unsigned int dl_throttled : 1;
644 unsigned int dl_yielded : 1;
645 unsigned int dl_non_contending : 1;
646 unsigned int dl_overrun : 1;
647 unsigned int dl_server : 1;
650 * Bandwidth enforcement timer. Each -deadline task has its
651 * own bandwidth to be enforced, thus we need one timer per task.
653 struct hrtimer dl_timer;
656 * Inactive timer, responsible for decreasing the active utilization
657 * at the "0-lag time". When a -deadline task blocks, it contributes
658 * to GRUB's active utilization until the "0-lag time", hence a
659 * timer is needed to decrease the active utilization at the correct
662 struct hrtimer inactive_timer;
665 * Bits for DL-server functionality. Also see the comment near
666 * dl_server_update().
668 * @rq the runqueue this server is for
670 * @server_has_tasks() returns true if @server_pick return a
674 dl_server_has_tasks_f server_has_tasks;
675 dl_server_pick_f server_pick;
677 #ifdef CONFIG_RT_MUTEXES
679 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
680 * pi_se points to the donor, otherwise points to the dl_se it belongs
681 * to (the original one/itself).
683 struct sched_dl_entity *pi_se;
687 #ifdef CONFIG_UCLAMP_TASK
688 /* Number of utilization clamp buckets (shorter alias) */
689 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
692 * Utilization clamp for a scheduling entity
693 * @value: clamp value "assigned" to a se
694 * @bucket_id: bucket index corresponding to the "assigned" value
695 * @active: the se is currently refcounted in a rq's bucket
696 * @user_defined: the requested clamp value comes from user-space
698 * The bucket_id is the index of the clamp bucket matching the clamp value
699 * which is pre-computed and stored to avoid expensive integer divisions from
702 * The active bit is set whenever a task has got an "effective" value assigned,
703 * which can be different from the clamp value "requested" from user-space.
704 * This allows to know a task is refcounted in the rq's bucket corresponding
705 * to the "effective" bucket_id.
707 * The user_defined bit is set whenever a task has got a task-specific clamp
708 * value requested from userspace, i.e. the system defaults apply to this task
709 * just as a restriction. This allows to relax default clamps when a less
710 * restrictive task-specific value has been requested, thus allowing to
711 * implement a "nice" semantic. For example, a task running with a 20%
712 * default boost can still drop its own boosting to 0%.
715 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
716 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
717 unsigned int active : 1;
718 unsigned int user_defined : 1;
720 #endif /* CONFIG_UCLAMP_TASK */
726 u8 exp_hint; /* Hint for performance. */
727 u8 need_mb; /* Readers need smp_mb(). */
729 u32 s; /* Set of bits. */
732 enum perf_event_task_context {
733 perf_invalid_context = -1,
736 perf_nr_task_contexts,
740 * Number of contexts where an event can trigger:
741 * task, softirq, hardirq, nmi.
743 #define PERF_NR_CONTEXTS 4
746 struct wake_q_node *next;
750 #ifdef CONFIG_KMAP_LOCAL
752 pte_t pteval[KM_MAX_IDX];
757 #ifdef CONFIG_THREAD_INFO_IN_TASK
759 * For reasons of header soup (see current_thread_info()), this
760 * must be the first element of task_struct.
762 struct thread_info thread_info;
764 unsigned int __state;
766 /* saved state for "spinlock sleepers" */
767 unsigned int saved_state;
770 * This begins the randomizable portion of task_struct. Only
771 * scheduling-critical items should be added above here.
773 randomized_struct_fields_start
777 /* Per task flags (PF_*), defined further below: */
781 #ifdef CONFIG_MEM_ALLOC_PROFILING
782 struct alloc_tag *alloc_tag;
787 struct __call_single_node wake_entry;
788 unsigned int wakee_flips;
789 unsigned long wakee_flip_decay_ts;
790 struct task_struct *last_wakee;
793 * recent_used_cpu is initially set as the last CPU used by a task
794 * that wakes affine another task. Waker/wakee relationships can
795 * push tasks around a CPU where each wakeup moves to the next one.
796 * Tracking a recently used CPU allows a quick search for a recently
797 * used CPU that may be idle.
807 unsigned int rt_priority;
809 struct sched_entity se;
810 struct sched_rt_entity rt;
811 struct sched_dl_entity dl;
812 struct sched_dl_entity *dl_server;
813 const struct sched_class *sched_class;
815 #ifdef CONFIG_SCHED_CORE
816 struct rb_node core_node;
817 unsigned long core_cookie;
818 unsigned int core_occupation;
821 #ifdef CONFIG_CGROUP_SCHED
822 struct task_group *sched_task_group;
826 #ifdef CONFIG_UCLAMP_TASK
828 * Clamp values requested for a scheduling entity.
829 * Must be updated with task_rq_lock() held.
831 struct uclamp_se uclamp_req[UCLAMP_CNT];
833 * Effective clamp values used for a scheduling entity.
834 * Must be updated with task_rq_lock() held.
836 struct uclamp_se uclamp[UCLAMP_CNT];
839 struct sched_statistics stats;
841 #ifdef CONFIG_PREEMPT_NOTIFIERS
842 /* List of struct preempt_notifier: */
843 struct hlist_head preempt_notifiers;
846 #ifdef CONFIG_BLK_DEV_IO_TRACE
847 unsigned int btrace_seq;
851 unsigned long max_allowed_capacity;
853 const cpumask_t *cpus_ptr;
854 cpumask_t *user_cpus_ptr;
856 void *migration_pending;
858 unsigned short migration_disabled;
860 unsigned short migration_flags;
862 #ifdef CONFIG_PREEMPT_RCU
863 int rcu_read_lock_nesting;
864 union rcu_special rcu_read_unlock_special;
865 struct list_head rcu_node_entry;
866 struct rcu_node *rcu_blocked_node;
867 #endif /* #ifdef CONFIG_PREEMPT_RCU */
869 #ifdef CONFIG_TASKS_RCU
870 unsigned long rcu_tasks_nvcsw;
871 u8 rcu_tasks_holdout;
873 int rcu_tasks_idle_cpu;
874 struct list_head rcu_tasks_holdout_list;
875 int rcu_tasks_exit_cpu;
876 struct list_head rcu_tasks_exit_list;
877 #endif /* #ifdef CONFIG_TASKS_RCU */
879 #ifdef CONFIG_TASKS_TRACE_RCU
880 int trc_reader_nesting;
882 union rcu_special trc_reader_special;
883 struct list_head trc_holdout_list;
884 struct list_head trc_blkd_node;
886 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
888 struct sched_info sched_info;
890 struct list_head tasks;
892 struct plist_node pushable_tasks;
893 struct rb_node pushable_dl_tasks;
896 struct mm_struct *mm;
897 struct mm_struct *active_mm;
898 struct address_space *faults_disabled_mapping;
903 /* The signal sent when the parent dies: */
905 /* JOBCTL_*, siglock protected: */
906 unsigned long jobctl;
908 /* Used for emulating ABI behavior of previous Linux versions: */
909 unsigned int personality;
911 /* Scheduler bits, serialized by scheduler locks: */
912 unsigned sched_reset_on_fork:1;
913 unsigned sched_contributes_to_load:1;
914 unsigned sched_migrated:1;
916 /* Force alignment to the next boundary: */
919 /* Unserialized, strictly 'current' */
922 * This field must not be in the scheduler word above due to wakelist
923 * queueing no longer being serialized by p->on_cpu. However:
926 * schedule() if (p->on_rq && ..) // false
927 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
928 * deactivate_task() ttwu_queue_wakelist())
929 * p->on_rq = 0; p->sched_remote_wakeup = Y;
931 * guarantees all stores of 'current' are visible before
932 * ->sched_remote_wakeup gets used, so it can be in this word.
934 unsigned sched_remote_wakeup:1;
935 #ifdef CONFIG_RT_MUTEXES
936 unsigned sched_rt_mutex:1;
939 /* Bit to tell TOMOYO we're in execve(): */
940 unsigned in_execve:1;
941 unsigned in_iowait:1;
942 #ifndef TIF_RESTORE_SIGMASK
943 unsigned restore_sigmask:1;
946 unsigned in_user_fault:1;
948 #ifdef CONFIG_LRU_GEN
949 /* whether the LRU algorithm may apply to this access */
950 unsigned in_lru_fault:1;
952 #ifdef CONFIG_COMPAT_BRK
953 unsigned brk_randomized:1;
955 #ifdef CONFIG_CGROUPS
956 /* disallow userland-initiated cgroup migration */
957 unsigned no_cgroup_migration:1;
958 /* task is frozen/stopped (used by the cgroup freezer) */
961 #ifdef CONFIG_BLK_CGROUP
962 unsigned use_memdelay:1;
965 /* Stalled due to lack of memory */
966 unsigned in_memstall:1;
968 #ifdef CONFIG_PAGE_OWNER
969 /* Used by page_owner=on to detect recursion in page tracking. */
970 unsigned in_page_owner:1;
972 #ifdef CONFIG_EVENTFD
973 /* Recursion prevention for eventfd_signal() */
974 unsigned in_eventfd:1;
976 #ifdef CONFIG_ARCH_HAS_CPU_PASID
977 unsigned pasid_activated:1;
979 #ifdef CONFIG_CPU_SUP_INTEL
980 unsigned reported_split_lock:1;
982 #ifdef CONFIG_TASK_DELAY_ACCT
983 /* delay due to memory thrashing */
984 unsigned in_thrashing:1;
986 #ifdef CONFIG_PREEMPT_RT
987 struct netdev_xmit net_xmit;
989 unsigned long atomic_flags; /* Flags requiring atomic access. */
991 struct restart_block restart_block;
996 #ifdef CONFIG_STACKPROTECTOR
997 /* Canary value for the -fstack-protector GCC feature: */
998 unsigned long stack_canary;
1001 * Pointers to the (original) parent process, youngest child, younger sibling,
1002 * older sibling, respectively. (p->father can be replaced with
1003 * p->real_parent->pid)
1006 /* Real parent process: */
1007 struct task_struct __rcu *real_parent;
1009 /* Recipient of SIGCHLD, wait4() reports: */
1010 struct task_struct __rcu *parent;
1013 * Children/sibling form the list of natural children:
1015 struct list_head children;
1016 struct list_head sibling;
1017 struct task_struct *group_leader;
1020 * 'ptraced' is the list of tasks this task is using ptrace() on.
1022 * This includes both natural children and PTRACE_ATTACH targets.
1023 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1025 struct list_head ptraced;
1026 struct list_head ptrace_entry;
1028 /* PID/PID hash table linkage. */
1029 struct pid *thread_pid;
1030 struct hlist_node pid_links[PIDTYPE_MAX];
1031 struct list_head thread_node;
1033 struct completion *vfork_done;
1035 /* CLONE_CHILD_SETTID: */
1036 int __user *set_child_tid;
1038 /* CLONE_CHILD_CLEARTID: */
1039 int __user *clear_child_tid;
1041 /* PF_KTHREAD | PF_IO_WORKER */
1042 void *worker_private;
1046 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1051 struct prev_cputime prev_cputime;
1052 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1056 #ifdef CONFIG_NO_HZ_FULL
1057 atomic_t tick_dep_mask;
1059 /* Context switch counts: */
1060 unsigned long nvcsw;
1061 unsigned long nivcsw;
1063 /* Monotonic time in nsecs: */
1066 /* Boot based time in nsecs: */
1069 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1070 unsigned long min_flt;
1071 unsigned long maj_flt;
1073 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1074 struct posix_cputimers posix_cputimers;
1076 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1077 struct posix_cputimers_work posix_cputimers_work;
1080 /* Process credentials: */
1082 /* Tracer's credentials at attach: */
1083 const struct cred __rcu *ptracer_cred;
1085 /* Objective and real subjective task credentials (COW): */
1086 const struct cred __rcu *real_cred;
1088 /* Effective (overridable) subjective task credentials (COW): */
1089 const struct cred __rcu *cred;
1092 /* Cached requested key. */
1093 struct key *cached_requested_key;
1097 * executable name, excluding path.
1099 * - normally initialized setup_new_exec()
1100 * - access it with [gs]et_task_comm()
1101 * - lock it with task_lock()
1103 char comm[TASK_COMM_LEN];
1105 struct nameidata *nameidata;
1107 #ifdef CONFIG_SYSVIPC
1108 struct sysv_sem sysvsem;
1109 struct sysv_shm sysvshm;
1111 #ifdef CONFIG_DETECT_HUNG_TASK
1112 unsigned long last_switch_count;
1113 unsigned long last_switch_time;
1115 /* Filesystem information: */
1116 struct fs_struct *fs;
1118 /* Open file information: */
1119 struct files_struct *files;
1121 #ifdef CONFIG_IO_URING
1122 struct io_uring_task *io_uring;
1126 struct nsproxy *nsproxy;
1128 /* Signal handlers: */
1129 struct signal_struct *signal;
1130 struct sighand_struct __rcu *sighand;
1132 sigset_t real_blocked;
1133 /* Restored if set_restore_sigmask() was used: */
1134 sigset_t saved_sigmask;
1135 struct sigpending pending;
1136 unsigned long sas_ss_sp;
1138 unsigned int sas_ss_flags;
1140 struct callback_head *task_works;
1143 #ifdef CONFIG_AUDITSYSCALL
1144 struct audit_context *audit_context;
1147 unsigned int sessionid;
1149 struct seccomp seccomp;
1150 struct syscall_user_dispatch syscall_dispatch;
1152 /* Thread group tracking: */
1156 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1157 spinlock_t alloc_lock;
1159 /* Protection of the PI data structures: */
1160 raw_spinlock_t pi_lock;
1162 struct wake_q_node wake_q;
1164 #ifdef CONFIG_RT_MUTEXES
1165 /* PI waiters blocked on a rt_mutex held by this task: */
1166 struct rb_root_cached pi_waiters;
1167 /* Updated under owner's pi_lock and rq lock */
1168 struct task_struct *pi_top_task;
1169 /* Deadlock detection and priority inheritance handling: */
1170 struct rt_mutex_waiter *pi_blocked_on;
1173 #ifdef CONFIG_DEBUG_MUTEXES
1174 /* Mutex deadlock detection: */
1175 struct mutex_waiter *blocked_on;
1178 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1179 int non_block_count;
1182 #ifdef CONFIG_TRACE_IRQFLAGS
1183 struct irqtrace_events irqtrace;
1184 unsigned int hardirq_threaded;
1185 u64 hardirq_chain_key;
1186 int softirqs_enabled;
1187 int softirq_context;
1190 #ifdef CONFIG_PREEMPT_RT
1191 int softirq_disable_cnt;
1194 #ifdef CONFIG_LOCKDEP
1195 # define MAX_LOCK_DEPTH 48UL
1198 unsigned int lockdep_recursion;
1199 struct held_lock held_locks[MAX_LOCK_DEPTH];
1202 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1203 unsigned int in_ubsan;
1206 /* Journalling filesystem info: */
1209 /* Stacked block device info: */
1210 struct bio_list *bio_list;
1212 /* Stack plugging: */
1213 struct blk_plug *plug;
1216 struct reclaim_state *reclaim_state;
1218 struct io_context *io_context;
1220 #ifdef CONFIG_COMPACTION
1221 struct capture_control *capture_control;
1224 unsigned long ptrace_message;
1225 kernel_siginfo_t *last_siginfo;
1227 struct task_io_accounting ioac;
1229 /* Pressure stall state */
1230 unsigned int psi_flags;
1232 #ifdef CONFIG_TASK_XACCT
1233 /* Accumulated RSS usage: */
1235 /* Accumulated virtual memory usage: */
1237 /* stime + utime since last update: */
1240 #ifdef CONFIG_CPUSETS
1241 /* Protected by ->alloc_lock: */
1242 nodemask_t mems_allowed;
1243 /* Sequence number to catch updates: */
1244 seqcount_spinlock_t mems_allowed_seq;
1245 int cpuset_mem_spread_rotor;
1246 int cpuset_slab_spread_rotor;
1248 #ifdef CONFIG_CGROUPS
1249 /* Control Group info protected by css_set_lock: */
1250 struct css_set __rcu *cgroups;
1251 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1252 struct list_head cg_list;
1254 #ifdef CONFIG_X86_CPU_RESCTRL
1259 struct robust_list_head __user *robust_list;
1260 #ifdef CONFIG_COMPAT
1261 struct compat_robust_list_head __user *compat_robust_list;
1263 struct list_head pi_state_list;
1264 struct futex_pi_state *pi_state_cache;
1265 struct mutex futex_exit_mutex;
1266 unsigned int futex_state;
1268 #ifdef CONFIG_PERF_EVENTS
1269 u8 perf_recursion[PERF_NR_CONTEXTS];
1270 struct perf_event_context *perf_event_ctxp;
1271 struct mutex perf_event_mutex;
1272 struct list_head perf_event_list;
1274 #ifdef CONFIG_DEBUG_PREEMPT
1275 unsigned long preempt_disable_ip;
1278 /* Protected by alloc_lock: */
1279 struct mempolicy *mempolicy;
1282 short pref_node_fork;
1284 #ifdef CONFIG_NUMA_BALANCING
1286 unsigned int numa_scan_period;
1287 unsigned int numa_scan_period_max;
1288 int numa_preferred_nid;
1289 unsigned long numa_migrate_retry;
1290 /* Migration stamp: */
1292 u64 last_task_numa_placement;
1293 u64 last_sum_exec_runtime;
1294 struct callback_head numa_work;
1297 * This pointer is only modified for current in syscall and
1298 * pagefault context (and for tasks being destroyed), so it can be read
1299 * from any of the following contexts:
1300 * - RCU read-side critical section
1301 * - current->numa_group from everywhere
1302 * - task's runqueue locked, task not running
1304 struct numa_group __rcu *numa_group;
1307 * numa_faults is an array split into four regions:
1308 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1309 * in this precise order.
1311 * faults_memory: Exponential decaying average of faults on a per-node
1312 * basis. Scheduling placement decisions are made based on these
1313 * counts. The values remain static for the duration of a PTE scan.
1314 * faults_cpu: Track the nodes the process was running on when a NUMA
1315 * hinting fault was incurred.
1316 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1317 * during the current scan window. When the scan completes, the counts
1318 * in faults_memory and faults_cpu decay and these values are copied.
1320 unsigned long *numa_faults;
1321 unsigned long total_numa_faults;
1324 * numa_faults_locality tracks if faults recorded during the last
1325 * scan window were remote/local or failed to migrate. The task scan
1326 * period is adapted based on the locality of the faults with different
1327 * weights depending on whether they were shared or private faults
1329 unsigned long numa_faults_locality[3];
1331 unsigned long numa_pages_migrated;
1332 #endif /* CONFIG_NUMA_BALANCING */
1335 struct rseq __user *rseq;
1339 * RmW on rseq_event_mask must be performed atomically
1340 * with respect to preemption.
1342 unsigned long rseq_event_mask;
1345 #ifdef CONFIG_SCHED_MM_CID
1346 int mm_cid; /* Current cid in mm */
1347 int last_mm_cid; /* Most recent cid in mm */
1348 int migrate_from_cpu;
1349 int mm_cid_active; /* Whether cid bitmap is active */
1350 struct callback_head cid_work;
1353 struct tlbflush_unmap_batch tlb_ubc;
1355 /* Cache last used pipe for splice(): */
1356 struct pipe_inode_info *splice_pipe;
1358 struct page_frag task_frag;
1360 #ifdef CONFIG_TASK_DELAY_ACCT
1361 struct task_delay_info *delays;
1364 #ifdef CONFIG_FAULT_INJECTION
1366 unsigned int fail_nth;
1369 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1370 * balance_dirty_pages() for a dirty throttling pause:
1373 int nr_dirtied_pause;
1374 /* Start of a write-and-pause period: */
1375 unsigned long dirty_paused_when;
1377 #ifdef CONFIG_LATENCYTOP
1378 int latency_record_count;
1379 struct latency_record latency_record[LT_SAVECOUNT];
1382 * Time slack values; these are used to round up poll() and
1383 * select() etc timeout values. These are in nanoseconds.
1386 u64 default_timer_slack_ns;
1388 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1389 unsigned int kasan_depth;
1393 struct kcsan_ctx kcsan_ctx;
1394 #ifdef CONFIG_TRACE_IRQFLAGS
1395 struct irqtrace_events kcsan_save_irqtrace;
1397 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1398 int kcsan_stack_depth;
1403 struct kmsan_ctx kmsan_ctx;
1406 #if IS_ENABLED(CONFIG_KUNIT)
1407 struct kunit *kunit_test;
1410 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1411 /* Index of current stored address in ret_stack: */
1415 /* Stack of return addresses for return function tracing: */
1416 struct ftrace_ret_stack *ret_stack;
1418 /* Timestamp for last schedule: */
1419 unsigned long long ftrace_timestamp;
1422 * Number of functions that haven't been traced
1423 * because of depth overrun:
1425 atomic_t trace_overrun;
1427 /* Pause tracing: */
1428 atomic_t tracing_graph_pause;
1431 #ifdef CONFIG_TRACING
1432 /* Bitmask and counter of trace recursion: */
1433 unsigned long trace_recursion;
1434 #endif /* CONFIG_TRACING */
1437 /* See kernel/kcov.c for more details. */
1439 /* Coverage collection mode enabled for this task (0 if disabled): */
1440 unsigned int kcov_mode;
1442 /* Size of the kcov_area: */
1443 unsigned int kcov_size;
1445 /* Buffer for coverage collection: */
1448 /* KCOV descriptor wired with this task or NULL: */
1451 /* KCOV common handle for remote coverage collection: */
1454 /* KCOV sequence number: */
1457 /* Collect coverage from softirq context: */
1458 unsigned int kcov_softirq;
1462 struct mem_cgroup *memcg_in_oom;
1464 /* Number of pages to reclaim on returning to userland: */
1465 unsigned int memcg_nr_pages_over_high;
1467 /* Used by memcontrol for targeted memcg charge: */
1468 struct mem_cgroup *active_memcg;
1471 #ifdef CONFIG_MEMCG_KMEM
1472 struct obj_cgroup *objcg;
1475 #ifdef CONFIG_BLK_CGROUP
1476 struct gendisk *throttle_disk;
1479 #ifdef CONFIG_UPROBES
1480 struct uprobe_task *utask;
1482 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1483 unsigned int sequential_io;
1484 unsigned int sequential_io_avg;
1486 struct kmap_ctrl kmap_ctrl;
1487 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1488 unsigned long task_state_change;
1489 # ifdef CONFIG_PREEMPT_RT
1490 unsigned long saved_state_change;
1493 struct rcu_head rcu;
1494 refcount_t rcu_users;
1495 int pagefault_disabled;
1497 struct task_struct *oom_reaper_list;
1498 struct timer_list oom_reaper_timer;
1500 #ifdef CONFIG_VMAP_STACK
1501 struct vm_struct *stack_vm_area;
1503 #ifdef CONFIG_THREAD_INFO_IN_TASK
1504 /* A live task holds one reference: */
1505 refcount_t stack_refcount;
1507 #ifdef CONFIG_LIVEPATCH
1510 #ifdef CONFIG_SECURITY
1511 /* Used by LSM modules for access restriction: */
1514 #ifdef CONFIG_BPF_SYSCALL
1515 /* Used by BPF task local storage */
1516 struct bpf_local_storage __rcu *bpf_storage;
1517 /* Used for BPF run context */
1518 struct bpf_run_ctx *bpf_ctx;
1520 /* Used by BPF for per-TASK xdp storage */
1521 struct bpf_net_context *bpf_net_context;
1523 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1524 unsigned long lowest_stack;
1525 unsigned long prev_lowest_stack;
1528 #ifdef CONFIG_X86_MCE
1529 void __user *mce_vaddr;
1534 __mce_reserved : 62;
1535 struct callback_head mce_kill_me;
1539 #ifdef CONFIG_KRETPROBES
1540 struct llist_head kretprobe_instances;
1542 #ifdef CONFIG_RETHOOK
1543 struct llist_head rethooks;
1546 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1548 * If L1D flush is supported on mm context switch
1549 * then we use this callback head to queue kill work
1550 * to kill tasks that are not running on SMT disabled
1553 struct callback_head l1d_flush_kill;
1558 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1559 * If we find justification for more monitors, we can think
1560 * about adding more or developing a dynamic method. So far,
1561 * none of these are justified.
1563 union rv_task_monitor rv[RV_PER_TASK_MONITORS];
1566 #ifdef CONFIG_USER_EVENTS
1567 struct user_event_mm *user_event_mm;
1571 * New fields for task_struct should be added above here, so that
1572 * they are included in the randomized portion of task_struct.
1574 randomized_struct_fields_end
1576 /* CPU-specific state of this task: */
1577 struct thread_struct thread;
1580 * WARNING: on x86, 'thread_struct' contains a variable-sized
1581 * structure. It *MUST* be at the end of 'task_struct'.
1583 * Do not put anything below here!
1587 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1588 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1590 static inline unsigned int __task_state_index(unsigned int tsk_state,
1591 unsigned int tsk_exit_state)
1593 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1595 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1597 if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1598 state = TASK_REPORT_IDLE;
1601 * We're lying here, but rather than expose a completely new task state
1602 * to userspace, we can make this appear as if the task has gone through
1603 * a regular rt_mutex_lock() call.
1605 if (tsk_state & TASK_RTLOCK_WAIT)
1606 state = TASK_UNINTERRUPTIBLE;
1611 static inline unsigned int task_state_index(struct task_struct *tsk)
1613 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1616 static inline char task_index_to_char(unsigned int state)
1618 static const char state_char[] = "RSDTtXZPI";
1620 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1622 return state_char[state];
1625 static inline char task_state_to_char(struct task_struct *tsk)
1627 return task_index_to_char(task_state_index(tsk));
1630 extern struct pid *cad_pid;
1635 #define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1636 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1637 #define PF_EXITING 0x00000004 /* Getting shut down */
1638 #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
1639 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1640 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1641 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1642 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1643 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1644 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1645 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1646 #define PF_MEMALLOC 0x00000800 /* Allocating memory to free memory. See memalloc_noreclaim_save() */
1647 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1648 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1649 #define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */
1650 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1651 #define PF__HOLE__00010000 0x00010000
1652 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1653 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1654 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1655 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1656 * I am cleaning dirty pages from some other bdi. */
1657 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1658 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1659 #define PF_MEMALLOC_NORECLAIM 0x00800000 /* All allocation requests will clear __GFP_DIRECT_RECLAIM */
1660 #define PF_MEMALLOC_NOWARN 0x01000000 /* All allocation requests will inherit __GFP_NOWARN */
1661 #define PF__HOLE__02000000 0x02000000
1662 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1663 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1664 #define PF_MEMALLOC_PIN 0x10000000 /* Allocations constrained to zones which allow long term pinning.
1665 * See memalloc_pin_save() */
1666 #define PF_BLOCK_TS 0x20000000 /* plug has ts that needs updating */
1667 #define PF__HOLE__40000000 0x40000000
1668 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1671 * Only the _current_ task can read/write to tsk->flags, but other
1672 * tasks can access tsk->flags in readonly mode for example
1673 * with tsk_used_math (like during threaded core dumping).
1674 * There is however an exception to this rule during ptrace
1675 * or during fork: the ptracer task is allowed to write to the
1676 * child->flags of its traced child (same goes for fork, the parent
1677 * can write to the child->flags), because we're guaranteed the
1678 * child is not running and in turn not changing child->flags
1679 * at the same time the parent does it.
1681 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1682 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1683 #define clear_used_math() clear_stopped_child_used_math(current)
1684 #define set_used_math() set_stopped_child_used_math(current)
1686 #define conditional_stopped_child_used_math(condition, child) \
1687 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1689 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1691 #define copy_to_stopped_child_used_math(child) \
1692 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1694 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1695 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1696 #define used_math() tsk_used_math(current)
1698 static __always_inline bool is_percpu_thread(void)
1701 return (current->flags & PF_NO_SETAFFINITY) &&
1702 (current->nr_cpus_allowed == 1);
1708 /* Per-process atomic flags. */
1709 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1710 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1711 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1712 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1713 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1714 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1715 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1716 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1718 #define TASK_PFA_TEST(name, func) \
1719 static inline bool task_##func(struct task_struct *p) \
1720 { return test_bit(PFA_##name, &p->atomic_flags); }
1722 #define TASK_PFA_SET(name, func) \
1723 static inline void task_set_##func(struct task_struct *p) \
1724 { set_bit(PFA_##name, &p->atomic_flags); }
1726 #define TASK_PFA_CLEAR(name, func) \
1727 static inline void task_clear_##func(struct task_struct *p) \
1728 { clear_bit(PFA_##name, &p->atomic_flags); }
1730 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1731 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1733 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1734 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1735 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1737 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1738 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1739 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1741 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1742 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1743 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1745 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1746 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1747 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1749 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1750 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1752 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1753 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1754 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1756 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1757 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1760 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1762 current->flags &= ~flags;
1763 current->flags |= orig_flags & flags;
1766 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1767 extern int task_can_attach(struct task_struct *p);
1768 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1769 extern void dl_bw_free(int cpu, u64 dl_bw);
1772 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1773 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1776 * set_cpus_allowed_ptr - set CPU affinity mask of a task
1778 * @new_mask: CPU affinity mask
1780 * Return: zero if successful, or a negative error code
1782 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1783 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1784 extern void release_user_cpus_ptr(struct task_struct *p);
1785 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1786 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1787 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1789 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1792 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1794 if (!cpumask_test_cpu(0, new_mask))
1798 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1800 if (src->user_cpus_ptr)
1804 static inline void release_user_cpus_ptr(struct task_struct *p)
1806 WARN_ON(p->user_cpus_ptr);
1809 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1815 extern int yield_to(struct task_struct *p, bool preempt);
1816 extern void set_user_nice(struct task_struct *p, long nice);
1817 extern int task_prio(const struct task_struct *p);
1820 * task_nice - return the nice value of a given task.
1821 * @p: the task in question.
1823 * Return: The nice value [ -20 ... 0 ... 19 ].
1825 static inline int task_nice(const struct task_struct *p)
1827 return PRIO_TO_NICE((p)->static_prio);
1830 extern int can_nice(const struct task_struct *p, const int nice);
1831 extern int task_curr(const struct task_struct *p);
1832 extern int idle_cpu(int cpu);
1833 extern int available_idle_cpu(int cpu);
1834 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1835 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1836 extern void sched_set_fifo(struct task_struct *p);
1837 extern void sched_set_fifo_low(struct task_struct *p);
1838 extern void sched_set_normal(struct task_struct *p, int nice);
1839 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1840 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1841 extern struct task_struct *idle_task(int cpu);
1844 * is_idle_task - is the specified task an idle task?
1845 * @p: the task in question.
1847 * Return: 1 if @p is an idle task. 0 otherwise.
1849 static __always_inline bool is_idle_task(const struct task_struct *p)
1851 return !!(p->flags & PF_IDLE);
1854 extern struct task_struct *curr_task(int cpu);
1855 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1859 union thread_union {
1860 struct task_struct task;
1861 #ifndef CONFIG_THREAD_INFO_IN_TASK
1862 struct thread_info thread_info;
1864 unsigned long stack[THREAD_SIZE/sizeof(long)];
1867 #ifndef CONFIG_THREAD_INFO_IN_TASK
1868 extern struct thread_info init_thread_info;
1871 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1873 #ifdef CONFIG_THREAD_INFO_IN_TASK
1874 # define task_thread_info(task) (&(task)->thread_info)
1875 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1876 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1880 * find a task by one of its numerical ids
1882 * find_task_by_pid_ns():
1883 * finds a task by its pid in the specified namespace
1884 * find_task_by_vpid():
1885 * finds a task by its virtual pid
1887 * see also find_vpid() etc in include/linux/pid.h
1890 extern struct task_struct *find_task_by_vpid(pid_t nr);
1891 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1894 * find a task by its virtual pid and get the task struct
1896 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1898 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1899 extern int wake_up_process(struct task_struct *tsk);
1900 extern void wake_up_new_task(struct task_struct *tsk);
1903 extern void kick_process(struct task_struct *tsk);
1905 static inline void kick_process(struct task_struct *tsk) { }
1908 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1910 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1912 __set_task_comm(tsk, from, false);
1915 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1916 #define get_task_comm(buf, tsk) ({ \
1917 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1918 __get_task_comm(buf, sizeof(buf), tsk); \
1922 static __always_inline void scheduler_ipi(void)
1925 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1926 * TIF_NEED_RESCHED remotely (for the first time) will also send
1929 preempt_fold_need_resched();
1932 static inline void scheduler_ipi(void) { }
1935 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1938 * Set thread flags in other task's structures.
1939 * See asm/thread_info.h for TIF_xxxx flags available:
1941 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1943 set_ti_thread_flag(task_thread_info(tsk), flag);
1946 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1948 clear_ti_thread_flag(task_thread_info(tsk), flag);
1951 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1954 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1957 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1959 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1962 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1964 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1967 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1969 return test_ti_thread_flag(task_thread_info(tsk), flag);
1972 static inline void set_tsk_need_resched(struct task_struct *tsk)
1974 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1977 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1979 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1982 static inline int test_tsk_need_resched(struct task_struct *tsk)
1984 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1988 * cond_resched() and cond_resched_lock(): latency reduction via
1989 * explicit rescheduling in places that are safe. The return
1990 * value indicates whether a reschedule was done in fact.
1991 * cond_resched_lock() will drop the spinlock before scheduling,
1993 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
1994 extern int __cond_resched(void);
1996 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
1998 void sched_dynamic_klp_enable(void);
1999 void sched_dynamic_klp_disable(void);
2001 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2003 static __always_inline int _cond_resched(void)
2005 return static_call_mod(cond_resched)();
2008 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2010 extern int dynamic_cond_resched(void);
2012 static __always_inline int _cond_resched(void)
2014 return dynamic_cond_resched();
2017 #else /* !CONFIG_PREEMPTION */
2019 static inline int _cond_resched(void)
2021 klp_sched_try_switch();
2022 return __cond_resched();
2025 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2027 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2029 static inline int _cond_resched(void)
2031 klp_sched_try_switch();
2035 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2037 #define cond_resched() ({ \
2038 __might_resched(__FILE__, __LINE__, 0); \
2042 extern int __cond_resched_lock(spinlock_t *lock);
2043 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2044 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2046 #define MIGHT_RESCHED_RCU_SHIFT 8
2047 #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2049 #ifndef CONFIG_PREEMPT_RT
2051 * Non RT kernels have an elevated preempt count due to the held lock,
2052 * but are not allowed to be inside a RCU read side critical section
2054 # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2057 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2058 * cond_resched*lock() has to take that into account because it checks for
2059 * preempt_count() and rcu_preempt_depth().
2061 # define PREEMPT_LOCK_RESCHED_OFFSETS \
2062 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2065 #define cond_resched_lock(lock) ({ \
2066 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2067 __cond_resched_lock(lock); \
2070 #define cond_resched_rwlock_read(lock) ({ \
2071 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2072 __cond_resched_rwlock_read(lock); \
2075 #define cond_resched_rwlock_write(lock) ({ \
2076 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2077 __cond_resched_rwlock_write(lock); \
2080 static __always_inline bool need_resched(void)
2082 return unlikely(tif_need_resched());
2086 * Wrappers for p->thread_info->cpu access. No-op on UP.
2090 static inline unsigned int task_cpu(const struct task_struct *p)
2092 return READ_ONCE(task_thread_info(p)->cpu);
2095 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2099 static inline unsigned int task_cpu(const struct task_struct *p)
2104 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2108 #endif /* CONFIG_SMP */
2110 extern bool sched_task_on_rq(struct task_struct *p);
2111 extern unsigned long get_wchan(struct task_struct *p);
2112 extern struct task_struct *cpu_curr_snapshot(int cpu);
2114 #include <linux/spinlock.h>
2117 * In order to reduce various lock holder preemption latencies provide an
2118 * interface to see if a vCPU is currently running or not.
2120 * This allows us to terminate optimistic spin loops and block, analogous to
2121 * the native optimistic spin heuristic of testing if the lock owner task is
2124 #ifndef vcpu_is_preempted
2125 static inline bool vcpu_is_preempted(int cpu)
2131 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2132 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2134 #ifndef TASK_SIZE_OF
2135 #define TASK_SIZE_OF(tsk) TASK_SIZE
2139 static inline bool owner_on_cpu(struct task_struct *owner)
2142 * As lock holder preemption issue, we both skip spinning if
2143 * task is not on cpu or its cpu is preempted
2145 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2148 /* Returns effective CPU energy utilization, as seen by the scheduler */
2149 unsigned long sched_cpu_util(int cpu);
2150 #endif /* CONFIG_SMP */
2152 #ifdef CONFIG_SCHED_CORE
2153 extern void sched_core_free(struct task_struct *tsk);
2154 extern void sched_core_fork(struct task_struct *p);
2155 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2156 unsigned long uaddr);
2157 extern int sched_core_idle_cpu(int cpu);
2159 static inline void sched_core_free(struct task_struct *tsk) { }
2160 static inline void sched_core_fork(struct task_struct *p) { }
2161 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2164 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2166 #ifdef CONFIG_MEM_ALLOC_PROFILING
2167 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2169 swap(current->alloc_tag, tag);
2173 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2175 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2176 WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2178 current->alloc_tag = old;
2181 #define alloc_tag_save(_tag) NULL
2182 #define alloc_tag_restore(_tag, _old) do {} while (0)