2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
31 #include "print-tree.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
41 #undef SCRAMBLE_DELAYED_REFS
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
58 CHUNK_ALLOC_NO_FORCE = 0,
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
64 * Control how reservations are dealt with.
66 * RESERVE_FREE - freeing a reservation.
67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70 * bytes_may_use as the ENOSPC accounting is done elsewhere
75 RESERVE_ALLOC_NO_ACCOUNT = 2,
78 static int update_block_group(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root, u64 bytenr,
80 u64 num_bytes, int alloc);
81 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 struct btrfs_root *root,
83 struct btrfs_delayed_ref_node *node, u64 parent,
84 u64 root_objectid, u64 owner_objectid,
85 u64 owner_offset, int refs_to_drop,
86 struct btrfs_delayed_extent_op *extra_op);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
103 static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 return (cache->flags & bits) == bits;
128 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 atomic_inc(&cache->count);
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
138 kfree(cache->free_space_ctl);
144 * this adds the block group to the fs_info rb tree for the block group
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 struct btrfs_block_group_cache *block_group)
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 if (block_group->key.objectid < cache->key.objectid) {
163 } else if (block_group->key.objectid > cache->key.objectid) {
166 spin_unlock(&info->block_group_cache_lock);
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
178 spin_unlock(&info->block_group_cache_lock);
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
191 struct btrfs_block_group_cache *cache, *ret = NULL;
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
199 cache = rb_entry(n, struct btrfs_block_group_cache,
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
220 btrfs_get_block_group(ret);
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
224 spin_unlock(&info->block_group_cache_lock);
229 static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
240 static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
254 static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
282 if (logical[nr] > cache->key.objectid +
286 if (logical[nr] + stripe_len <= cache->key.objectid)
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
315 struct btrfs_caching_control *ctl;
317 spin_lock(&cache->lock);
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
329 static void put_caching_control(struct btrfs_caching_control *ctl)
331 if (atomic_dec_and_test(&ctl->count))
335 #ifdef CONFIG_BTRFS_DEBUG
336 static void fragment_free_space(struct btrfs_root *root,
337 struct btrfs_block_group_cache *block_group)
339 u64 start = block_group->key.objectid;
340 u64 len = block_group->key.offset;
341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 root->nodesize : root->sectorsize;
343 u64 step = chunk << 1;
345 while (len > chunk) {
346 btrfs_remove_free_space(block_group, start, chunk);
357 * this is only called by cache_block_group, since we could have freed extents
358 * we need to check the pinned_extents for any extents that can't be used yet
359 * since their free space will be released as soon as the transaction commits.
361 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
362 struct btrfs_fs_info *info, u64 start, u64 end)
364 u64 extent_start, extent_end, size, total_added = 0;
367 while (start < end) {
368 ret = find_first_extent_bit(info->pinned_extents, start,
369 &extent_start, &extent_end,
370 EXTENT_DIRTY | EXTENT_UPTODATE,
375 if (extent_start <= start) {
376 start = extent_end + 1;
377 } else if (extent_start > start && extent_start < end) {
378 size = extent_start - start;
380 ret = btrfs_add_free_space(block_group, start,
382 BUG_ON(ret); /* -ENOMEM or logic error */
383 start = extent_end + 1;
392 ret = btrfs_add_free_space(block_group, start, size);
393 BUG_ON(ret); /* -ENOMEM or logic error */
399 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
401 struct btrfs_block_group_cache *block_group;
402 struct btrfs_fs_info *fs_info;
403 struct btrfs_root *extent_root;
404 struct btrfs_path *path;
405 struct extent_buffer *leaf;
406 struct btrfs_key key;
413 block_group = caching_ctl->block_group;
414 fs_info = block_group->fs_info;
415 extent_root = fs_info->extent_root;
417 path = btrfs_alloc_path();
421 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
423 #ifdef CONFIG_BTRFS_DEBUG
425 * If we're fragmenting we don't want to make anybody think we can
426 * allocate from this block group until we've had a chance to fragment
429 if (btrfs_should_fragment_free_space(extent_root, block_group))
433 * We don't want to deadlock with somebody trying to allocate a new
434 * extent for the extent root while also trying to search the extent
435 * root to add free space. So we skip locking and search the commit
436 * root, since its read-only
438 path->skip_locking = 1;
439 path->search_commit_root = 1;
444 key.type = BTRFS_EXTENT_ITEM_KEY;
447 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
451 leaf = path->nodes[0];
452 nritems = btrfs_header_nritems(leaf);
455 if (btrfs_fs_closing(fs_info) > 1) {
460 if (path->slots[0] < nritems) {
461 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
463 ret = find_next_key(path, 0, &key);
467 if (need_resched() ||
468 rwsem_is_contended(&fs_info->commit_root_sem)) {
470 caching_ctl->progress = last;
471 btrfs_release_path(path);
472 up_read(&fs_info->commit_root_sem);
473 mutex_unlock(&caching_ctl->mutex);
475 mutex_lock(&caching_ctl->mutex);
476 down_read(&fs_info->commit_root_sem);
480 ret = btrfs_next_leaf(extent_root, path);
485 leaf = path->nodes[0];
486 nritems = btrfs_header_nritems(leaf);
490 if (key.objectid < last) {
493 key.type = BTRFS_EXTENT_ITEM_KEY;
496 caching_ctl->progress = last;
497 btrfs_release_path(path);
501 if (key.objectid < block_group->key.objectid) {
506 if (key.objectid >= block_group->key.objectid +
507 block_group->key.offset)
510 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
511 key.type == BTRFS_METADATA_ITEM_KEY) {
512 total_found += add_new_free_space(block_group,
515 if (key.type == BTRFS_METADATA_ITEM_KEY)
516 last = key.objectid +
517 fs_info->tree_root->nodesize;
519 last = key.objectid + key.offset;
521 if (total_found > CACHING_CTL_WAKE_UP) {
524 wake_up(&caching_ctl->wait);
531 total_found += add_new_free_space(block_group, fs_info, last,
532 block_group->key.objectid +
533 block_group->key.offset);
534 caching_ctl->progress = (u64)-1;
537 btrfs_free_path(path);
541 static noinline void caching_thread(struct btrfs_work *work)
543 struct btrfs_block_group_cache *block_group;
544 struct btrfs_fs_info *fs_info;
545 struct btrfs_caching_control *caching_ctl;
546 struct btrfs_root *extent_root;
549 caching_ctl = container_of(work, struct btrfs_caching_control, work);
550 block_group = caching_ctl->block_group;
551 fs_info = block_group->fs_info;
552 extent_root = fs_info->extent_root;
554 mutex_lock(&caching_ctl->mutex);
555 down_read(&fs_info->commit_root_sem);
557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
558 ret = load_free_space_tree(caching_ctl);
560 ret = load_extent_tree_free(caching_ctl);
562 spin_lock(&block_group->lock);
563 block_group->caching_ctl = NULL;
564 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
565 spin_unlock(&block_group->lock);
567 #ifdef CONFIG_BTRFS_DEBUG
568 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
571 spin_lock(&block_group->space_info->lock);
572 spin_lock(&block_group->lock);
573 bytes_used = block_group->key.offset -
574 btrfs_block_group_used(&block_group->item);
575 block_group->space_info->bytes_used += bytes_used >> 1;
576 spin_unlock(&block_group->lock);
577 spin_unlock(&block_group->space_info->lock);
578 fragment_free_space(extent_root, block_group);
582 caching_ctl->progress = (u64)-1;
584 up_read(&fs_info->commit_root_sem);
585 free_excluded_extents(fs_info->extent_root, block_group);
586 mutex_unlock(&caching_ctl->mutex);
588 wake_up(&caching_ctl->wait);
590 put_caching_control(caching_ctl);
591 btrfs_put_block_group(block_group);
594 static int cache_block_group(struct btrfs_block_group_cache *cache,
598 struct btrfs_fs_info *fs_info = cache->fs_info;
599 struct btrfs_caching_control *caching_ctl;
602 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
606 INIT_LIST_HEAD(&caching_ctl->list);
607 mutex_init(&caching_ctl->mutex);
608 init_waitqueue_head(&caching_ctl->wait);
609 caching_ctl->block_group = cache;
610 caching_ctl->progress = cache->key.objectid;
611 atomic_set(&caching_ctl->count, 1);
612 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
613 caching_thread, NULL, NULL);
615 spin_lock(&cache->lock);
617 * This should be a rare occasion, but this could happen I think in the
618 * case where one thread starts to load the space cache info, and then
619 * some other thread starts a transaction commit which tries to do an
620 * allocation while the other thread is still loading the space cache
621 * info. The previous loop should have kept us from choosing this block
622 * group, but if we've moved to the state where we will wait on caching
623 * block groups we need to first check if we're doing a fast load here,
624 * so we can wait for it to finish, otherwise we could end up allocating
625 * from a block group who's cache gets evicted for one reason or
628 while (cache->cached == BTRFS_CACHE_FAST) {
629 struct btrfs_caching_control *ctl;
631 ctl = cache->caching_ctl;
632 atomic_inc(&ctl->count);
633 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
634 spin_unlock(&cache->lock);
638 finish_wait(&ctl->wait, &wait);
639 put_caching_control(ctl);
640 spin_lock(&cache->lock);
643 if (cache->cached != BTRFS_CACHE_NO) {
644 spin_unlock(&cache->lock);
648 WARN_ON(cache->caching_ctl);
649 cache->caching_ctl = caching_ctl;
650 cache->cached = BTRFS_CACHE_FAST;
651 spin_unlock(&cache->lock);
653 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
654 mutex_lock(&caching_ctl->mutex);
655 ret = load_free_space_cache(fs_info, cache);
657 spin_lock(&cache->lock);
659 cache->caching_ctl = NULL;
660 cache->cached = BTRFS_CACHE_FINISHED;
661 cache->last_byte_to_unpin = (u64)-1;
662 caching_ctl->progress = (u64)-1;
664 if (load_cache_only) {
665 cache->caching_ctl = NULL;
666 cache->cached = BTRFS_CACHE_NO;
668 cache->cached = BTRFS_CACHE_STARTED;
669 cache->has_caching_ctl = 1;
672 spin_unlock(&cache->lock);
673 #ifdef CONFIG_BTRFS_DEBUG
675 btrfs_should_fragment_free_space(fs_info->extent_root,
679 spin_lock(&cache->space_info->lock);
680 spin_lock(&cache->lock);
681 bytes_used = cache->key.offset -
682 btrfs_block_group_used(&cache->item);
683 cache->space_info->bytes_used += bytes_used >> 1;
684 spin_unlock(&cache->lock);
685 spin_unlock(&cache->space_info->lock);
686 fragment_free_space(fs_info->extent_root, cache);
689 mutex_unlock(&caching_ctl->mutex);
691 wake_up(&caching_ctl->wait);
693 put_caching_control(caching_ctl);
694 free_excluded_extents(fs_info->extent_root, cache);
699 * We're either using the free space tree or no caching at all.
700 * Set cached to the appropriate value and wakeup any waiters.
702 spin_lock(&cache->lock);
703 if (load_cache_only) {
704 cache->caching_ctl = NULL;
705 cache->cached = BTRFS_CACHE_NO;
707 cache->cached = BTRFS_CACHE_STARTED;
708 cache->has_caching_ctl = 1;
710 spin_unlock(&cache->lock);
711 wake_up(&caching_ctl->wait);
714 if (load_cache_only) {
715 put_caching_control(caching_ctl);
719 down_write(&fs_info->commit_root_sem);
720 atomic_inc(&caching_ctl->count);
721 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
722 up_write(&fs_info->commit_root_sem);
724 btrfs_get_block_group(cache);
726 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
732 * return the block group that starts at or after bytenr
734 static struct btrfs_block_group_cache *
735 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
737 struct btrfs_block_group_cache *cache;
739 cache = block_group_cache_tree_search(info, bytenr, 0);
745 * return the block group that contains the given bytenr
747 struct btrfs_block_group_cache *btrfs_lookup_block_group(
748 struct btrfs_fs_info *info,
751 struct btrfs_block_group_cache *cache;
753 cache = block_group_cache_tree_search(info, bytenr, 1);
758 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
761 struct list_head *head = &info->space_info;
762 struct btrfs_space_info *found;
764 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
767 list_for_each_entry_rcu(found, head, list) {
768 if (found->flags & flags) {
778 * after adding space to the filesystem, we need to clear the full flags
779 * on all the space infos.
781 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
783 struct list_head *head = &info->space_info;
784 struct btrfs_space_info *found;
787 list_for_each_entry_rcu(found, head, list)
792 /* simple helper to search for an existing data extent at a given offset */
793 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
796 struct btrfs_key key;
797 struct btrfs_path *path;
799 path = btrfs_alloc_path();
803 key.objectid = start;
805 key.type = BTRFS_EXTENT_ITEM_KEY;
806 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
808 btrfs_free_path(path);
813 * helper function to lookup reference count and flags of a tree block.
815 * the head node for delayed ref is used to store the sum of all the
816 * reference count modifications queued up in the rbtree. the head
817 * node may also store the extent flags to set. This way you can check
818 * to see what the reference count and extent flags would be if all of
819 * the delayed refs are not processed.
821 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
822 struct btrfs_root *root, u64 bytenr,
823 u64 offset, int metadata, u64 *refs, u64 *flags)
825 struct btrfs_delayed_ref_head *head;
826 struct btrfs_delayed_ref_root *delayed_refs;
827 struct btrfs_path *path;
828 struct btrfs_extent_item *ei;
829 struct extent_buffer *leaf;
830 struct btrfs_key key;
837 * If we don't have skinny metadata, don't bother doing anything
840 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
841 offset = root->nodesize;
845 path = btrfs_alloc_path();
850 path->skip_locking = 1;
851 path->search_commit_root = 1;
855 key.objectid = bytenr;
858 key.type = BTRFS_METADATA_ITEM_KEY;
860 key.type = BTRFS_EXTENT_ITEM_KEY;
862 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
867 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
868 if (path->slots[0]) {
870 btrfs_item_key_to_cpu(path->nodes[0], &key,
872 if (key.objectid == bytenr &&
873 key.type == BTRFS_EXTENT_ITEM_KEY &&
874 key.offset == root->nodesize)
880 leaf = path->nodes[0];
881 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
882 if (item_size >= sizeof(*ei)) {
883 ei = btrfs_item_ptr(leaf, path->slots[0],
884 struct btrfs_extent_item);
885 num_refs = btrfs_extent_refs(leaf, ei);
886 extent_flags = btrfs_extent_flags(leaf, ei);
888 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
889 struct btrfs_extent_item_v0 *ei0;
890 BUG_ON(item_size != sizeof(*ei0));
891 ei0 = btrfs_item_ptr(leaf, path->slots[0],
892 struct btrfs_extent_item_v0);
893 num_refs = btrfs_extent_refs_v0(leaf, ei0);
894 /* FIXME: this isn't correct for data */
895 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
900 BUG_ON(num_refs == 0);
910 delayed_refs = &trans->transaction->delayed_refs;
911 spin_lock(&delayed_refs->lock);
912 head = btrfs_find_delayed_ref_head(trans, bytenr);
914 if (!mutex_trylock(&head->mutex)) {
915 atomic_inc(&head->node.refs);
916 spin_unlock(&delayed_refs->lock);
918 btrfs_release_path(path);
921 * Mutex was contended, block until it's released and try
924 mutex_lock(&head->mutex);
925 mutex_unlock(&head->mutex);
926 btrfs_put_delayed_ref(&head->node);
929 spin_lock(&head->lock);
930 if (head->extent_op && head->extent_op->update_flags)
931 extent_flags |= head->extent_op->flags_to_set;
933 BUG_ON(num_refs == 0);
935 num_refs += head->node.ref_mod;
936 spin_unlock(&head->lock);
937 mutex_unlock(&head->mutex);
939 spin_unlock(&delayed_refs->lock);
941 WARN_ON(num_refs == 0);
945 *flags = extent_flags;
947 btrfs_free_path(path);
952 * Back reference rules. Back refs have three main goals:
954 * 1) differentiate between all holders of references to an extent so that
955 * when a reference is dropped we can make sure it was a valid reference
956 * before freeing the extent.
958 * 2) Provide enough information to quickly find the holders of an extent
959 * if we notice a given block is corrupted or bad.
961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
962 * maintenance. This is actually the same as #2, but with a slightly
963 * different use case.
965 * There are two kinds of back refs. The implicit back refs is optimized
966 * for pointers in non-shared tree blocks. For a given pointer in a block,
967 * back refs of this kind provide information about the block's owner tree
968 * and the pointer's key. These information allow us to find the block by
969 * b-tree searching. The full back refs is for pointers in tree blocks not
970 * referenced by their owner trees. The location of tree block is recorded
971 * in the back refs. Actually the full back refs is generic, and can be
972 * used in all cases the implicit back refs is used. The major shortcoming
973 * of the full back refs is its overhead. Every time a tree block gets
974 * COWed, we have to update back refs entry for all pointers in it.
976 * For a newly allocated tree block, we use implicit back refs for
977 * pointers in it. This means most tree related operations only involve
978 * implicit back refs. For a tree block created in old transaction, the
979 * only way to drop a reference to it is COW it. So we can detect the
980 * event that tree block loses its owner tree's reference and do the
981 * back refs conversion.
983 * When a tree block is COW'd through a tree, there are four cases:
985 * The reference count of the block is one and the tree is the block's
986 * owner tree. Nothing to do in this case.
988 * The reference count of the block is one and the tree is not the
989 * block's owner tree. In this case, full back refs is used for pointers
990 * in the block. Remove these full back refs, add implicit back refs for
991 * every pointers in the new block.
993 * The reference count of the block is greater than one and the tree is
994 * the block's owner tree. In this case, implicit back refs is used for
995 * pointers in the block. Add full back refs for every pointers in the
996 * block, increase lower level extents' reference counts. The original
997 * implicit back refs are entailed to the new block.
999 * The reference count of the block is greater than one and the tree is
1000 * not the block's owner tree. Add implicit back refs for every pointer in
1001 * the new block, increase lower level extents' reference count.
1003 * Back Reference Key composing:
1005 * The key objectid corresponds to the first byte in the extent,
1006 * The key type is used to differentiate between types of back refs.
1007 * There are different meanings of the key offset for different types
1010 * File extents can be referenced by:
1012 * - multiple snapshots, subvolumes, or different generations in one subvol
1013 * - different files inside a single subvolume
1014 * - different offsets inside a file (bookend extents in file.c)
1016 * The extent ref structure for the implicit back refs has fields for:
1018 * - Objectid of the subvolume root
1019 * - objectid of the file holding the reference
1020 * - original offset in the file
1021 * - how many bookend extents
1023 * The key offset for the implicit back refs is hash of the first
1026 * The extent ref structure for the full back refs has field for:
1028 * - number of pointers in the tree leaf
1030 * The key offset for the implicit back refs is the first byte of
1033 * When a file extent is allocated, The implicit back refs is used.
1034 * the fields are filled in:
1036 * (root_key.objectid, inode objectid, offset in file, 1)
1038 * When a file extent is removed file truncation, we find the
1039 * corresponding implicit back refs and check the following fields:
1041 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1043 * Btree extents can be referenced by:
1045 * - Different subvolumes
1047 * Both the implicit back refs and the full back refs for tree blocks
1048 * only consist of key. The key offset for the implicit back refs is
1049 * objectid of block's owner tree. The key offset for the full back refs
1050 * is the first byte of parent block.
1052 * When implicit back refs is used, information about the lowest key and
1053 * level of the tree block are required. These information are stored in
1054 * tree block info structure.
1057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1058 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1059 struct btrfs_root *root,
1060 struct btrfs_path *path,
1061 u64 owner, u32 extra_size)
1063 struct btrfs_extent_item *item;
1064 struct btrfs_extent_item_v0 *ei0;
1065 struct btrfs_extent_ref_v0 *ref0;
1066 struct btrfs_tree_block_info *bi;
1067 struct extent_buffer *leaf;
1068 struct btrfs_key key;
1069 struct btrfs_key found_key;
1070 u32 new_size = sizeof(*item);
1074 leaf = path->nodes[0];
1075 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079 struct btrfs_extent_item_v0);
1080 refs = btrfs_extent_refs_v0(leaf, ei0);
1082 if (owner == (u64)-1) {
1084 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085 ret = btrfs_next_leaf(root, path);
1088 BUG_ON(ret > 0); /* Corruption */
1089 leaf = path->nodes[0];
1091 btrfs_item_key_to_cpu(leaf, &found_key,
1093 BUG_ON(key.objectid != found_key.objectid);
1094 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1098 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099 struct btrfs_extent_ref_v0);
1100 owner = btrfs_ref_objectid_v0(leaf, ref0);
1104 btrfs_release_path(path);
1106 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107 new_size += sizeof(*bi);
1109 new_size -= sizeof(*ei0);
1110 ret = btrfs_search_slot(trans, root, &key, path,
1111 new_size + extra_size, 1);
1114 BUG_ON(ret); /* Corruption */
1116 btrfs_extend_item(root, path, new_size);
1118 leaf = path->nodes[0];
1119 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 btrfs_set_extent_refs(leaf, item, refs);
1121 /* FIXME: get real generation */
1122 btrfs_set_extent_generation(leaf, item, 0);
1123 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124 btrfs_set_extent_flags(leaf, item,
1125 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127 bi = (struct btrfs_tree_block_info *)(item + 1);
1128 /* FIXME: get first key of the block */
1129 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1130 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1132 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1134 btrfs_mark_buffer_dirty(leaf);
1139 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1141 u32 high_crc = ~(u32)0;
1142 u32 low_crc = ~(u32)0;
1145 lenum = cpu_to_le64(root_objectid);
1146 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1147 lenum = cpu_to_le64(owner);
1148 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1149 lenum = cpu_to_le64(offset);
1150 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1152 return ((u64)high_crc << 31) ^ (u64)low_crc;
1155 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1156 struct btrfs_extent_data_ref *ref)
1158 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1159 btrfs_extent_data_ref_objectid(leaf, ref),
1160 btrfs_extent_data_ref_offset(leaf, ref));
1163 static int match_extent_data_ref(struct extent_buffer *leaf,
1164 struct btrfs_extent_data_ref *ref,
1165 u64 root_objectid, u64 owner, u64 offset)
1167 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1168 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1169 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1174 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1175 struct btrfs_root *root,
1176 struct btrfs_path *path,
1177 u64 bytenr, u64 parent,
1179 u64 owner, u64 offset)
1181 struct btrfs_key key;
1182 struct btrfs_extent_data_ref *ref;
1183 struct extent_buffer *leaf;
1189 key.objectid = bytenr;
1191 key.type = BTRFS_SHARED_DATA_REF_KEY;
1192 key.offset = parent;
1194 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1195 key.offset = hash_extent_data_ref(root_objectid,
1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1210 key.type = BTRFS_EXTENT_REF_V0_KEY;
1211 btrfs_release_path(path);
1212 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1223 leaf = path->nodes[0];
1224 nritems = btrfs_header_nritems(leaf);
1226 if (path->slots[0] >= nritems) {
1227 ret = btrfs_next_leaf(root, path);
1233 leaf = path->nodes[0];
1234 nritems = btrfs_header_nritems(leaf);
1238 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1239 if (key.objectid != bytenr ||
1240 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1243 ref = btrfs_item_ptr(leaf, path->slots[0],
1244 struct btrfs_extent_data_ref);
1246 if (match_extent_data_ref(leaf, ref, root_objectid,
1249 btrfs_release_path(path);
1261 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 u64 bytenr, u64 parent,
1265 u64 root_objectid, u64 owner,
1266 u64 offset, int refs_to_add)
1268 struct btrfs_key key;
1269 struct extent_buffer *leaf;
1274 key.objectid = bytenr;
1276 key.type = BTRFS_SHARED_DATA_REF_KEY;
1277 key.offset = parent;
1278 size = sizeof(struct btrfs_shared_data_ref);
1280 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1281 key.offset = hash_extent_data_ref(root_objectid,
1283 size = sizeof(struct btrfs_extent_data_ref);
1286 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1287 if (ret && ret != -EEXIST)
1290 leaf = path->nodes[0];
1292 struct btrfs_shared_data_ref *ref;
1293 ref = btrfs_item_ptr(leaf, path->slots[0],
1294 struct btrfs_shared_data_ref);
1296 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1298 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1299 num_refs += refs_to_add;
1300 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1303 struct btrfs_extent_data_ref *ref;
1304 while (ret == -EEXIST) {
1305 ref = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_extent_data_ref);
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1310 btrfs_release_path(path);
1312 ret = btrfs_insert_empty_item(trans, root, path, &key,
1314 if (ret && ret != -EEXIST)
1317 leaf = path->nodes[0];
1319 ref = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1322 btrfs_set_extent_data_ref_root(leaf, ref,
1324 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1325 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1326 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1328 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1329 num_refs += refs_to_add;
1330 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1333 btrfs_mark_buffer_dirty(leaf);
1336 btrfs_release_path(path);
1340 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1341 struct btrfs_root *root,
1342 struct btrfs_path *path,
1343 int refs_to_drop, int *last_ref)
1345 struct btrfs_key key;
1346 struct btrfs_extent_data_ref *ref1 = NULL;
1347 struct btrfs_shared_data_ref *ref2 = NULL;
1348 struct extent_buffer *leaf;
1352 leaf = path->nodes[0];
1353 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1355 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1356 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_extent_data_ref);
1358 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1359 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1360 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_shared_data_ref);
1362 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1363 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1364 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1365 struct btrfs_extent_ref_v0 *ref0;
1366 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1367 struct btrfs_extent_ref_v0);
1368 num_refs = btrfs_ref_count_v0(leaf, ref0);
1374 BUG_ON(num_refs < refs_to_drop);
1375 num_refs -= refs_to_drop;
1377 if (num_refs == 0) {
1378 ret = btrfs_del_item(trans, root, path);
1381 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1382 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1383 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1384 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1385 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1387 struct btrfs_extent_ref_v0 *ref0;
1388 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1389 struct btrfs_extent_ref_v0);
1390 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1393 btrfs_mark_buffer_dirty(leaf);
1398 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1399 struct btrfs_extent_inline_ref *iref)
1401 struct btrfs_key key;
1402 struct extent_buffer *leaf;
1403 struct btrfs_extent_data_ref *ref1;
1404 struct btrfs_shared_data_ref *ref2;
1407 leaf = path->nodes[0];
1408 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1410 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1411 BTRFS_EXTENT_DATA_REF_KEY) {
1412 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1413 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1415 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1416 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1418 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1419 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1420 struct btrfs_extent_data_ref);
1421 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1422 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1423 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1424 struct btrfs_shared_data_ref);
1425 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1426 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1428 struct btrfs_extent_ref_v0 *ref0;
1429 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1430 struct btrfs_extent_ref_v0);
1431 num_refs = btrfs_ref_count_v0(leaf, ref0);
1439 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1440 struct btrfs_root *root,
1441 struct btrfs_path *path,
1442 u64 bytenr, u64 parent,
1445 struct btrfs_key key;
1448 key.objectid = bytenr;
1450 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1451 key.offset = parent;
1453 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1454 key.offset = root_objectid;
1457 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1460 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1461 if (ret == -ENOENT && parent) {
1462 btrfs_release_path(path);
1463 key.type = BTRFS_EXTENT_REF_V0_KEY;
1464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1472 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1473 struct btrfs_root *root,
1474 struct btrfs_path *path,
1475 u64 bytenr, u64 parent,
1478 struct btrfs_key key;
1481 key.objectid = bytenr;
1483 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1484 key.offset = parent;
1486 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1487 key.offset = root_objectid;
1490 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1491 btrfs_release_path(path);
1495 static inline int extent_ref_type(u64 parent, u64 owner)
1498 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1500 type = BTRFS_SHARED_BLOCK_REF_KEY;
1502 type = BTRFS_TREE_BLOCK_REF_KEY;
1505 type = BTRFS_SHARED_DATA_REF_KEY;
1507 type = BTRFS_EXTENT_DATA_REF_KEY;
1512 static int find_next_key(struct btrfs_path *path, int level,
1513 struct btrfs_key *key)
1516 for (; level < BTRFS_MAX_LEVEL; level++) {
1517 if (!path->nodes[level])
1519 if (path->slots[level] + 1 >=
1520 btrfs_header_nritems(path->nodes[level]))
1523 btrfs_item_key_to_cpu(path->nodes[level], key,
1524 path->slots[level] + 1);
1526 btrfs_node_key_to_cpu(path->nodes[level], key,
1527 path->slots[level] + 1);
1534 * look for inline back ref. if back ref is found, *ref_ret is set
1535 * to the address of inline back ref, and 0 is returned.
1537 * if back ref isn't found, *ref_ret is set to the address where it
1538 * should be inserted, and -ENOENT is returned.
1540 * if insert is true and there are too many inline back refs, the path
1541 * points to the extent item, and -EAGAIN is returned.
1543 * NOTE: inline back refs are ordered in the same way that back ref
1544 * items in the tree are ordered.
1546 static noinline_for_stack
1547 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1548 struct btrfs_root *root,
1549 struct btrfs_path *path,
1550 struct btrfs_extent_inline_ref **ref_ret,
1551 u64 bytenr, u64 num_bytes,
1552 u64 parent, u64 root_objectid,
1553 u64 owner, u64 offset, int insert)
1555 struct btrfs_key key;
1556 struct extent_buffer *leaf;
1557 struct btrfs_extent_item *ei;
1558 struct btrfs_extent_inline_ref *iref;
1568 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1571 key.objectid = bytenr;
1572 key.type = BTRFS_EXTENT_ITEM_KEY;
1573 key.offset = num_bytes;
1575 want = extent_ref_type(parent, owner);
1577 extra_size = btrfs_extent_inline_ref_size(want);
1578 path->keep_locks = 1;
1583 * Owner is our parent level, so we can just add one to get the level
1584 * for the block we are interested in.
1586 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1587 key.type = BTRFS_METADATA_ITEM_KEY;
1592 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1599 * We may be a newly converted file system which still has the old fat
1600 * extent entries for metadata, so try and see if we have one of those.
1602 if (ret > 0 && skinny_metadata) {
1603 skinny_metadata = false;
1604 if (path->slots[0]) {
1606 btrfs_item_key_to_cpu(path->nodes[0], &key,
1608 if (key.objectid == bytenr &&
1609 key.type == BTRFS_EXTENT_ITEM_KEY &&
1610 key.offset == num_bytes)
1614 key.objectid = bytenr;
1615 key.type = BTRFS_EXTENT_ITEM_KEY;
1616 key.offset = num_bytes;
1617 btrfs_release_path(path);
1622 if (ret && !insert) {
1625 } else if (WARN_ON(ret)) {
1630 leaf = path->nodes[0];
1631 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1632 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1633 if (item_size < sizeof(*ei)) {
1638 ret = convert_extent_item_v0(trans, root, path, owner,
1644 leaf = path->nodes[0];
1645 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1648 BUG_ON(item_size < sizeof(*ei));
1650 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1651 flags = btrfs_extent_flags(leaf, ei);
1653 ptr = (unsigned long)(ei + 1);
1654 end = (unsigned long)ei + item_size;
1656 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1657 ptr += sizeof(struct btrfs_tree_block_info);
1667 iref = (struct btrfs_extent_inline_ref *)ptr;
1668 type = btrfs_extent_inline_ref_type(leaf, iref);
1672 ptr += btrfs_extent_inline_ref_size(type);
1676 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1677 struct btrfs_extent_data_ref *dref;
1678 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679 if (match_extent_data_ref(leaf, dref, root_objectid,
1684 if (hash_extent_data_ref_item(leaf, dref) <
1685 hash_extent_data_ref(root_objectid, owner, offset))
1689 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1691 if (parent == ref_offset) {
1695 if (ref_offset < parent)
1698 if (root_objectid == ref_offset) {
1702 if (ref_offset < root_objectid)
1706 ptr += btrfs_extent_inline_ref_size(type);
1708 if (err == -ENOENT && insert) {
1709 if (item_size + extra_size >=
1710 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1715 * To add new inline back ref, we have to make sure
1716 * there is no corresponding back ref item.
1717 * For simplicity, we just do not add new inline back
1718 * ref if there is any kind of item for this block
1720 if (find_next_key(path, 0, &key) == 0 &&
1721 key.objectid == bytenr &&
1722 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1727 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1730 path->keep_locks = 0;
1731 btrfs_unlock_up_safe(path, 1);
1737 * helper to add new inline back ref
1739 static noinline_for_stack
1740 void setup_inline_extent_backref(struct btrfs_root *root,
1741 struct btrfs_path *path,
1742 struct btrfs_extent_inline_ref *iref,
1743 u64 parent, u64 root_objectid,
1744 u64 owner, u64 offset, int refs_to_add,
1745 struct btrfs_delayed_extent_op *extent_op)
1747 struct extent_buffer *leaf;
1748 struct btrfs_extent_item *ei;
1751 unsigned long item_offset;
1756 leaf = path->nodes[0];
1757 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1758 item_offset = (unsigned long)iref - (unsigned long)ei;
1760 type = extent_ref_type(parent, owner);
1761 size = btrfs_extent_inline_ref_size(type);
1763 btrfs_extend_item(root, path, size);
1765 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1766 refs = btrfs_extent_refs(leaf, ei);
1767 refs += refs_to_add;
1768 btrfs_set_extent_refs(leaf, ei, refs);
1770 __run_delayed_extent_op(extent_op, leaf, ei);
1772 ptr = (unsigned long)ei + item_offset;
1773 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1774 if (ptr < end - size)
1775 memmove_extent_buffer(leaf, ptr + size, ptr,
1778 iref = (struct btrfs_extent_inline_ref *)ptr;
1779 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1780 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1781 struct btrfs_extent_data_ref *dref;
1782 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1783 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1784 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1785 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1786 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 struct btrfs_shared_data_ref *sref;
1789 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1790 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1791 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1792 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1793 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1795 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1797 btrfs_mark_buffer_dirty(leaf);
1800 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 struct btrfs_extent_inline_ref **ref_ret,
1804 u64 bytenr, u64 num_bytes, u64 parent,
1805 u64 root_objectid, u64 owner, u64 offset)
1809 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1810 bytenr, num_bytes, parent,
1811 root_objectid, owner, offset, 0);
1815 btrfs_release_path(path);
1818 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1822 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1823 root_objectid, owner, offset);
1829 * helper to update/remove inline back ref
1831 static noinline_for_stack
1832 void update_inline_extent_backref(struct btrfs_root *root,
1833 struct btrfs_path *path,
1834 struct btrfs_extent_inline_ref *iref,
1836 struct btrfs_delayed_extent_op *extent_op,
1839 struct extent_buffer *leaf;
1840 struct btrfs_extent_item *ei;
1841 struct btrfs_extent_data_ref *dref = NULL;
1842 struct btrfs_shared_data_ref *sref = NULL;
1850 leaf = path->nodes[0];
1851 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1852 refs = btrfs_extent_refs(leaf, ei);
1853 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1854 refs += refs_to_mod;
1855 btrfs_set_extent_refs(leaf, ei, refs);
1857 __run_delayed_extent_op(extent_op, leaf, ei);
1859 type = btrfs_extent_inline_ref_type(leaf, iref);
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1863 refs = btrfs_extent_data_ref_count(leaf, dref);
1864 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1865 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1866 refs = btrfs_shared_data_ref_count(leaf, sref);
1869 BUG_ON(refs_to_mod != -1);
1872 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1873 refs += refs_to_mod;
1876 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1877 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1879 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1882 size = btrfs_extent_inline_ref_size(type);
1883 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1884 ptr = (unsigned long)iref;
1885 end = (unsigned long)ei + item_size;
1886 if (ptr + size < end)
1887 memmove_extent_buffer(leaf, ptr, ptr + size,
1890 btrfs_truncate_item(root, path, item_size, 1);
1892 btrfs_mark_buffer_dirty(leaf);
1895 static noinline_for_stack
1896 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1897 struct btrfs_root *root,
1898 struct btrfs_path *path,
1899 u64 bytenr, u64 num_bytes, u64 parent,
1900 u64 root_objectid, u64 owner,
1901 u64 offset, int refs_to_add,
1902 struct btrfs_delayed_extent_op *extent_op)
1904 struct btrfs_extent_inline_ref *iref;
1907 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1908 bytenr, num_bytes, parent,
1909 root_objectid, owner, offset, 1);
1911 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1912 update_inline_extent_backref(root, path, iref,
1913 refs_to_add, extent_op, NULL);
1914 } else if (ret == -ENOENT) {
1915 setup_inline_extent_backref(root, path, iref, parent,
1916 root_objectid, owner, offset,
1917 refs_to_add, extent_op);
1923 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1924 struct btrfs_root *root,
1925 struct btrfs_path *path,
1926 u64 bytenr, u64 parent, u64 root_objectid,
1927 u64 owner, u64 offset, int refs_to_add)
1930 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1931 BUG_ON(refs_to_add != 1);
1932 ret = insert_tree_block_ref(trans, root, path, bytenr,
1933 parent, root_objectid);
1935 ret = insert_extent_data_ref(trans, root, path, bytenr,
1936 parent, root_objectid,
1937 owner, offset, refs_to_add);
1942 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 struct btrfs_path *path,
1945 struct btrfs_extent_inline_ref *iref,
1946 int refs_to_drop, int is_data, int *last_ref)
1950 BUG_ON(!is_data && refs_to_drop != 1);
1952 update_inline_extent_backref(root, path, iref,
1953 -refs_to_drop, NULL, last_ref);
1954 } else if (is_data) {
1955 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1959 ret = btrfs_del_item(trans, root, path);
1964 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1965 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1966 u64 *discarded_bytes)
1969 u64 bytes_left, end;
1970 u64 aligned_start = ALIGN(start, 1 << 9);
1972 if (WARN_ON(start != aligned_start)) {
1973 len -= aligned_start - start;
1974 len = round_down(len, 1 << 9);
1975 start = aligned_start;
1978 *discarded_bytes = 0;
1986 /* Skip any superblocks on this device. */
1987 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1988 u64 sb_start = btrfs_sb_offset(j);
1989 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1990 u64 size = sb_start - start;
1992 if (!in_range(sb_start, start, bytes_left) &&
1993 !in_range(sb_end, start, bytes_left) &&
1994 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1998 * Superblock spans beginning of range. Adjust start and
2001 if (sb_start <= start) {
2002 start += sb_end - start;
2007 bytes_left = end - start;
2012 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2015 *discarded_bytes += size;
2016 else if (ret != -EOPNOTSUPP)
2025 bytes_left = end - start;
2029 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2032 *discarded_bytes += bytes_left;
2037 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2038 u64 num_bytes, u64 *actual_bytes)
2041 u64 discarded_bytes = 0;
2042 struct btrfs_bio *bbio = NULL;
2045 /* Tell the block device(s) that the sectors can be discarded */
2046 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2047 bytenr, &num_bytes, &bbio, 0);
2048 /* Error condition is -ENOMEM */
2050 struct btrfs_bio_stripe *stripe = bbio->stripes;
2054 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2056 if (!stripe->dev->can_discard)
2059 ret = btrfs_issue_discard(stripe->dev->bdev,
2064 discarded_bytes += bytes;
2065 else if (ret != -EOPNOTSUPP)
2066 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2069 * Just in case we get back EOPNOTSUPP for some reason,
2070 * just ignore the return value so we don't screw up
2071 * people calling discard_extent.
2075 btrfs_put_bbio(bbio);
2079 *actual_bytes = discarded_bytes;
2082 if (ret == -EOPNOTSUPP)
2087 /* Can return -ENOMEM */
2088 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2089 struct btrfs_root *root,
2090 u64 bytenr, u64 num_bytes, u64 parent,
2091 u64 root_objectid, u64 owner, u64 offset)
2094 struct btrfs_fs_info *fs_info = root->fs_info;
2096 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2097 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2099 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2100 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2102 parent, root_objectid, (int)owner,
2103 BTRFS_ADD_DELAYED_REF, NULL);
2105 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2106 num_bytes, parent, root_objectid,
2108 BTRFS_ADD_DELAYED_REF, NULL);
2113 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2114 struct btrfs_root *root,
2115 struct btrfs_delayed_ref_node *node,
2116 u64 parent, u64 root_objectid,
2117 u64 owner, u64 offset, int refs_to_add,
2118 struct btrfs_delayed_extent_op *extent_op)
2120 struct btrfs_fs_info *fs_info = root->fs_info;
2121 struct btrfs_path *path;
2122 struct extent_buffer *leaf;
2123 struct btrfs_extent_item *item;
2124 struct btrfs_key key;
2125 u64 bytenr = node->bytenr;
2126 u64 num_bytes = node->num_bytes;
2130 path = btrfs_alloc_path();
2135 path->leave_spinning = 1;
2136 /* this will setup the path even if it fails to insert the back ref */
2137 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2138 bytenr, num_bytes, parent,
2139 root_objectid, owner, offset,
2140 refs_to_add, extent_op);
2141 if ((ret < 0 && ret != -EAGAIN) || !ret)
2145 * Ok we had -EAGAIN which means we didn't have space to insert and
2146 * inline extent ref, so just update the reference count and add a
2149 leaf = path->nodes[0];
2150 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2151 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2152 refs = btrfs_extent_refs(leaf, item);
2153 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2155 __run_delayed_extent_op(extent_op, leaf, item);
2157 btrfs_mark_buffer_dirty(leaf);
2158 btrfs_release_path(path);
2161 path->leave_spinning = 1;
2162 /* now insert the actual backref */
2163 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2164 path, bytenr, parent, root_objectid,
2165 owner, offset, refs_to_add);
2167 btrfs_abort_transaction(trans, root, ret);
2169 btrfs_free_path(path);
2173 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2174 struct btrfs_root *root,
2175 struct btrfs_delayed_ref_node *node,
2176 struct btrfs_delayed_extent_op *extent_op,
2177 int insert_reserved)
2180 struct btrfs_delayed_data_ref *ref;
2181 struct btrfs_key ins;
2186 ins.objectid = node->bytenr;
2187 ins.offset = node->num_bytes;
2188 ins.type = BTRFS_EXTENT_ITEM_KEY;
2190 ref = btrfs_delayed_node_to_data_ref(node);
2191 trace_run_delayed_data_ref(node, ref, node->action);
2193 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2194 parent = ref->parent;
2195 ref_root = ref->root;
2197 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2199 flags |= extent_op->flags_to_set;
2200 ret = alloc_reserved_file_extent(trans, root,
2201 parent, ref_root, flags,
2202 ref->objectid, ref->offset,
2203 &ins, node->ref_mod);
2204 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2205 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2206 ref_root, ref->objectid,
2207 ref->offset, node->ref_mod,
2209 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2210 ret = __btrfs_free_extent(trans, root, node, parent,
2211 ref_root, ref->objectid,
2212 ref->offset, node->ref_mod,
2220 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2221 struct extent_buffer *leaf,
2222 struct btrfs_extent_item *ei)
2224 u64 flags = btrfs_extent_flags(leaf, ei);
2225 if (extent_op->update_flags) {
2226 flags |= extent_op->flags_to_set;
2227 btrfs_set_extent_flags(leaf, ei, flags);
2230 if (extent_op->update_key) {
2231 struct btrfs_tree_block_info *bi;
2232 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2233 bi = (struct btrfs_tree_block_info *)(ei + 1);
2234 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2238 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2239 struct btrfs_root *root,
2240 struct btrfs_delayed_ref_node *node,
2241 struct btrfs_delayed_extent_op *extent_op)
2243 struct btrfs_key key;
2244 struct btrfs_path *path;
2245 struct btrfs_extent_item *ei;
2246 struct extent_buffer *leaf;
2250 int metadata = !extent_op->is_data;
2255 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2258 path = btrfs_alloc_path();
2262 key.objectid = node->bytenr;
2265 key.type = BTRFS_METADATA_ITEM_KEY;
2266 key.offset = extent_op->level;
2268 key.type = BTRFS_EXTENT_ITEM_KEY;
2269 key.offset = node->num_bytes;
2274 path->leave_spinning = 1;
2275 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2283 if (path->slots[0] > 0) {
2285 btrfs_item_key_to_cpu(path->nodes[0], &key,
2287 if (key.objectid == node->bytenr &&
2288 key.type == BTRFS_EXTENT_ITEM_KEY &&
2289 key.offset == node->num_bytes)
2293 btrfs_release_path(path);
2296 key.objectid = node->bytenr;
2297 key.offset = node->num_bytes;
2298 key.type = BTRFS_EXTENT_ITEM_KEY;
2307 leaf = path->nodes[0];
2308 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2309 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2310 if (item_size < sizeof(*ei)) {
2311 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2317 leaf = path->nodes[0];
2318 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2321 BUG_ON(item_size < sizeof(*ei));
2322 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2323 __run_delayed_extent_op(extent_op, leaf, ei);
2325 btrfs_mark_buffer_dirty(leaf);
2327 btrfs_free_path(path);
2331 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2332 struct btrfs_root *root,
2333 struct btrfs_delayed_ref_node *node,
2334 struct btrfs_delayed_extent_op *extent_op,
2335 int insert_reserved)
2338 struct btrfs_delayed_tree_ref *ref;
2339 struct btrfs_key ins;
2342 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2345 ref = btrfs_delayed_node_to_tree_ref(node);
2346 trace_run_delayed_tree_ref(node, ref, node->action);
2348 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2349 parent = ref->parent;
2350 ref_root = ref->root;
2352 ins.objectid = node->bytenr;
2353 if (skinny_metadata) {
2354 ins.offset = ref->level;
2355 ins.type = BTRFS_METADATA_ITEM_KEY;
2357 ins.offset = node->num_bytes;
2358 ins.type = BTRFS_EXTENT_ITEM_KEY;
2361 BUG_ON(node->ref_mod != 1);
2362 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2363 BUG_ON(!extent_op || !extent_op->update_flags);
2364 ret = alloc_reserved_tree_block(trans, root,
2366 extent_op->flags_to_set,
2369 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2370 ret = __btrfs_inc_extent_ref(trans, root, node,
2374 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2375 ret = __btrfs_free_extent(trans, root, node,
2377 ref->level, 0, 1, extent_op);
2384 /* helper function to actually process a single delayed ref entry */
2385 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2386 struct btrfs_root *root,
2387 struct btrfs_delayed_ref_node *node,
2388 struct btrfs_delayed_extent_op *extent_op,
2389 int insert_reserved)
2393 if (trans->aborted) {
2394 if (insert_reserved)
2395 btrfs_pin_extent(root, node->bytenr,
2396 node->num_bytes, 1);
2400 if (btrfs_delayed_ref_is_head(node)) {
2401 struct btrfs_delayed_ref_head *head;
2403 * we've hit the end of the chain and we were supposed
2404 * to insert this extent into the tree. But, it got
2405 * deleted before we ever needed to insert it, so all
2406 * we have to do is clean up the accounting
2409 head = btrfs_delayed_node_to_head(node);
2410 trace_run_delayed_ref_head(node, head, node->action);
2412 if (insert_reserved) {
2413 btrfs_pin_extent(root, node->bytenr,
2414 node->num_bytes, 1);
2415 if (head->is_data) {
2416 ret = btrfs_del_csums(trans, root,
2422 /* Also free its reserved qgroup space */
2423 btrfs_qgroup_free_delayed_ref(root->fs_info,
2424 head->qgroup_ref_root,
2425 head->qgroup_reserved);
2429 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2430 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2431 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2433 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2434 node->type == BTRFS_SHARED_DATA_REF_KEY)
2435 ret = run_delayed_data_ref(trans, root, node, extent_op,
2442 static inline struct btrfs_delayed_ref_node *
2443 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2445 struct btrfs_delayed_ref_node *ref;
2447 if (list_empty(&head->ref_list))
2451 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2452 * This is to prevent a ref count from going down to zero, which deletes
2453 * the extent item from the extent tree, when there still are references
2454 * to add, which would fail because they would not find the extent item.
2456 list_for_each_entry(ref, &head->ref_list, list) {
2457 if (ref->action == BTRFS_ADD_DELAYED_REF)
2461 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2466 * Returns 0 on success or if called with an already aborted transaction.
2467 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2469 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2470 struct btrfs_root *root,
2473 struct btrfs_delayed_ref_root *delayed_refs;
2474 struct btrfs_delayed_ref_node *ref;
2475 struct btrfs_delayed_ref_head *locked_ref = NULL;
2476 struct btrfs_delayed_extent_op *extent_op;
2477 struct btrfs_fs_info *fs_info = root->fs_info;
2478 ktime_t start = ktime_get();
2480 unsigned long count = 0;
2481 unsigned long actual_count = 0;
2482 int must_insert_reserved = 0;
2484 delayed_refs = &trans->transaction->delayed_refs;
2490 spin_lock(&delayed_refs->lock);
2491 locked_ref = btrfs_select_ref_head(trans);
2493 spin_unlock(&delayed_refs->lock);
2497 /* grab the lock that says we are going to process
2498 * all the refs for this head */
2499 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2500 spin_unlock(&delayed_refs->lock);
2502 * we may have dropped the spin lock to get the head
2503 * mutex lock, and that might have given someone else
2504 * time to free the head. If that's true, it has been
2505 * removed from our list and we can move on.
2507 if (ret == -EAGAIN) {
2515 * We need to try and merge add/drops of the same ref since we
2516 * can run into issues with relocate dropping the implicit ref
2517 * and then it being added back again before the drop can
2518 * finish. If we merged anything we need to re-loop so we can
2520 * Or we can get node references of the same type that weren't
2521 * merged when created due to bumps in the tree mod seq, and
2522 * we need to merge them to prevent adding an inline extent
2523 * backref before dropping it (triggering a BUG_ON at
2524 * insert_inline_extent_backref()).
2526 spin_lock(&locked_ref->lock);
2527 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2531 * locked_ref is the head node, so we have to go one
2532 * node back for any delayed ref updates
2534 ref = select_delayed_ref(locked_ref);
2536 if (ref && ref->seq &&
2537 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2538 spin_unlock(&locked_ref->lock);
2539 btrfs_delayed_ref_unlock(locked_ref);
2540 spin_lock(&delayed_refs->lock);
2541 locked_ref->processing = 0;
2542 delayed_refs->num_heads_ready++;
2543 spin_unlock(&delayed_refs->lock);
2551 * record the must insert reserved flag before we
2552 * drop the spin lock.
2554 must_insert_reserved = locked_ref->must_insert_reserved;
2555 locked_ref->must_insert_reserved = 0;
2557 extent_op = locked_ref->extent_op;
2558 locked_ref->extent_op = NULL;
2563 /* All delayed refs have been processed, Go ahead
2564 * and send the head node to run_one_delayed_ref,
2565 * so that any accounting fixes can happen
2567 ref = &locked_ref->node;
2569 if (extent_op && must_insert_reserved) {
2570 btrfs_free_delayed_extent_op(extent_op);
2575 spin_unlock(&locked_ref->lock);
2576 ret = run_delayed_extent_op(trans, root,
2578 btrfs_free_delayed_extent_op(extent_op);
2582 * Need to reset must_insert_reserved if
2583 * there was an error so the abort stuff
2584 * can cleanup the reserved space
2587 if (must_insert_reserved)
2588 locked_ref->must_insert_reserved = 1;
2589 locked_ref->processing = 0;
2590 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2591 btrfs_delayed_ref_unlock(locked_ref);
2598 * Need to drop our head ref lock and re-aqcuire the
2599 * delayed ref lock and then re-check to make sure
2602 spin_unlock(&locked_ref->lock);
2603 spin_lock(&delayed_refs->lock);
2604 spin_lock(&locked_ref->lock);
2605 if (!list_empty(&locked_ref->ref_list) ||
2606 locked_ref->extent_op) {
2607 spin_unlock(&locked_ref->lock);
2608 spin_unlock(&delayed_refs->lock);
2612 delayed_refs->num_heads--;
2613 rb_erase(&locked_ref->href_node,
2614 &delayed_refs->href_root);
2615 spin_unlock(&delayed_refs->lock);
2619 list_del(&ref->list);
2621 atomic_dec(&delayed_refs->num_entries);
2623 if (!btrfs_delayed_ref_is_head(ref)) {
2625 * when we play the delayed ref, also correct the
2628 switch (ref->action) {
2629 case BTRFS_ADD_DELAYED_REF:
2630 case BTRFS_ADD_DELAYED_EXTENT:
2631 locked_ref->node.ref_mod -= ref->ref_mod;
2633 case BTRFS_DROP_DELAYED_REF:
2634 locked_ref->node.ref_mod += ref->ref_mod;
2640 spin_unlock(&locked_ref->lock);
2642 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2643 must_insert_reserved);
2645 btrfs_free_delayed_extent_op(extent_op);
2647 locked_ref->processing = 0;
2648 btrfs_delayed_ref_unlock(locked_ref);
2649 btrfs_put_delayed_ref(ref);
2650 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2655 * If this node is a head, that means all the refs in this head
2656 * have been dealt with, and we will pick the next head to deal
2657 * with, so we must unlock the head and drop it from the cluster
2658 * list before we release it.
2660 if (btrfs_delayed_ref_is_head(ref)) {
2661 if (locked_ref->is_data &&
2662 locked_ref->total_ref_mod < 0) {
2663 spin_lock(&delayed_refs->lock);
2664 delayed_refs->pending_csums -= ref->num_bytes;
2665 spin_unlock(&delayed_refs->lock);
2667 btrfs_delayed_ref_unlock(locked_ref);
2670 btrfs_put_delayed_ref(ref);
2676 * We don't want to include ref heads since we can have empty ref heads
2677 * and those will drastically skew our runtime down since we just do
2678 * accounting, no actual extent tree updates.
2680 if (actual_count > 0) {
2681 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2685 * We weigh the current average higher than our current runtime
2686 * to avoid large swings in the average.
2688 spin_lock(&delayed_refs->lock);
2689 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2690 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2691 spin_unlock(&delayed_refs->lock);
2696 #ifdef SCRAMBLE_DELAYED_REFS
2698 * Normally delayed refs get processed in ascending bytenr order. This
2699 * correlates in most cases to the order added. To expose dependencies on this
2700 * order, we start to process the tree in the middle instead of the beginning
2702 static u64 find_middle(struct rb_root *root)
2704 struct rb_node *n = root->rb_node;
2705 struct btrfs_delayed_ref_node *entry;
2708 u64 first = 0, last = 0;
2712 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2713 first = entry->bytenr;
2717 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2718 last = entry->bytenr;
2723 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724 WARN_ON(!entry->in_tree);
2726 middle = entry->bytenr;
2739 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2743 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2744 sizeof(struct btrfs_extent_inline_ref));
2745 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2746 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2749 * We don't ever fill up leaves all the way so multiply by 2 just to be
2750 * closer to what we're really going to want to ouse.
2752 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2756 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2757 * would require to store the csums for that many bytes.
2759 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2762 u64 num_csums_per_leaf;
2765 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2766 num_csums_per_leaf = div64_u64(csum_size,
2767 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2768 num_csums = div64_u64(csum_bytes, root->sectorsize);
2769 num_csums += num_csums_per_leaf - 1;
2770 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2774 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2775 struct btrfs_root *root)
2777 struct btrfs_block_rsv *global_rsv;
2778 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2779 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2780 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2781 u64 num_bytes, num_dirty_bgs_bytes;
2784 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2785 num_heads = heads_to_leaves(root, num_heads);
2787 num_bytes += (num_heads - 1) * root->nodesize;
2789 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2790 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2792 global_rsv = &root->fs_info->global_block_rsv;
2795 * If we can't allocate any more chunks lets make sure we have _lots_ of
2796 * wiggle room since running delayed refs can create more delayed refs.
2798 if (global_rsv->space_info->full) {
2799 num_dirty_bgs_bytes <<= 1;
2803 spin_lock(&global_rsv->lock);
2804 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2806 spin_unlock(&global_rsv->lock);
2810 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2811 struct btrfs_root *root)
2813 struct btrfs_fs_info *fs_info = root->fs_info;
2815 atomic_read(&trans->transaction->delayed_refs.num_entries);
2820 avg_runtime = fs_info->avg_delayed_ref_runtime;
2821 val = num_entries * avg_runtime;
2822 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2824 if (val >= NSEC_PER_SEC / 2)
2827 return btrfs_check_space_for_delayed_refs(trans, root);
2830 struct async_delayed_refs {
2831 struct btrfs_root *root;
2835 struct completion wait;
2836 struct btrfs_work work;
2839 static void delayed_ref_async_start(struct btrfs_work *work)
2841 struct async_delayed_refs *async;
2842 struct btrfs_trans_handle *trans;
2845 async = container_of(work, struct async_delayed_refs, work);
2847 trans = btrfs_join_transaction(async->root);
2848 if (IS_ERR(trans)) {
2849 async->error = PTR_ERR(trans);
2854 * trans->sync means that when we call end_transaciton, we won't
2855 * wait on delayed refs
2858 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2862 ret = btrfs_end_transaction(trans, async->root);
2863 if (ret && !async->error)
2867 complete(&async->wait);
2872 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2873 unsigned long count, int wait)
2875 struct async_delayed_refs *async;
2878 async = kmalloc(sizeof(*async), GFP_NOFS);
2882 async->root = root->fs_info->tree_root;
2883 async->count = count;
2889 init_completion(&async->wait);
2891 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2892 delayed_ref_async_start, NULL, NULL);
2894 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2897 wait_for_completion(&async->wait);
2906 * this starts processing the delayed reference count updates and
2907 * extent insertions we have queued up so far. count can be
2908 * 0, which means to process everything in the tree at the start
2909 * of the run (but not newly added entries), or it can be some target
2910 * number you'd like to process.
2912 * Returns 0 on success or if called with an aborted transaction
2913 * Returns <0 on error and aborts the transaction
2915 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2916 struct btrfs_root *root, unsigned long count)
2918 struct rb_node *node;
2919 struct btrfs_delayed_ref_root *delayed_refs;
2920 struct btrfs_delayed_ref_head *head;
2922 int run_all = count == (unsigned long)-1;
2923 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2925 /* We'll clean this up in btrfs_cleanup_transaction */
2929 if (root->fs_info->creating_free_space_tree)
2932 if (root == root->fs_info->extent_root)
2933 root = root->fs_info->tree_root;
2935 delayed_refs = &trans->transaction->delayed_refs;
2937 count = atomic_read(&delayed_refs->num_entries) * 2;
2940 #ifdef SCRAMBLE_DELAYED_REFS
2941 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2943 trans->can_flush_pending_bgs = false;
2944 ret = __btrfs_run_delayed_refs(trans, root, count);
2946 btrfs_abort_transaction(trans, root, ret);
2951 if (!list_empty(&trans->new_bgs))
2952 btrfs_create_pending_block_groups(trans, root);
2954 spin_lock(&delayed_refs->lock);
2955 node = rb_first(&delayed_refs->href_root);
2957 spin_unlock(&delayed_refs->lock);
2960 count = (unsigned long)-1;
2963 head = rb_entry(node, struct btrfs_delayed_ref_head,
2965 if (btrfs_delayed_ref_is_head(&head->node)) {
2966 struct btrfs_delayed_ref_node *ref;
2969 atomic_inc(&ref->refs);
2971 spin_unlock(&delayed_refs->lock);
2973 * Mutex was contended, block until it's
2974 * released and try again
2976 mutex_lock(&head->mutex);
2977 mutex_unlock(&head->mutex);
2979 btrfs_put_delayed_ref(ref);
2985 node = rb_next(node);
2987 spin_unlock(&delayed_refs->lock);
2992 assert_qgroups_uptodate(trans);
2993 trans->can_flush_pending_bgs = can_flush_pending_bgs;
2997 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2998 struct btrfs_root *root,
2999 u64 bytenr, u64 num_bytes, u64 flags,
3000 int level, int is_data)
3002 struct btrfs_delayed_extent_op *extent_op;
3005 extent_op = btrfs_alloc_delayed_extent_op();
3009 extent_op->flags_to_set = flags;
3010 extent_op->update_flags = 1;
3011 extent_op->update_key = 0;
3012 extent_op->is_data = is_data ? 1 : 0;
3013 extent_op->level = level;
3015 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3016 num_bytes, extent_op);
3018 btrfs_free_delayed_extent_op(extent_op);
3022 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3023 struct btrfs_root *root,
3024 struct btrfs_path *path,
3025 u64 objectid, u64 offset, u64 bytenr)
3027 struct btrfs_delayed_ref_head *head;
3028 struct btrfs_delayed_ref_node *ref;
3029 struct btrfs_delayed_data_ref *data_ref;
3030 struct btrfs_delayed_ref_root *delayed_refs;
3033 delayed_refs = &trans->transaction->delayed_refs;
3034 spin_lock(&delayed_refs->lock);
3035 head = btrfs_find_delayed_ref_head(trans, bytenr);
3037 spin_unlock(&delayed_refs->lock);
3041 if (!mutex_trylock(&head->mutex)) {
3042 atomic_inc(&head->node.refs);
3043 spin_unlock(&delayed_refs->lock);
3045 btrfs_release_path(path);
3048 * Mutex was contended, block until it's released and let
3051 mutex_lock(&head->mutex);
3052 mutex_unlock(&head->mutex);
3053 btrfs_put_delayed_ref(&head->node);
3056 spin_unlock(&delayed_refs->lock);
3058 spin_lock(&head->lock);
3059 list_for_each_entry(ref, &head->ref_list, list) {
3060 /* If it's a shared ref we know a cross reference exists */
3061 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3066 data_ref = btrfs_delayed_node_to_data_ref(ref);
3069 * If our ref doesn't match the one we're currently looking at
3070 * then we have a cross reference.
3072 if (data_ref->root != root->root_key.objectid ||
3073 data_ref->objectid != objectid ||
3074 data_ref->offset != offset) {
3079 spin_unlock(&head->lock);
3080 mutex_unlock(&head->mutex);
3084 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3085 struct btrfs_root *root,
3086 struct btrfs_path *path,
3087 u64 objectid, u64 offset, u64 bytenr)
3089 struct btrfs_root *extent_root = root->fs_info->extent_root;
3090 struct extent_buffer *leaf;
3091 struct btrfs_extent_data_ref *ref;
3092 struct btrfs_extent_inline_ref *iref;
3093 struct btrfs_extent_item *ei;
3094 struct btrfs_key key;
3098 key.objectid = bytenr;
3099 key.offset = (u64)-1;
3100 key.type = BTRFS_EXTENT_ITEM_KEY;
3102 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3105 BUG_ON(ret == 0); /* Corruption */
3108 if (path->slots[0] == 0)
3112 leaf = path->nodes[0];
3113 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3115 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3119 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3120 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3121 if (item_size < sizeof(*ei)) {
3122 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3126 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3128 if (item_size != sizeof(*ei) +
3129 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3132 if (btrfs_extent_generation(leaf, ei) <=
3133 btrfs_root_last_snapshot(&root->root_item))
3136 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3137 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3138 BTRFS_EXTENT_DATA_REF_KEY)
3141 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3142 if (btrfs_extent_refs(leaf, ei) !=
3143 btrfs_extent_data_ref_count(leaf, ref) ||
3144 btrfs_extent_data_ref_root(leaf, ref) !=
3145 root->root_key.objectid ||
3146 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3147 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3155 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3156 struct btrfs_root *root,
3157 u64 objectid, u64 offset, u64 bytenr)
3159 struct btrfs_path *path;
3163 path = btrfs_alloc_path();
3168 ret = check_committed_ref(trans, root, path, objectid,
3170 if (ret && ret != -ENOENT)
3173 ret2 = check_delayed_ref(trans, root, path, objectid,
3175 } while (ret2 == -EAGAIN);
3177 if (ret2 && ret2 != -ENOENT) {
3182 if (ret != -ENOENT || ret2 != -ENOENT)
3185 btrfs_free_path(path);
3186 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3191 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3192 struct btrfs_root *root,
3193 struct extent_buffer *buf,
3194 int full_backref, int inc)
3201 struct btrfs_key key;
3202 struct btrfs_file_extent_item *fi;
3206 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3207 u64, u64, u64, u64, u64, u64);
3210 if (btrfs_test_is_dummy_root(root))
3213 ref_root = btrfs_header_owner(buf);
3214 nritems = btrfs_header_nritems(buf);
3215 level = btrfs_header_level(buf);
3217 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3221 process_func = btrfs_inc_extent_ref;
3223 process_func = btrfs_free_extent;
3226 parent = buf->start;
3230 for (i = 0; i < nritems; i++) {
3232 btrfs_item_key_to_cpu(buf, &key, i);
3233 if (key.type != BTRFS_EXTENT_DATA_KEY)
3235 fi = btrfs_item_ptr(buf, i,
3236 struct btrfs_file_extent_item);
3237 if (btrfs_file_extent_type(buf, fi) ==
3238 BTRFS_FILE_EXTENT_INLINE)
3240 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3244 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3245 key.offset -= btrfs_file_extent_offset(buf, fi);
3246 ret = process_func(trans, root, bytenr, num_bytes,
3247 parent, ref_root, key.objectid,
3252 bytenr = btrfs_node_blockptr(buf, i);
3253 num_bytes = root->nodesize;
3254 ret = process_func(trans, root, bytenr, num_bytes,
3255 parent, ref_root, level - 1, 0);
3265 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3266 struct extent_buffer *buf, int full_backref)
3268 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3271 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3272 struct extent_buffer *buf, int full_backref)
3274 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3277 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3278 struct btrfs_root *root,
3279 struct btrfs_path *path,
3280 struct btrfs_block_group_cache *cache)
3283 struct btrfs_root *extent_root = root->fs_info->extent_root;
3285 struct extent_buffer *leaf;
3287 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3294 leaf = path->nodes[0];
3295 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3296 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3297 btrfs_mark_buffer_dirty(leaf);
3299 btrfs_release_path(path);
3304 static struct btrfs_block_group_cache *
3305 next_block_group(struct btrfs_root *root,
3306 struct btrfs_block_group_cache *cache)
3308 struct rb_node *node;
3310 spin_lock(&root->fs_info->block_group_cache_lock);
3312 /* If our block group was removed, we need a full search. */
3313 if (RB_EMPTY_NODE(&cache->cache_node)) {
3314 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3316 spin_unlock(&root->fs_info->block_group_cache_lock);
3317 btrfs_put_block_group(cache);
3318 cache = btrfs_lookup_first_block_group(root->fs_info,
3322 node = rb_next(&cache->cache_node);
3323 btrfs_put_block_group(cache);
3325 cache = rb_entry(node, struct btrfs_block_group_cache,
3327 btrfs_get_block_group(cache);
3330 spin_unlock(&root->fs_info->block_group_cache_lock);
3334 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3335 struct btrfs_trans_handle *trans,
3336 struct btrfs_path *path)
3338 struct btrfs_root *root = block_group->fs_info->tree_root;
3339 struct inode *inode = NULL;
3341 int dcs = BTRFS_DC_ERROR;
3347 * If this block group is smaller than 100 megs don't bother caching the
3350 if (block_group->key.offset < (100 * 1024 * 1024)) {
3351 spin_lock(&block_group->lock);
3352 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3353 spin_unlock(&block_group->lock);
3360 inode = lookup_free_space_inode(root, block_group, path);
3361 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3362 ret = PTR_ERR(inode);
3363 btrfs_release_path(path);
3367 if (IS_ERR(inode)) {
3371 if (block_group->ro)
3374 ret = create_free_space_inode(root, trans, block_group, path);
3380 /* We've already setup this transaction, go ahead and exit */
3381 if (block_group->cache_generation == trans->transid &&
3382 i_size_read(inode)) {
3383 dcs = BTRFS_DC_SETUP;
3388 * We want to set the generation to 0, that way if anything goes wrong
3389 * from here on out we know not to trust this cache when we load up next
3392 BTRFS_I(inode)->generation = 0;
3393 ret = btrfs_update_inode(trans, root, inode);
3396 * So theoretically we could recover from this, simply set the
3397 * super cache generation to 0 so we know to invalidate the
3398 * cache, but then we'd have to keep track of the block groups
3399 * that fail this way so we know we _have_ to reset this cache
3400 * before the next commit or risk reading stale cache. So to
3401 * limit our exposure to horrible edge cases lets just abort the
3402 * transaction, this only happens in really bad situations
3405 btrfs_abort_transaction(trans, root, ret);
3410 if (i_size_read(inode) > 0) {
3411 ret = btrfs_check_trunc_cache_free_space(root,
3412 &root->fs_info->global_block_rsv);
3416 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3421 spin_lock(&block_group->lock);
3422 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3423 !btrfs_test_opt(root, SPACE_CACHE)) {
3425 * don't bother trying to write stuff out _if_
3426 * a) we're not cached,
3427 * b) we're with nospace_cache mount option.
3429 dcs = BTRFS_DC_WRITTEN;
3430 spin_unlock(&block_group->lock);
3433 spin_unlock(&block_group->lock);
3436 * We hit an ENOSPC when setting up the cache in this transaction, just
3437 * skip doing the setup, we've already cleared the cache so we're safe.
3439 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3445 * Try to preallocate enough space based on how big the block group is.
3446 * Keep in mind this has to include any pinned space which could end up
3447 * taking up quite a bit since it's not folded into the other space
3450 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3455 num_pages *= PAGE_CACHE_SIZE;
3457 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3461 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3462 num_pages, num_pages,
3465 * Our cache requires contiguous chunks so that we don't modify a bunch
3466 * of metadata or split extents when writing the cache out, which means
3467 * we can enospc if we are heavily fragmented in addition to just normal
3468 * out of space conditions. So if we hit this just skip setting up any
3469 * other block groups for this transaction, maybe we'll unpin enough
3470 * space the next time around.
3473 dcs = BTRFS_DC_SETUP;
3474 else if (ret == -ENOSPC)
3475 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3476 btrfs_free_reserved_data_space(inode, 0, num_pages);
3481 btrfs_release_path(path);
3483 spin_lock(&block_group->lock);
3484 if (!ret && dcs == BTRFS_DC_SETUP)
3485 block_group->cache_generation = trans->transid;
3486 block_group->disk_cache_state = dcs;
3487 spin_unlock(&block_group->lock);
3492 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3493 struct btrfs_root *root)
3495 struct btrfs_block_group_cache *cache, *tmp;
3496 struct btrfs_transaction *cur_trans = trans->transaction;
3497 struct btrfs_path *path;
3499 if (list_empty(&cur_trans->dirty_bgs) ||
3500 !btrfs_test_opt(root, SPACE_CACHE))
3503 path = btrfs_alloc_path();
3507 /* Could add new block groups, use _safe just in case */
3508 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3510 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3511 cache_save_setup(cache, trans, path);
3514 btrfs_free_path(path);
3519 * transaction commit does final block group cache writeback during a
3520 * critical section where nothing is allowed to change the FS. This is
3521 * required in order for the cache to actually match the block group,
3522 * but can introduce a lot of latency into the commit.
3524 * So, btrfs_start_dirty_block_groups is here to kick off block group
3525 * cache IO. There's a chance we'll have to redo some of it if the
3526 * block group changes again during the commit, but it greatly reduces
3527 * the commit latency by getting rid of the easy block groups while
3528 * we're still allowing others to join the commit.
3530 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3531 struct btrfs_root *root)
3533 struct btrfs_block_group_cache *cache;
3534 struct btrfs_transaction *cur_trans = trans->transaction;
3537 struct btrfs_path *path = NULL;
3539 struct list_head *io = &cur_trans->io_bgs;
3540 int num_started = 0;
3543 spin_lock(&cur_trans->dirty_bgs_lock);
3544 if (list_empty(&cur_trans->dirty_bgs)) {
3545 spin_unlock(&cur_trans->dirty_bgs_lock);
3548 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3549 spin_unlock(&cur_trans->dirty_bgs_lock);
3553 * make sure all the block groups on our dirty list actually
3556 btrfs_create_pending_block_groups(trans, root);
3559 path = btrfs_alloc_path();
3565 * cache_write_mutex is here only to save us from balance or automatic
3566 * removal of empty block groups deleting this block group while we are
3567 * writing out the cache
3569 mutex_lock(&trans->transaction->cache_write_mutex);
3570 while (!list_empty(&dirty)) {
3571 cache = list_first_entry(&dirty,
3572 struct btrfs_block_group_cache,
3575 * this can happen if something re-dirties a block
3576 * group that is already under IO. Just wait for it to
3577 * finish and then do it all again
3579 if (!list_empty(&cache->io_list)) {
3580 list_del_init(&cache->io_list);
3581 btrfs_wait_cache_io(root, trans, cache,
3582 &cache->io_ctl, path,
3583 cache->key.objectid);
3584 btrfs_put_block_group(cache);
3589 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3590 * if it should update the cache_state. Don't delete
3591 * until after we wait.
3593 * Since we're not running in the commit critical section
3594 * we need the dirty_bgs_lock to protect from update_block_group
3596 spin_lock(&cur_trans->dirty_bgs_lock);
3597 list_del_init(&cache->dirty_list);
3598 spin_unlock(&cur_trans->dirty_bgs_lock);
3602 cache_save_setup(cache, trans, path);
3604 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3605 cache->io_ctl.inode = NULL;
3606 ret = btrfs_write_out_cache(root, trans, cache, path);
3607 if (ret == 0 && cache->io_ctl.inode) {
3612 * the cache_write_mutex is protecting
3615 list_add_tail(&cache->io_list, io);
3618 * if we failed to write the cache, the
3619 * generation will be bad and life goes on
3625 ret = write_one_cache_group(trans, root, path, cache);
3627 * Our block group might still be attached to the list
3628 * of new block groups in the transaction handle of some
3629 * other task (struct btrfs_trans_handle->new_bgs). This
3630 * means its block group item isn't yet in the extent
3631 * tree. If this happens ignore the error, as we will
3632 * try again later in the critical section of the
3633 * transaction commit.
3635 if (ret == -ENOENT) {
3637 spin_lock(&cur_trans->dirty_bgs_lock);
3638 if (list_empty(&cache->dirty_list)) {
3639 list_add_tail(&cache->dirty_list,
3640 &cur_trans->dirty_bgs);
3641 btrfs_get_block_group(cache);
3643 spin_unlock(&cur_trans->dirty_bgs_lock);
3645 btrfs_abort_transaction(trans, root, ret);
3649 /* if its not on the io list, we need to put the block group */
3651 btrfs_put_block_group(cache);
3657 * Avoid blocking other tasks for too long. It might even save
3658 * us from writing caches for block groups that are going to be
3661 mutex_unlock(&trans->transaction->cache_write_mutex);
3662 mutex_lock(&trans->transaction->cache_write_mutex);
3664 mutex_unlock(&trans->transaction->cache_write_mutex);
3667 * go through delayed refs for all the stuff we've just kicked off
3668 * and then loop back (just once)
3670 ret = btrfs_run_delayed_refs(trans, root, 0);
3671 if (!ret && loops == 0) {
3673 spin_lock(&cur_trans->dirty_bgs_lock);
3674 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3676 * dirty_bgs_lock protects us from concurrent block group
3677 * deletes too (not just cache_write_mutex).
3679 if (!list_empty(&dirty)) {
3680 spin_unlock(&cur_trans->dirty_bgs_lock);
3683 spin_unlock(&cur_trans->dirty_bgs_lock);
3686 btrfs_free_path(path);
3690 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3691 struct btrfs_root *root)
3693 struct btrfs_block_group_cache *cache;
3694 struct btrfs_transaction *cur_trans = trans->transaction;
3697 struct btrfs_path *path;
3698 struct list_head *io = &cur_trans->io_bgs;
3699 int num_started = 0;
3701 path = btrfs_alloc_path();
3706 * Even though we are in the critical section of the transaction commit,
3707 * we can still have concurrent tasks adding elements to this
3708 * transaction's list of dirty block groups. These tasks correspond to
3709 * endio free space workers started when writeback finishes for a
3710 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3711 * allocate new block groups as a result of COWing nodes of the root
3712 * tree when updating the free space inode. The writeback for the space
3713 * caches is triggered by an earlier call to
3714 * btrfs_start_dirty_block_groups() and iterations of the following
3716 * Also we want to do the cache_save_setup first and then run the
3717 * delayed refs to make sure we have the best chance at doing this all
3720 spin_lock(&cur_trans->dirty_bgs_lock);
3721 while (!list_empty(&cur_trans->dirty_bgs)) {
3722 cache = list_first_entry(&cur_trans->dirty_bgs,
3723 struct btrfs_block_group_cache,
3727 * this can happen if cache_save_setup re-dirties a block
3728 * group that is already under IO. Just wait for it to
3729 * finish and then do it all again
3731 if (!list_empty(&cache->io_list)) {
3732 spin_unlock(&cur_trans->dirty_bgs_lock);
3733 list_del_init(&cache->io_list);
3734 btrfs_wait_cache_io(root, trans, cache,
3735 &cache->io_ctl, path,
3736 cache->key.objectid);
3737 btrfs_put_block_group(cache);
3738 spin_lock(&cur_trans->dirty_bgs_lock);
3742 * don't remove from the dirty list until after we've waited
3745 list_del_init(&cache->dirty_list);
3746 spin_unlock(&cur_trans->dirty_bgs_lock);
3749 cache_save_setup(cache, trans, path);
3752 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3754 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3755 cache->io_ctl.inode = NULL;
3756 ret = btrfs_write_out_cache(root, trans, cache, path);
3757 if (ret == 0 && cache->io_ctl.inode) {
3760 list_add_tail(&cache->io_list, io);
3763 * if we failed to write the cache, the
3764 * generation will be bad and life goes on
3770 ret = write_one_cache_group(trans, root, path, cache);
3772 btrfs_abort_transaction(trans, root, ret);
3775 /* if its not on the io list, we need to put the block group */
3777 btrfs_put_block_group(cache);
3778 spin_lock(&cur_trans->dirty_bgs_lock);
3780 spin_unlock(&cur_trans->dirty_bgs_lock);
3782 while (!list_empty(io)) {
3783 cache = list_first_entry(io, struct btrfs_block_group_cache,
3785 list_del_init(&cache->io_list);
3786 btrfs_wait_cache_io(root, trans, cache,
3787 &cache->io_ctl, path, cache->key.objectid);
3788 btrfs_put_block_group(cache);
3791 btrfs_free_path(path);
3795 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3797 struct btrfs_block_group_cache *block_group;
3800 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3801 if (!block_group || block_group->ro)
3804 btrfs_put_block_group(block_group);
3808 static const char *alloc_name(u64 flags)
3811 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3813 case BTRFS_BLOCK_GROUP_METADATA:
3815 case BTRFS_BLOCK_GROUP_DATA:
3817 case BTRFS_BLOCK_GROUP_SYSTEM:
3821 return "invalid-combination";
3825 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3826 u64 total_bytes, u64 bytes_used,
3827 struct btrfs_space_info **space_info)
3829 struct btrfs_space_info *found;
3834 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3835 BTRFS_BLOCK_GROUP_RAID10))
3840 found = __find_space_info(info, flags);
3842 spin_lock(&found->lock);
3843 found->total_bytes += total_bytes;
3844 found->disk_total += total_bytes * factor;
3845 found->bytes_used += bytes_used;
3846 found->disk_used += bytes_used * factor;
3847 if (total_bytes > 0)
3849 spin_unlock(&found->lock);
3850 *space_info = found;
3853 found = kzalloc(sizeof(*found), GFP_NOFS);
3857 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3863 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3864 INIT_LIST_HEAD(&found->block_groups[i]);
3865 init_rwsem(&found->groups_sem);
3866 spin_lock_init(&found->lock);
3867 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3868 found->total_bytes = total_bytes;
3869 found->disk_total = total_bytes * factor;
3870 found->bytes_used = bytes_used;
3871 found->disk_used = bytes_used * factor;
3872 found->bytes_pinned = 0;
3873 found->bytes_reserved = 0;
3874 found->bytes_readonly = 0;
3875 found->bytes_may_use = 0;
3877 found->max_extent_size = 0;
3878 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3879 found->chunk_alloc = 0;
3881 init_waitqueue_head(&found->wait);
3882 INIT_LIST_HEAD(&found->ro_bgs);
3884 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3885 info->space_info_kobj, "%s",
3886 alloc_name(found->flags));
3892 *space_info = found;
3893 list_add_rcu(&found->list, &info->space_info);
3894 if (flags & BTRFS_BLOCK_GROUP_DATA)
3895 info->data_sinfo = found;
3900 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3902 u64 extra_flags = chunk_to_extended(flags) &
3903 BTRFS_EXTENDED_PROFILE_MASK;
3905 write_seqlock(&fs_info->profiles_lock);
3906 if (flags & BTRFS_BLOCK_GROUP_DATA)
3907 fs_info->avail_data_alloc_bits |= extra_flags;
3908 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3909 fs_info->avail_metadata_alloc_bits |= extra_flags;
3910 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3911 fs_info->avail_system_alloc_bits |= extra_flags;
3912 write_sequnlock(&fs_info->profiles_lock);
3916 * returns target flags in extended format or 0 if restripe for this
3917 * chunk_type is not in progress
3919 * should be called with either volume_mutex or balance_lock held
3921 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3923 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3929 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3930 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3931 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3932 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3933 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3934 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3935 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3936 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3937 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3944 * @flags: available profiles in extended format (see ctree.h)
3946 * Returns reduced profile in chunk format. If profile changing is in
3947 * progress (either running or paused) picks the target profile (if it's
3948 * already available), otherwise falls back to plain reducing.
3950 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3952 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3958 * see if restripe for this chunk_type is in progress, if so
3959 * try to reduce to the target profile
3961 spin_lock(&root->fs_info->balance_lock);
3962 target = get_restripe_target(root->fs_info, flags);
3964 /* pick target profile only if it's already available */
3965 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3966 spin_unlock(&root->fs_info->balance_lock);
3967 return extended_to_chunk(target);
3970 spin_unlock(&root->fs_info->balance_lock);
3972 /* First, mask out the RAID levels which aren't possible */
3973 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3974 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3975 allowed |= btrfs_raid_group[raid_type];
3979 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3980 allowed = BTRFS_BLOCK_GROUP_RAID6;
3981 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3982 allowed = BTRFS_BLOCK_GROUP_RAID5;
3983 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3984 allowed = BTRFS_BLOCK_GROUP_RAID10;
3985 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3986 allowed = BTRFS_BLOCK_GROUP_RAID1;
3987 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3988 allowed = BTRFS_BLOCK_GROUP_RAID0;
3990 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3992 return extended_to_chunk(flags | allowed);
3995 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4002 seq = read_seqbegin(&root->fs_info->profiles_lock);
4004 if (flags & BTRFS_BLOCK_GROUP_DATA)
4005 flags |= root->fs_info->avail_data_alloc_bits;
4006 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4007 flags |= root->fs_info->avail_system_alloc_bits;
4008 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4009 flags |= root->fs_info->avail_metadata_alloc_bits;
4010 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
4012 return btrfs_reduce_alloc_profile(root, flags);
4015 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4021 flags = BTRFS_BLOCK_GROUP_DATA;
4022 else if (root == root->fs_info->chunk_root)
4023 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4025 flags = BTRFS_BLOCK_GROUP_METADATA;
4027 ret = get_alloc_profile(root, flags);
4031 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4033 struct btrfs_space_info *data_sinfo;
4034 struct btrfs_root *root = BTRFS_I(inode)->root;
4035 struct btrfs_fs_info *fs_info = root->fs_info;
4038 int need_commit = 2;
4039 int have_pinned_space;
4041 /* make sure bytes are sectorsize aligned */
4042 bytes = ALIGN(bytes, root->sectorsize);
4044 if (btrfs_is_free_space_inode(inode)) {
4046 ASSERT(current->journal_info);
4049 data_sinfo = fs_info->data_sinfo;
4054 /* make sure we have enough space to handle the data first */
4055 spin_lock(&data_sinfo->lock);
4056 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4057 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4058 data_sinfo->bytes_may_use;
4060 if (used + bytes > data_sinfo->total_bytes) {
4061 struct btrfs_trans_handle *trans;
4064 * if we don't have enough free bytes in this space then we need
4065 * to alloc a new chunk.
4067 if (!data_sinfo->full) {
4070 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4071 spin_unlock(&data_sinfo->lock);
4073 alloc_target = btrfs_get_alloc_profile(root, 1);
4075 * It is ugly that we don't call nolock join
4076 * transaction for the free space inode case here.
4077 * But it is safe because we only do the data space
4078 * reservation for the free space cache in the
4079 * transaction context, the common join transaction
4080 * just increase the counter of the current transaction
4081 * handler, doesn't try to acquire the trans_lock of
4084 trans = btrfs_join_transaction(root);
4086 return PTR_ERR(trans);
4088 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4090 CHUNK_ALLOC_NO_FORCE);
4091 btrfs_end_transaction(trans, root);
4096 have_pinned_space = 1;
4102 data_sinfo = fs_info->data_sinfo;
4108 * If we don't have enough pinned space to deal with this
4109 * allocation, and no removed chunk in current transaction,
4110 * don't bother committing the transaction.
4112 have_pinned_space = percpu_counter_compare(
4113 &data_sinfo->total_bytes_pinned,
4114 used + bytes - data_sinfo->total_bytes);
4115 spin_unlock(&data_sinfo->lock);
4117 /* commit the current transaction and try again */
4120 !atomic_read(&root->fs_info->open_ioctl_trans)) {
4123 if (need_commit > 0)
4124 btrfs_wait_ordered_roots(fs_info, -1);
4126 trans = btrfs_join_transaction(root);
4128 return PTR_ERR(trans);
4129 if (have_pinned_space >= 0 ||
4130 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4131 &trans->transaction->flags) ||
4133 ret = btrfs_commit_transaction(trans, root);
4137 * make sure that all running delayed iput are
4140 down_write(&root->fs_info->delayed_iput_sem);
4141 up_write(&root->fs_info->delayed_iput_sem);
4144 btrfs_end_transaction(trans, root);
4148 trace_btrfs_space_reservation(root->fs_info,
4149 "space_info:enospc",
4150 data_sinfo->flags, bytes, 1);
4153 data_sinfo->bytes_may_use += bytes;
4154 trace_btrfs_space_reservation(root->fs_info, "space_info",
4155 data_sinfo->flags, bytes, 1);
4156 spin_unlock(&data_sinfo->lock);
4162 * New check_data_free_space() with ability for precious data reservation
4163 * Will replace old btrfs_check_data_free_space(), but for patch split,
4164 * add a new function first and then replace it.
4166 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4168 struct btrfs_root *root = BTRFS_I(inode)->root;
4171 /* align the range */
4172 len = round_up(start + len, root->sectorsize) -
4173 round_down(start, root->sectorsize);
4174 start = round_down(start, root->sectorsize);
4176 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4181 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4183 * TODO: Find a good method to avoid reserve data space for NOCOW
4184 * range, but don't impact performance on quota disable case.
4186 ret = btrfs_qgroup_reserve_data(inode, start, len);
4191 * Called if we need to clear a data reservation for this inode
4192 * Normally in a error case.
4194 * This one will *NOT* use accurate qgroup reserved space API, just for case
4195 * which we can't sleep and is sure it won't affect qgroup reserved space.
4196 * Like clear_bit_hook().
4198 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4201 struct btrfs_root *root = BTRFS_I(inode)->root;
4202 struct btrfs_space_info *data_sinfo;
4204 /* Make sure the range is aligned to sectorsize */
4205 len = round_up(start + len, root->sectorsize) -
4206 round_down(start, root->sectorsize);
4207 start = round_down(start, root->sectorsize);
4209 data_sinfo = root->fs_info->data_sinfo;
4210 spin_lock(&data_sinfo->lock);
4211 if (WARN_ON(data_sinfo->bytes_may_use < len))
4212 data_sinfo->bytes_may_use = 0;
4214 data_sinfo->bytes_may_use -= len;
4215 trace_btrfs_space_reservation(root->fs_info, "space_info",
4216 data_sinfo->flags, len, 0);
4217 spin_unlock(&data_sinfo->lock);
4221 * Called if we need to clear a data reservation for this inode
4222 * Normally in a error case.
4224 * This one will handle the per-indoe data rsv map for accurate reserved
4227 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4229 btrfs_free_reserved_data_space_noquota(inode, start, len);
4230 btrfs_qgroup_free_data(inode, start, len);
4233 static void force_metadata_allocation(struct btrfs_fs_info *info)
4235 struct list_head *head = &info->space_info;
4236 struct btrfs_space_info *found;
4239 list_for_each_entry_rcu(found, head, list) {
4240 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4241 found->force_alloc = CHUNK_ALLOC_FORCE;
4246 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4248 return (global->size << 1);
4251 static int should_alloc_chunk(struct btrfs_root *root,
4252 struct btrfs_space_info *sinfo, int force)
4254 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4255 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4256 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4259 if (force == CHUNK_ALLOC_FORCE)
4263 * We need to take into account the global rsv because for all intents
4264 * and purposes it's used space. Don't worry about locking the
4265 * global_rsv, it doesn't change except when the transaction commits.
4267 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4268 num_allocated += calc_global_rsv_need_space(global_rsv);
4271 * in limited mode, we want to have some free space up to
4272 * about 1% of the FS size.
4274 if (force == CHUNK_ALLOC_LIMITED) {
4275 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4276 thresh = max_t(u64, 64 * 1024 * 1024,
4277 div_factor_fine(thresh, 1));
4279 if (num_bytes - num_allocated < thresh)
4283 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4288 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4292 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4293 BTRFS_BLOCK_GROUP_RAID0 |
4294 BTRFS_BLOCK_GROUP_RAID5 |
4295 BTRFS_BLOCK_GROUP_RAID6))
4296 num_dev = root->fs_info->fs_devices->rw_devices;
4297 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4300 num_dev = 1; /* DUP or single */
4306 * If @is_allocation is true, reserve space in the system space info necessary
4307 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4310 void check_system_chunk(struct btrfs_trans_handle *trans,
4311 struct btrfs_root *root,
4314 struct btrfs_space_info *info;
4321 * Needed because we can end up allocating a system chunk and for an
4322 * atomic and race free space reservation in the chunk block reserve.
4324 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4326 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4327 spin_lock(&info->lock);
4328 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4329 info->bytes_reserved - info->bytes_readonly -
4330 info->bytes_may_use;
4331 spin_unlock(&info->lock);
4333 num_devs = get_profile_num_devs(root, type);
4335 /* num_devs device items to update and 1 chunk item to add or remove */
4336 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4337 btrfs_calc_trans_metadata_size(root, 1);
4339 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4340 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4341 left, thresh, type);
4342 dump_space_info(info, 0, 0);
4345 if (left < thresh) {
4348 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4350 * Ignore failure to create system chunk. We might end up not
4351 * needing it, as we might not need to COW all nodes/leafs from
4352 * the paths we visit in the chunk tree (they were already COWed
4353 * or created in the current transaction for example).
4355 ret = btrfs_alloc_chunk(trans, root, flags);
4359 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4360 &root->fs_info->chunk_block_rsv,
4361 thresh, BTRFS_RESERVE_NO_FLUSH);
4363 trans->chunk_bytes_reserved += thresh;
4367 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4368 struct btrfs_root *extent_root, u64 flags, int force)
4370 struct btrfs_space_info *space_info;
4371 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4372 int wait_for_alloc = 0;
4375 /* Don't re-enter if we're already allocating a chunk */
4376 if (trans->allocating_chunk)
4379 space_info = __find_space_info(extent_root->fs_info, flags);
4381 ret = update_space_info(extent_root->fs_info, flags,
4383 BUG_ON(ret); /* -ENOMEM */
4385 BUG_ON(!space_info); /* Logic error */
4388 spin_lock(&space_info->lock);
4389 if (force < space_info->force_alloc)
4390 force = space_info->force_alloc;
4391 if (space_info->full) {
4392 if (should_alloc_chunk(extent_root, space_info, force))
4396 spin_unlock(&space_info->lock);
4400 if (!should_alloc_chunk(extent_root, space_info, force)) {
4401 spin_unlock(&space_info->lock);
4403 } else if (space_info->chunk_alloc) {
4406 space_info->chunk_alloc = 1;
4409 spin_unlock(&space_info->lock);
4411 mutex_lock(&fs_info->chunk_mutex);
4414 * The chunk_mutex is held throughout the entirety of a chunk
4415 * allocation, so once we've acquired the chunk_mutex we know that the
4416 * other guy is done and we need to recheck and see if we should
4419 if (wait_for_alloc) {
4420 mutex_unlock(&fs_info->chunk_mutex);
4425 trans->allocating_chunk = true;
4428 * If we have mixed data/metadata chunks we want to make sure we keep
4429 * allocating mixed chunks instead of individual chunks.
4431 if (btrfs_mixed_space_info(space_info))
4432 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4435 * if we're doing a data chunk, go ahead and make sure that
4436 * we keep a reasonable number of metadata chunks allocated in the
4439 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4440 fs_info->data_chunk_allocations++;
4441 if (!(fs_info->data_chunk_allocations %
4442 fs_info->metadata_ratio))
4443 force_metadata_allocation(fs_info);
4447 * Check if we have enough space in SYSTEM chunk because we may need
4448 * to update devices.
4450 check_system_chunk(trans, extent_root, flags);
4452 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4453 trans->allocating_chunk = false;
4455 spin_lock(&space_info->lock);
4456 if (ret < 0 && ret != -ENOSPC)
4459 space_info->full = 1;
4463 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4465 space_info->chunk_alloc = 0;
4466 spin_unlock(&space_info->lock);
4467 mutex_unlock(&fs_info->chunk_mutex);
4469 * When we allocate a new chunk we reserve space in the chunk block
4470 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4471 * add new nodes/leafs to it if we end up needing to do it when
4472 * inserting the chunk item and updating device items as part of the
4473 * second phase of chunk allocation, performed by
4474 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4475 * large number of new block groups to create in our transaction
4476 * handle's new_bgs list to avoid exhausting the chunk block reserve
4477 * in extreme cases - like having a single transaction create many new
4478 * block groups when starting to write out the free space caches of all
4479 * the block groups that were made dirty during the lifetime of the
4482 if (trans->can_flush_pending_bgs &&
4483 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
4484 btrfs_create_pending_block_groups(trans, trans->root);
4485 btrfs_trans_release_chunk_metadata(trans);
4490 static int can_overcommit(struct btrfs_root *root,
4491 struct btrfs_space_info *space_info, u64 bytes,
4492 enum btrfs_reserve_flush_enum flush)
4494 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4495 u64 profile = btrfs_get_alloc_profile(root, 0);
4500 used = space_info->bytes_used + space_info->bytes_reserved +
4501 space_info->bytes_pinned + space_info->bytes_readonly;
4504 * We only want to allow over committing if we have lots of actual space
4505 * free, but if we don't have enough space to handle the global reserve
4506 * space then we could end up having a real enospc problem when trying
4507 * to allocate a chunk or some other such important allocation.
4509 spin_lock(&global_rsv->lock);
4510 space_size = calc_global_rsv_need_space(global_rsv);
4511 spin_unlock(&global_rsv->lock);
4512 if (used + space_size >= space_info->total_bytes)
4515 used += space_info->bytes_may_use;
4517 spin_lock(&root->fs_info->free_chunk_lock);
4518 avail = root->fs_info->free_chunk_space;
4519 spin_unlock(&root->fs_info->free_chunk_lock);
4522 * If we have dup, raid1 or raid10 then only half of the free
4523 * space is actually useable. For raid56, the space info used
4524 * doesn't include the parity drive, so we don't have to
4527 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4528 BTRFS_BLOCK_GROUP_RAID1 |
4529 BTRFS_BLOCK_GROUP_RAID10))
4533 * If we aren't flushing all things, let us overcommit up to
4534 * 1/2th of the space. If we can flush, don't let us overcommit
4535 * too much, let it overcommit up to 1/8 of the space.
4537 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4542 if (used + bytes < space_info->total_bytes + avail)
4547 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4548 unsigned long nr_pages, int nr_items)
4550 struct super_block *sb = root->fs_info->sb;
4552 if (down_read_trylock(&sb->s_umount)) {
4553 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4554 up_read(&sb->s_umount);
4557 * We needn't worry the filesystem going from r/w to r/o though
4558 * we don't acquire ->s_umount mutex, because the filesystem
4559 * should guarantee the delalloc inodes list be empty after
4560 * the filesystem is readonly(all dirty pages are written to
4563 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4564 if (!current->journal_info)
4565 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4569 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4574 bytes = btrfs_calc_trans_metadata_size(root, 1);
4575 nr = (int)div64_u64(to_reclaim, bytes);
4581 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4584 * shrink metadata reservation for delalloc
4586 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4589 struct btrfs_block_rsv *block_rsv;
4590 struct btrfs_space_info *space_info;
4591 struct btrfs_trans_handle *trans;
4595 unsigned long nr_pages;
4598 enum btrfs_reserve_flush_enum flush;
4600 /* Calc the number of the pages we need flush for space reservation */
4601 items = calc_reclaim_items_nr(root, to_reclaim);
4602 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4604 trans = (struct btrfs_trans_handle *)current->journal_info;
4605 block_rsv = &root->fs_info->delalloc_block_rsv;
4606 space_info = block_rsv->space_info;
4608 delalloc_bytes = percpu_counter_sum_positive(
4609 &root->fs_info->delalloc_bytes);
4610 if (delalloc_bytes == 0) {
4614 btrfs_wait_ordered_roots(root->fs_info, items);
4619 while (delalloc_bytes && loops < 3) {
4620 max_reclaim = min(delalloc_bytes, to_reclaim);
4621 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4622 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4624 * We need to wait for the async pages to actually start before
4627 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4631 if (max_reclaim <= nr_pages)
4634 max_reclaim -= nr_pages;
4636 wait_event(root->fs_info->async_submit_wait,
4637 atomic_read(&root->fs_info->async_delalloc_pages) <=
4641 flush = BTRFS_RESERVE_FLUSH_ALL;
4643 flush = BTRFS_RESERVE_NO_FLUSH;
4644 spin_lock(&space_info->lock);
4645 if (can_overcommit(root, space_info, orig, flush)) {
4646 spin_unlock(&space_info->lock);
4649 spin_unlock(&space_info->lock);
4652 if (wait_ordered && !trans) {
4653 btrfs_wait_ordered_roots(root->fs_info, items);
4655 time_left = schedule_timeout_killable(1);
4659 delalloc_bytes = percpu_counter_sum_positive(
4660 &root->fs_info->delalloc_bytes);
4665 * maybe_commit_transaction - possibly commit the transaction if its ok to
4666 * @root - the root we're allocating for
4667 * @bytes - the number of bytes we want to reserve
4668 * @force - force the commit
4670 * This will check to make sure that committing the transaction will actually
4671 * get us somewhere and then commit the transaction if it does. Otherwise it
4672 * will return -ENOSPC.
4674 static int may_commit_transaction(struct btrfs_root *root,
4675 struct btrfs_space_info *space_info,
4676 u64 bytes, int force)
4678 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4679 struct btrfs_trans_handle *trans;
4681 trans = (struct btrfs_trans_handle *)current->journal_info;
4688 /* See if there is enough pinned space to make this reservation */
4689 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4694 * See if there is some space in the delayed insertion reservation for
4697 if (space_info != delayed_rsv->space_info)
4700 spin_lock(&delayed_rsv->lock);
4701 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4702 bytes - delayed_rsv->size) >= 0) {
4703 spin_unlock(&delayed_rsv->lock);
4706 spin_unlock(&delayed_rsv->lock);
4709 trans = btrfs_join_transaction(root);
4713 return btrfs_commit_transaction(trans, root);
4717 FLUSH_DELAYED_ITEMS_NR = 1,
4718 FLUSH_DELAYED_ITEMS = 2,
4720 FLUSH_DELALLOC_WAIT = 4,
4725 static int flush_space(struct btrfs_root *root,
4726 struct btrfs_space_info *space_info, u64 num_bytes,
4727 u64 orig_bytes, int state)
4729 struct btrfs_trans_handle *trans;
4734 case FLUSH_DELAYED_ITEMS_NR:
4735 case FLUSH_DELAYED_ITEMS:
4736 if (state == FLUSH_DELAYED_ITEMS_NR)
4737 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4741 trans = btrfs_join_transaction(root);
4742 if (IS_ERR(trans)) {
4743 ret = PTR_ERR(trans);
4746 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4747 btrfs_end_transaction(trans, root);
4749 case FLUSH_DELALLOC:
4750 case FLUSH_DELALLOC_WAIT:
4751 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4752 state == FLUSH_DELALLOC_WAIT);
4755 trans = btrfs_join_transaction(root);
4756 if (IS_ERR(trans)) {
4757 ret = PTR_ERR(trans);
4760 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4761 btrfs_get_alloc_profile(root, 0),
4762 CHUNK_ALLOC_NO_FORCE);
4763 btrfs_end_transaction(trans, root);
4768 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4779 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4780 struct btrfs_space_info *space_info)
4786 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4788 spin_lock(&space_info->lock);
4789 if (can_overcommit(root, space_info, to_reclaim,
4790 BTRFS_RESERVE_FLUSH_ALL)) {
4795 used = space_info->bytes_used + space_info->bytes_reserved +
4796 space_info->bytes_pinned + space_info->bytes_readonly +
4797 space_info->bytes_may_use;
4798 if (can_overcommit(root, space_info, 1024 * 1024,
4799 BTRFS_RESERVE_FLUSH_ALL))
4800 expected = div_factor_fine(space_info->total_bytes, 95);
4802 expected = div_factor_fine(space_info->total_bytes, 90);
4804 if (used > expected)
4805 to_reclaim = used - expected;
4808 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4809 space_info->bytes_reserved);
4811 spin_unlock(&space_info->lock);
4816 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4817 struct btrfs_fs_info *fs_info, u64 used)
4819 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4821 /* If we're just plain full then async reclaim just slows us down. */
4822 if (space_info->bytes_used >= thresh)
4825 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4826 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4829 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4830 struct btrfs_fs_info *fs_info,
4835 spin_lock(&space_info->lock);
4837 * We run out of space and have not got any free space via flush_space,
4838 * so don't bother doing async reclaim.
4840 if (flush_state > COMMIT_TRANS && space_info->full) {
4841 spin_unlock(&space_info->lock);
4845 used = space_info->bytes_used + space_info->bytes_reserved +
4846 space_info->bytes_pinned + space_info->bytes_readonly +
4847 space_info->bytes_may_use;
4848 if (need_do_async_reclaim(space_info, fs_info, used)) {
4849 spin_unlock(&space_info->lock);
4852 spin_unlock(&space_info->lock);
4857 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4859 struct btrfs_fs_info *fs_info;
4860 struct btrfs_space_info *space_info;
4864 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4865 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4867 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4872 flush_state = FLUSH_DELAYED_ITEMS_NR;
4874 flush_space(fs_info->fs_root, space_info, to_reclaim,
4875 to_reclaim, flush_state);
4877 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4880 } while (flush_state < COMMIT_TRANS);
4883 void btrfs_init_async_reclaim_work(struct work_struct *work)
4885 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4889 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4890 * @root - the root we're allocating for
4891 * @block_rsv - the block_rsv we're allocating for
4892 * @orig_bytes - the number of bytes we want
4893 * @flush - whether or not we can flush to make our reservation
4895 * This will reserve orgi_bytes number of bytes from the space info associated
4896 * with the block_rsv. If there is not enough space it will make an attempt to
4897 * flush out space to make room. It will do this by flushing delalloc if
4898 * possible or committing the transaction. If flush is 0 then no attempts to
4899 * regain reservations will be made and this will fail if there is not enough
4902 static int reserve_metadata_bytes(struct btrfs_root *root,
4903 struct btrfs_block_rsv *block_rsv,
4905 enum btrfs_reserve_flush_enum flush)
4907 struct btrfs_space_info *space_info = block_rsv->space_info;
4909 u64 num_bytes = orig_bytes;
4910 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4912 bool flushing = false;
4916 spin_lock(&space_info->lock);
4918 * We only want to wait if somebody other than us is flushing and we
4919 * are actually allowed to flush all things.
4921 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4922 space_info->flush) {
4923 spin_unlock(&space_info->lock);
4925 * If we have a trans handle we can't wait because the flusher
4926 * may have to commit the transaction, which would mean we would
4927 * deadlock since we are waiting for the flusher to finish, but
4928 * hold the current transaction open.
4930 if (current->journal_info)
4932 ret = wait_event_killable(space_info->wait, !space_info->flush);
4933 /* Must have been killed, return */
4937 spin_lock(&space_info->lock);
4941 used = space_info->bytes_used + space_info->bytes_reserved +
4942 space_info->bytes_pinned + space_info->bytes_readonly +
4943 space_info->bytes_may_use;
4946 * The idea here is that we've not already over-reserved the block group
4947 * then we can go ahead and save our reservation first and then start
4948 * flushing if we need to. Otherwise if we've already overcommitted
4949 * lets start flushing stuff first and then come back and try to make
4952 if (used <= space_info->total_bytes) {
4953 if (used + orig_bytes <= space_info->total_bytes) {
4954 space_info->bytes_may_use += orig_bytes;
4955 trace_btrfs_space_reservation(root->fs_info,
4956 "space_info", space_info->flags, orig_bytes, 1);
4960 * Ok set num_bytes to orig_bytes since we aren't
4961 * overocmmitted, this way we only try and reclaim what
4964 num_bytes = orig_bytes;
4968 * Ok we're over committed, set num_bytes to the overcommitted
4969 * amount plus the amount of bytes that we need for this
4972 num_bytes = used - space_info->total_bytes +
4976 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4977 space_info->bytes_may_use += orig_bytes;
4978 trace_btrfs_space_reservation(root->fs_info, "space_info",
4979 space_info->flags, orig_bytes,
4985 * Couldn't make our reservation, save our place so while we're trying
4986 * to reclaim space we can actually use it instead of somebody else
4987 * stealing it from us.
4989 * We make the other tasks wait for the flush only when we can flush
4992 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4994 space_info->flush = 1;
4995 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4998 * We will do the space reservation dance during log replay,
4999 * which means we won't have fs_info->fs_root set, so don't do
5000 * the async reclaim as we will panic.
5002 if (!root->fs_info->log_root_recovering &&
5003 need_do_async_reclaim(space_info, root->fs_info, used) &&
5004 !work_busy(&root->fs_info->async_reclaim_work))
5005 queue_work(system_unbound_wq,
5006 &root->fs_info->async_reclaim_work);
5008 spin_unlock(&space_info->lock);
5010 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5013 ret = flush_space(root, space_info, num_bytes, orig_bytes,
5018 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5019 * would happen. So skip delalloc flush.
5021 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5022 (flush_state == FLUSH_DELALLOC ||
5023 flush_state == FLUSH_DELALLOC_WAIT))
5024 flush_state = ALLOC_CHUNK;
5028 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5029 flush_state < COMMIT_TRANS)
5031 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5032 flush_state <= COMMIT_TRANS)
5036 if (ret == -ENOSPC &&
5037 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5038 struct btrfs_block_rsv *global_rsv =
5039 &root->fs_info->global_block_rsv;
5041 if (block_rsv != global_rsv &&
5042 !block_rsv_use_bytes(global_rsv, orig_bytes))
5046 trace_btrfs_space_reservation(root->fs_info,
5047 "space_info:enospc",
5048 space_info->flags, orig_bytes, 1);
5050 spin_lock(&space_info->lock);
5051 space_info->flush = 0;
5052 wake_up_all(&space_info->wait);
5053 spin_unlock(&space_info->lock);
5058 static struct btrfs_block_rsv *get_block_rsv(
5059 const struct btrfs_trans_handle *trans,
5060 const struct btrfs_root *root)
5062 struct btrfs_block_rsv *block_rsv = NULL;
5064 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5065 (root == root->fs_info->csum_root && trans->adding_csums) ||
5066 (root == root->fs_info->uuid_root))
5067 block_rsv = trans->block_rsv;
5070 block_rsv = root->block_rsv;
5073 block_rsv = &root->fs_info->empty_block_rsv;
5078 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5082 spin_lock(&block_rsv->lock);
5083 if (block_rsv->reserved >= num_bytes) {
5084 block_rsv->reserved -= num_bytes;
5085 if (block_rsv->reserved < block_rsv->size)
5086 block_rsv->full = 0;
5089 spin_unlock(&block_rsv->lock);
5093 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5094 u64 num_bytes, int update_size)
5096 spin_lock(&block_rsv->lock);
5097 block_rsv->reserved += num_bytes;
5099 block_rsv->size += num_bytes;
5100 else if (block_rsv->reserved >= block_rsv->size)
5101 block_rsv->full = 1;
5102 spin_unlock(&block_rsv->lock);
5105 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5106 struct btrfs_block_rsv *dest, u64 num_bytes,
5109 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5112 if (global_rsv->space_info != dest->space_info)
5115 spin_lock(&global_rsv->lock);
5116 min_bytes = div_factor(global_rsv->size, min_factor);
5117 if (global_rsv->reserved < min_bytes + num_bytes) {
5118 spin_unlock(&global_rsv->lock);
5121 global_rsv->reserved -= num_bytes;
5122 if (global_rsv->reserved < global_rsv->size)
5123 global_rsv->full = 0;
5124 spin_unlock(&global_rsv->lock);
5126 block_rsv_add_bytes(dest, num_bytes, 1);
5130 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5131 struct btrfs_block_rsv *block_rsv,
5132 struct btrfs_block_rsv *dest, u64 num_bytes)
5134 struct btrfs_space_info *space_info = block_rsv->space_info;
5136 spin_lock(&block_rsv->lock);
5137 if (num_bytes == (u64)-1)
5138 num_bytes = block_rsv->size;
5139 block_rsv->size -= num_bytes;
5140 if (block_rsv->reserved >= block_rsv->size) {
5141 num_bytes = block_rsv->reserved - block_rsv->size;
5142 block_rsv->reserved = block_rsv->size;
5143 block_rsv->full = 1;
5147 spin_unlock(&block_rsv->lock);
5149 if (num_bytes > 0) {
5151 spin_lock(&dest->lock);
5155 bytes_to_add = dest->size - dest->reserved;
5156 bytes_to_add = min(num_bytes, bytes_to_add);
5157 dest->reserved += bytes_to_add;
5158 if (dest->reserved >= dest->size)
5160 num_bytes -= bytes_to_add;
5162 spin_unlock(&dest->lock);
5165 spin_lock(&space_info->lock);
5166 space_info->bytes_may_use -= num_bytes;
5167 trace_btrfs_space_reservation(fs_info, "space_info",
5168 space_info->flags, num_bytes, 0);
5169 spin_unlock(&space_info->lock);
5174 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5175 struct btrfs_block_rsv *dst, u64 num_bytes)
5179 ret = block_rsv_use_bytes(src, num_bytes);
5183 block_rsv_add_bytes(dst, num_bytes, 1);
5187 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5189 memset(rsv, 0, sizeof(*rsv));
5190 spin_lock_init(&rsv->lock);
5194 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5195 unsigned short type)
5197 struct btrfs_block_rsv *block_rsv;
5198 struct btrfs_fs_info *fs_info = root->fs_info;
5200 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5204 btrfs_init_block_rsv(block_rsv, type);
5205 block_rsv->space_info = __find_space_info(fs_info,
5206 BTRFS_BLOCK_GROUP_METADATA);
5210 void btrfs_free_block_rsv(struct btrfs_root *root,
5211 struct btrfs_block_rsv *rsv)
5215 btrfs_block_rsv_release(root, rsv, (u64)-1);
5219 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5224 int btrfs_block_rsv_add(struct btrfs_root *root,
5225 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5226 enum btrfs_reserve_flush_enum flush)
5233 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5235 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5242 int btrfs_block_rsv_check(struct btrfs_root *root,
5243 struct btrfs_block_rsv *block_rsv, int min_factor)
5251 spin_lock(&block_rsv->lock);
5252 num_bytes = div_factor(block_rsv->size, min_factor);
5253 if (block_rsv->reserved >= num_bytes)
5255 spin_unlock(&block_rsv->lock);
5260 int btrfs_block_rsv_refill(struct btrfs_root *root,
5261 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5262 enum btrfs_reserve_flush_enum flush)
5270 spin_lock(&block_rsv->lock);
5271 num_bytes = min_reserved;
5272 if (block_rsv->reserved >= num_bytes)
5275 num_bytes -= block_rsv->reserved;
5276 spin_unlock(&block_rsv->lock);
5281 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5283 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5290 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5291 struct btrfs_block_rsv *dst_rsv,
5294 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5297 void btrfs_block_rsv_release(struct btrfs_root *root,
5298 struct btrfs_block_rsv *block_rsv,
5301 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5302 if (global_rsv == block_rsv ||
5303 block_rsv->space_info != global_rsv->space_info)
5305 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5310 * helper to calculate size of global block reservation.
5311 * the desired value is sum of space used by extent tree,
5312 * checksum tree and root tree
5314 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5316 struct btrfs_space_info *sinfo;
5320 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5322 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5323 spin_lock(&sinfo->lock);
5324 data_used = sinfo->bytes_used;
5325 spin_unlock(&sinfo->lock);
5327 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5328 spin_lock(&sinfo->lock);
5329 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5331 meta_used = sinfo->bytes_used;
5332 spin_unlock(&sinfo->lock);
5334 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5336 num_bytes += div_u64(data_used + meta_used, 50);
5338 if (num_bytes * 3 > meta_used)
5339 num_bytes = div_u64(meta_used, 3);
5341 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5344 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5346 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5347 struct btrfs_space_info *sinfo = block_rsv->space_info;
5350 num_bytes = calc_global_metadata_size(fs_info);
5352 spin_lock(&sinfo->lock);
5353 spin_lock(&block_rsv->lock);
5355 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5357 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5358 sinfo->bytes_reserved + sinfo->bytes_readonly +
5359 sinfo->bytes_may_use;
5361 if (sinfo->total_bytes > num_bytes) {
5362 num_bytes = sinfo->total_bytes - num_bytes;
5363 block_rsv->reserved += num_bytes;
5364 sinfo->bytes_may_use += num_bytes;
5365 trace_btrfs_space_reservation(fs_info, "space_info",
5366 sinfo->flags, num_bytes, 1);
5369 if (block_rsv->reserved >= block_rsv->size) {
5370 num_bytes = block_rsv->reserved - block_rsv->size;
5371 sinfo->bytes_may_use -= num_bytes;
5372 trace_btrfs_space_reservation(fs_info, "space_info",
5373 sinfo->flags, num_bytes, 0);
5374 block_rsv->reserved = block_rsv->size;
5375 block_rsv->full = 1;
5378 spin_unlock(&block_rsv->lock);
5379 spin_unlock(&sinfo->lock);
5382 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5384 struct btrfs_space_info *space_info;
5386 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5387 fs_info->chunk_block_rsv.space_info = space_info;
5389 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5390 fs_info->global_block_rsv.space_info = space_info;
5391 fs_info->delalloc_block_rsv.space_info = space_info;
5392 fs_info->trans_block_rsv.space_info = space_info;
5393 fs_info->empty_block_rsv.space_info = space_info;
5394 fs_info->delayed_block_rsv.space_info = space_info;
5396 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5397 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5398 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5399 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5400 if (fs_info->quota_root)
5401 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5402 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5404 update_global_block_rsv(fs_info);
5407 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5409 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5411 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5412 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5413 WARN_ON(fs_info->trans_block_rsv.size > 0);
5414 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5415 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5416 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5417 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5418 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5421 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5422 struct btrfs_root *root)
5424 if (!trans->block_rsv)
5427 if (!trans->bytes_reserved)
5430 trace_btrfs_space_reservation(root->fs_info, "transaction",
5431 trans->transid, trans->bytes_reserved, 0);
5432 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5433 trans->bytes_reserved = 0;
5437 * To be called after all the new block groups attached to the transaction
5438 * handle have been created (btrfs_create_pending_block_groups()).
5440 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5442 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5444 if (!trans->chunk_bytes_reserved)
5447 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5449 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5450 trans->chunk_bytes_reserved);
5451 trans->chunk_bytes_reserved = 0;
5454 /* Can only return 0 or -ENOSPC */
5455 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5456 struct inode *inode)
5458 struct btrfs_root *root = BTRFS_I(inode)->root;
5459 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5460 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5463 * We need to hold space in order to delete our orphan item once we've
5464 * added it, so this takes the reservation so we can release it later
5465 * when we are truly done with the orphan item.
5467 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5468 trace_btrfs_space_reservation(root->fs_info, "orphan",
5469 btrfs_ino(inode), num_bytes, 1);
5470 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5473 void btrfs_orphan_release_metadata(struct inode *inode)
5475 struct btrfs_root *root = BTRFS_I(inode)->root;
5476 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5477 trace_btrfs_space_reservation(root->fs_info, "orphan",
5478 btrfs_ino(inode), num_bytes, 0);
5479 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5483 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5484 * root: the root of the parent directory
5485 * rsv: block reservation
5486 * items: the number of items that we need do reservation
5487 * qgroup_reserved: used to return the reserved size in qgroup
5489 * This function is used to reserve the space for snapshot/subvolume
5490 * creation and deletion. Those operations are different with the
5491 * common file/directory operations, they change two fs/file trees
5492 * and root tree, the number of items that the qgroup reserves is
5493 * different with the free space reservation. So we can not use
5494 * the space reseravtion mechanism in start_transaction().
5496 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5497 struct btrfs_block_rsv *rsv,
5499 u64 *qgroup_reserved,
5500 bool use_global_rsv)
5504 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5506 if (root->fs_info->quota_enabled) {
5507 /* One for parent inode, two for dir entries */
5508 num_bytes = 3 * root->nodesize;
5509 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5516 *qgroup_reserved = num_bytes;
5518 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5519 rsv->space_info = __find_space_info(root->fs_info,
5520 BTRFS_BLOCK_GROUP_METADATA);
5521 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5522 BTRFS_RESERVE_FLUSH_ALL);
5524 if (ret == -ENOSPC && use_global_rsv)
5525 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5527 if (ret && *qgroup_reserved)
5528 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5533 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5534 struct btrfs_block_rsv *rsv,
5535 u64 qgroup_reserved)
5537 btrfs_block_rsv_release(root, rsv, (u64)-1);
5541 * drop_outstanding_extent - drop an outstanding extent
5542 * @inode: the inode we're dropping the extent for
5543 * @num_bytes: the number of bytes we're relaseing.
5545 * This is called when we are freeing up an outstanding extent, either called
5546 * after an error or after an extent is written. This will return the number of
5547 * reserved extents that need to be freed. This must be called with
5548 * BTRFS_I(inode)->lock held.
5550 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5552 unsigned drop_inode_space = 0;
5553 unsigned dropped_extents = 0;
5554 unsigned num_extents = 0;
5556 num_extents = (unsigned)div64_u64(num_bytes +
5557 BTRFS_MAX_EXTENT_SIZE - 1,
5558 BTRFS_MAX_EXTENT_SIZE);
5559 ASSERT(num_extents);
5560 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5561 BTRFS_I(inode)->outstanding_extents -= num_extents;
5563 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5564 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5565 &BTRFS_I(inode)->runtime_flags))
5566 drop_inode_space = 1;
5569 * If we have more or the same amount of outsanding extents than we have
5570 * reserved then we need to leave the reserved extents count alone.
5572 if (BTRFS_I(inode)->outstanding_extents >=
5573 BTRFS_I(inode)->reserved_extents)
5574 return drop_inode_space;
5576 dropped_extents = BTRFS_I(inode)->reserved_extents -
5577 BTRFS_I(inode)->outstanding_extents;
5578 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5579 return dropped_extents + drop_inode_space;
5583 * calc_csum_metadata_size - return the amount of metada space that must be
5584 * reserved/free'd for the given bytes.
5585 * @inode: the inode we're manipulating
5586 * @num_bytes: the number of bytes in question
5587 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5589 * This adjusts the number of csum_bytes in the inode and then returns the
5590 * correct amount of metadata that must either be reserved or freed. We
5591 * calculate how many checksums we can fit into one leaf and then divide the
5592 * number of bytes that will need to be checksumed by this value to figure out
5593 * how many checksums will be required. If we are adding bytes then the number
5594 * may go up and we will return the number of additional bytes that must be
5595 * reserved. If it is going down we will return the number of bytes that must
5598 * This must be called with BTRFS_I(inode)->lock held.
5600 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5603 struct btrfs_root *root = BTRFS_I(inode)->root;
5604 u64 old_csums, num_csums;
5606 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5607 BTRFS_I(inode)->csum_bytes == 0)
5610 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5612 BTRFS_I(inode)->csum_bytes += num_bytes;
5614 BTRFS_I(inode)->csum_bytes -= num_bytes;
5615 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5617 /* No change, no need to reserve more */
5618 if (old_csums == num_csums)
5622 return btrfs_calc_trans_metadata_size(root,
5623 num_csums - old_csums);
5625 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5628 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5630 struct btrfs_root *root = BTRFS_I(inode)->root;
5631 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5634 unsigned nr_extents = 0;
5635 int extra_reserve = 0;
5636 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5638 bool delalloc_lock = true;
5642 /* If we are a free space inode we need to not flush since we will be in
5643 * the middle of a transaction commit. We also don't need the delalloc
5644 * mutex since we won't race with anybody. We need this mostly to make
5645 * lockdep shut its filthy mouth.
5647 if (btrfs_is_free_space_inode(inode)) {
5648 flush = BTRFS_RESERVE_NO_FLUSH;
5649 delalloc_lock = false;
5652 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5653 btrfs_transaction_in_commit(root->fs_info))
5654 schedule_timeout(1);
5657 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5659 num_bytes = ALIGN(num_bytes, root->sectorsize);
5661 spin_lock(&BTRFS_I(inode)->lock);
5662 nr_extents = (unsigned)div64_u64(num_bytes +
5663 BTRFS_MAX_EXTENT_SIZE - 1,
5664 BTRFS_MAX_EXTENT_SIZE);
5665 BTRFS_I(inode)->outstanding_extents += nr_extents;
5668 if (BTRFS_I(inode)->outstanding_extents >
5669 BTRFS_I(inode)->reserved_extents)
5670 nr_extents = BTRFS_I(inode)->outstanding_extents -
5671 BTRFS_I(inode)->reserved_extents;
5674 * Add an item to reserve for updating the inode when we complete the
5677 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5678 &BTRFS_I(inode)->runtime_flags)) {
5683 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5684 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5685 csum_bytes = BTRFS_I(inode)->csum_bytes;
5686 spin_unlock(&BTRFS_I(inode)->lock);
5688 if (root->fs_info->quota_enabled) {
5689 ret = btrfs_qgroup_reserve_meta(root,
5690 nr_extents * root->nodesize);
5695 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5696 if (unlikely(ret)) {
5697 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5701 spin_lock(&BTRFS_I(inode)->lock);
5702 if (extra_reserve) {
5703 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5704 &BTRFS_I(inode)->runtime_flags);
5707 BTRFS_I(inode)->reserved_extents += nr_extents;
5708 spin_unlock(&BTRFS_I(inode)->lock);
5711 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5714 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5715 btrfs_ino(inode), to_reserve, 1);
5716 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5721 spin_lock(&BTRFS_I(inode)->lock);
5722 dropped = drop_outstanding_extent(inode, num_bytes);
5724 * If the inodes csum_bytes is the same as the original
5725 * csum_bytes then we know we haven't raced with any free()ers
5726 * so we can just reduce our inodes csum bytes and carry on.
5728 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5729 calc_csum_metadata_size(inode, num_bytes, 0);
5731 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5735 * This is tricky, but first we need to figure out how much we
5736 * free'd from any free-ers that occured during this
5737 * reservation, so we reset ->csum_bytes to the csum_bytes
5738 * before we dropped our lock, and then call the free for the
5739 * number of bytes that were freed while we were trying our
5742 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5743 BTRFS_I(inode)->csum_bytes = csum_bytes;
5744 to_free = calc_csum_metadata_size(inode, bytes, 0);
5748 * Now we need to see how much we would have freed had we not
5749 * been making this reservation and our ->csum_bytes were not
5750 * artificially inflated.
5752 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5753 bytes = csum_bytes - orig_csum_bytes;
5754 bytes = calc_csum_metadata_size(inode, bytes, 0);
5757 * Now reset ->csum_bytes to what it should be. If bytes is
5758 * more than to_free then we would have free'd more space had we
5759 * not had an artificially high ->csum_bytes, so we need to free
5760 * the remainder. If bytes is the same or less then we don't
5761 * need to do anything, the other free-ers did the correct
5764 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5765 if (bytes > to_free)
5766 to_free = bytes - to_free;
5770 spin_unlock(&BTRFS_I(inode)->lock);
5772 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5775 btrfs_block_rsv_release(root, block_rsv, to_free);
5776 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5777 btrfs_ino(inode), to_free, 0);
5780 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5785 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5786 * @inode: the inode to release the reservation for
5787 * @num_bytes: the number of bytes we're releasing
5789 * This will release the metadata reservation for an inode. This can be called
5790 * once we complete IO for a given set of bytes to release their metadata
5793 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5795 struct btrfs_root *root = BTRFS_I(inode)->root;
5799 num_bytes = ALIGN(num_bytes, root->sectorsize);
5800 spin_lock(&BTRFS_I(inode)->lock);
5801 dropped = drop_outstanding_extent(inode, num_bytes);
5804 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5805 spin_unlock(&BTRFS_I(inode)->lock);
5807 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5809 if (btrfs_test_is_dummy_root(root))
5812 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5813 btrfs_ino(inode), to_free, 0);
5815 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5820 * btrfs_delalloc_reserve_space - reserve data and metadata space for
5822 * @inode: inode we're writing to
5823 * @start: start range we are writing to
5824 * @len: how long the range we are writing to
5826 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5828 * This will do the following things
5830 * o reserve space in data space info for num bytes
5831 * and reserve precious corresponding qgroup space
5832 * (Done in check_data_free_space)
5834 * o reserve space for metadata space, based on the number of outstanding
5835 * extents and how much csums will be needed
5836 * also reserve metadata space in a per root over-reserve method.
5837 * o add to the inodes->delalloc_bytes
5838 * o add it to the fs_info's delalloc inodes list.
5839 * (Above 3 all done in delalloc_reserve_metadata)
5841 * Return 0 for success
5842 * Return <0 for error(-ENOSPC or -EQUOT)
5844 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5848 ret = btrfs_check_data_free_space(inode, start, len);
5851 ret = btrfs_delalloc_reserve_metadata(inode, len);
5853 btrfs_free_reserved_data_space(inode, start, len);
5858 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5859 * @inode: inode we're releasing space for
5860 * @start: start position of the space already reserved
5861 * @len: the len of the space already reserved
5863 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5864 * called in the case that we don't need the metadata AND data reservations
5865 * anymore. So if there is an error or we insert an inline extent.
5867 * This function will release the metadata space that was not used and will
5868 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5869 * list if there are no delalloc bytes left.
5870 * Also it will handle the qgroup reserved space.
5872 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5874 btrfs_delalloc_release_metadata(inode, len);
5875 btrfs_free_reserved_data_space(inode, start, len);
5878 static int update_block_group(struct btrfs_trans_handle *trans,
5879 struct btrfs_root *root, u64 bytenr,
5880 u64 num_bytes, int alloc)
5882 struct btrfs_block_group_cache *cache = NULL;
5883 struct btrfs_fs_info *info = root->fs_info;
5884 u64 total = num_bytes;
5889 /* block accounting for super block */
5890 spin_lock(&info->delalloc_root_lock);
5891 old_val = btrfs_super_bytes_used(info->super_copy);
5893 old_val += num_bytes;
5895 old_val -= num_bytes;
5896 btrfs_set_super_bytes_used(info->super_copy, old_val);
5897 spin_unlock(&info->delalloc_root_lock);
5900 cache = btrfs_lookup_block_group(info, bytenr);
5903 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5904 BTRFS_BLOCK_GROUP_RAID1 |
5905 BTRFS_BLOCK_GROUP_RAID10))
5910 * If this block group has free space cache written out, we
5911 * need to make sure to load it if we are removing space. This
5912 * is because we need the unpinning stage to actually add the
5913 * space back to the block group, otherwise we will leak space.
5915 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5916 cache_block_group(cache, 1);
5918 byte_in_group = bytenr - cache->key.objectid;
5919 WARN_ON(byte_in_group > cache->key.offset);
5921 spin_lock(&cache->space_info->lock);
5922 spin_lock(&cache->lock);
5924 if (btrfs_test_opt(root, SPACE_CACHE) &&
5925 cache->disk_cache_state < BTRFS_DC_CLEAR)
5926 cache->disk_cache_state = BTRFS_DC_CLEAR;
5928 old_val = btrfs_block_group_used(&cache->item);
5929 num_bytes = min(total, cache->key.offset - byte_in_group);
5931 old_val += num_bytes;
5932 btrfs_set_block_group_used(&cache->item, old_val);
5933 cache->reserved -= num_bytes;
5934 cache->space_info->bytes_reserved -= num_bytes;
5935 cache->space_info->bytes_used += num_bytes;
5936 cache->space_info->disk_used += num_bytes * factor;
5937 spin_unlock(&cache->lock);
5938 spin_unlock(&cache->space_info->lock);
5940 old_val -= num_bytes;
5941 btrfs_set_block_group_used(&cache->item, old_val);
5942 cache->pinned += num_bytes;
5943 cache->space_info->bytes_pinned += num_bytes;
5944 cache->space_info->bytes_used -= num_bytes;
5945 cache->space_info->disk_used -= num_bytes * factor;
5946 spin_unlock(&cache->lock);
5947 spin_unlock(&cache->space_info->lock);
5949 set_extent_dirty(info->pinned_extents,
5950 bytenr, bytenr + num_bytes - 1,
5951 GFP_NOFS | __GFP_NOFAIL);
5954 spin_lock(&trans->transaction->dirty_bgs_lock);
5955 if (list_empty(&cache->dirty_list)) {
5956 list_add_tail(&cache->dirty_list,
5957 &trans->transaction->dirty_bgs);
5958 trans->transaction->num_dirty_bgs++;
5959 btrfs_get_block_group(cache);
5961 spin_unlock(&trans->transaction->dirty_bgs_lock);
5964 * No longer have used bytes in this block group, queue it for
5965 * deletion. We do this after adding the block group to the
5966 * dirty list to avoid races between cleaner kthread and space
5969 if (!alloc && old_val == 0) {
5970 spin_lock(&info->unused_bgs_lock);
5971 if (list_empty(&cache->bg_list)) {
5972 btrfs_get_block_group(cache);
5973 list_add_tail(&cache->bg_list,
5976 spin_unlock(&info->unused_bgs_lock);
5979 btrfs_put_block_group(cache);
5981 bytenr += num_bytes;
5986 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5988 struct btrfs_block_group_cache *cache;
5991 spin_lock(&root->fs_info->block_group_cache_lock);
5992 bytenr = root->fs_info->first_logical_byte;
5993 spin_unlock(&root->fs_info->block_group_cache_lock);
5995 if (bytenr < (u64)-1)
5998 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6002 bytenr = cache->key.objectid;
6003 btrfs_put_block_group(cache);
6008 static int pin_down_extent(struct btrfs_root *root,
6009 struct btrfs_block_group_cache *cache,
6010 u64 bytenr, u64 num_bytes, int reserved)
6012 spin_lock(&cache->space_info->lock);
6013 spin_lock(&cache->lock);
6014 cache->pinned += num_bytes;
6015 cache->space_info->bytes_pinned += num_bytes;
6017 cache->reserved -= num_bytes;
6018 cache->space_info->bytes_reserved -= num_bytes;
6020 spin_unlock(&cache->lock);
6021 spin_unlock(&cache->space_info->lock);
6023 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6024 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6026 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
6031 * this function must be called within transaction
6033 int btrfs_pin_extent(struct btrfs_root *root,
6034 u64 bytenr, u64 num_bytes, int reserved)
6036 struct btrfs_block_group_cache *cache;
6038 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6039 BUG_ON(!cache); /* Logic error */
6041 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6043 btrfs_put_block_group(cache);
6048 * this function must be called within transaction
6050 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6051 u64 bytenr, u64 num_bytes)
6053 struct btrfs_block_group_cache *cache;
6056 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6061 * pull in the free space cache (if any) so that our pin
6062 * removes the free space from the cache. We have load_only set
6063 * to one because the slow code to read in the free extents does check
6064 * the pinned extents.
6066 cache_block_group(cache, 1);
6068 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6070 /* remove us from the free space cache (if we're there at all) */
6071 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6072 btrfs_put_block_group(cache);
6076 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6079 struct btrfs_block_group_cache *block_group;
6080 struct btrfs_caching_control *caching_ctl;
6082 block_group = btrfs_lookup_block_group(root->fs_info, start);
6086 cache_block_group(block_group, 0);
6087 caching_ctl = get_caching_control(block_group);
6091 BUG_ON(!block_group_cache_done(block_group));
6092 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6094 mutex_lock(&caching_ctl->mutex);
6096 if (start >= caching_ctl->progress) {
6097 ret = add_excluded_extent(root, start, num_bytes);
6098 } else if (start + num_bytes <= caching_ctl->progress) {
6099 ret = btrfs_remove_free_space(block_group,
6102 num_bytes = caching_ctl->progress - start;
6103 ret = btrfs_remove_free_space(block_group,
6108 num_bytes = (start + num_bytes) -
6109 caching_ctl->progress;
6110 start = caching_ctl->progress;
6111 ret = add_excluded_extent(root, start, num_bytes);
6114 mutex_unlock(&caching_ctl->mutex);
6115 put_caching_control(caching_ctl);
6117 btrfs_put_block_group(block_group);
6121 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6122 struct extent_buffer *eb)
6124 struct btrfs_file_extent_item *item;
6125 struct btrfs_key key;
6129 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6132 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6133 btrfs_item_key_to_cpu(eb, &key, i);
6134 if (key.type != BTRFS_EXTENT_DATA_KEY)
6136 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6137 found_type = btrfs_file_extent_type(eb, item);
6138 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6140 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6142 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6143 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6144 __exclude_logged_extent(log, key.objectid, key.offset);
6151 * btrfs_update_reserved_bytes - update the block_group and space info counters
6152 * @cache: The cache we are manipulating
6153 * @num_bytes: The number of bytes in question
6154 * @reserve: One of the reservation enums
6155 * @delalloc: The blocks are allocated for the delalloc write
6157 * This is called by the allocator when it reserves space, or by somebody who is
6158 * freeing space that was never actually used on disk. For example if you
6159 * reserve some space for a new leaf in transaction A and before transaction A
6160 * commits you free that leaf, you call this with reserve set to 0 in order to
6161 * clear the reservation.
6163 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6164 * ENOSPC accounting. For data we handle the reservation through clearing the
6165 * delalloc bits in the io_tree. We have to do this since we could end up
6166 * allocating less disk space for the amount of data we have reserved in the
6167 * case of compression.
6169 * If this is a reservation and the block group has become read only we cannot
6170 * make the reservation and return -EAGAIN, otherwise this function always
6173 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6174 u64 num_bytes, int reserve, int delalloc)
6176 struct btrfs_space_info *space_info = cache->space_info;
6179 spin_lock(&space_info->lock);
6180 spin_lock(&cache->lock);
6181 if (reserve != RESERVE_FREE) {
6185 cache->reserved += num_bytes;
6186 space_info->bytes_reserved += num_bytes;
6187 if (reserve == RESERVE_ALLOC) {
6188 trace_btrfs_space_reservation(cache->fs_info,
6189 "space_info", space_info->flags,
6191 space_info->bytes_may_use -= num_bytes;
6195 cache->delalloc_bytes += num_bytes;
6199 space_info->bytes_readonly += num_bytes;
6200 cache->reserved -= num_bytes;
6201 space_info->bytes_reserved -= num_bytes;
6204 cache->delalloc_bytes -= num_bytes;
6206 spin_unlock(&cache->lock);
6207 spin_unlock(&space_info->lock);
6211 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6212 struct btrfs_root *root)
6214 struct btrfs_fs_info *fs_info = root->fs_info;
6215 struct btrfs_caching_control *next;
6216 struct btrfs_caching_control *caching_ctl;
6217 struct btrfs_block_group_cache *cache;
6219 down_write(&fs_info->commit_root_sem);
6221 list_for_each_entry_safe(caching_ctl, next,
6222 &fs_info->caching_block_groups, list) {
6223 cache = caching_ctl->block_group;
6224 if (block_group_cache_done(cache)) {
6225 cache->last_byte_to_unpin = (u64)-1;
6226 list_del_init(&caching_ctl->list);
6227 put_caching_control(caching_ctl);
6229 cache->last_byte_to_unpin = caching_ctl->progress;
6233 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6234 fs_info->pinned_extents = &fs_info->freed_extents[1];
6236 fs_info->pinned_extents = &fs_info->freed_extents[0];
6238 up_write(&fs_info->commit_root_sem);
6240 update_global_block_rsv(fs_info);
6244 * Returns the free cluster for the given space info and sets empty_cluster to
6245 * what it should be based on the mount options.
6247 static struct btrfs_free_cluster *
6248 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6251 struct btrfs_free_cluster *ret = NULL;
6252 bool ssd = btrfs_test_opt(root, SSD);
6255 if (btrfs_mixed_space_info(space_info))
6259 *empty_cluster = 2 * 1024 * 1024;
6260 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6261 ret = &root->fs_info->meta_alloc_cluster;
6263 *empty_cluster = 64 * 1024;
6264 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6265 ret = &root->fs_info->data_alloc_cluster;
6271 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6272 const bool return_free_space)
6274 struct btrfs_fs_info *fs_info = root->fs_info;
6275 struct btrfs_block_group_cache *cache = NULL;
6276 struct btrfs_space_info *space_info;
6277 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6278 struct btrfs_free_cluster *cluster = NULL;
6280 u64 total_unpinned = 0;
6281 u64 empty_cluster = 0;
6284 while (start <= end) {
6287 start >= cache->key.objectid + cache->key.offset) {
6289 btrfs_put_block_group(cache);
6291 cache = btrfs_lookup_block_group(fs_info, start);
6292 BUG_ON(!cache); /* Logic error */
6294 cluster = fetch_cluster_info(root,
6297 empty_cluster <<= 1;
6300 len = cache->key.objectid + cache->key.offset - start;
6301 len = min(len, end + 1 - start);
6303 if (start < cache->last_byte_to_unpin) {
6304 len = min(len, cache->last_byte_to_unpin - start);
6305 if (return_free_space)
6306 btrfs_add_free_space(cache, start, len);
6310 total_unpinned += len;
6311 space_info = cache->space_info;
6314 * If this space cluster has been marked as fragmented and we've
6315 * unpinned enough in this block group to potentially allow a
6316 * cluster to be created inside of it go ahead and clear the
6319 if (cluster && cluster->fragmented &&
6320 total_unpinned > empty_cluster) {
6321 spin_lock(&cluster->lock);
6322 cluster->fragmented = 0;
6323 spin_unlock(&cluster->lock);
6326 spin_lock(&space_info->lock);
6327 spin_lock(&cache->lock);
6328 cache->pinned -= len;
6329 space_info->bytes_pinned -= len;
6330 space_info->max_extent_size = 0;
6331 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6333 space_info->bytes_readonly += len;
6336 spin_unlock(&cache->lock);
6337 if (!readonly && global_rsv->space_info == space_info) {
6338 spin_lock(&global_rsv->lock);
6339 if (!global_rsv->full) {
6340 len = min(len, global_rsv->size -
6341 global_rsv->reserved);
6342 global_rsv->reserved += len;
6343 space_info->bytes_may_use += len;
6344 if (global_rsv->reserved >= global_rsv->size)
6345 global_rsv->full = 1;
6347 spin_unlock(&global_rsv->lock);
6349 spin_unlock(&space_info->lock);
6353 btrfs_put_block_group(cache);
6357 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6358 struct btrfs_root *root)
6360 struct btrfs_fs_info *fs_info = root->fs_info;
6361 struct btrfs_block_group_cache *block_group, *tmp;
6362 struct list_head *deleted_bgs;
6363 struct extent_io_tree *unpin;
6368 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6369 unpin = &fs_info->freed_extents[1];
6371 unpin = &fs_info->freed_extents[0];
6373 while (!trans->aborted) {
6374 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6375 ret = find_first_extent_bit(unpin, 0, &start, &end,
6376 EXTENT_DIRTY, NULL);
6378 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6382 if (btrfs_test_opt(root, DISCARD))
6383 ret = btrfs_discard_extent(root, start,
6384 end + 1 - start, NULL);
6386 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6387 unpin_extent_range(root, start, end, true);
6388 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6393 * Transaction is finished. We don't need the lock anymore. We
6394 * do need to clean up the block groups in case of a transaction
6397 deleted_bgs = &trans->transaction->deleted_bgs;
6398 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6402 if (!trans->aborted)
6403 ret = btrfs_discard_extent(root,
6404 block_group->key.objectid,
6405 block_group->key.offset,
6408 list_del_init(&block_group->bg_list);
6409 btrfs_put_block_group_trimming(block_group);
6410 btrfs_put_block_group(block_group);
6413 const char *errstr = btrfs_decode_error(ret);
6415 "Discard failed while removing blockgroup: errno=%d %s\n",
6423 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6424 u64 owner, u64 root_objectid)
6426 struct btrfs_space_info *space_info;
6429 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6430 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6431 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6433 flags = BTRFS_BLOCK_GROUP_METADATA;
6435 flags = BTRFS_BLOCK_GROUP_DATA;
6438 space_info = __find_space_info(fs_info, flags);
6439 BUG_ON(!space_info); /* Logic bug */
6440 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6444 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6445 struct btrfs_root *root,
6446 struct btrfs_delayed_ref_node *node, u64 parent,
6447 u64 root_objectid, u64 owner_objectid,
6448 u64 owner_offset, int refs_to_drop,
6449 struct btrfs_delayed_extent_op *extent_op)
6451 struct btrfs_key key;
6452 struct btrfs_path *path;
6453 struct btrfs_fs_info *info = root->fs_info;
6454 struct btrfs_root *extent_root = info->extent_root;
6455 struct extent_buffer *leaf;
6456 struct btrfs_extent_item *ei;
6457 struct btrfs_extent_inline_ref *iref;
6460 int extent_slot = 0;
6461 int found_extent = 0;
6465 u64 bytenr = node->bytenr;
6466 u64 num_bytes = node->num_bytes;
6468 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6471 path = btrfs_alloc_path();
6476 path->leave_spinning = 1;
6478 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6479 BUG_ON(!is_data && refs_to_drop != 1);
6482 skinny_metadata = 0;
6484 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6485 bytenr, num_bytes, parent,
6486 root_objectid, owner_objectid,
6489 extent_slot = path->slots[0];
6490 while (extent_slot >= 0) {
6491 btrfs_item_key_to_cpu(path->nodes[0], &key,
6493 if (key.objectid != bytenr)
6495 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6496 key.offset == num_bytes) {
6500 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6501 key.offset == owner_objectid) {
6505 if (path->slots[0] - extent_slot > 5)
6509 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6510 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6511 if (found_extent && item_size < sizeof(*ei))
6514 if (!found_extent) {
6516 ret = remove_extent_backref(trans, extent_root, path,
6518 is_data, &last_ref);
6520 btrfs_abort_transaction(trans, extent_root, ret);
6523 btrfs_release_path(path);
6524 path->leave_spinning = 1;
6526 key.objectid = bytenr;
6527 key.type = BTRFS_EXTENT_ITEM_KEY;
6528 key.offset = num_bytes;
6530 if (!is_data && skinny_metadata) {
6531 key.type = BTRFS_METADATA_ITEM_KEY;
6532 key.offset = owner_objectid;
6535 ret = btrfs_search_slot(trans, extent_root,
6537 if (ret > 0 && skinny_metadata && path->slots[0]) {
6539 * Couldn't find our skinny metadata item,
6540 * see if we have ye olde extent item.
6543 btrfs_item_key_to_cpu(path->nodes[0], &key,
6545 if (key.objectid == bytenr &&
6546 key.type == BTRFS_EXTENT_ITEM_KEY &&
6547 key.offset == num_bytes)
6551 if (ret > 0 && skinny_metadata) {
6552 skinny_metadata = false;
6553 key.objectid = bytenr;
6554 key.type = BTRFS_EXTENT_ITEM_KEY;
6555 key.offset = num_bytes;
6556 btrfs_release_path(path);
6557 ret = btrfs_search_slot(trans, extent_root,
6562 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6565 btrfs_print_leaf(extent_root,
6569 btrfs_abort_transaction(trans, extent_root, ret);
6572 extent_slot = path->slots[0];
6574 } else if (WARN_ON(ret == -ENOENT)) {
6575 btrfs_print_leaf(extent_root, path->nodes[0]);
6577 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6578 bytenr, parent, root_objectid, owner_objectid,
6580 btrfs_abort_transaction(trans, extent_root, ret);
6583 btrfs_abort_transaction(trans, extent_root, ret);
6587 leaf = path->nodes[0];
6588 item_size = btrfs_item_size_nr(leaf, extent_slot);
6589 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6590 if (item_size < sizeof(*ei)) {
6591 BUG_ON(found_extent || extent_slot != path->slots[0]);
6592 ret = convert_extent_item_v0(trans, extent_root, path,
6595 btrfs_abort_transaction(trans, extent_root, ret);
6599 btrfs_release_path(path);
6600 path->leave_spinning = 1;
6602 key.objectid = bytenr;
6603 key.type = BTRFS_EXTENT_ITEM_KEY;
6604 key.offset = num_bytes;
6606 ret = btrfs_search_slot(trans, extent_root, &key, path,
6609 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6611 btrfs_print_leaf(extent_root, path->nodes[0]);
6614 btrfs_abort_transaction(trans, extent_root, ret);
6618 extent_slot = path->slots[0];
6619 leaf = path->nodes[0];
6620 item_size = btrfs_item_size_nr(leaf, extent_slot);
6623 BUG_ON(item_size < sizeof(*ei));
6624 ei = btrfs_item_ptr(leaf, extent_slot,
6625 struct btrfs_extent_item);
6626 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6627 key.type == BTRFS_EXTENT_ITEM_KEY) {
6628 struct btrfs_tree_block_info *bi;
6629 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6630 bi = (struct btrfs_tree_block_info *)(ei + 1);
6631 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6634 refs = btrfs_extent_refs(leaf, ei);
6635 if (refs < refs_to_drop) {
6636 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6637 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6639 btrfs_abort_transaction(trans, extent_root, ret);
6642 refs -= refs_to_drop;
6646 __run_delayed_extent_op(extent_op, leaf, ei);
6648 * In the case of inline back ref, reference count will
6649 * be updated by remove_extent_backref
6652 BUG_ON(!found_extent);
6654 btrfs_set_extent_refs(leaf, ei, refs);
6655 btrfs_mark_buffer_dirty(leaf);
6658 ret = remove_extent_backref(trans, extent_root, path,
6660 is_data, &last_ref);
6662 btrfs_abort_transaction(trans, extent_root, ret);
6666 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6670 BUG_ON(is_data && refs_to_drop !=
6671 extent_data_ref_count(path, iref));
6673 BUG_ON(path->slots[0] != extent_slot);
6675 BUG_ON(path->slots[0] != extent_slot + 1);
6676 path->slots[0] = extent_slot;
6682 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6685 btrfs_abort_transaction(trans, extent_root, ret);
6688 btrfs_release_path(path);
6691 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6693 btrfs_abort_transaction(trans, extent_root, ret);
6698 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
6701 btrfs_abort_transaction(trans, extent_root, ret);
6705 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6707 btrfs_abort_transaction(trans, extent_root, ret);
6711 btrfs_release_path(path);
6714 btrfs_free_path(path);
6719 * when we free an block, it is possible (and likely) that we free the last
6720 * delayed ref for that extent as well. This searches the delayed ref tree for
6721 * a given extent, and if there are no other delayed refs to be processed, it
6722 * removes it from the tree.
6724 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6725 struct btrfs_root *root, u64 bytenr)
6727 struct btrfs_delayed_ref_head *head;
6728 struct btrfs_delayed_ref_root *delayed_refs;
6731 delayed_refs = &trans->transaction->delayed_refs;
6732 spin_lock(&delayed_refs->lock);
6733 head = btrfs_find_delayed_ref_head(trans, bytenr);
6735 goto out_delayed_unlock;
6737 spin_lock(&head->lock);
6738 if (!list_empty(&head->ref_list))
6741 if (head->extent_op) {
6742 if (!head->must_insert_reserved)
6744 btrfs_free_delayed_extent_op(head->extent_op);
6745 head->extent_op = NULL;
6749 * waiting for the lock here would deadlock. If someone else has it
6750 * locked they are already in the process of dropping it anyway
6752 if (!mutex_trylock(&head->mutex))
6756 * at this point we have a head with no other entries. Go
6757 * ahead and process it.
6759 head->node.in_tree = 0;
6760 rb_erase(&head->href_node, &delayed_refs->href_root);
6762 atomic_dec(&delayed_refs->num_entries);
6765 * we don't take a ref on the node because we're removing it from the
6766 * tree, so we just steal the ref the tree was holding.
6768 delayed_refs->num_heads--;
6769 if (head->processing == 0)
6770 delayed_refs->num_heads_ready--;
6771 head->processing = 0;
6772 spin_unlock(&head->lock);
6773 spin_unlock(&delayed_refs->lock);
6775 BUG_ON(head->extent_op);
6776 if (head->must_insert_reserved)
6779 mutex_unlock(&head->mutex);
6780 btrfs_put_delayed_ref(&head->node);
6783 spin_unlock(&head->lock);
6786 spin_unlock(&delayed_refs->lock);
6790 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6791 struct btrfs_root *root,
6792 struct extent_buffer *buf,
6793 u64 parent, int last_ref)
6798 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6799 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6800 buf->start, buf->len,
6801 parent, root->root_key.objectid,
6802 btrfs_header_level(buf),
6803 BTRFS_DROP_DELAYED_REF, NULL);
6804 BUG_ON(ret); /* -ENOMEM */
6810 if (btrfs_header_generation(buf) == trans->transid) {
6811 struct btrfs_block_group_cache *cache;
6813 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6814 ret = check_ref_cleanup(trans, root, buf->start);
6819 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6821 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6822 pin_down_extent(root, cache, buf->start, buf->len, 1);
6823 btrfs_put_block_group(cache);
6827 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6829 btrfs_add_free_space(cache, buf->start, buf->len);
6830 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6831 btrfs_put_block_group(cache);
6832 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6837 add_pinned_bytes(root->fs_info, buf->len,
6838 btrfs_header_level(buf),
6839 root->root_key.objectid);
6842 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6845 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6848 /* Can return -ENOMEM */
6849 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6850 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6851 u64 owner, u64 offset)
6854 struct btrfs_fs_info *fs_info = root->fs_info;
6856 if (btrfs_test_is_dummy_root(root))
6859 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6862 * tree log blocks never actually go into the extent allocation
6863 * tree, just update pinning info and exit early.
6865 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6866 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6867 /* unlocks the pinned mutex */
6868 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6870 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6871 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6873 parent, root_objectid, (int)owner,
6874 BTRFS_DROP_DELAYED_REF, NULL);
6876 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6878 parent, root_objectid, owner,
6880 BTRFS_DROP_DELAYED_REF, NULL);
6886 * when we wait for progress in the block group caching, its because
6887 * our allocation attempt failed at least once. So, we must sleep
6888 * and let some progress happen before we try again.
6890 * This function will sleep at least once waiting for new free space to
6891 * show up, and then it will check the block group free space numbers
6892 * for our min num_bytes. Another option is to have it go ahead
6893 * and look in the rbtree for a free extent of a given size, but this
6896 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6897 * any of the information in this block group.
6899 static noinline void
6900 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6903 struct btrfs_caching_control *caching_ctl;
6905 caching_ctl = get_caching_control(cache);
6909 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6910 (cache->free_space_ctl->free_space >= num_bytes));
6912 put_caching_control(caching_ctl);
6916 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6918 struct btrfs_caching_control *caching_ctl;
6921 caching_ctl = get_caching_control(cache);
6923 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6925 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6926 if (cache->cached == BTRFS_CACHE_ERROR)
6928 put_caching_control(caching_ctl);
6932 int __get_raid_index(u64 flags)
6934 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6935 return BTRFS_RAID_RAID10;
6936 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6937 return BTRFS_RAID_RAID1;
6938 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6939 return BTRFS_RAID_DUP;
6940 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6941 return BTRFS_RAID_RAID0;
6942 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6943 return BTRFS_RAID_RAID5;
6944 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6945 return BTRFS_RAID_RAID6;
6947 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6950 int get_block_group_index(struct btrfs_block_group_cache *cache)
6952 return __get_raid_index(cache->flags);
6955 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6956 [BTRFS_RAID_RAID10] = "raid10",
6957 [BTRFS_RAID_RAID1] = "raid1",
6958 [BTRFS_RAID_DUP] = "dup",
6959 [BTRFS_RAID_RAID0] = "raid0",
6960 [BTRFS_RAID_SINGLE] = "single",
6961 [BTRFS_RAID_RAID5] = "raid5",
6962 [BTRFS_RAID_RAID6] = "raid6",
6965 static const char *get_raid_name(enum btrfs_raid_types type)
6967 if (type >= BTRFS_NR_RAID_TYPES)
6970 return btrfs_raid_type_names[type];
6973 enum btrfs_loop_type {
6974 LOOP_CACHING_NOWAIT = 0,
6975 LOOP_CACHING_WAIT = 1,
6976 LOOP_ALLOC_CHUNK = 2,
6977 LOOP_NO_EMPTY_SIZE = 3,
6981 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6985 down_read(&cache->data_rwsem);
6989 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6992 btrfs_get_block_group(cache);
6994 down_read(&cache->data_rwsem);
6997 static struct btrfs_block_group_cache *
6998 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6999 struct btrfs_free_cluster *cluster,
7002 struct btrfs_block_group_cache *used_bg;
7003 bool locked = false;
7005 spin_lock(&cluster->refill_lock);
7007 if (used_bg == cluster->block_group)
7010 up_read(&used_bg->data_rwsem);
7011 btrfs_put_block_group(used_bg);
7014 used_bg = cluster->block_group;
7018 if (used_bg == block_group)
7021 btrfs_get_block_group(used_bg);
7026 if (down_read_trylock(&used_bg->data_rwsem))
7029 spin_unlock(&cluster->refill_lock);
7030 down_read(&used_bg->data_rwsem);
7036 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7040 up_read(&cache->data_rwsem);
7041 btrfs_put_block_group(cache);
7045 * walks the btree of allocated extents and find a hole of a given size.
7046 * The key ins is changed to record the hole:
7047 * ins->objectid == start position
7048 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7049 * ins->offset == the size of the hole.
7050 * Any available blocks before search_start are skipped.
7052 * If there is no suitable free space, we will record the max size of
7053 * the free space extent currently.
7055 static noinline int find_free_extent(struct btrfs_root *orig_root,
7056 u64 num_bytes, u64 empty_size,
7057 u64 hint_byte, struct btrfs_key *ins,
7058 u64 flags, int delalloc)
7061 struct btrfs_root *root = orig_root->fs_info->extent_root;
7062 struct btrfs_free_cluster *last_ptr = NULL;
7063 struct btrfs_block_group_cache *block_group = NULL;
7064 u64 search_start = 0;
7065 u64 max_extent_size = 0;
7066 u64 empty_cluster = 0;
7067 struct btrfs_space_info *space_info;
7069 int index = __get_raid_index(flags);
7070 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7071 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7072 bool failed_cluster_refill = false;
7073 bool failed_alloc = false;
7074 bool use_cluster = true;
7075 bool have_caching_bg = false;
7076 bool orig_have_caching_bg = false;
7077 bool full_search = false;
7079 WARN_ON(num_bytes < root->sectorsize);
7080 ins->type = BTRFS_EXTENT_ITEM_KEY;
7084 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7086 space_info = __find_space_info(root->fs_info, flags);
7088 btrfs_err(root->fs_info, "No space info for %llu", flags);
7093 * If our free space is heavily fragmented we may not be able to make
7094 * big contiguous allocations, so instead of doing the expensive search
7095 * for free space, simply return ENOSPC with our max_extent_size so we
7096 * can go ahead and search for a more manageable chunk.
7098 * If our max_extent_size is large enough for our allocation simply
7099 * disable clustering since we will likely not be able to find enough
7100 * space to create a cluster and induce latency trying.
7102 if (unlikely(space_info->max_extent_size)) {
7103 spin_lock(&space_info->lock);
7104 if (space_info->max_extent_size &&
7105 num_bytes > space_info->max_extent_size) {
7106 ins->offset = space_info->max_extent_size;
7107 spin_unlock(&space_info->lock);
7109 } else if (space_info->max_extent_size) {
7110 use_cluster = false;
7112 spin_unlock(&space_info->lock);
7115 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7117 spin_lock(&last_ptr->lock);
7118 if (last_ptr->block_group)
7119 hint_byte = last_ptr->window_start;
7120 if (last_ptr->fragmented) {
7122 * We still set window_start so we can keep track of the
7123 * last place we found an allocation to try and save
7126 hint_byte = last_ptr->window_start;
7127 use_cluster = false;
7129 spin_unlock(&last_ptr->lock);
7132 search_start = max(search_start, first_logical_byte(root, 0));
7133 search_start = max(search_start, hint_byte);
7134 if (search_start == hint_byte) {
7135 block_group = btrfs_lookup_block_group(root->fs_info,
7138 * we don't want to use the block group if it doesn't match our
7139 * allocation bits, or if its not cached.
7141 * However if we are re-searching with an ideal block group
7142 * picked out then we don't care that the block group is cached.
7144 if (block_group && block_group_bits(block_group, flags) &&
7145 block_group->cached != BTRFS_CACHE_NO) {
7146 down_read(&space_info->groups_sem);
7147 if (list_empty(&block_group->list) ||
7150 * someone is removing this block group,
7151 * we can't jump into the have_block_group
7152 * target because our list pointers are not
7155 btrfs_put_block_group(block_group);
7156 up_read(&space_info->groups_sem);
7158 index = get_block_group_index(block_group);
7159 btrfs_lock_block_group(block_group, delalloc);
7160 goto have_block_group;
7162 } else if (block_group) {
7163 btrfs_put_block_group(block_group);
7167 have_caching_bg = false;
7168 if (index == 0 || index == __get_raid_index(flags))
7170 down_read(&space_info->groups_sem);
7171 list_for_each_entry(block_group, &space_info->block_groups[index],
7176 btrfs_grab_block_group(block_group, delalloc);
7177 search_start = block_group->key.objectid;
7180 * this can happen if we end up cycling through all the
7181 * raid types, but we want to make sure we only allocate
7182 * for the proper type.
7184 if (!block_group_bits(block_group, flags)) {
7185 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7186 BTRFS_BLOCK_GROUP_RAID1 |
7187 BTRFS_BLOCK_GROUP_RAID5 |
7188 BTRFS_BLOCK_GROUP_RAID6 |
7189 BTRFS_BLOCK_GROUP_RAID10;
7192 * if they asked for extra copies and this block group
7193 * doesn't provide them, bail. This does allow us to
7194 * fill raid0 from raid1.
7196 if ((flags & extra) && !(block_group->flags & extra))
7201 cached = block_group_cache_done(block_group);
7202 if (unlikely(!cached)) {
7203 have_caching_bg = true;
7204 ret = cache_block_group(block_group, 0);
7209 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7211 if (unlikely(block_group->ro))
7215 * Ok we want to try and use the cluster allocator, so
7218 if (last_ptr && use_cluster) {
7219 struct btrfs_block_group_cache *used_block_group;
7220 unsigned long aligned_cluster;
7222 * the refill lock keeps out other
7223 * people trying to start a new cluster
7225 used_block_group = btrfs_lock_cluster(block_group,
7228 if (!used_block_group)
7229 goto refill_cluster;
7231 if (used_block_group != block_group &&
7232 (used_block_group->ro ||
7233 !block_group_bits(used_block_group, flags)))
7234 goto release_cluster;
7236 offset = btrfs_alloc_from_cluster(used_block_group,
7239 used_block_group->key.objectid,
7242 /* we have a block, we're done */
7243 spin_unlock(&last_ptr->refill_lock);
7244 trace_btrfs_reserve_extent_cluster(root,
7246 search_start, num_bytes);
7247 if (used_block_group != block_group) {
7248 btrfs_release_block_group(block_group,
7250 block_group = used_block_group;
7255 WARN_ON(last_ptr->block_group != used_block_group);
7257 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7258 * set up a new clusters, so lets just skip it
7259 * and let the allocator find whatever block
7260 * it can find. If we reach this point, we
7261 * will have tried the cluster allocator
7262 * plenty of times and not have found
7263 * anything, so we are likely way too
7264 * fragmented for the clustering stuff to find
7267 * However, if the cluster is taken from the
7268 * current block group, release the cluster
7269 * first, so that we stand a better chance of
7270 * succeeding in the unclustered
7272 if (loop >= LOOP_NO_EMPTY_SIZE &&
7273 used_block_group != block_group) {
7274 spin_unlock(&last_ptr->refill_lock);
7275 btrfs_release_block_group(used_block_group,
7277 goto unclustered_alloc;
7281 * this cluster didn't work out, free it and
7284 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7286 if (used_block_group != block_group)
7287 btrfs_release_block_group(used_block_group,
7290 if (loop >= LOOP_NO_EMPTY_SIZE) {
7291 spin_unlock(&last_ptr->refill_lock);
7292 goto unclustered_alloc;
7295 aligned_cluster = max_t(unsigned long,
7296 empty_cluster + empty_size,
7297 block_group->full_stripe_len);
7299 /* allocate a cluster in this block group */
7300 ret = btrfs_find_space_cluster(root, block_group,
7301 last_ptr, search_start,
7306 * now pull our allocation out of this
7309 offset = btrfs_alloc_from_cluster(block_group,
7315 /* we found one, proceed */
7316 spin_unlock(&last_ptr->refill_lock);
7317 trace_btrfs_reserve_extent_cluster(root,
7318 block_group, search_start,
7322 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7323 && !failed_cluster_refill) {
7324 spin_unlock(&last_ptr->refill_lock);
7326 failed_cluster_refill = true;
7327 wait_block_group_cache_progress(block_group,
7328 num_bytes + empty_cluster + empty_size);
7329 goto have_block_group;
7333 * at this point we either didn't find a cluster
7334 * or we weren't able to allocate a block from our
7335 * cluster. Free the cluster we've been trying
7336 * to use, and go to the next block group
7338 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7339 spin_unlock(&last_ptr->refill_lock);
7345 * We are doing an unclustered alloc, set the fragmented flag so
7346 * we don't bother trying to setup a cluster again until we get
7349 if (unlikely(last_ptr)) {
7350 spin_lock(&last_ptr->lock);
7351 last_ptr->fragmented = 1;
7352 spin_unlock(&last_ptr->lock);
7354 spin_lock(&block_group->free_space_ctl->tree_lock);
7356 block_group->free_space_ctl->free_space <
7357 num_bytes + empty_cluster + empty_size) {
7358 if (block_group->free_space_ctl->free_space >
7361 block_group->free_space_ctl->free_space;
7362 spin_unlock(&block_group->free_space_ctl->tree_lock);
7365 spin_unlock(&block_group->free_space_ctl->tree_lock);
7367 offset = btrfs_find_space_for_alloc(block_group, search_start,
7368 num_bytes, empty_size,
7371 * If we didn't find a chunk, and we haven't failed on this
7372 * block group before, and this block group is in the middle of
7373 * caching and we are ok with waiting, then go ahead and wait
7374 * for progress to be made, and set failed_alloc to true.
7376 * If failed_alloc is true then we've already waited on this
7377 * block group once and should move on to the next block group.
7379 if (!offset && !failed_alloc && !cached &&
7380 loop > LOOP_CACHING_NOWAIT) {
7381 wait_block_group_cache_progress(block_group,
7382 num_bytes + empty_size);
7383 failed_alloc = true;
7384 goto have_block_group;
7385 } else if (!offset) {
7389 search_start = ALIGN(offset, root->stripesize);
7391 /* move on to the next group */
7392 if (search_start + num_bytes >
7393 block_group->key.objectid + block_group->key.offset) {
7394 btrfs_add_free_space(block_group, offset, num_bytes);
7398 if (offset < search_start)
7399 btrfs_add_free_space(block_group, offset,
7400 search_start - offset);
7401 BUG_ON(offset > search_start);
7403 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7404 alloc_type, delalloc);
7405 if (ret == -EAGAIN) {
7406 btrfs_add_free_space(block_group, offset, num_bytes);
7410 /* we are all good, lets return */
7411 ins->objectid = search_start;
7412 ins->offset = num_bytes;
7414 trace_btrfs_reserve_extent(orig_root, block_group,
7415 search_start, num_bytes);
7416 btrfs_release_block_group(block_group, delalloc);
7419 failed_cluster_refill = false;
7420 failed_alloc = false;
7421 BUG_ON(index != get_block_group_index(block_group));
7422 btrfs_release_block_group(block_group, delalloc);
7424 up_read(&space_info->groups_sem);
7426 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7427 && !orig_have_caching_bg)
7428 orig_have_caching_bg = true;
7430 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7433 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7437 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7438 * caching kthreads as we move along
7439 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7440 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7441 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7444 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7446 if (loop == LOOP_CACHING_NOWAIT) {
7448 * We want to skip the LOOP_CACHING_WAIT step if we
7449 * don't have any unached bgs and we've alrelady done a
7450 * full search through.
7452 if (orig_have_caching_bg || !full_search)
7453 loop = LOOP_CACHING_WAIT;
7455 loop = LOOP_ALLOC_CHUNK;
7460 if (loop == LOOP_ALLOC_CHUNK) {
7461 struct btrfs_trans_handle *trans;
7464 trans = current->journal_info;
7468 trans = btrfs_join_transaction(root);
7470 if (IS_ERR(trans)) {
7471 ret = PTR_ERR(trans);
7475 ret = do_chunk_alloc(trans, root, flags,
7479 * If we can't allocate a new chunk we've already looped
7480 * through at least once, move on to the NO_EMPTY_SIZE
7484 loop = LOOP_NO_EMPTY_SIZE;
7487 * Do not bail out on ENOSPC since we
7488 * can do more things.
7490 if (ret < 0 && ret != -ENOSPC)
7491 btrfs_abort_transaction(trans,
7496 btrfs_end_transaction(trans, root);
7501 if (loop == LOOP_NO_EMPTY_SIZE) {
7503 * Don't loop again if we already have no empty_size and
7506 if (empty_size == 0 &&
7507 empty_cluster == 0) {
7516 } else if (!ins->objectid) {
7518 } else if (ins->objectid) {
7519 if (!use_cluster && last_ptr) {
7520 spin_lock(&last_ptr->lock);
7521 last_ptr->window_start = ins->objectid;
7522 spin_unlock(&last_ptr->lock);
7527 if (ret == -ENOSPC) {
7528 spin_lock(&space_info->lock);
7529 space_info->max_extent_size = max_extent_size;
7530 spin_unlock(&space_info->lock);
7531 ins->offset = max_extent_size;
7536 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7537 int dump_block_groups)
7539 struct btrfs_block_group_cache *cache;
7542 spin_lock(&info->lock);
7543 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7545 info->total_bytes - info->bytes_used - info->bytes_pinned -
7546 info->bytes_reserved - info->bytes_readonly,
7547 (info->full) ? "" : "not ");
7548 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7549 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7550 info->total_bytes, info->bytes_used, info->bytes_pinned,
7551 info->bytes_reserved, info->bytes_may_use,
7552 info->bytes_readonly);
7553 spin_unlock(&info->lock);
7555 if (!dump_block_groups)
7558 down_read(&info->groups_sem);
7560 list_for_each_entry(cache, &info->block_groups[index], list) {
7561 spin_lock(&cache->lock);
7562 printk(KERN_INFO "BTRFS: "
7563 "block group %llu has %llu bytes, "
7564 "%llu used %llu pinned %llu reserved %s\n",
7565 cache->key.objectid, cache->key.offset,
7566 btrfs_block_group_used(&cache->item), cache->pinned,
7567 cache->reserved, cache->ro ? "[readonly]" : "");
7568 btrfs_dump_free_space(cache, bytes);
7569 spin_unlock(&cache->lock);
7571 if (++index < BTRFS_NR_RAID_TYPES)
7573 up_read(&info->groups_sem);
7576 int btrfs_reserve_extent(struct btrfs_root *root,
7577 u64 num_bytes, u64 min_alloc_size,
7578 u64 empty_size, u64 hint_byte,
7579 struct btrfs_key *ins, int is_data, int delalloc)
7581 bool final_tried = num_bytes == min_alloc_size;
7585 flags = btrfs_get_alloc_profile(root, is_data);
7587 WARN_ON(num_bytes < root->sectorsize);
7588 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7591 if (ret == -ENOSPC) {
7592 if (!final_tried && ins->offset) {
7593 num_bytes = min(num_bytes >> 1, ins->offset);
7594 num_bytes = round_down(num_bytes, root->sectorsize);
7595 num_bytes = max(num_bytes, min_alloc_size);
7596 if (num_bytes == min_alloc_size)
7599 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7600 struct btrfs_space_info *sinfo;
7602 sinfo = __find_space_info(root->fs_info, flags);
7603 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7606 dump_space_info(sinfo, num_bytes, 1);
7613 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7615 int pin, int delalloc)
7617 struct btrfs_block_group_cache *cache;
7620 cache = btrfs_lookup_block_group(root->fs_info, start);
7622 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7628 pin_down_extent(root, cache, start, len, 1);
7630 if (btrfs_test_opt(root, DISCARD))
7631 ret = btrfs_discard_extent(root, start, len, NULL);
7632 btrfs_add_free_space(cache, start, len);
7633 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7636 btrfs_put_block_group(cache);
7638 trace_btrfs_reserved_extent_free(root, start, len);
7643 int btrfs_free_reserved_extent(struct btrfs_root *root,
7644 u64 start, u64 len, int delalloc)
7646 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7649 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7652 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7655 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7656 struct btrfs_root *root,
7657 u64 parent, u64 root_objectid,
7658 u64 flags, u64 owner, u64 offset,
7659 struct btrfs_key *ins, int ref_mod)
7662 struct btrfs_fs_info *fs_info = root->fs_info;
7663 struct btrfs_extent_item *extent_item;
7664 struct btrfs_extent_inline_ref *iref;
7665 struct btrfs_path *path;
7666 struct extent_buffer *leaf;
7671 type = BTRFS_SHARED_DATA_REF_KEY;
7673 type = BTRFS_EXTENT_DATA_REF_KEY;
7675 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7677 path = btrfs_alloc_path();
7681 path->leave_spinning = 1;
7682 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7685 btrfs_free_path(path);
7689 leaf = path->nodes[0];
7690 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7691 struct btrfs_extent_item);
7692 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7693 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7694 btrfs_set_extent_flags(leaf, extent_item,
7695 flags | BTRFS_EXTENT_FLAG_DATA);
7697 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7698 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7700 struct btrfs_shared_data_ref *ref;
7701 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7702 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7703 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7705 struct btrfs_extent_data_ref *ref;
7706 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7707 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7708 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7709 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7710 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7713 btrfs_mark_buffer_dirty(path->nodes[0]);
7714 btrfs_free_path(path);
7716 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7721 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7722 if (ret) { /* -ENOENT, logic error */
7723 btrfs_err(fs_info, "update block group failed for %llu %llu",
7724 ins->objectid, ins->offset);
7727 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7731 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7732 struct btrfs_root *root,
7733 u64 parent, u64 root_objectid,
7734 u64 flags, struct btrfs_disk_key *key,
7735 int level, struct btrfs_key *ins)
7738 struct btrfs_fs_info *fs_info = root->fs_info;
7739 struct btrfs_extent_item *extent_item;
7740 struct btrfs_tree_block_info *block_info;
7741 struct btrfs_extent_inline_ref *iref;
7742 struct btrfs_path *path;
7743 struct extent_buffer *leaf;
7744 u32 size = sizeof(*extent_item) + sizeof(*iref);
7745 u64 num_bytes = ins->offset;
7746 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7749 if (!skinny_metadata)
7750 size += sizeof(*block_info);
7752 path = btrfs_alloc_path();
7754 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7759 path->leave_spinning = 1;
7760 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7763 btrfs_free_path(path);
7764 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7769 leaf = path->nodes[0];
7770 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7771 struct btrfs_extent_item);
7772 btrfs_set_extent_refs(leaf, extent_item, 1);
7773 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7774 btrfs_set_extent_flags(leaf, extent_item,
7775 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7777 if (skinny_metadata) {
7778 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7779 num_bytes = root->nodesize;
7781 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7782 btrfs_set_tree_block_key(leaf, block_info, key);
7783 btrfs_set_tree_block_level(leaf, block_info, level);
7784 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7788 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7789 btrfs_set_extent_inline_ref_type(leaf, iref,
7790 BTRFS_SHARED_BLOCK_REF_KEY);
7791 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7793 btrfs_set_extent_inline_ref_type(leaf, iref,
7794 BTRFS_TREE_BLOCK_REF_KEY);
7795 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7798 btrfs_mark_buffer_dirty(leaf);
7799 btrfs_free_path(path);
7801 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7806 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7808 if (ret) { /* -ENOENT, logic error */
7809 btrfs_err(fs_info, "update block group failed for %llu %llu",
7810 ins->objectid, ins->offset);
7814 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7818 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7819 struct btrfs_root *root,
7820 u64 root_objectid, u64 owner,
7821 u64 offset, u64 ram_bytes,
7822 struct btrfs_key *ins)
7826 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7828 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7830 root_objectid, owner, offset,
7831 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7837 * this is used by the tree logging recovery code. It records that
7838 * an extent has been allocated and makes sure to clear the free
7839 * space cache bits as well
7841 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7842 struct btrfs_root *root,
7843 u64 root_objectid, u64 owner, u64 offset,
7844 struct btrfs_key *ins)
7847 struct btrfs_block_group_cache *block_group;
7850 * Mixed block groups will exclude before processing the log so we only
7851 * need to do the exlude dance if this fs isn't mixed.
7853 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7854 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7859 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7863 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7864 RESERVE_ALLOC_NO_ACCOUNT, 0);
7865 BUG_ON(ret); /* logic error */
7866 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7867 0, owner, offset, ins, 1);
7868 btrfs_put_block_group(block_group);
7872 static struct extent_buffer *
7873 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7874 u64 bytenr, int level)
7876 struct extent_buffer *buf;
7878 buf = btrfs_find_create_tree_block(root, bytenr);
7880 return ERR_PTR(-ENOMEM);
7881 btrfs_set_header_generation(buf, trans->transid);
7882 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7883 btrfs_tree_lock(buf);
7884 clean_tree_block(trans, root->fs_info, buf);
7885 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7887 btrfs_set_lock_blocking(buf);
7888 set_extent_buffer_uptodate(buf);
7890 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7891 buf->log_index = root->log_transid % 2;
7893 * we allow two log transactions at a time, use different
7894 * EXENT bit to differentiate dirty pages.
7896 if (buf->log_index == 0)
7897 set_extent_dirty(&root->dirty_log_pages, buf->start,
7898 buf->start + buf->len - 1, GFP_NOFS);
7900 set_extent_new(&root->dirty_log_pages, buf->start,
7901 buf->start + buf->len - 1, GFP_NOFS);
7903 buf->log_index = -1;
7904 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7905 buf->start + buf->len - 1, GFP_NOFS);
7907 trans->blocks_used++;
7908 /* this returns a buffer locked for blocking */
7912 static struct btrfs_block_rsv *
7913 use_block_rsv(struct btrfs_trans_handle *trans,
7914 struct btrfs_root *root, u32 blocksize)
7916 struct btrfs_block_rsv *block_rsv;
7917 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7919 bool global_updated = false;
7921 block_rsv = get_block_rsv(trans, root);
7923 if (unlikely(block_rsv->size == 0))
7926 ret = block_rsv_use_bytes(block_rsv, blocksize);
7930 if (block_rsv->failfast)
7931 return ERR_PTR(ret);
7933 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7934 global_updated = true;
7935 update_global_block_rsv(root->fs_info);
7939 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7940 static DEFINE_RATELIMIT_STATE(_rs,
7941 DEFAULT_RATELIMIT_INTERVAL * 10,
7942 /*DEFAULT_RATELIMIT_BURST*/ 1);
7943 if (__ratelimit(&_rs))
7945 "BTRFS: block rsv returned %d\n", ret);
7948 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7949 BTRFS_RESERVE_NO_FLUSH);
7953 * If we couldn't reserve metadata bytes try and use some from
7954 * the global reserve if its space type is the same as the global
7957 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7958 block_rsv->space_info == global_rsv->space_info) {
7959 ret = block_rsv_use_bytes(global_rsv, blocksize);
7963 return ERR_PTR(ret);
7966 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7967 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7969 block_rsv_add_bytes(block_rsv, blocksize, 0);
7970 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7974 * finds a free extent and does all the dirty work required for allocation
7975 * returns the tree buffer or an ERR_PTR on error.
7977 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7978 struct btrfs_root *root,
7979 u64 parent, u64 root_objectid,
7980 struct btrfs_disk_key *key, int level,
7981 u64 hint, u64 empty_size)
7983 struct btrfs_key ins;
7984 struct btrfs_block_rsv *block_rsv;
7985 struct extent_buffer *buf;
7986 struct btrfs_delayed_extent_op *extent_op;
7989 u32 blocksize = root->nodesize;
7990 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7993 if (btrfs_test_is_dummy_root(root)) {
7994 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7997 root->alloc_bytenr += blocksize;
8001 block_rsv = use_block_rsv(trans, root, blocksize);
8002 if (IS_ERR(block_rsv))
8003 return ERR_CAST(block_rsv);
8005 ret = btrfs_reserve_extent(root, blocksize, blocksize,
8006 empty_size, hint, &ins, 0, 0);
8010 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8013 goto out_free_reserved;
8016 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8018 parent = ins.objectid;
8019 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8023 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8024 extent_op = btrfs_alloc_delayed_extent_op();
8030 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8032 memset(&extent_op->key, 0, sizeof(extent_op->key));
8033 extent_op->flags_to_set = flags;
8034 if (skinny_metadata)
8035 extent_op->update_key = 0;
8037 extent_op->update_key = 1;
8038 extent_op->update_flags = 1;
8039 extent_op->is_data = 0;
8040 extent_op->level = level;
8042 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8043 ins.objectid, ins.offset,
8044 parent, root_objectid, level,
8045 BTRFS_ADD_DELAYED_EXTENT,
8048 goto out_free_delayed;
8053 btrfs_free_delayed_extent_op(extent_op);
8055 free_extent_buffer(buf);
8057 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8059 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8060 return ERR_PTR(ret);
8063 struct walk_control {
8064 u64 refs[BTRFS_MAX_LEVEL];
8065 u64 flags[BTRFS_MAX_LEVEL];
8066 struct btrfs_key update_progress;
8077 #define DROP_REFERENCE 1
8078 #define UPDATE_BACKREF 2
8080 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8081 struct btrfs_root *root,
8082 struct walk_control *wc,
8083 struct btrfs_path *path)
8091 struct btrfs_key key;
8092 struct extent_buffer *eb;
8097 if (path->slots[wc->level] < wc->reada_slot) {
8098 wc->reada_count = wc->reada_count * 2 / 3;
8099 wc->reada_count = max(wc->reada_count, 2);
8101 wc->reada_count = wc->reada_count * 3 / 2;
8102 wc->reada_count = min_t(int, wc->reada_count,
8103 BTRFS_NODEPTRS_PER_BLOCK(root));
8106 eb = path->nodes[wc->level];
8107 nritems = btrfs_header_nritems(eb);
8108 blocksize = root->nodesize;
8110 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8111 if (nread >= wc->reada_count)
8115 bytenr = btrfs_node_blockptr(eb, slot);
8116 generation = btrfs_node_ptr_generation(eb, slot);
8118 if (slot == path->slots[wc->level])
8121 if (wc->stage == UPDATE_BACKREF &&
8122 generation <= root->root_key.offset)
8125 /* We don't lock the tree block, it's OK to be racy here */
8126 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8127 wc->level - 1, 1, &refs,
8129 /* We don't care about errors in readahead. */
8134 if (wc->stage == DROP_REFERENCE) {
8138 if (wc->level == 1 &&
8139 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8141 if (!wc->update_ref ||
8142 generation <= root->root_key.offset)
8144 btrfs_node_key_to_cpu(eb, &key, slot);
8145 ret = btrfs_comp_cpu_keys(&key,
8146 &wc->update_progress);
8150 if (wc->level == 1 &&
8151 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8155 readahead_tree_block(root, bytenr);
8158 wc->reada_slot = slot;
8162 * These may not be seen by the usual inc/dec ref code so we have to
8165 static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8166 struct btrfs_root *root, u64 bytenr,
8169 struct btrfs_qgroup_extent_record *qrecord;
8170 struct btrfs_delayed_ref_root *delayed_refs;
8172 qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8176 qrecord->bytenr = bytenr;
8177 qrecord->num_bytes = num_bytes;
8178 qrecord->old_roots = NULL;
8180 delayed_refs = &trans->transaction->delayed_refs;
8181 spin_lock(&delayed_refs->lock);
8182 if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8184 spin_unlock(&delayed_refs->lock);
8189 static int account_leaf_items(struct btrfs_trans_handle *trans,
8190 struct btrfs_root *root,
8191 struct extent_buffer *eb)
8193 int nr = btrfs_header_nritems(eb);
8194 int i, extent_type, ret;
8195 struct btrfs_key key;
8196 struct btrfs_file_extent_item *fi;
8197 u64 bytenr, num_bytes;
8199 /* We can be called directly from walk_up_proc() */
8200 if (!root->fs_info->quota_enabled)
8203 for (i = 0; i < nr; i++) {
8204 btrfs_item_key_to_cpu(eb, &key, i);
8206 if (key.type != BTRFS_EXTENT_DATA_KEY)
8209 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8210 /* filter out non qgroup-accountable extents */
8211 extent_type = btrfs_file_extent_type(eb, fi);
8213 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8216 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8220 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8222 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8230 * Walk up the tree from the bottom, freeing leaves and any interior
8231 * nodes which have had all slots visited. If a node (leaf or
8232 * interior) is freed, the node above it will have it's slot
8233 * incremented. The root node will never be freed.
8235 * At the end of this function, we should have a path which has all
8236 * slots incremented to the next position for a search. If we need to
8237 * read a new node it will be NULL and the node above it will have the
8238 * correct slot selected for a later read.
8240 * If we increment the root nodes slot counter past the number of
8241 * elements, 1 is returned to signal completion of the search.
8243 static int adjust_slots_upwards(struct btrfs_root *root,
8244 struct btrfs_path *path, int root_level)
8248 struct extent_buffer *eb;
8250 if (root_level == 0)
8253 while (level <= root_level) {
8254 eb = path->nodes[level];
8255 nr = btrfs_header_nritems(eb);
8256 path->slots[level]++;
8257 slot = path->slots[level];
8258 if (slot >= nr || level == 0) {
8260 * Don't free the root - we will detect this
8261 * condition after our loop and return a
8262 * positive value for caller to stop walking the tree.
8264 if (level != root_level) {
8265 btrfs_tree_unlock_rw(eb, path->locks[level]);
8266 path->locks[level] = 0;
8268 free_extent_buffer(eb);
8269 path->nodes[level] = NULL;
8270 path->slots[level] = 0;
8274 * We have a valid slot to walk back down
8275 * from. Stop here so caller can process these
8284 eb = path->nodes[root_level];
8285 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8292 * root_eb is the subtree root and is locked before this function is called.
8294 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8295 struct btrfs_root *root,
8296 struct extent_buffer *root_eb,
8302 struct extent_buffer *eb = root_eb;
8303 struct btrfs_path *path = NULL;
8305 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8306 BUG_ON(root_eb == NULL);
8308 if (!root->fs_info->quota_enabled)
8311 if (!extent_buffer_uptodate(root_eb)) {
8312 ret = btrfs_read_buffer(root_eb, root_gen);
8317 if (root_level == 0) {
8318 ret = account_leaf_items(trans, root, root_eb);
8322 path = btrfs_alloc_path();
8327 * Walk down the tree. Missing extent blocks are filled in as
8328 * we go. Metadata is accounted every time we read a new
8331 * When we reach a leaf, we account for file extent items in it,
8332 * walk back up the tree (adjusting slot pointers as we go)
8333 * and restart the search process.
8335 extent_buffer_get(root_eb); /* For path */
8336 path->nodes[root_level] = root_eb;
8337 path->slots[root_level] = 0;
8338 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8341 while (level >= 0) {
8342 if (path->nodes[level] == NULL) {
8347 /* We need to get child blockptr/gen from
8348 * parent before we can read it. */
8349 eb = path->nodes[level + 1];
8350 parent_slot = path->slots[level + 1];
8351 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8352 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8354 eb = read_tree_block(root, child_bytenr, child_gen);
8358 } else if (!extent_buffer_uptodate(eb)) {
8359 free_extent_buffer(eb);
8364 path->nodes[level] = eb;
8365 path->slots[level] = 0;
8367 btrfs_tree_read_lock(eb);
8368 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8369 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8371 ret = record_one_subtree_extent(trans, root, child_bytenr,
8378 ret = account_leaf_items(trans, root, path->nodes[level]);
8382 /* Nonzero return here means we completed our search */
8383 ret = adjust_slots_upwards(root, path, root_level);
8387 /* Restart search with new slots */
8396 btrfs_free_path(path);
8402 * helper to process tree block while walking down the tree.
8404 * when wc->stage == UPDATE_BACKREF, this function updates
8405 * back refs for pointers in the block.
8407 * NOTE: return value 1 means we should stop walking down.
8409 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8410 struct btrfs_root *root,
8411 struct btrfs_path *path,
8412 struct walk_control *wc, int lookup_info)
8414 int level = wc->level;
8415 struct extent_buffer *eb = path->nodes[level];
8416 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8419 if (wc->stage == UPDATE_BACKREF &&
8420 btrfs_header_owner(eb) != root->root_key.objectid)
8424 * when reference count of tree block is 1, it won't increase
8425 * again. once full backref flag is set, we never clear it.
8428 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8429 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8430 BUG_ON(!path->locks[level]);
8431 ret = btrfs_lookup_extent_info(trans, root,
8432 eb->start, level, 1,
8435 BUG_ON(ret == -ENOMEM);
8438 BUG_ON(wc->refs[level] == 0);
8441 if (wc->stage == DROP_REFERENCE) {
8442 if (wc->refs[level] > 1)
8445 if (path->locks[level] && !wc->keep_locks) {
8446 btrfs_tree_unlock_rw(eb, path->locks[level]);
8447 path->locks[level] = 0;
8452 /* wc->stage == UPDATE_BACKREF */
8453 if (!(wc->flags[level] & flag)) {
8454 BUG_ON(!path->locks[level]);
8455 ret = btrfs_inc_ref(trans, root, eb, 1);
8456 BUG_ON(ret); /* -ENOMEM */
8457 ret = btrfs_dec_ref(trans, root, eb, 0);
8458 BUG_ON(ret); /* -ENOMEM */
8459 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8461 btrfs_header_level(eb), 0);
8462 BUG_ON(ret); /* -ENOMEM */
8463 wc->flags[level] |= flag;
8467 * the block is shared by multiple trees, so it's not good to
8468 * keep the tree lock
8470 if (path->locks[level] && level > 0) {
8471 btrfs_tree_unlock_rw(eb, path->locks[level]);
8472 path->locks[level] = 0;
8478 * helper to process tree block pointer.
8480 * when wc->stage == DROP_REFERENCE, this function checks
8481 * reference count of the block pointed to. if the block
8482 * is shared and we need update back refs for the subtree
8483 * rooted at the block, this function changes wc->stage to
8484 * UPDATE_BACKREF. if the block is shared and there is no
8485 * need to update back, this function drops the reference
8488 * NOTE: return value 1 means we should stop walking down.
8490 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8491 struct btrfs_root *root,
8492 struct btrfs_path *path,
8493 struct walk_control *wc, int *lookup_info)
8499 struct btrfs_key key;
8500 struct extent_buffer *next;
8501 int level = wc->level;
8504 bool need_account = false;
8506 generation = btrfs_node_ptr_generation(path->nodes[level],
8507 path->slots[level]);
8509 * if the lower level block was created before the snapshot
8510 * was created, we know there is no need to update back refs
8513 if (wc->stage == UPDATE_BACKREF &&
8514 generation <= root->root_key.offset) {
8519 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8520 blocksize = root->nodesize;
8522 next = btrfs_find_tree_block(root->fs_info, bytenr);
8524 next = btrfs_find_create_tree_block(root, bytenr);
8527 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8531 btrfs_tree_lock(next);
8532 btrfs_set_lock_blocking(next);
8534 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8535 &wc->refs[level - 1],
8536 &wc->flags[level - 1]);
8538 btrfs_tree_unlock(next);
8542 if (unlikely(wc->refs[level - 1] == 0)) {
8543 btrfs_err(root->fs_info, "Missing references.");
8548 if (wc->stage == DROP_REFERENCE) {
8549 if (wc->refs[level - 1] > 1) {
8550 need_account = true;
8552 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8555 if (!wc->update_ref ||
8556 generation <= root->root_key.offset)
8559 btrfs_node_key_to_cpu(path->nodes[level], &key,
8560 path->slots[level]);
8561 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8565 wc->stage = UPDATE_BACKREF;
8566 wc->shared_level = level - 1;
8570 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8574 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8575 btrfs_tree_unlock(next);
8576 free_extent_buffer(next);
8582 if (reada && level == 1)
8583 reada_walk_down(trans, root, wc, path);
8584 next = read_tree_block(root, bytenr, generation);
8586 return PTR_ERR(next);
8587 } else if (!extent_buffer_uptodate(next)) {
8588 free_extent_buffer(next);
8591 btrfs_tree_lock(next);
8592 btrfs_set_lock_blocking(next);
8596 BUG_ON(level != btrfs_header_level(next));
8597 path->nodes[level] = next;
8598 path->slots[level] = 0;
8599 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8605 wc->refs[level - 1] = 0;
8606 wc->flags[level - 1] = 0;
8607 if (wc->stage == DROP_REFERENCE) {
8608 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8609 parent = path->nodes[level]->start;
8611 BUG_ON(root->root_key.objectid !=
8612 btrfs_header_owner(path->nodes[level]));
8617 ret = account_shared_subtree(trans, root, next,
8618 generation, level - 1);
8620 btrfs_err_rl(root->fs_info,
8622 "%d accounting shared subtree. Quota "
8623 "is out of sync, rescan required.",
8627 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8628 root->root_key.objectid, level - 1, 0);
8629 BUG_ON(ret); /* -ENOMEM */
8631 btrfs_tree_unlock(next);
8632 free_extent_buffer(next);
8638 * helper to process tree block while walking up the tree.
8640 * when wc->stage == DROP_REFERENCE, this function drops
8641 * reference count on the block.
8643 * when wc->stage == UPDATE_BACKREF, this function changes
8644 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8645 * to UPDATE_BACKREF previously while processing the block.
8647 * NOTE: return value 1 means we should stop walking up.
8649 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8650 struct btrfs_root *root,
8651 struct btrfs_path *path,
8652 struct walk_control *wc)
8655 int level = wc->level;
8656 struct extent_buffer *eb = path->nodes[level];
8659 if (wc->stage == UPDATE_BACKREF) {
8660 BUG_ON(wc->shared_level < level);
8661 if (level < wc->shared_level)
8664 ret = find_next_key(path, level + 1, &wc->update_progress);
8668 wc->stage = DROP_REFERENCE;
8669 wc->shared_level = -1;
8670 path->slots[level] = 0;
8673 * check reference count again if the block isn't locked.
8674 * we should start walking down the tree again if reference
8677 if (!path->locks[level]) {
8679 btrfs_tree_lock(eb);
8680 btrfs_set_lock_blocking(eb);
8681 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8683 ret = btrfs_lookup_extent_info(trans, root,
8684 eb->start, level, 1,
8688 btrfs_tree_unlock_rw(eb, path->locks[level]);
8689 path->locks[level] = 0;
8692 BUG_ON(wc->refs[level] == 0);
8693 if (wc->refs[level] == 1) {
8694 btrfs_tree_unlock_rw(eb, path->locks[level]);
8695 path->locks[level] = 0;
8701 /* wc->stage == DROP_REFERENCE */
8702 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8704 if (wc->refs[level] == 1) {
8706 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8707 ret = btrfs_dec_ref(trans, root, eb, 1);
8709 ret = btrfs_dec_ref(trans, root, eb, 0);
8710 BUG_ON(ret); /* -ENOMEM */
8711 ret = account_leaf_items(trans, root, eb);
8713 btrfs_err_rl(root->fs_info,
8715 "%d accounting leaf items. Quota "
8716 "is out of sync, rescan required.",
8720 /* make block locked assertion in clean_tree_block happy */
8721 if (!path->locks[level] &&
8722 btrfs_header_generation(eb) == trans->transid) {
8723 btrfs_tree_lock(eb);
8724 btrfs_set_lock_blocking(eb);
8725 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8727 clean_tree_block(trans, root->fs_info, eb);
8730 if (eb == root->node) {
8731 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8734 BUG_ON(root->root_key.objectid !=
8735 btrfs_header_owner(eb));
8737 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8738 parent = path->nodes[level + 1]->start;
8740 BUG_ON(root->root_key.objectid !=
8741 btrfs_header_owner(path->nodes[level + 1]));
8744 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8746 wc->refs[level] = 0;
8747 wc->flags[level] = 0;
8751 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8752 struct btrfs_root *root,
8753 struct btrfs_path *path,
8754 struct walk_control *wc)
8756 int level = wc->level;
8757 int lookup_info = 1;
8760 while (level >= 0) {
8761 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8768 if (path->slots[level] >=
8769 btrfs_header_nritems(path->nodes[level]))
8772 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8774 path->slots[level]++;
8783 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8784 struct btrfs_root *root,
8785 struct btrfs_path *path,
8786 struct walk_control *wc, int max_level)
8788 int level = wc->level;
8791 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8792 while (level < max_level && path->nodes[level]) {
8794 if (path->slots[level] + 1 <
8795 btrfs_header_nritems(path->nodes[level])) {
8796 path->slots[level]++;
8799 ret = walk_up_proc(trans, root, path, wc);
8803 if (path->locks[level]) {
8804 btrfs_tree_unlock_rw(path->nodes[level],
8805 path->locks[level]);
8806 path->locks[level] = 0;
8808 free_extent_buffer(path->nodes[level]);
8809 path->nodes[level] = NULL;
8817 * drop a subvolume tree.
8819 * this function traverses the tree freeing any blocks that only
8820 * referenced by the tree.
8822 * when a shared tree block is found. this function decreases its
8823 * reference count by one. if update_ref is true, this function
8824 * also make sure backrefs for the shared block and all lower level
8825 * blocks are properly updated.
8827 * If called with for_reloc == 0, may exit early with -EAGAIN
8829 int btrfs_drop_snapshot(struct btrfs_root *root,
8830 struct btrfs_block_rsv *block_rsv, int update_ref,
8833 struct btrfs_path *path;
8834 struct btrfs_trans_handle *trans;
8835 struct btrfs_root *tree_root = root->fs_info->tree_root;
8836 struct btrfs_root_item *root_item = &root->root_item;
8837 struct walk_control *wc;
8838 struct btrfs_key key;
8842 bool root_dropped = false;
8844 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8846 path = btrfs_alloc_path();
8852 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8854 btrfs_free_path(path);
8859 trans = btrfs_start_transaction(tree_root, 0);
8860 if (IS_ERR(trans)) {
8861 err = PTR_ERR(trans);
8866 trans->block_rsv = block_rsv;
8868 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8869 level = btrfs_header_level(root->node);
8870 path->nodes[level] = btrfs_lock_root_node(root);
8871 btrfs_set_lock_blocking(path->nodes[level]);
8872 path->slots[level] = 0;
8873 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8874 memset(&wc->update_progress, 0,
8875 sizeof(wc->update_progress));
8877 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8878 memcpy(&wc->update_progress, &key,
8879 sizeof(wc->update_progress));
8881 level = root_item->drop_level;
8883 path->lowest_level = level;
8884 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8885 path->lowest_level = 0;
8893 * unlock our path, this is safe because only this
8894 * function is allowed to delete this snapshot
8896 btrfs_unlock_up_safe(path, 0);
8898 level = btrfs_header_level(root->node);
8900 btrfs_tree_lock(path->nodes[level]);
8901 btrfs_set_lock_blocking(path->nodes[level]);
8902 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8904 ret = btrfs_lookup_extent_info(trans, root,
8905 path->nodes[level]->start,
8906 level, 1, &wc->refs[level],
8912 BUG_ON(wc->refs[level] == 0);
8914 if (level == root_item->drop_level)
8917 btrfs_tree_unlock(path->nodes[level]);
8918 path->locks[level] = 0;
8919 WARN_ON(wc->refs[level] != 1);
8925 wc->shared_level = -1;
8926 wc->stage = DROP_REFERENCE;
8927 wc->update_ref = update_ref;
8929 wc->for_reloc = for_reloc;
8930 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8934 ret = walk_down_tree(trans, root, path, wc);
8940 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8947 BUG_ON(wc->stage != DROP_REFERENCE);
8951 if (wc->stage == DROP_REFERENCE) {
8953 btrfs_node_key(path->nodes[level],
8954 &root_item->drop_progress,
8955 path->slots[level]);
8956 root_item->drop_level = level;
8959 BUG_ON(wc->level == 0);
8960 if (btrfs_should_end_transaction(trans, tree_root) ||
8961 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8962 ret = btrfs_update_root(trans, tree_root,
8966 btrfs_abort_transaction(trans, tree_root, ret);
8971 btrfs_end_transaction_throttle(trans, tree_root);
8972 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8973 pr_debug("BTRFS: drop snapshot early exit\n");
8978 trans = btrfs_start_transaction(tree_root, 0);
8979 if (IS_ERR(trans)) {
8980 err = PTR_ERR(trans);
8984 trans->block_rsv = block_rsv;
8987 btrfs_release_path(path);
8991 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8993 btrfs_abort_transaction(trans, tree_root, ret);
8997 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8998 ret = btrfs_find_root(tree_root, &root->root_key, path,
9001 btrfs_abort_transaction(trans, tree_root, ret);
9004 } else if (ret > 0) {
9005 /* if we fail to delete the orphan item this time
9006 * around, it'll get picked up the next time.
9008 * The most common failure here is just -ENOENT.
9010 btrfs_del_orphan_item(trans, tree_root,
9011 root->root_key.objectid);
9015 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9016 btrfs_add_dropped_root(trans, root);
9018 free_extent_buffer(root->node);
9019 free_extent_buffer(root->commit_root);
9020 btrfs_put_fs_root(root);
9022 root_dropped = true;
9024 btrfs_end_transaction_throttle(trans, tree_root);
9027 btrfs_free_path(path);
9030 * So if we need to stop dropping the snapshot for whatever reason we
9031 * need to make sure to add it back to the dead root list so that we
9032 * keep trying to do the work later. This also cleans up roots if we
9033 * don't have it in the radix (like when we recover after a power fail
9034 * or unmount) so we don't leak memory.
9036 if (!for_reloc && root_dropped == false)
9037 btrfs_add_dead_root(root);
9038 if (err && err != -EAGAIN)
9039 btrfs_std_error(root->fs_info, err, NULL);
9044 * drop subtree rooted at tree block 'node'.
9046 * NOTE: this function will unlock and release tree block 'node'
9047 * only used by relocation code
9049 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9050 struct btrfs_root *root,
9051 struct extent_buffer *node,
9052 struct extent_buffer *parent)
9054 struct btrfs_path *path;
9055 struct walk_control *wc;
9061 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9063 path = btrfs_alloc_path();
9067 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9069 btrfs_free_path(path);
9073 btrfs_assert_tree_locked(parent);
9074 parent_level = btrfs_header_level(parent);
9075 extent_buffer_get(parent);
9076 path->nodes[parent_level] = parent;
9077 path->slots[parent_level] = btrfs_header_nritems(parent);
9079 btrfs_assert_tree_locked(node);
9080 level = btrfs_header_level(node);
9081 path->nodes[level] = node;
9082 path->slots[level] = 0;
9083 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9085 wc->refs[parent_level] = 1;
9086 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9088 wc->shared_level = -1;
9089 wc->stage = DROP_REFERENCE;
9093 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9096 wret = walk_down_tree(trans, root, path, wc);
9102 wret = walk_up_tree(trans, root, path, wc, parent_level);
9110 btrfs_free_path(path);
9114 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9120 * if restripe for this chunk_type is on pick target profile and
9121 * return, otherwise do the usual balance
9123 stripped = get_restripe_target(root->fs_info, flags);
9125 return extended_to_chunk(stripped);
9127 num_devices = root->fs_info->fs_devices->rw_devices;
9129 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9130 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9131 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9133 if (num_devices == 1) {
9134 stripped |= BTRFS_BLOCK_GROUP_DUP;
9135 stripped = flags & ~stripped;
9137 /* turn raid0 into single device chunks */
9138 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9141 /* turn mirroring into duplication */
9142 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9143 BTRFS_BLOCK_GROUP_RAID10))
9144 return stripped | BTRFS_BLOCK_GROUP_DUP;
9146 /* they already had raid on here, just return */
9147 if (flags & stripped)
9150 stripped |= BTRFS_BLOCK_GROUP_DUP;
9151 stripped = flags & ~stripped;
9153 /* switch duplicated blocks with raid1 */
9154 if (flags & BTRFS_BLOCK_GROUP_DUP)
9155 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9157 /* this is drive concat, leave it alone */
9163 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9165 struct btrfs_space_info *sinfo = cache->space_info;
9167 u64 min_allocable_bytes;
9171 * We need some metadata space and system metadata space for
9172 * allocating chunks in some corner cases until we force to set
9173 * it to be readonly.
9176 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9178 min_allocable_bytes = 1 * 1024 * 1024;
9180 min_allocable_bytes = 0;
9182 spin_lock(&sinfo->lock);
9183 spin_lock(&cache->lock);
9191 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9192 cache->bytes_super - btrfs_block_group_used(&cache->item);
9194 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9195 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9196 min_allocable_bytes <= sinfo->total_bytes) {
9197 sinfo->bytes_readonly += num_bytes;
9199 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9203 spin_unlock(&cache->lock);
9204 spin_unlock(&sinfo->lock);
9208 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9209 struct btrfs_block_group_cache *cache)
9212 struct btrfs_trans_handle *trans;
9217 trans = btrfs_join_transaction(root);
9219 return PTR_ERR(trans);
9222 * we're not allowed to set block groups readonly after the dirty
9223 * block groups cache has started writing. If it already started,
9224 * back off and let this transaction commit
9226 mutex_lock(&root->fs_info->ro_block_group_mutex);
9227 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9228 u64 transid = trans->transid;
9230 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9231 btrfs_end_transaction(trans, root);
9233 ret = btrfs_wait_for_commit(root, transid);
9240 * if we are changing raid levels, try to allocate a corresponding
9241 * block group with the new raid level.
9243 alloc_flags = update_block_group_flags(root, cache->flags);
9244 if (alloc_flags != cache->flags) {
9245 ret = do_chunk_alloc(trans, root, alloc_flags,
9248 * ENOSPC is allowed here, we may have enough space
9249 * already allocated at the new raid level to
9258 ret = inc_block_group_ro(cache, 0);
9261 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9262 ret = do_chunk_alloc(trans, root, alloc_flags,
9266 ret = inc_block_group_ro(cache, 0);
9268 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9269 alloc_flags = update_block_group_flags(root, cache->flags);
9270 lock_chunks(root->fs_info->chunk_root);
9271 check_system_chunk(trans, root, alloc_flags);
9272 unlock_chunks(root->fs_info->chunk_root);
9274 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9276 btrfs_end_transaction(trans, root);
9280 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9281 struct btrfs_root *root, u64 type)
9283 u64 alloc_flags = get_alloc_profile(root, type);
9284 return do_chunk_alloc(trans, root, alloc_flags,
9289 * helper to account the unused space of all the readonly block group in the
9290 * space_info. takes mirrors into account.
9292 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9294 struct btrfs_block_group_cache *block_group;
9298 /* It's df, we don't care if it's racey */
9299 if (list_empty(&sinfo->ro_bgs))
9302 spin_lock(&sinfo->lock);
9303 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9304 spin_lock(&block_group->lock);
9306 if (!block_group->ro) {
9307 spin_unlock(&block_group->lock);
9311 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9312 BTRFS_BLOCK_GROUP_RAID10 |
9313 BTRFS_BLOCK_GROUP_DUP))
9318 free_bytes += (block_group->key.offset -
9319 btrfs_block_group_used(&block_group->item)) *
9322 spin_unlock(&block_group->lock);
9324 spin_unlock(&sinfo->lock);
9329 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9330 struct btrfs_block_group_cache *cache)
9332 struct btrfs_space_info *sinfo = cache->space_info;
9337 spin_lock(&sinfo->lock);
9338 spin_lock(&cache->lock);
9340 num_bytes = cache->key.offset - cache->reserved -
9341 cache->pinned - cache->bytes_super -
9342 btrfs_block_group_used(&cache->item);
9343 sinfo->bytes_readonly -= num_bytes;
9344 list_del_init(&cache->ro_list);
9346 spin_unlock(&cache->lock);
9347 spin_unlock(&sinfo->lock);
9351 * checks to see if its even possible to relocate this block group.
9353 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9354 * ok to go ahead and try.
9356 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9358 struct btrfs_block_group_cache *block_group;
9359 struct btrfs_space_info *space_info;
9360 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9361 struct btrfs_device *device;
9362 struct btrfs_trans_handle *trans;
9371 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9373 /* odd, couldn't find the block group, leave it alone */
9377 min_free = btrfs_block_group_used(&block_group->item);
9379 /* no bytes used, we're good */
9383 space_info = block_group->space_info;
9384 spin_lock(&space_info->lock);
9386 full = space_info->full;
9389 * if this is the last block group we have in this space, we can't
9390 * relocate it unless we're able to allocate a new chunk below.
9392 * Otherwise, we need to make sure we have room in the space to handle
9393 * all of the extents from this block group. If we can, we're good
9395 if ((space_info->total_bytes != block_group->key.offset) &&
9396 (space_info->bytes_used + space_info->bytes_reserved +
9397 space_info->bytes_pinned + space_info->bytes_readonly +
9398 min_free < space_info->total_bytes)) {
9399 spin_unlock(&space_info->lock);
9402 spin_unlock(&space_info->lock);
9405 * ok we don't have enough space, but maybe we have free space on our
9406 * devices to allocate new chunks for relocation, so loop through our
9407 * alloc devices and guess if we have enough space. if this block
9408 * group is going to be restriped, run checks against the target
9409 * profile instead of the current one.
9421 target = get_restripe_target(root->fs_info, block_group->flags);
9423 index = __get_raid_index(extended_to_chunk(target));
9426 * this is just a balance, so if we were marked as full
9427 * we know there is no space for a new chunk
9432 index = get_block_group_index(block_group);
9435 if (index == BTRFS_RAID_RAID10) {
9439 } else if (index == BTRFS_RAID_RAID1) {
9441 } else if (index == BTRFS_RAID_DUP) {
9444 } else if (index == BTRFS_RAID_RAID0) {
9445 dev_min = fs_devices->rw_devices;
9446 min_free = div64_u64(min_free, dev_min);
9449 /* We need to do this so that we can look at pending chunks */
9450 trans = btrfs_join_transaction(root);
9451 if (IS_ERR(trans)) {
9452 ret = PTR_ERR(trans);
9456 mutex_lock(&root->fs_info->chunk_mutex);
9457 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9461 * check to make sure we can actually find a chunk with enough
9462 * space to fit our block group in.
9464 if (device->total_bytes > device->bytes_used + min_free &&
9465 !device->is_tgtdev_for_dev_replace) {
9466 ret = find_free_dev_extent(trans, device, min_free,
9471 if (dev_nr >= dev_min)
9477 mutex_unlock(&root->fs_info->chunk_mutex);
9478 btrfs_end_transaction(trans, root);
9480 btrfs_put_block_group(block_group);
9484 static int find_first_block_group(struct btrfs_root *root,
9485 struct btrfs_path *path, struct btrfs_key *key)
9488 struct btrfs_key found_key;
9489 struct extent_buffer *leaf;
9492 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9497 slot = path->slots[0];
9498 leaf = path->nodes[0];
9499 if (slot >= btrfs_header_nritems(leaf)) {
9500 ret = btrfs_next_leaf(root, path);
9507 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9509 if (found_key.objectid >= key->objectid &&
9510 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9520 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9522 struct btrfs_block_group_cache *block_group;
9526 struct inode *inode;
9528 block_group = btrfs_lookup_first_block_group(info, last);
9529 while (block_group) {
9530 spin_lock(&block_group->lock);
9531 if (block_group->iref)
9533 spin_unlock(&block_group->lock);
9534 block_group = next_block_group(info->tree_root,
9544 inode = block_group->inode;
9545 block_group->iref = 0;
9546 block_group->inode = NULL;
9547 spin_unlock(&block_group->lock);
9549 last = block_group->key.objectid + block_group->key.offset;
9550 btrfs_put_block_group(block_group);
9554 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9556 struct btrfs_block_group_cache *block_group;
9557 struct btrfs_space_info *space_info;
9558 struct btrfs_caching_control *caching_ctl;
9561 down_write(&info->commit_root_sem);
9562 while (!list_empty(&info->caching_block_groups)) {
9563 caching_ctl = list_entry(info->caching_block_groups.next,
9564 struct btrfs_caching_control, list);
9565 list_del(&caching_ctl->list);
9566 put_caching_control(caching_ctl);
9568 up_write(&info->commit_root_sem);
9570 spin_lock(&info->unused_bgs_lock);
9571 while (!list_empty(&info->unused_bgs)) {
9572 block_group = list_first_entry(&info->unused_bgs,
9573 struct btrfs_block_group_cache,
9575 list_del_init(&block_group->bg_list);
9576 btrfs_put_block_group(block_group);
9578 spin_unlock(&info->unused_bgs_lock);
9580 spin_lock(&info->block_group_cache_lock);
9581 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9582 block_group = rb_entry(n, struct btrfs_block_group_cache,
9584 rb_erase(&block_group->cache_node,
9585 &info->block_group_cache_tree);
9586 RB_CLEAR_NODE(&block_group->cache_node);
9587 spin_unlock(&info->block_group_cache_lock);
9589 down_write(&block_group->space_info->groups_sem);
9590 list_del(&block_group->list);
9591 up_write(&block_group->space_info->groups_sem);
9593 if (block_group->cached == BTRFS_CACHE_STARTED)
9594 wait_block_group_cache_done(block_group);
9597 * We haven't cached this block group, which means we could
9598 * possibly have excluded extents on this block group.
9600 if (block_group->cached == BTRFS_CACHE_NO ||
9601 block_group->cached == BTRFS_CACHE_ERROR)
9602 free_excluded_extents(info->extent_root, block_group);
9604 btrfs_remove_free_space_cache(block_group);
9605 btrfs_put_block_group(block_group);
9607 spin_lock(&info->block_group_cache_lock);
9609 spin_unlock(&info->block_group_cache_lock);
9611 /* now that all the block groups are freed, go through and
9612 * free all the space_info structs. This is only called during
9613 * the final stages of unmount, and so we know nobody is
9614 * using them. We call synchronize_rcu() once before we start,
9615 * just to be on the safe side.
9619 release_global_block_rsv(info);
9621 while (!list_empty(&info->space_info)) {
9624 space_info = list_entry(info->space_info.next,
9625 struct btrfs_space_info,
9627 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9628 if (WARN_ON(space_info->bytes_pinned > 0 ||
9629 space_info->bytes_reserved > 0 ||
9630 space_info->bytes_may_use > 0)) {
9631 dump_space_info(space_info, 0, 0);
9634 list_del(&space_info->list);
9635 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9636 struct kobject *kobj;
9637 kobj = space_info->block_group_kobjs[i];
9638 space_info->block_group_kobjs[i] = NULL;
9644 kobject_del(&space_info->kobj);
9645 kobject_put(&space_info->kobj);
9650 static void __link_block_group(struct btrfs_space_info *space_info,
9651 struct btrfs_block_group_cache *cache)
9653 int index = get_block_group_index(cache);
9656 down_write(&space_info->groups_sem);
9657 if (list_empty(&space_info->block_groups[index]))
9659 list_add_tail(&cache->list, &space_info->block_groups[index]);
9660 up_write(&space_info->groups_sem);
9663 struct raid_kobject *rkobj;
9666 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9669 rkobj->raid_type = index;
9670 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9671 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9672 "%s", get_raid_name(index));
9674 kobject_put(&rkobj->kobj);
9677 space_info->block_group_kobjs[index] = &rkobj->kobj;
9682 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9685 static struct btrfs_block_group_cache *
9686 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9688 struct btrfs_block_group_cache *cache;
9690 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9694 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9696 if (!cache->free_space_ctl) {
9701 cache->key.objectid = start;
9702 cache->key.offset = size;
9703 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9705 cache->sectorsize = root->sectorsize;
9706 cache->fs_info = root->fs_info;
9707 cache->full_stripe_len = btrfs_full_stripe_len(root,
9708 &root->fs_info->mapping_tree,
9710 set_free_space_tree_thresholds(cache);
9712 atomic_set(&cache->count, 1);
9713 spin_lock_init(&cache->lock);
9714 init_rwsem(&cache->data_rwsem);
9715 INIT_LIST_HEAD(&cache->list);
9716 INIT_LIST_HEAD(&cache->cluster_list);
9717 INIT_LIST_HEAD(&cache->bg_list);
9718 INIT_LIST_HEAD(&cache->ro_list);
9719 INIT_LIST_HEAD(&cache->dirty_list);
9720 INIT_LIST_HEAD(&cache->io_list);
9721 btrfs_init_free_space_ctl(cache);
9722 atomic_set(&cache->trimming, 0);
9723 mutex_init(&cache->free_space_lock);
9728 int btrfs_read_block_groups(struct btrfs_root *root)
9730 struct btrfs_path *path;
9732 struct btrfs_block_group_cache *cache;
9733 struct btrfs_fs_info *info = root->fs_info;
9734 struct btrfs_space_info *space_info;
9735 struct btrfs_key key;
9736 struct btrfs_key found_key;
9737 struct extent_buffer *leaf;
9741 root = info->extent_root;
9744 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9745 path = btrfs_alloc_path();
9750 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9751 if (btrfs_test_opt(root, SPACE_CACHE) &&
9752 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9754 if (btrfs_test_opt(root, CLEAR_CACHE))
9758 ret = find_first_block_group(root, path, &key);
9764 leaf = path->nodes[0];
9765 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9767 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9776 * When we mount with old space cache, we need to
9777 * set BTRFS_DC_CLEAR and set dirty flag.
9779 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9780 * truncate the old free space cache inode and
9782 * b) Setting 'dirty flag' makes sure that we flush
9783 * the new space cache info onto disk.
9785 if (btrfs_test_opt(root, SPACE_CACHE))
9786 cache->disk_cache_state = BTRFS_DC_CLEAR;
9789 read_extent_buffer(leaf, &cache->item,
9790 btrfs_item_ptr_offset(leaf, path->slots[0]),
9791 sizeof(cache->item));
9792 cache->flags = btrfs_block_group_flags(&cache->item);
9794 key.objectid = found_key.objectid + found_key.offset;
9795 btrfs_release_path(path);
9798 * We need to exclude the super stripes now so that the space
9799 * info has super bytes accounted for, otherwise we'll think
9800 * we have more space than we actually do.
9802 ret = exclude_super_stripes(root, cache);
9805 * We may have excluded something, so call this just in
9808 free_excluded_extents(root, cache);
9809 btrfs_put_block_group(cache);
9814 * check for two cases, either we are full, and therefore
9815 * don't need to bother with the caching work since we won't
9816 * find any space, or we are empty, and we can just add all
9817 * the space in and be done with it. This saves us _alot_ of
9818 * time, particularly in the full case.
9820 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9821 cache->last_byte_to_unpin = (u64)-1;
9822 cache->cached = BTRFS_CACHE_FINISHED;
9823 free_excluded_extents(root, cache);
9824 } else if (btrfs_block_group_used(&cache->item) == 0) {
9825 cache->last_byte_to_unpin = (u64)-1;
9826 cache->cached = BTRFS_CACHE_FINISHED;
9827 add_new_free_space(cache, root->fs_info,
9829 found_key.objectid +
9831 free_excluded_extents(root, cache);
9834 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9836 btrfs_remove_free_space_cache(cache);
9837 btrfs_put_block_group(cache);
9841 ret = update_space_info(info, cache->flags, found_key.offset,
9842 btrfs_block_group_used(&cache->item),
9845 btrfs_remove_free_space_cache(cache);
9846 spin_lock(&info->block_group_cache_lock);
9847 rb_erase(&cache->cache_node,
9848 &info->block_group_cache_tree);
9849 RB_CLEAR_NODE(&cache->cache_node);
9850 spin_unlock(&info->block_group_cache_lock);
9851 btrfs_put_block_group(cache);
9855 cache->space_info = space_info;
9856 spin_lock(&cache->space_info->lock);
9857 cache->space_info->bytes_readonly += cache->bytes_super;
9858 spin_unlock(&cache->space_info->lock);
9860 __link_block_group(space_info, cache);
9862 set_avail_alloc_bits(root->fs_info, cache->flags);
9863 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9864 inc_block_group_ro(cache, 1);
9865 } else if (btrfs_block_group_used(&cache->item) == 0) {
9866 spin_lock(&info->unused_bgs_lock);
9867 /* Should always be true but just in case. */
9868 if (list_empty(&cache->bg_list)) {
9869 btrfs_get_block_group(cache);
9870 list_add_tail(&cache->bg_list,
9873 spin_unlock(&info->unused_bgs_lock);
9877 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9878 if (!(get_alloc_profile(root, space_info->flags) &
9879 (BTRFS_BLOCK_GROUP_RAID10 |
9880 BTRFS_BLOCK_GROUP_RAID1 |
9881 BTRFS_BLOCK_GROUP_RAID5 |
9882 BTRFS_BLOCK_GROUP_RAID6 |
9883 BTRFS_BLOCK_GROUP_DUP)))
9886 * avoid allocating from un-mirrored block group if there are
9887 * mirrored block groups.
9889 list_for_each_entry(cache,
9890 &space_info->block_groups[BTRFS_RAID_RAID0],
9892 inc_block_group_ro(cache, 1);
9893 list_for_each_entry(cache,
9894 &space_info->block_groups[BTRFS_RAID_SINGLE],
9896 inc_block_group_ro(cache, 1);
9899 init_global_block_rsv(info);
9902 btrfs_free_path(path);
9906 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9907 struct btrfs_root *root)
9909 struct btrfs_block_group_cache *block_group, *tmp;
9910 struct btrfs_root *extent_root = root->fs_info->extent_root;
9911 struct btrfs_block_group_item item;
9912 struct btrfs_key key;
9914 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
9916 trans->can_flush_pending_bgs = false;
9917 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9921 spin_lock(&block_group->lock);
9922 memcpy(&item, &block_group->item, sizeof(item));
9923 memcpy(&key, &block_group->key, sizeof(key));
9924 spin_unlock(&block_group->lock);
9926 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9929 btrfs_abort_transaction(trans, extent_root, ret);
9930 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9931 key.objectid, key.offset);
9933 btrfs_abort_transaction(trans, extent_root, ret);
9934 add_block_group_free_space(trans, root->fs_info, block_group);
9935 /* already aborted the transaction if it failed. */
9937 list_del_init(&block_group->bg_list);
9939 trans->can_flush_pending_bgs = can_flush_pending_bgs;
9942 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9943 struct btrfs_root *root, u64 bytes_used,
9944 u64 type, u64 chunk_objectid, u64 chunk_offset,
9948 struct btrfs_root *extent_root;
9949 struct btrfs_block_group_cache *cache;
9951 extent_root = root->fs_info->extent_root;
9953 btrfs_set_log_full_commit(root->fs_info, trans);
9955 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9959 btrfs_set_block_group_used(&cache->item, bytes_used);
9960 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9961 btrfs_set_block_group_flags(&cache->item, type);
9963 cache->flags = type;
9964 cache->last_byte_to_unpin = (u64)-1;
9965 cache->cached = BTRFS_CACHE_FINISHED;
9966 cache->needs_free_space = 1;
9967 ret = exclude_super_stripes(root, cache);
9970 * We may have excluded something, so call this just in
9973 free_excluded_extents(root, cache);
9974 btrfs_put_block_group(cache);
9978 add_new_free_space(cache, root->fs_info, chunk_offset,
9979 chunk_offset + size);
9981 free_excluded_extents(root, cache);
9983 #ifdef CONFIG_BTRFS_DEBUG
9984 if (btrfs_should_fragment_free_space(root, cache)) {
9985 u64 new_bytes_used = size - bytes_used;
9987 bytes_used += new_bytes_used >> 1;
9988 fragment_free_space(root, cache);
9992 * Call to ensure the corresponding space_info object is created and
9993 * assigned to our block group, but don't update its counters just yet.
9994 * We want our bg to be added to the rbtree with its ->space_info set.
9996 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9997 &cache->space_info);
9999 btrfs_remove_free_space_cache(cache);
10000 btrfs_put_block_group(cache);
10004 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10006 btrfs_remove_free_space_cache(cache);
10007 btrfs_put_block_group(cache);
10012 * Now that our block group has its ->space_info set and is inserted in
10013 * the rbtree, update the space info's counters.
10015 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10016 &cache->space_info);
10018 btrfs_remove_free_space_cache(cache);
10019 spin_lock(&root->fs_info->block_group_cache_lock);
10020 rb_erase(&cache->cache_node,
10021 &root->fs_info->block_group_cache_tree);
10022 RB_CLEAR_NODE(&cache->cache_node);
10023 spin_unlock(&root->fs_info->block_group_cache_lock);
10024 btrfs_put_block_group(cache);
10027 update_global_block_rsv(root->fs_info);
10029 spin_lock(&cache->space_info->lock);
10030 cache->space_info->bytes_readonly += cache->bytes_super;
10031 spin_unlock(&cache->space_info->lock);
10033 __link_block_group(cache->space_info, cache);
10035 list_add_tail(&cache->bg_list, &trans->new_bgs);
10037 set_avail_alloc_bits(extent_root->fs_info, type);
10042 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10044 u64 extra_flags = chunk_to_extended(flags) &
10045 BTRFS_EXTENDED_PROFILE_MASK;
10047 write_seqlock(&fs_info->profiles_lock);
10048 if (flags & BTRFS_BLOCK_GROUP_DATA)
10049 fs_info->avail_data_alloc_bits &= ~extra_flags;
10050 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10051 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10052 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10053 fs_info->avail_system_alloc_bits &= ~extra_flags;
10054 write_sequnlock(&fs_info->profiles_lock);
10057 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10058 struct btrfs_root *root, u64 group_start,
10059 struct extent_map *em)
10061 struct btrfs_path *path;
10062 struct btrfs_block_group_cache *block_group;
10063 struct btrfs_free_cluster *cluster;
10064 struct btrfs_root *tree_root = root->fs_info->tree_root;
10065 struct btrfs_key key;
10066 struct inode *inode;
10067 struct kobject *kobj = NULL;
10071 struct btrfs_caching_control *caching_ctl = NULL;
10074 root = root->fs_info->extent_root;
10076 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10077 BUG_ON(!block_group);
10078 BUG_ON(!block_group->ro);
10081 * Free the reserved super bytes from this block group before
10084 free_excluded_extents(root, block_group);
10086 memcpy(&key, &block_group->key, sizeof(key));
10087 index = get_block_group_index(block_group);
10088 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10089 BTRFS_BLOCK_GROUP_RAID1 |
10090 BTRFS_BLOCK_GROUP_RAID10))
10095 /* make sure this block group isn't part of an allocation cluster */
10096 cluster = &root->fs_info->data_alloc_cluster;
10097 spin_lock(&cluster->refill_lock);
10098 btrfs_return_cluster_to_free_space(block_group, cluster);
10099 spin_unlock(&cluster->refill_lock);
10102 * make sure this block group isn't part of a metadata
10103 * allocation cluster
10105 cluster = &root->fs_info->meta_alloc_cluster;
10106 spin_lock(&cluster->refill_lock);
10107 btrfs_return_cluster_to_free_space(block_group, cluster);
10108 spin_unlock(&cluster->refill_lock);
10110 path = btrfs_alloc_path();
10117 * get the inode first so any iput calls done for the io_list
10118 * aren't the final iput (no unlinks allowed now)
10120 inode = lookup_free_space_inode(tree_root, block_group, path);
10122 mutex_lock(&trans->transaction->cache_write_mutex);
10124 * make sure our free spache cache IO is done before remove the
10127 spin_lock(&trans->transaction->dirty_bgs_lock);
10128 if (!list_empty(&block_group->io_list)) {
10129 list_del_init(&block_group->io_list);
10131 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10133 spin_unlock(&trans->transaction->dirty_bgs_lock);
10134 btrfs_wait_cache_io(root, trans, block_group,
10135 &block_group->io_ctl, path,
10136 block_group->key.objectid);
10137 btrfs_put_block_group(block_group);
10138 spin_lock(&trans->transaction->dirty_bgs_lock);
10141 if (!list_empty(&block_group->dirty_list)) {
10142 list_del_init(&block_group->dirty_list);
10143 btrfs_put_block_group(block_group);
10145 spin_unlock(&trans->transaction->dirty_bgs_lock);
10146 mutex_unlock(&trans->transaction->cache_write_mutex);
10148 if (!IS_ERR(inode)) {
10149 ret = btrfs_orphan_add(trans, inode);
10151 btrfs_add_delayed_iput(inode);
10154 clear_nlink(inode);
10155 /* One for the block groups ref */
10156 spin_lock(&block_group->lock);
10157 if (block_group->iref) {
10158 block_group->iref = 0;
10159 block_group->inode = NULL;
10160 spin_unlock(&block_group->lock);
10163 spin_unlock(&block_group->lock);
10165 /* One for our lookup ref */
10166 btrfs_add_delayed_iput(inode);
10169 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10170 key.offset = block_group->key.objectid;
10173 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10177 btrfs_release_path(path);
10179 ret = btrfs_del_item(trans, tree_root, path);
10182 btrfs_release_path(path);
10185 spin_lock(&root->fs_info->block_group_cache_lock);
10186 rb_erase(&block_group->cache_node,
10187 &root->fs_info->block_group_cache_tree);
10188 RB_CLEAR_NODE(&block_group->cache_node);
10190 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10191 root->fs_info->first_logical_byte = (u64)-1;
10192 spin_unlock(&root->fs_info->block_group_cache_lock);
10194 down_write(&block_group->space_info->groups_sem);
10196 * we must use list_del_init so people can check to see if they
10197 * are still on the list after taking the semaphore
10199 list_del_init(&block_group->list);
10200 if (list_empty(&block_group->space_info->block_groups[index])) {
10201 kobj = block_group->space_info->block_group_kobjs[index];
10202 block_group->space_info->block_group_kobjs[index] = NULL;
10203 clear_avail_alloc_bits(root->fs_info, block_group->flags);
10205 up_write(&block_group->space_info->groups_sem);
10211 if (block_group->has_caching_ctl)
10212 caching_ctl = get_caching_control(block_group);
10213 if (block_group->cached == BTRFS_CACHE_STARTED)
10214 wait_block_group_cache_done(block_group);
10215 if (block_group->has_caching_ctl) {
10216 down_write(&root->fs_info->commit_root_sem);
10217 if (!caching_ctl) {
10218 struct btrfs_caching_control *ctl;
10220 list_for_each_entry(ctl,
10221 &root->fs_info->caching_block_groups, list)
10222 if (ctl->block_group == block_group) {
10224 atomic_inc(&caching_ctl->count);
10229 list_del_init(&caching_ctl->list);
10230 up_write(&root->fs_info->commit_root_sem);
10232 /* Once for the caching bgs list and once for us. */
10233 put_caching_control(caching_ctl);
10234 put_caching_control(caching_ctl);
10238 spin_lock(&trans->transaction->dirty_bgs_lock);
10239 if (!list_empty(&block_group->dirty_list)) {
10242 if (!list_empty(&block_group->io_list)) {
10245 spin_unlock(&trans->transaction->dirty_bgs_lock);
10246 btrfs_remove_free_space_cache(block_group);
10248 spin_lock(&block_group->space_info->lock);
10249 list_del_init(&block_group->ro_list);
10251 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10252 WARN_ON(block_group->space_info->total_bytes
10253 < block_group->key.offset);
10254 WARN_ON(block_group->space_info->bytes_readonly
10255 < block_group->key.offset);
10256 WARN_ON(block_group->space_info->disk_total
10257 < block_group->key.offset * factor);
10259 block_group->space_info->total_bytes -= block_group->key.offset;
10260 block_group->space_info->bytes_readonly -= block_group->key.offset;
10261 block_group->space_info->disk_total -= block_group->key.offset * factor;
10263 spin_unlock(&block_group->space_info->lock);
10265 memcpy(&key, &block_group->key, sizeof(key));
10268 if (!list_empty(&em->list)) {
10269 /* We're in the transaction->pending_chunks list. */
10270 free_extent_map(em);
10272 spin_lock(&block_group->lock);
10273 block_group->removed = 1;
10275 * At this point trimming can't start on this block group, because we
10276 * removed the block group from the tree fs_info->block_group_cache_tree
10277 * so no one can't find it anymore and even if someone already got this
10278 * block group before we removed it from the rbtree, they have already
10279 * incremented block_group->trimming - if they didn't, they won't find
10280 * any free space entries because we already removed them all when we
10281 * called btrfs_remove_free_space_cache().
10283 * And we must not remove the extent map from the fs_info->mapping_tree
10284 * to prevent the same logical address range and physical device space
10285 * ranges from being reused for a new block group. This is because our
10286 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10287 * completely transactionless, so while it is trimming a range the
10288 * currently running transaction might finish and a new one start,
10289 * allowing for new block groups to be created that can reuse the same
10290 * physical device locations unless we take this special care.
10292 * There may also be an implicit trim operation if the file system
10293 * is mounted with -odiscard. The same protections must remain
10294 * in place until the extents have been discarded completely when
10295 * the transaction commit has completed.
10297 remove_em = (atomic_read(&block_group->trimming) == 0);
10299 * Make sure a trimmer task always sees the em in the pinned_chunks list
10300 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10301 * before checking block_group->removed).
10305 * Our em might be in trans->transaction->pending_chunks which
10306 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10307 * and so is the fs_info->pinned_chunks list.
10309 * So at this point we must be holding the chunk_mutex to avoid
10310 * any races with chunk allocation (more specifically at
10311 * volumes.c:contains_pending_extent()), to ensure it always
10312 * sees the em, either in the pending_chunks list or in the
10313 * pinned_chunks list.
10315 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10317 spin_unlock(&block_group->lock);
10320 struct extent_map_tree *em_tree;
10322 em_tree = &root->fs_info->mapping_tree.map_tree;
10323 write_lock(&em_tree->lock);
10325 * The em might be in the pending_chunks list, so make sure the
10326 * chunk mutex is locked, since remove_extent_mapping() will
10327 * delete us from that list.
10329 remove_extent_mapping(em_tree, em);
10330 write_unlock(&em_tree->lock);
10331 /* once for the tree */
10332 free_extent_map(em);
10335 unlock_chunks(root);
10337 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10341 btrfs_put_block_group(block_group);
10342 btrfs_put_block_group(block_group);
10344 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10350 ret = btrfs_del_item(trans, root, path);
10352 btrfs_free_path(path);
10356 struct btrfs_trans_handle *
10357 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10358 const u64 chunk_offset)
10360 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10361 struct extent_map *em;
10362 struct map_lookup *map;
10363 unsigned int num_items;
10365 read_lock(&em_tree->lock);
10366 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10367 read_unlock(&em_tree->lock);
10368 ASSERT(em && em->start == chunk_offset);
10371 * We need to reserve 3 + N units from the metadata space info in order
10372 * to remove a block group (done at btrfs_remove_chunk() and at
10373 * btrfs_remove_block_group()), which are used for:
10375 * 1 unit for adding the free space inode's orphan (located in the tree
10377 * 1 unit for deleting the block group item (located in the extent
10379 * 1 unit for deleting the free space item (located in tree of tree
10381 * N units for deleting N device extent items corresponding to each
10382 * stripe (located in the device tree).
10384 * In order to remove a block group we also need to reserve units in the
10385 * system space info in order to update the chunk tree (update one or
10386 * more device items and remove one chunk item), but this is done at
10387 * btrfs_remove_chunk() through a call to check_system_chunk().
10389 map = (struct map_lookup *)em->bdev;
10390 num_items = 3 + map->num_stripes;
10391 free_extent_map(em);
10393 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10398 * Process the unused_bgs list and remove any that don't have any allocated
10399 * space inside of them.
10401 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10403 struct btrfs_block_group_cache *block_group;
10404 struct btrfs_space_info *space_info;
10405 struct btrfs_root *root = fs_info->extent_root;
10406 struct btrfs_trans_handle *trans;
10409 if (!fs_info->open)
10412 spin_lock(&fs_info->unused_bgs_lock);
10413 while (!list_empty(&fs_info->unused_bgs)) {
10417 block_group = list_first_entry(&fs_info->unused_bgs,
10418 struct btrfs_block_group_cache,
10420 list_del_init(&block_group->bg_list);
10422 space_info = block_group->space_info;
10424 if (ret || btrfs_mixed_space_info(space_info)) {
10425 btrfs_put_block_group(block_group);
10428 spin_unlock(&fs_info->unused_bgs_lock);
10430 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10432 /* Don't want to race with allocators so take the groups_sem */
10433 down_write(&space_info->groups_sem);
10434 spin_lock(&block_group->lock);
10435 if (block_group->reserved ||
10436 btrfs_block_group_used(&block_group->item) ||
10438 list_is_singular(&block_group->list)) {
10440 * We want to bail if we made new allocations or have
10441 * outstanding allocations in this block group. We do
10442 * the ro check in case balance is currently acting on
10443 * this block group.
10445 spin_unlock(&block_group->lock);
10446 up_write(&space_info->groups_sem);
10449 spin_unlock(&block_group->lock);
10451 /* We don't want to force the issue, only flip if it's ok. */
10452 ret = inc_block_group_ro(block_group, 0);
10453 up_write(&space_info->groups_sem);
10460 * Want to do this before we do anything else so we can recover
10461 * properly if we fail to join the transaction.
10463 trans = btrfs_start_trans_remove_block_group(fs_info,
10464 block_group->key.objectid);
10465 if (IS_ERR(trans)) {
10466 btrfs_dec_block_group_ro(root, block_group);
10467 ret = PTR_ERR(trans);
10472 * We could have pending pinned extents for this block group,
10473 * just delete them, we don't care about them anymore.
10475 start = block_group->key.objectid;
10476 end = start + block_group->key.offset - 1;
10478 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10479 * btrfs_finish_extent_commit(). If we are at transaction N,
10480 * another task might be running finish_extent_commit() for the
10481 * previous transaction N - 1, and have seen a range belonging
10482 * to the block group in freed_extents[] before we were able to
10483 * clear the whole block group range from freed_extents[]. This
10484 * means that task can lookup for the block group after we
10485 * unpinned it from freed_extents[] and removed it, leading to
10486 * a BUG_ON() at btrfs_unpin_extent_range().
10488 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10489 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10490 EXTENT_DIRTY, GFP_NOFS);
10492 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10493 btrfs_dec_block_group_ro(root, block_group);
10496 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10497 EXTENT_DIRTY, GFP_NOFS);
10499 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10500 btrfs_dec_block_group_ro(root, block_group);
10503 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10505 /* Reset pinned so btrfs_put_block_group doesn't complain */
10506 spin_lock(&space_info->lock);
10507 spin_lock(&block_group->lock);
10509 space_info->bytes_pinned -= block_group->pinned;
10510 space_info->bytes_readonly += block_group->pinned;
10511 percpu_counter_add(&space_info->total_bytes_pinned,
10512 -block_group->pinned);
10513 block_group->pinned = 0;
10515 spin_unlock(&block_group->lock);
10516 spin_unlock(&space_info->lock);
10518 /* DISCARD can flip during remount */
10519 trimming = btrfs_test_opt(root, DISCARD);
10521 /* Implicit trim during transaction commit. */
10523 btrfs_get_block_group_trimming(block_group);
10526 * Btrfs_remove_chunk will abort the transaction if things go
10529 ret = btrfs_remove_chunk(trans, root,
10530 block_group->key.objectid);
10534 btrfs_put_block_group_trimming(block_group);
10539 * If we're not mounted with -odiscard, we can just forget
10540 * about this block group. Otherwise we'll need to wait
10541 * until transaction commit to do the actual discard.
10544 spin_lock(&fs_info->unused_bgs_lock);
10546 * A concurrent scrub might have added us to the list
10547 * fs_info->unused_bgs, so use a list_move operation
10548 * to add the block group to the deleted_bgs list.
10550 list_move(&block_group->bg_list,
10551 &trans->transaction->deleted_bgs);
10552 spin_unlock(&fs_info->unused_bgs_lock);
10553 btrfs_get_block_group(block_group);
10556 btrfs_end_transaction(trans, root);
10558 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10559 btrfs_put_block_group(block_group);
10560 spin_lock(&fs_info->unused_bgs_lock);
10562 spin_unlock(&fs_info->unused_bgs_lock);
10565 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10567 struct btrfs_space_info *space_info;
10568 struct btrfs_super_block *disk_super;
10574 disk_super = fs_info->super_copy;
10575 if (!btrfs_super_root(disk_super))
10578 features = btrfs_super_incompat_flags(disk_super);
10579 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10582 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10583 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10588 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10589 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10591 flags = BTRFS_BLOCK_GROUP_METADATA;
10592 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10596 flags = BTRFS_BLOCK_GROUP_DATA;
10597 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10603 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10605 return unpin_extent_range(root, start, end, false);
10609 * It used to be that old block groups would be left around forever.
10610 * Iterating over them would be enough to trim unused space. Since we
10611 * now automatically remove them, we also need to iterate over unallocated
10614 * We don't want a transaction for this since the discard may take a
10615 * substantial amount of time. We don't require that a transaction be
10616 * running, but we do need to take a running transaction into account
10617 * to ensure that we're not discarding chunks that were released in
10618 * the current transaction.
10620 * Holding the chunks lock will prevent other threads from allocating
10621 * or releasing chunks, but it won't prevent a running transaction
10622 * from committing and releasing the memory that the pending chunks
10623 * list head uses. For that, we need to take a reference to the
10626 static int btrfs_trim_free_extents(struct btrfs_device *device,
10627 u64 minlen, u64 *trimmed)
10629 u64 start = 0, len = 0;
10634 /* Not writeable = nothing to do. */
10635 if (!device->writeable)
10638 /* No free space = nothing to do. */
10639 if (device->total_bytes <= device->bytes_used)
10645 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10646 struct btrfs_transaction *trans;
10649 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10653 down_read(&fs_info->commit_root_sem);
10655 spin_lock(&fs_info->trans_lock);
10656 trans = fs_info->running_transaction;
10658 atomic_inc(&trans->use_count);
10659 spin_unlock(&fs_info->trans_lock);
10661 ret = find_free_dev_extent_start(trans, device, minlen, start,
10664 btrfs_put_transaction(trans);
10667 up_read(&fs_info->commit_root_sem);
10668 mutex_unlock(&fs_info->chunk_mutex);
10669 if (ret == -ENOSPC)
10674 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10675 up_read(&fs_info->commit_root_sem);
10676 mutex_unlock(&fs_info->chunk_mutex);
10684 if (fatal_signal_pending(current)) {
10685 ret = -ERESTARTSYS;
10695 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10697 struct btrfs_fs_info *fs_info = root->fs_info;
10698 struct btrfs_block_group_cache *cache = NULL;
10699 struct btrfs_device *device;
10700 struct list_head *devices;
10705 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10709 * try to trim all FS space, our block group may start from non-zero.
10711 if (range->len == total_bytes)
10712 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10714 cache = btrfs_lookup_block_group(fs_info, range->start);
10717 if (cache->key.objectid >= (range->start + range->len)) {
10718 btrfs_put_block_group(cache);
10722 start = max(range->start, cache->key.objectid);
10723 end = min(range->start + range->len,
10724 cache->key.objectid + cache->key.offset);
10726 if (end - start >= range->minlen) {
10727 if (!block_group_cache_done(cache)) {
10728 ret = cache_block_group(cache, 0);
10730 btrfs_put_block_group(cache);
10733 ret = wait_block_group_cache_done(cache);
10735 btrfs_put_block_group(cache);
10739 ret = btrfs_trim_block_group(cache,
10745 trimmed += group_trimmed;
10747 btrfs_put_block_group(cache);
10752 cache = next_block_group(fs_info->tree_root, cache);
10755 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10756 devices = &root->fs_info->fs_devices->alloc_list;
10757 list_for_each_entry(device, devices, dev_alloc_list) {
10758 ret = btrfs_trim_free_extents(device, range->minlen,
10763 trimmed += group_trimmed;
10765 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10767 range->len = trimmed;
10772 * btrfs_{start,end}_write_no_snapshoting() are similar to
10773 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10774 * data into the page cache through nocow before the subvolume is snapshoted,
10775 * but flush the data into disk after the snapshot creation, or to prevent
10776 * operations while snapshoting is ongoing and that cause the snapshot to be
10777 * inconsistent (writes followed by expanding truncates for example).
10779 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10781 percpu_counter_dec(&root->subv_writers->counter);
10783 * Make sure counter is updated before we wake up waiters.
10786 if (waitqueue_active(&root->subv_writers->wait))
10787 wake_up(&root->subv_writers->wait);
10790 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10792 if (atomic_read(&root->will_be_snapshoted))
10795 percpu_counter_inc(&root->subv_writers->counter);
10797 * Make sure counter is updated before we check for snapshot creation.
10800 if (atomic_read(&root->will_be_snapshoted)) {
10801 btrfs_end_write_no_snapshoting(root);