2 * Copyright (C) 2011 Fujitsu. All rights reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
23 #include "transaction.h"
26 #define BTRFS_DELAYED_WRITEBACK 512
27 #define BTRFS_DELAYED_BACKGROUND 128
28 #define BTRFS_DELAYED_BATCH 16
30 static struct kmem_cache *delayed_node_cache;
32 int __init btrfs_delayed_inode_init(void)
34 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 sizeof(struct btrfs_delayed_node),
37 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
39 if (!delayed_node_cache)
44 void btrfs_delayed_inode_exit(void)
46 if (delayed_node_cache)
47 kmem_cache_destroy(delayed_node_cache);
50 static inline void btrfs_init_delayed_node(
51 struct btrfs_delayed_node *delayed_node,
52 struct btrfs_root *root, u64 inode_id)
54 delayed_node->root = root;
55 delayed_node->inode_id = inode_id;
56 atomic_set(&delayed_node->refs, 0);
57 delayed_node->ins_root = RB_ROOT;
58 delayed_node->del_root = RB_ROOT;
59 mutex_init(&delayed_node->mutex);
60 INIT_LIST_HEAD(&delayed_node->n_list);
61 INIT_LIST_HEAD(&delayed_node->p_list);
64 static inline int btrfs_is_continuous_delayed_item(
65 struct btrfs_delayed_item *item1,
66 struct btrfs_delayed_item *item2)
68 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
69 item1->key.objectid == item2->key.objectid &&
70 item1->key.type == item2->key.type &&
71 item1->key.offset + 1 == item2->key.offset)
76 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
77 struct btrfs_root *root)
79 return root->fs_info->delayed_root;
82 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
84 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
85 struct btrfs_root *root = btrfs_inode->root;
86 u64 ino = btrfs_ino(inode);
87 struct btrfs_delayed_node *node;
89 node = ACCESS_ONCE(btrfs_inode->delayed_node);
91 atomic_inc(&node->refs);
95 spin_lock(&root->inode_lock);
96 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
98 if (btrfs_inode->delayed_node) {
99 atomic_inc(&node->refs); /* can be accessed */
100 BUG_ON(btrfs_inode->delayed_node != node);
101 spin_unlock(&root->inode_lock);
104 btrfs_inode->delayed_node = node;
105 /* can be accessed and cached in the inode */
106 atomic_add(2, &node->refs);
107 spin_unlock(&root->inode_lock);
110 spin_unlock(&root->inode_lock);
115 /* Will return either the node or PTR_ERR(-ENOMEM) */
116 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
119 struct btrfs_delayed_node *node;
120 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
121 struct btrfs_root *root = btrfs_inode->root;
122 u64 ino = btrfs_ino(inode);
126 node = btrfs_get_delayed_node(inode);
130 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
132 return ERR_PTR(-ENOMEM);
133 btrfs_init_delayed_node(node, root, ino);
135 /* cached in the btrfs inode and can be accessed */
136 atomic_add(2, &node->refs);
138 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
140 kmem_cache_free(delayed_node_cache, node);
144 spin_lock(&root->inode_lock);
145 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
146 if (ret == -EEXIST) {
147 spin_unlock(&root->inode_lock);
148 kmem_cache_free(delayed_node_cache, node);
149 radix_tree_preload_end();
152 btrfs_inode->delayed_node = node;
153 spin_unlock(&root->inode_lock);
154 radix_tree_preload_end();
160 * Call it when holding delayed_node->mutex
162 * If mod = 1, add this node into the prepared list.
164 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
165 struct btrfs_delayed_node *node,
168 spin_lock(&root->lock);
169 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
170 if (!list_empty(&node->p_list))
171 list_move_tail(&node->p_list, &root->prepare_list);
173 list_add_tail(&node->p_list, &root->prepare_list);
175 list_add_tail(&node->n_list, &root->node_list);
176 list_add_tail(&node->p_list, &root->prepare_list);
177 atomic_inc(&node->refs); /* inserted into list */
179 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
181 spin_unlock(&root->lock);
184 /* Call it when holding delayed_node->mutex */
185 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
186 struct btrfs_delayed_node *node)
188 spin_lock(&root->lock);
189 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
191 atomic_dec(&node->refs); /* not in the list */
192 list_del_init(&node->n_list);
193 if (!list_empty(&node->p_list))
194 list_del_init(&node->p_list);
195 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
197 spin_unlock(&root->lock);
200 static struct btrfs_delayed_node *btrfs_first_delayed_node(
201 struct btrfs_delayed_root *delayed_root)
204 struct btrfs_delayed_node *node = NULL;
206 spin_lock(&delayed_root->lock);
207 if (list_empty(&delayed_root->node_list))
210 p = delayed_root->node_list.next;
211 node = list_entry(p, struct btrfs_delayed_node, n_list);
212 atomic_inc(&node->refs);
214 spin_unlock(&delayed_root->lock);
219 static struct btrfs_delayed_node *btrfs_next_delayed_node(
220 struct btrfs_delayed_node *node)
222 struct btrfs_delayed_root *delayed_root;
224 struct btrfs_delayed_node *next = NULL;
226 delayed_root = node->root->fs_info->delayed_root;
227 spin_lock(&delayed_root->lock);
228 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
229 /* not in the list */
230 if (list_empty(&delayed_root->node_list))
232 p = delayed_root->node_list.next;
233 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
236 p = node->n_list.next;
238 next = list_entry(p, struct btrfs_delayed_node, n_list);
239 atomic_inc(&next->refs);
241 spin_unlock(&delayed_root->lock);
246 static void __btrfs_release_delayed_node(
247 struct btrfs_delayed_node *delayed_node,
250 struct btrfs_delayed_root *delayed_root;
255 delayed_root = delayed_node->root->fs_info->delayed_root;
257 mutex_lock(&delayed_node->mutex);
258 if (delayed_node->count)
259 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
261 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
262 mutex_unlock(&delayed_node->mutex);
264 if (atomic_dec_and_test(&delayed_node->refs)) {
266 struct btrfs_root *root = delayed_node->root;
267 spin_lock(&root->inode_lock);
268 if (atomic_read(&delayed_node->refs) == 0) {
269 radix_tree_delete(&root->delayed_nodes_tree,
270 delayed_node->inode_id);
273 spin_unlock(&root->inode_lock);
275 kmem_cache_free(delayed_node_cache, delayed_node);
279 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
281 __btrfs_release_delayed_node(node, 0);
284 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285 struct btrfs_delayed_root *delayed_root)
288 struct btrfs_delayed_node *node = NULL;
290 spin_lock(&delayed_root->lock);
291 if (list_empty(&delayed_root->prepare_list))
294 p = delayed_root->prepare_list.next;
296 node = list_entry(p, struct btrfs_delayed_node, p_list);
297 atomic_inc(&node->refs);
299 spin_unlock(&delayed_root->lock);
304 static inline void btrfs_release_prepared_delayed_node(
305 struct btrfs_delayed_node *node)
307 __btrfs_release_delayed_node(node, 1);
310 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
312 struct btrfs_delayed_item *item;
313 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
315 item->data_len = data_len;
316 item->ins_or_del = 0;
317 item->bytes_reserved = 0;
318 item->delayed_node = NULL;
319 atomic_set(&item->refs, 1);
325 * __btrfs_lookup_delayed_item - look up the delayed item by key
326 * @delayed_node: pointer to the delayed node
327 * @key: the key to look up
328 * @prev: used to store the prev item if the right item isn't found
329 * @next: used to store the next item if the right item isn't found
331 * Note: if we don't find the right item, we will return the prev item and
334 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
335 struct rb_root *root,
336 struct btrfs_key *key,
337 struct btrfs_delayed_item **prev,
338 struct btrfs_delayed_item **next)
340 struct rb_node *node, *prev_node = NULL;
341 struct btrfs_delayed_item *delayed_item = NULL;
344 node = root->rb_node;
347 delayed_item = rb_entry(node, struct btrfs_delayed_item,
350 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
352 node = node->rb_right;
354 node = node->rb_left;
363 *prev = delayed_item;
364 else if ((node = rb_prev(prev_node)) != NULL) {
365 *prev = rb_entry(node, struct btrfs_delayed_item,
375 *next = delayed_item;
376 else if ((node = rb_next(prev_node)) != NULL) {
377 *next = rb_entry(node, struct btrfs_delayed_item,
385 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
386 struct btrfs_delayed_node *delayed_node,
387 struct btrfs_key *key)
389 struct btrfs_delayed_item *item;
391 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
396 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
397 struct btrfs_delayed_item *ins,
400 struct rb_node **p, *node;
401 struct rb_node *parent_node = NULL;
402 struct rb_root *root;
403 struct btrfs_delayed_item *item;
406 if (action == BTRFS_DELAYED_INSERTION_ITEM)
407 root = &delayed_node->ins_root;
408 else if (action == BTRFS_DELAYED_DELETION_ITEM)
409 root = &delayed_node->del_root;
413 node = &ins->rb_node;
417 item = rb_entry(parent_node, struct btrfs_delayed_item,
420 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
429 rb_link_node(node, parent_node, p);
430 rb_insert_color(node, root);
431 ins->delayed_node = delayed_node;
432 ins->ins_or_del = action;
434 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
435 action == BTRFS_DELAYED_INSERTION_ITEM &&
436 ins->key.offset >= delayed_node->index_cnt)
437 delayed_node->index_cnt = ins->key.offset + 1;
439 delayed_node->count++;
440 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
444 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
445 struct btrfs_delayed_item *item)
447 return __btrfs_add_delayed_item(node, item,
448 BTRFS_DELAYED_INSERTION_ITEM);
451 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
452 struct btrfs_delayed_item *item)
454 return __btrfs_add_delayed_item(node, item,
455 BTRFS_DELAYED_DELETION_ITEM);
458 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
460 int seq = atomic_inc_return(&delayed_root->items_seq);
463 * atomic_dec_return implies a barrier for waitqueue_active
465 if ((atomic_dec_return(&delayed_root->items) <
466 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
467 waitqueue_active(&delayed_root->wait))
468 wake_up(&delayed_root->wait);
471 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
473 struct rb_root *root;
474 struct btrfs_delayed_root *delayed_root;
476 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
478 BUG_ON(!delayed_root);
479 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
480 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
482 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
483 root = &delayed_item->delayed_node->ins_root;
485 root = &delayed_item->delayed_node->del_root;
487 rb_erase(&delayed_item->rb_node, root);
488 delayed_item->delayed_node->count--;
490 finish_one_item(delayed_root);
493 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
496 __btrfs_remove_delayed_item(item);
497 if (atomic_dec_and_test(&item->refs))
502 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
503 struct btrfs_delayed_node *delayed_node)
506 struct btrfs_delayed_item *item = NULL;
508 p = rb_first(&delayed_node->ins_root);
510 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
515 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
516 struct btrfs_delayed_node *delayed_node)
519 struct btrfs_delayed_item *item = NULL;
521 p = rb_first(&delayed_node->del_root);
523 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
528 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
529 struct btrfs_delayed_item *item)
532 struct btrfs_delayed_item *next = NULL;
534 p = rb_next(&item->rb_node);
536 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
541 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
542 struct btrfs_root *root,
543 struct btrfs_delayed_item *item)
545 struct btrfs_block_rsv *src_rsv;
546 struct btrfs_block_rsv *dst_rsv;
550 if (!trans->bytes_reserved)
553 src_rsv = trans->block_rsv;
554 dst_rsv = &root->fs_info->delayed_block_rsv;
556 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
557 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
559 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
562 item->bytes_reserved = num_bytes;
568 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
569 struct btrfs_delayed_item *item)
571 struct btrfs_block_rsv *rsv;
573 if (!item->bytes_reserved)
576 rsv = &root->fs_info->delayed_block_rsv;
577 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
578 item->key.objectid, item->bytes_reserved,
580 btrfs_block_rsv_release(root, rsv,
581 item->bytes_reserved);
584 static int btrfs_delayed_inode_reserve_metadata(
585 struct btrfs_trans_handle *trans,
586 struct btrfs_root *root,
588 struct btrfs_delayed_node *node)
590 struct btrfs_block_rsv *src_rsv;
591 struct btrfs_block_rsv *dst_rsv;
594 bool release = false;
596 src_rsv = trans->block_rsv;
597 dst_rsv = &root->fs_info->delayed_block_rsv;
599 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
602 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
603 * which doesn't reserve space for speed. This is a problem since we
604 * still need to reserve space for this update, so try to reserve the
607 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
608 * we're accounted for.
610 if (!src_rsv || (!trans->bytes_reserved &&
611 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
612 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
613 BTRFS_RESERVE_NO_FLUSH);
615 * Since we're under a transaction reserve_metadata_bytes could
616 * try to commit the transaction which will make it return
617 * EAGAIN to make us stop the transaction we have, so return
618 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
623 node->bytes_reserved = num_bytes;
624 trace_btrfs_space_reservation(root->fs_info,
630 } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
631 spin_lock(&BTRFS_I(inode)->lock);
632 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
633 &BTRFS_I(inode)->runtime_flags)) {
634 spin_unlock(&BTRFS_I(inode)->lock);
638 spin_unlock(&BTRFS_I(inode)->lock);
640 /* Ok we didn't have space pre-reserved. This shouldn't happen
641 * too often but it can happen if we do delalloc to an existing
642 * inode which gets dirtied because of the time update, and then
643 * isn't touched again until after the transaction commits and
644 * then we try to write out the data. First try to be nice and
645 * reserve something strictly for us. If not be a pain and try
646 * to steal from the delalloc block rsv.
648 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
649 BTRFS_RESERVE_NO_FLUSH);
653 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
658 * Ok this is a problem, let's just steal from the global rsv
659 * since this really shouldn't happen that often.
661 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
667 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
671 * Migrate only takes a reservation, it doesn't touch the size of the
672 * block_rsv. This is to simplify people who don't normally have things
673 * migrated from their block rsv. If they go to release their
674 * reservation, that will decrease the size as well, so if migrate
675 * reduced size we'd end up with a negative size. But for the
676 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
677 * but we could in fact do this reserve/migrate dance several times
678 * between the time we did the original reservation and we'd clean it
679 * up. So to take care of this, release the space for the meta
680 * reservation here. I think it may be time for a documentation page on
681 * how block rsvs. work.
684 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
685 btrfs_ino(inode), num_bytes, 1);
686 node->bytes_reserved = num_bytes;
690 trace_btrfs_space_reservation(root->fs_info, "delalloc",
691 btrfs_ino(inode), num_bytes, 0);
692 btrfs_block_rsv_release(root, src_rsv, num_bytes);
698 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
699 struct btrfs_delayed_node *node)
701 struct btrfs_block_rsv *rsv;
703 if (!node->bytes_reserved)
706 rsv = &root->fs_info->delayed_block_rsv;
707 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
708 node->inode_id, node->bytes_reserved, 0);
709 btrfs_block_rsv_release(root, rsv,
710 node->bytes_reserved);
711 node->bytes_reserved = 0;
715 * This helper will insert some continuous items into the same leaf according
716 * to the free space of the leaf.
718 static int btrfs_batch_insert_items(struct btrfs_root *root,
719 struct btrfs_path *path,
720 struct btrfs_delayed_item *item)
722 struct btrfs_delayed_item *curr, *next;
724 int total_data_size = 0, total_size = 0;
725 struct extent_buffer *leaf;
727 struct btrfs_key *keys;
729 struct list_head head;
735 BUG_ON(!path->nodes[0]);
737 leaf = path->nodes[0];
738 free_space = btrfs_leaf_free_space(root, leaf);
739 INIT_LIST_HEAD(&head);
745 * count the number of the continuous items that we can insert in batch
747 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
749 total_data_size += next->data_len;
750 total_size += next->data_len + sizeof(struct btrfs_item);
751 list_add_tail(&next->tree_list, &head);
755 next = __btrfs_next_delayed_item(curr);
759 if (!btrfs_is_continuous_delayed_item(curr, next))
769 * we need allocate some memory space, but it might cause the task
770 * to sleep, so we set all locked nodes in the path to blocking locks
773 btrfs_set_path_blocking(path);
775 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
781 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
787 /* get keys of all the delayed items */
789 list_for_each_entry(next, &head, tree_list) {
791 data_size[i] = next->data_len;
795 /* reset all the locked nodes in the patch to spinning locks. */
796 btrfs_clear_path_blocking(path, NULL, 0);
798 /* insert the keys of the items */
799 setup_items_for_insert(root, path, keys, data_size,
800 total_data_size, total_size, nitems);
802 /* insert the dir index items */
803 slot = path->slots[0];
804 list_for_each_entry_safe(curr, next, &head, tree_list) {
805 data_ptr = btrfs_item_ptr(leaf, slot, char);
806 write_extent_buffer(leaf, &curr->data,
807 (unsigned long)data_ptr,
811 btrfs_delayed_item_release_metadata(root, curr);
813 list_del(&curr->tree_list);
814 btrfs_release_delayed_item(curr);
825 * This helper can just do simple insertion that needn't extend item for new
826 * data, such as directory name index insertion, inode insertion.
828 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
829 struct btrfs_root *root,
830 struct btrfs_path *path,
831 struct btrfs_delayed_item *delayed_item)
833 struct extent_buffer *leaf;
837 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
838 delayed_item->data_len);
839 if (ret < 0 && ret != -EEXIST)
842 leaf = path->nodes[0];
844 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
846 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
847 delayed_item->data_len);
848 btrfs_mark_buffer_dirty(leaf);
850 btrfs_delayed_item_release_metadata(root, delayed_item);
855 * we insert an item first, then if there are some continuous items, we try
856 * to insert those items into the same leaf.
858 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
859 struct btrfs_path *path,
860 struct btrfs_root *root,
861 struct btrfs_delayed_node *node)
863 struct btrfs_delayed_item *curr, *prev;
867 mutex_lock(&node->mutex);
868 curr = __btrfs_first_delayed_insertion_item(node);
872 ret = btrfs_insert_delayed_item(trans, root, path, curr);
874 btrfs_release_path(path);
879 curr = __btrfs_next_delayed_item(prev);
880 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
881 /* insert the continuous items into the same leaf */
883 btrfs_batch_insert_items(root, path, curr);
885 btrfs_release_delayed_item(prev);
886 btrfs_mark_buffer_dirty(path->nodes[0]);
888 btrfs_release_path(path);
889 mutex_unlock(&node->mutex);
893 mutex_unlock(&node->mutex);
897 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
898 struct btrfs_root *root,
899 struct btrfs_path *path,
900 struct btrfs_delayed_item *item)
902 struct btrfs_delayed_item *curr, *next;
903 struct extent_buffer *leaf;
904 struct btrfs_key key;
905 struct list_head head;
906 int nitems, i, last_item;
909 BUG_ON(!path->nodes[0]);
911 leaf = path->nodes[0];
914 last_item = btrfs_header_nritems(leaf) - 1;
916 return -ENOENT; /* FIXME: Is errno suitable? */
919 INIT_LIST_HEAD(&head);
920 btrfs_item_key_to_cpu(leaf, &key, i);
923 * count the number of the dir index items that we can delete in batch
925 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
926 list_add_tail(&next->tree_list, &head);
930 next = __btrfs_next_delayed_item(curr);
934 if (!btrfs_is_continuous_delayed_item(curr, next))
940 btrfs_item_key_to_cpu(leaf, &key, i);
946 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
950 list_for_each_entry_safe(curr, next, &head, tree_list) {
951 btrfs_delayed_item_release_metadata(root, curr);
952 list_del(&curr->tree_list);
953 btrfs_release_delayed_item(curr);
960 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
961 struct btrfs_path *path,
962 struct btrfs_root *root,
963 struct btrfs_delayed_node *node)
965 struct btrfs_delayed_item *curr, *prev;
969 mutex_lock(&node->mutex);
970 curr = __btrfs_first_delayed_deletion_item(node);
974 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
979 * can't find the item which the node points to, so this node
980 * is invalid, just drop it.
983 curr = __btrfs_next_delayed_item(prev);
984 btrfs_release_delayed_item(prev);
986 btrfs_release_path(path);
988 mutex_unlock(&node->mutex);
994 btrfs_batch_delete_items(trans, root, path, curr);
995 btrfs_release_path(path);
996 mutex_unlock(&node->mutex);
1000 btrfs_release_path(path);
1001 mutex_unlock(&node->mutex);
1005 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1007 struct btrfs_delayed_root *delayed_root;
1010 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1011 BUG_ON(!delayed_node->root);
1012 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1013 delayed_node->count--;
1015 delayed_root = delayed_node->root->fs_info->delayed_root;
1016 finish_one_item(delayed_root);
1020 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1022 struct btrfs_delayed_root *delayed_root;
1024 ASSERT(delayed_node->root);
1025 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1026 delayed_node->count--;
1028 delayed_root = delayed_node->root->fs_info->delayed_root;
1029 finish_one_item(delayed_root);
1032 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1033 struct btrfs_root *root,
1034 struct btrfs_path *path,
1035 struct btrfs_delayed_node *node)
1037 struct btrfs_key key;
1038 struct btrfs_inode_item *inode_item;
1039 struct extent_buffer *leaf;
1043 key.objectid = node->inode_id;
1044 key.type = BTRFS_INODE_ITEM_KEY;
1047 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1052 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1054 btrfs_release_path(path);
1056 } else if (ret < 0) {
1060 leaf = path->nodes[0];
1061 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1062 struct btrfs_inode_item);
1063 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1064 sizeof(struct btrfs_inode_item));
1065 btrfs_mark_buffer_dirty(leaf);
1067 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1071 if (path->slots[0] >= btrfs_header_nritems(leaf))
1074 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1075 if (key.objectid != node->inode_id)
1078 if (key.type != BTRFS_INODE_REF_KEY &&
1079 key.type != BTRFS_INODE_EXTREF_KEY)
1083 * Delayed iref deletion is for the inode who has only one link,
1084 * so there is only one iref. The case that several irefs are
1085 * in the same item doesn't exist.
1087 btrfs_del_item(trans, root, path);
1089 btrfs_release_delayed_iref(node);
1091 btrfs_release_path(path);
1093 btrfs_delayed_inode_release_metadata(root, node);
1094 btrfs_release_delayed_inode(node);
1099 btrfs_release_path(path);
1101 key.type = BTRFS_INODE_EXTREF_KEY;
1103 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1109 leaf = path->nodes[0];
1114 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1115 struct btrfs_root *root,
1116 struct btrfs_path *path,
1117 struct btrfs_delayed_node *node)
1121 mutex_lock(&node->mutex);
1122 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1123 mutex_unlock(&node->mutex);
1127 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1128 mutex_unlock(&node->mutex);
1133 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1134 struct btrfs_path *path,
1135 struct btrfs_delayed_node *node)
1139 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1143 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1147 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1152 * Called when committing the transaction.
1153 * Returns 0 on success.
1154 * Returns < 0 on error and returns with an aborted transaction with any
1155 * outstanding delayed items cleaned up.
1157 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1158 struct btrfs_root *root, int nr)
1160 struct btrfs_delayed_root *delayed_root;
1161 struct btrfs_delayed_node *curr_node, *prev_node;
1162 struct btrfs_path *path;
1163 struct btrfs_block_rsv *block_rsv;
1165 bool count = (nr > 0);
1170 path = btrfs_alloc_path();
1173 path->leave_spinning = 1;
1175 block_rsv = trans->block_rsv;
1176 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1178 delayed_root = btrfs_get_delayed_root(root);
1180 curr_node = btrfs_first_delayed_node(delayed_root);
1181 while (curr_node && (!count || (count && nr--))) {
1182 ret = __btrfs_commit_inode_delayed_items(trans, path,
1185 btrfs_release_delayed_node(curr_node);
1187 btrfs_abort_transaction(trans, root, ret);
1191 prev_node = curr_node;
1192 curr_node = btrfs_next_delayed_node(curr_node);
1193 btrfs_release_delayed_node(prev_node);
1197 btrfs_release_delayed_node(curr_node);
1198 btrfs_free_path(path);
1199 trans->block_rsv = block_rsv;
1204 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1205 struct btrfs_root *root)
1207 return __btrfs_run_delayed_items(trans, root, -1);
1210 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1211 struct btrfs_root *root, int nr)
1213 return __btrfs_run_delayed_items(trans, root, nr);
1216 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1217 struct inode *inode)
1219 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1220 struct btrfs_path *path;
1221 struct btrfs_block_rsv *block_rsv;
1227 mutex_lock(&delayed_node->mutex);
1228 if (!delayed_node->count) {
1229 mutex_unlock(&delayed_node->mutex);
1230 btrfs_release_delayed_node(delayed_node);
1233 mutex_unlock(&delayed_node->mutex);
1235 path = btrfs_alloc_path();
1237 btrfs_release_delayed_node(delayed_node);
1240 path->leave_spinning = 1;
1242 block_rsv = trans->block_rsv;
1243 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1245 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1247 btrfs_release_delayed_node(delayed_node);
1248 btrfs_free_path(path);
1249 trans->block_rsv = block_rsv;
1254 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1256 struct btrfs_trans_handle *trans;
1257 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1258 struct btrfs_path *path;
1259 struct btrfs_block_rsv *block_rsv;
1265 mutex_lock(&delayed_node->mutex);
1266 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1267 mutex_unlock(&delayed_node->mutex);
1268 btrfs_release_delayed_node(delayed_node);
1271 mutex_unlock(&delayed_node->mutex);
1273 trans = btrfs_join_transaction(delayed_node->root);
1274 if (IS_ERR(trans)) {
1275 ret = PTR_ERR(trans);
1279 path = btrfs_alloc_path();
1284 path->leave_spinning = 1;
1286 block_rsv = trans->block_rsv;
1287 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1289 mutex_lock(&delayed_node->mutex);
1290 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1291 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1292 path, delayed_node);
1295 mutex_unlock(&delayed_node->mutex);
1297 btrfs_free_path(path);
1298 trans->block_rsv = block_rsv;
1300 btrfs_end_transaction(trans, delayed_node->root);
1301 btrfs_btree_balance_dirty(delayed_node->root);
1303 btrfs_release_delayed_node(delayed_node);
1308 void btrfs_remove_delayed_node(struct inode *inode)
1310 struct btrfs_delayed_node *delayed_node;
1312 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1316 BTRFS_I(inode)->delayed_node = NULL;
1317 btrfs_release_delayed_node(delayed_node);
1320 struct btrfs_async_delayed_work {
1321 struct btrfs_delayed_root *delayed_root;
1323 struct btrfs_work work;
1326 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1328 struct btrfs_async_delayed_work *async_work;
1329 struct btrfs_delayed_root *delayed_root;
1330 struct btrfs_trans_handle *trans;
1331 struct btrfs_path *path;
1332 struct btrfs_delayed_node *delayed_node = NULL;
1333 struct btrfs_root *root;
1334 struct btrfs_block_rsv *block_rsv;
1337 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1338 delayed_root = async_work->delayed_root;
1340 path = btrfs_alloc_path();
1345 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1348 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1352 path->leave_spinning = 1;
1353 root = delayed_node->root;
1355 trans = btrfs_join_transaction(root);
1359 block_rsv = trans->block_rsv;
1360 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1362 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1364 trans->block_rsv = block_rsv;
1365 btrfs_end_transaction(trans, root);
1366 btrfs_btree_balance_dirty_nodelay(root);
1369 btrfs_release_path(path);
1372 btrfs_release_prepared_delayed_node(delayed_node);
1373 if (async_work->nr == 0 || total_done < async_work->nr)
1377 btrfs_free_path(path);
1379 wake_up(&delayed_root->wait);
1384 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1385 struct btrfs_fs_info *fs_info, int nr)
1387 struct btrfs_async_delayed_work *async_work;
1389 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1392 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1396 async_work->delayed_root = delayed_root;
1397 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1398 btrfs_async_run_delayed_root, NULL, NULL);
1399 async_work->nr = nr;
1401 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1405 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1407 struct btrfs_delayed_root *delayed_root;
1408 delayed_root = btrfs_get_delayed_root(root);
1409 WARN_ON(btrfs_first_delayed_node(delayed_root));
1412 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1414 int val = atomic_read(&delayed_root->items_seq);
1416 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1419 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1425 void btrfs_balance_delayed_items(struct btrfs_root *root)
1427 struct btrfs_delayed_root *delayed_root;
1428 struct btrfs_fs_info *fs_info = root->fs_info;
1430 delayed_root = btrfs_get_delayed_root(root);
1432 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1435 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1439 seq = atomic_read(&delayed_root->items_seq);
1441 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1445 wait_event_interruptible(delayed_root->wait,
1446 could_end_wait(delayed_root, seq));
1450 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1453 /* Will return 0 or -ENOMEM */
1454 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1455 struct btrfs_root *root, const char *name,
1456 int name_len, struct inode *dir,
1457 struct btrfs_disk_key *disk_key, u8 type,
1460 struct btrfs_delayed_node *delayed_node;
1461 struct btrfs_delayed_item *delayed_item;
1462 struct btrfs_dir_item *dir_item;
1465 delayed_node = btrfs_get_or_create_delayed_node(dir);
1466 if (IS_ERR(delayed_node))
1467 return PTR_ERR(delayed_node);
1469 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1470 if (!delayed_item) {
1475 delayed_item->key.objectid = btrfs_ino(dir);
1476 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1477 delayed_item->key.offset = index;
1479 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1480 dir_item->location = *disk_key;
1481 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1482 btrfs_set_stack_dir_data_len(dir_item, 0);
1483 btrfs_set_stack_dir_name_len(dir_item, name_len);
1484 btrfs_set_stack_dir_type(dir_item, type);
1485 memcpy((char *)(dir_item + 1), name, name_len);
1487 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1489 * we have reserved enough space when we start a new transaction,
1490 * so reserving metadata failure is impossible
1495 mutex_lock(&delayed_node->mutex);
1496 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1497 if (unlikely(ret)) {
1498 btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
1499 "into the insertion tree of the delayed node"
1500 "(root id: %llu, inode id: %llu, errno: %d)",
1501 name_len, name, delayed_node->root->objectid,
1502 delayed_node->inode_id, ret);
1505 mutex_unlock(&delayed_node->mutex);
1508 btrfs_release_delayed_node(delayed_node);
1512 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1513 struct btrfs_delayed_node *node,
1514 struct btrfs_key *key)
1516 struct btrfs_delayed_item *item;
1518 mutex_lock(&node->mutex);
1519 item = __btrfs_lookup_delayed_insertion_item(node, key);
1521 mutex_unlock(&node->mutex);
1525 btrfs_delayed_item_release_metadata(root, item);
1526 btrfs_release_delayed_item(item);
1527 mutex_unlock(&node->mutex);
1531 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1532 struct btrfs_root *root, struct inode *dir,
1535 struct btrfs_delayed_node *node;
1536 struct btrfs_delayed_item *item;
1537 struct btrfs_key item_key;
1540 node = btrfs_get_or_create_delayed_node(dir);
1542 return PTR_ERR(node);
1544 item_key.objectid = btrfs_ino(dir);
1545 item_key.type = BTRFS_DIR_INDEX_KEY;
1546 item_key.offset = index;
1548 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1552 item = btrfs_alloc_delayed_item(0);
1558 item->key = item_key;
1560 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1562 * we have reserved enough space when we start a new transaction,
1563 * so reserving metadata failure is impossible.
1567 mutex_lock(&node->mutex);
1568 ret = __btrfs_add_delayed_deletion_item(node, item);
1569 if (unlikely(ret)) {
1570 btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
1571 "into the deletion tree of the delayed node"
1572 "(root id: %llu, inode id: %llu, errno: %d)",
1573 index, node->root->objectid, node->inode_id,
1577 mutex_unlock(&node->mutex);
1579 btrfs_release_delayed_node(node);
1583 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1585 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1591 * Since we have held i_mutex of this directory, it is impossible that
1592 * a new directory index is added into the delayed node and index_cnt
1593 * is updated now. So we needn't lock the delayed node.
1595 if (!delayed_node->index_cnt) {
1596 btrfs_release_delayed_node(delayed_node);
1600 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1601 btrfs_release_delayed_node(delayed_node);
1605 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1606 struct list_head *del_list)
1608 struct btrfs_delayed_node *delayed_node;
1609 struct btrfs_delayed_item *item;
1611 delayed_node = btrfs_get_delayed_node(inode);
1615 mutex_lock(&delayed_node->mutex);
1616 item = __btrfs_first_delayed_insertion_item(delayed_node);
1618 atomic_inc(&item->refs);
1619 list_add_tail(&item->readdir_list, ins_list);
1620 item = __btrfs_next_delayed_item(item);
1623 item = __btrfs_first_delayed_deletion_item(delayed_node);
1625 atomic_inc(&item->refs);
1626 list_add_tail(&item->readdir_list, del_list);
1627 item = __btrfs_next_delayed_item(item);
1629 mutex_unlock(&delayed_node->mutex);
1631 * This delayed node is still cached in the btrfs inode, so refs
1632 * must be > 1 now, and we needn't check it is going to be freed
1635 * Besides that, this function is used to read dir, we do not
1636 * insert/delete delayed items in this period. So we also needn't
1637 * requeue or dequeue this delayed node.
1639 atomic_dec(&delayed_node->refs);
1642 void btrfs_put_delayed_items(struct list_head *ins_list,
1643 struct list_head *del_list)
1645 struct btrfs_delayed_item *curr, *next;
1647 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1648 list_del(&curr->readdir_list);
1649 if (atomic_dec_and_test(&curr->refs))
1653 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1654 list_del(&curr->readdir_list);
1655 if (atomic_dec_and_test(&curr->refs))
1660 int btrfs_should_delete_dir_index(struct list_head *del_list,
1663 struct btrfs_delayed_item *curr, *next;
1666 if (list_empty(del_list))
1669 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1670 if (curr->key.offset > index)
1673 list_del(&curr->readdir_list);
1674 ret = (curr->key.offset == index);
1676 if (atomic_dec_and_test(&curr->refs))
1688 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1691 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1692 struct list_head *ins_list)
1694 struct btrfs_dir_item *di;
1695 struct btrfs_delayed_item *curr, *next;
1696 struct btrfs_key location;
1700 unsigned char d_type;
1702 if (list_empty(ins_list))
1706 * Changing the data of the delayed item is impossible. So
1707 * we needn't lock them. And we have held i_mutex of the
1708 * directory, nobody can delete any directory indexes now.
1710 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1711 list_del(&curr->readdir_list);
1713 if (curr->key.offset < ctx->pos) {
1714 if (atomic_dec_and_test(&curr->refs))
1719 ctx->pos = curr->key.offset;
1721 di = (struct btrfs_dir_item *)curr->data;
1722 name = (char *)(di + 1);
1723 name_len = btrfs_stack_dir_name_len(di);
1725 d_type = btrfs_filetype_table[di->type];
1726 btrfs_disk_key_to_cpu(&location, &di->location);
1728 over = !dir_emit(ctx, name, name_len,
1729 location.objectid, d_type);
1731 if (atomic_dec_and_test(&curr->refs))
1740 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1741 struct btrfs_inode_item *inode_item,
1742 struct inode *inode)
1744 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1745 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1746 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1747 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1748 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1749 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1750 btrfs_set_stack_inode_generation(inode_item,
1751 BTRFS_I(inode)->generation);
1752 btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1753 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1754 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1755 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1756 btrfs_set_stack_inode_block_group(inode_item, 0);
1758 btrfs_set_stack_timespec_sec(&inode_item->atime,
1759 inode->i_atime.tv_sec);
1760 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1761 inode->i_atime.tv_nsec);
1763 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1764 inode->i_mtime.tv_sec);
1765 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1766 inode->i_mtime.tv_nsec);
1768 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1769 inode->i_ctime.tv_sec);
1770 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1771 inode->i_ctime.tv_nsec);
1773 btrfs_set_stack_timespec_sec(&inode_item->otime,
1774 BTRFS_I(inode)->i_otime.tv_sec);
1775 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1776 BTRFS_I(inode)->i_otime.tv_nsec);
1779 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1781 struct btrfs_delayed_node *delayed_node;
1782 struct btrfs_inode_item *inode_item;
1784 delayed_node = btrfs_get_delayed_node(inode);
1788 mutex_lock(&delayed_node->mutex);
1789 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1790 mutex_unlock(&delayed_node->mutex);
1791 btrfs_release_delayed_node(delayed_node);
1795 inode_item = &delayed_node->inode_item;
1797 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1798 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1799 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1800 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1801 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1802 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1803 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1804 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1806 inode->i_version = btrfs_stack_inode_sequence(inode_item);
1808 *rdev = btrfs_stack_inode_rdev(inode_item);
1809 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1811 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1812 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1814 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1815 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1817 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1818 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1820 BTRFS_I(inode)->i_otime.tv_sec =
1821 btrfs_stack_timespec_sec(&inode_item->otime);
1822 BTRFS_I(inode)->i_otime.tv_nsec =
1823 btrfs_stack_timespec_nsec(&inode_item->otime);
1825 inode->i_generation = BTRFS_I(inode)->generation;
1826 BTRFS_I(inode)->index_cnt = (u64)-1;
1828 mutex_unlock(&delayed_node->mutex);
1829 btrfs_release_delayed_node(delayed_node);
1833 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1834 struct btrfs_root *root, struct inode *inode)
1836 struct btrfs_delayed_node *delayed_node;
1839 delayed_node = btrfs_get_or_create_delayed_node(inode);
1840 if (IS_ERR(delayed_node))
1841 return PTR_ERR(delayed_node);
1843 mutex_lock(&delayed_node->mutex);
1844 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1845 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1849 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1854 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1855 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1856 delayed_node->count++;
1857 atomic_inc(&root->fs_info->delayed_root->items);
1859 mutex_unlock(&delayed_node->mutex);
1860 btrfs_release_delayed_node(delayed_node);
1864 int btrfs_delayed_delete_inode_ref(struct inode *inode)
1866 struct btrfs_delayed_node *delayed_node;
1869 * we don't do delayed inode updates during log recovery because it
1870 * leads to enospc problems. This means we also can't do
1871 * delayed inode refs
1873 if (BTRFS_I(inode)->root->fs_info->log_root_recovering)
1876 delayed_node = btrfs_get_or_create_delayed_node(inode);
1877 if (IS_ERR(delayed_node))
1878 return PTR_ERR(delayed_node);
1881 * We don't reserve space for inode ref deletion is because:
1882 * - We ONLY do async inode ref deletion for the inode who has only
1883 * one link(i_nlink == 1), it means there is only one inode ref.
1884 * And in most case, the inode ref and the inode item are in the
1885 * same leaf, and we will deal with them at the same time.
1886 * Since we are sure we will reserve the space for the inode item,
1887 * it is unnecessary to reserve space for inode ref deletion.
1888 * - If the inode ref and the inode item are not in the same leaf,
1889 * We also needn't worry about enospc problem, because we reserve
1890 * much more space for the inode update than it needs.
1891 * - At the worst, we can steal some space from the global reservation.
1894 mutex_lock(&delayed_node->mutex);
1895 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1898 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1899 delayed_node->count++;
1900 atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
1902 mutex_unlock(&delayed_node->mutex);
1903 btrfs_release_delayed_node(delayed_node);
1907 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1909 struct btrfs_root *root = delayed_node->root;
1910 struct btrfs_delayed_item *curr_item, *prev_item;
1912 mutex_lock(&delayed_node->mutex);
1913 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1915 btrfs_delayed_item_release_metadata(root, curr_item);
1916 prev_item = curr_item;
1917 curr_item = __btrfs_next_delayed_item(prev_item);
1918 btrfs_release_delayed_item(prev_item);
1921 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1923 btrfs_delayed_item_release_metadata(root, curr_item);
1924 prev_item = curr_item;
1925 curr_item = __btrfs_next_delayed_item(prev_item);
1926 btrfs_release_delayed_item(prev_item);
1929 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1930 btrfs_release_delayed_iref(delayed_node);
1932 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1933 btrfs_delayed_inode_release_metadata(root, delayed_node);
1934 btrfs_release_delayed_inode(delayed_node);
1936 mutex_unlock(&delayed_node->mutex);
1939 void btrfs_kill_delayed_inode_items(struct inode *inode)
1941 struct btrfs_delayed_node *delayed_node;
1943 delayed_node = btrfs_get_delayed_node(inode);
1947 __btrfs_kill_delayed_node(delayed_node);
1948 btrfs_release_delayed_node(delayed_node);
1951 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1954 struct btrfs_delayed_node *delayed_nodes[8];
1958 spin_lock(&root->inode_lock);
1959 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1960 (void **)delayed_nodes, inode_id,
1961 ARRAY_SIZE(delayed_nodes));
1963 spin_unlock(&root->inode_lock);
1967 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1969 for (i = 0; i < n; i++)
1970 atomic_inc(&delayed_nodes[i]->refs);
1971 spin_unlock(&root->inode_lock);
1973 for (i = 0; i < n; i++) {
1974 __btrfs_kill_delayed_node(delayed_nodes[i]);
1975 btrfs_release_delayed_node(delayed_nodes[i]);
1980 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1982 struct btrfs_delayed_root *delayed_root;
1983 struct btrfs_delayed_node *curr_node, *prev_node;
1985 delayed_root = btrfs_get_delayed_root(root);
1987 curr_node = btrfs_first_delayed_node(delayed_root);
1989 __btrfs_kill_delayed_node(curr_node);
1991 prev_node = curr_node;
1992 curr_node = btrfs_next_delayed_node(curr_node);
1993 btrfs_release_delayed_node(prev_node);