1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
108 #include <asm/pgalloc.h>
109 #include <linux/uaccess.h>
110 #include <asm/mmu_context.h>
111 #include <asm/cacheflush.h>
112 #include <asm/tlbflush.h>
114 #include <trace/events/sched.h>
116 #define CREATE_TRACE_POINTS
117 #include <trace/events/task.h>
119 #include <kunit/visibility.h>
122 * Minimum number of threads to boot the kernel
124 #define MIN_THREADS 20
127 * Maximum number of threads
129 #define MAX_THREADS FUTEX_TID_MASK
132 * Protected counters by write_lock_irq(&tasklist_lock)
134 unsigned long total_forks; /* Handle normal Linux uptimes. */
135 int nr_threads; /* The idle threads do not count.. */
137 static int max_threads; /* tunable limit on nr_threads */
139 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
141 static const char * const resident_page_types[] = {
142 NAMED_ARRAY_INDEX(MM_FILEPAGES),
143 NAMED_ARRAY_INDEX(MM_ANONPAGES),
144 NAMED_ARRAY_INDEX(MM_SWAPENTS),
145 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
148 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
150 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
152 #ifdef CONFIG_PROVE_RCU
153 int lockdep_tasklist_lock_is_held(void)
155 return lockdep_is_held(&tasklist_lock);
157 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
158 #endif /* #ifdef CONFIG_PROVE_RCU */
160 int nr_processes(void)
165 for_each_possible_cpu(cpu)
166 total += per_cpu(process_counts, cpu);
171 void __weak arch_release_task_struct(struct task_struct *tsk)
175 static struct kmem_cache *task_struct_cachep;
177 static inline struct task_struct *alloc_task_struct_node(int node)
179 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
182 static inline void free_task_struct(struct task_struct *tsk)
184 kmem_cache_free(task_struct_cachep, tsk);
188 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
189 * kmemcache based allocator.
191 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
193 # ifdef CONFIG_VMAP_STACK
195 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
196 * flush. Try to minimize the number of calls by caching stacks.
198 #define NR_CACHED_STACKS 2
199 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
203 struct vm_struct *stack_vm_area;
206 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
210 for (i = 0; i < NR_CACHED_STACKS; i++) {
211 struct vm_struct *tmp = NULL;
213 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
219 static void thread_stack_free_rcu(struct rcu_head *rh)
221 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
223 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
229 static void thread_stack_delayed_free(struct task_struct *tsk)
231 struct vm_stack *vm_stack = tsk->stack;
233 vm_stack->stack_vm_area = tsk->stack_vm_area;
234 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
237 static int free_vm_stack_cache(unsigned int cpu)
239 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
242 for (i = 0; i < NR_CACHED_STACKS; i++) {
243 struct vm_struct *vm_stack = cached_vm_stacks[i];
248 vfree(vm_stack->addr);
249 cached_vm_stacks[i] = NULL;
255 static int memcg_charge_kernel_stack(struct vm_struct *vm)
261 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
263 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
264 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
271 for (i = 0; i < nr_charged; i++)
272 memcg_kmem_uncharge_page(vm->pages[i], 0);
276 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
278 struct vm_struct *vm;
282 for (i = 0; i < NR_CACHED_STACKS; i++) {
285 s = this_cpu_xchg(cached_stacks[i], NULL);
290 /* Reset stack metadata. */
291 kasan_unpoison_range(s->addr, THREAD_SIZE);
293 stack = kasan_reset_tag(s->addr);
295 /* Clear stale pointers from reused stack. */
296 memset(stack, 0, THREAD_SIZE);
298 if (memcg_charge_kernel_stack(s)) {
303 tsk->stack_vm_area = s;
309 * Allocated stacks are cached and later reused by new threads,
310 * so memcg accounting is performed manually on assigning/releasing
311 * stacks to tasks. Drop __GFP_ACCOUNT.
313 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
314 VMALLOC_START, VMALLOC_END,
315 THREADINFO_GFP & ~__GFP_ACCOUNT,
317 0, node, __builtin_return_address(0));
321 vm = find_vm_area(stack);
322 if (memcg_charge_kernel_stack(vm)) {
327 * We can't call find_vm_area() in interrupt context, and
328 * free_thread_stack() can be called in interrupt context,
329 * so cache the vm_struct.
331 tsk->stack_vm_area = vm;
332 stack = kasan_reset_tag(stack);
337 static void free_thread_stack(struct task_struct *tsk)
339 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
340 thread_stack_delayed_free(tsk);
343 tsk->stack_vm_area = NULL;
346 # else /* !CONFIG_VMAP_STACK */
348 static void thread_stack_free_rcu(struct rcu_head *rh)
350 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
353 static void thread_stack_delayed_free(struct task_struct *tsk)
355 struct rcu_head *rh = tsk->stack;
357 call_rcu(rh, thread_stack_free_rcu);
360 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
362 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
366 tsk->stack = kasan_reset_tag(page_address(page));
372 static void free_thread_stack(struct task_struct *tsk)
374 thread_stack_delayed_free(tsk);
378 # endif /* CONFIG_VMAP_STACK */
379 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
381 static struct kmem_cache *thread_stack_cache;
383 static void thread_stack_free_rcu(struct rcu_head *rh)
385 kmem_cache_free(thread_stack_cache, rh);
388 static void thread_stack_delayed_free(struct task_struct *tsk)
390 struct rcu_head *rh = tsk->stack;
392 call_rcu(rh, thread_stack_free_rcu);
395 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
397 unsigned long *stack;
398 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
399 stack = kasan_reset_tag(stack);
401 return stack ? 0 : -ENOMEM;
404 static void free_thread_stack(struct task_struct *tsk)
406 thread_stack_delayed_free(tsk);
410 void thread_stack_cache_init(void)
412 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
413 THREAD_SIZE, THREAD_SIZE, 0, 0,
415 BUG_ON(thread_stack_cache == NULL);
418 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
420 /* SLAB cache for signal_struct structures (tsk->signal) */
421 static struct kmem_cache *signal_cachep;
423 /* SLAB cache for sighand_struct structures (tsk->sighand) */
424 struct kmem_cache *sighand_cachep;
426 /* SLAB cache for files_struct structures (tsk->files) */
427 struct kmem_cache *files_cachep;
429 /* SLAB cache for fs_struct structures (tsk->fs) */
430 struct kmem_cache *fs_cachep;
432 /* SLAB cache for vm_area_struct structures */
433 static struct kmem_cache *vm_area_cachep;
435 /* SLAB cache for mm_struct structures (tsk->mm) */
436 static struct kmem_cache *mm_cachep;
438 #ifdef CONFIG_PER_VMA_LOCK
440 /* SLAB cache for vm_area_struct.lock */
441 static struct kmem_cache *vma_lock_cachep;
443 static bool vma_lock_alloc(struct vm_area_struct *vma)
445 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
449 init_rwsem(&vma->vm_lock->lock);
450 vma->vm_lock_seq = -1;
455 static inline void vma_lock_free(struct vm_area_struct *vma)
457 kmem_cache_free(vma_lock_cachep, vma->vm_lock);
460 #else /* CONFIG_PER_VMA_LOCK */
462 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
463 static inline void vma_lock_free(struct vm_area_struct *vma) {}
465 #endif /* CONFIG_PER_VMA_LOCK */
467 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
469 struct vm_area_struct *vma;
471 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
476 if (!vma_lock_alloc(vma)) {
477 kmem_cache_free(vm_area_cachep, vma);
484 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
486 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
491 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
492 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
494 * orig->shared.rb may be modified concurrently, but the clone
495 * will be reinitialized.
497 data_race(memcpy(new, orig, sizeof(*new)));
498 if (!vma_lock_alloc(new)) {
499 kmem_cache_free(vm_area_cachep, new);
502 INIT_LIST_HEAD(&new->anon_vma_chain);
503 vma_numab_state_init(new);
504 dup_anon_vma_name(orig, new);
509 void __vm_area_free(struct vm_area_struct *vma)
511 vma_numab_state_free(vma);
512 free_anon_vma_name(vma);
514 kmem_cache_free(vm_area_cachep, vma);
517 #ifdef CONFIG_PER_VMA_LOCK
518 static void vm_area_free_rcu_cb(struct rcu_head *head)
520 struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
523 /* The vma should not be locked while being destroyed. */
524 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
529 void vm_area_free(struct vm_area_struct *vma)
531 #ifdef CONFIG_PER_VMA_LOCK
532 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
538 static void account_kernel_stack(struct task_struct *tsk, int account)
540 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
541 struct vm_struct *vm = task_stack_vm_area(tsk);
544 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
545 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
546 account * (PAGE_SIZE / 1024));
548 void *stack = task_stack_page(tsk);
550 /* All stack pages are in the same node. */
551 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
552 account * (THREAD_SIZE / 1024));
556 void exit_task_stack_account(struct task_struct *tsk)
558 account_kernel_stack(tsk, -1);
560 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
561 struct vm_struct *vm;
564 vm = task_stack_vm_area(tsk);
565 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
566 memcg_kmem_uncharge_page(vm->pages[i], 0);
570 static void release_task_stack(struct task_struct *tsk)
572 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
573 return; /* Better to leak the stack than to free prematurely */
575 free_thread_stack(tsk);
578 #ifdef CONFIG_THREAD_INFO_IN_TASK
579 void put_task_stack(struct task_struct *tsk)
581 if (refcount_dec_and_test(&tsk->stack_refcount))
582 release_task_stack(tsk);
586 void free_task(struct task_struct *tsk)
588 #ifdef CONFIG_SECCOMP
589 WARN_ON_ONCE(tsk->seccomp.filter);
591 release_user_cpus_ptr(tsk);
594 #ifndef CONFIG_THREAD_INFO_IN_TASK
596 * The task is finally done with both the stack and thread_info,
599 release_task_stack(tsk);
602 * If the task had a separate stack allocation, it should be gone
605 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
607 rt_mutex_debug_task_free(tsk);
608 ftrace_graph_exit_task(tsk);
609 arch_release_task_struct(tsk);
610 if (tsk->flags & PF_KTHREAD)
611 free_kthread_struct(tsk);
612 bpf_task_storage_free(tsk);
613 free_task_struct(tsk);
615 EXPORT_SYMBOL(free_task);
617 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
619 struct file *exe_file;
621 exe_file = get_mm_exe_file(oldmm);
622 RCU_INIT_POINTER(mm->exe_file, exe_file);
626 static __latent_entropy int dup_mmap(struct mm_struct *mm,
627 struct mm_struct *oldmm)
629 struct vm_area_struct *mpnt, *tmp;
631 unsigned long charge = 0;
633 VMA_ITERATOR(vmi, mm, 0);
635 uprobe_start_dup_mmap();
636 if (mmap_write_lock_killable(oldmm)) {
638 goto fail_uprobe_end;
640 flush_cache_dup_mm(oldmm);
641 uprobe_dup_mmap(oldmm, mm);
643 * Not linked in yet - no deadlock potential:
645 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
647 /* No ordering required: file already has been exposed. */
648 dup_mm_exe_file(mm, oldmm);
650 mm->total_vm = oldmm->total_vm;
651 mm->data_vm = oldmm->data_vm;
652 mm->exec_vm = oldmm->exec_vm;
653 mm->stack_vm = oldmm->stack_vm;
655 retval = ksm_fork(mm, oldmm);
658 khugepaged_fork(mm, oldmm);
660 /* Use __mt_dup() to efficiently build an identical maple tree. */
661 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
662 if (unlikely(retval))
665 mt_clear_in_rcu(vmi.mas.tree);
666 for_each_vma(vmi, mpnt) {
669 vma_start_write(mpnt);
670 if (mpnt->vm_flags & VM_DONTCOPY) {
671 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
672 mpnt->vm_end, GFP_KERNEL);
676 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
681 * Don't duplicate many vmas if we've been oom-killed (for
684 if (fatal_signal_pending(current)) {
688 if (mpnt->vm_flags & VM_ACCOUNT) {
689 unsigned long len = vma_pages(mpnt);
691 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
695 tmp = vm_area_dup(mpnt);
698 retval = vma_dup_policy(mpnt, tmp);
700 goto fail_nomem_policy;
702 retval = dup_userfaultfd(tmp, &uf);
704 goto fail_nomem_anon_vma_fork;
705 if (tmp->vm_flags & VM_WIPEONFORK) {
707 * VM_WIPEONFORK gets a clean slate in the child.
708 * Don't prepare anon_vma until fault since we don't
709 * copy page for current vma.
711 tmp->anon_vma = NULL;
712 } else if (anon_vma_fork(tmp, mpnt))
713 goto fail_nomem_anon_vma_fork;
714 vm_flags_clear(tmp, VM_LOCKED_MASK);
716 * Copy/update hugetlb private vma information.
718 if (is_vm_hugetlb_page(tmp))
719 hugetlb_dup_vma_private(tmp);
722 * Link the vma into the MT. After using __mt_dup(), memory
723 * allocation is not necessary here, so it cannot fail.
725 vma_iter_bulk_store(&vmi, tmp);
729 if (tmp->vm_ops && tmp->vm_ops->open)
730 tmp->vm_ops->open(tmp);
734 struct address_space *mapping = file->f_mapping;
737 i_mmap_lock_write(mapping);
738 if (vma_is_shared_maywrite(tmp))
739 mapping_allow_writable(mapping);
740 flush_dcache_mmap_lock(mapping);
741 /* insert tmp into the share list, just after mpnt */
742 vma_interval_tree_insert_after(tmp, mpnt,
744 flush_dcache_mmap_unlock(mapping);
745 i_mmap_unlock_write(mapping);
748 if (!(tmp->vm_flags & VM_WIPEONFORK))
749 retval = copy_page_range(tmp, mpnt);
752 mpnt = vma_next(&vmi);
756 /* a new mm has just been created */
757 retval = arch_dup_mmap(oldmm, mm);
761 mt_set_in_rcu(vmi.mas.tree);
764 * The entire maple tree has already been duplicated. If the
765 * mmap duplication fails, mark the failure point with
766 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
767 * stop releasing VMAs that have not been duplicated after this
770 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
771 mas_store(&vmi.mas, XA_ZERO_ENTRY);
774 mmap_write_unlock(mm);
776 mmap_write_unlock(oldmm);
777 dup_userfaultfd_complete(&uf);
779 uprobe_end_dup_mmap();
782 fail_nomem_anon_vma_fork:
783 mpol_put(vma_policy(tmp));
788 vm_unacct_memory(charge);
792 static inline int mm_alloc_pgd(struct mm_struct *mm)
794 mm->pgd = pgd_alloc(mm);
795 if (unlikely(!mm->pgd))
800 static inline void mm_free_pgd(struct mm_struct *mm)
802 pgd_free(mm, mm->pgd);
805 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
807 mmap_write_lock(oldmm);
808 dup_mm_exe_file(mm, oldmm);
809 mmap_write_unlock(oldmm);
812 #define mm_alloc_pgd(mm) (0)
813 #define mm_free_pgd(mm)
814 #endif /* CONFIG_MMU */
816 static void check_mm(struct mm_struct *mm)
820 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
821 "Please make sure 'struct resident_page_types[]' is updated as well");
823 for (i = 0; i < NR_MM_COUNTERS; i++) {
824 long x = percpu_counter_sum(&mm->rss_stat[i]);
827 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
828 mm, resident_page_types[i], x);
831 if (mm_pgtables_bytes(mm))
832 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
833 mm_pgtables_bytes(mm));
835 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
836 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
840 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
841 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
843 static void do_check_lazy_tlb(void *arg)
845 struct mm_struct *mm = arg;
847 WARN_ON_ONCE(current->active_mm == mm);
850 static void do_shoot_lazy_tlb(void *arg)
852 struct mm_struct *mm = arg;
854 if (current->active_mm == mm) {
855 WARN_ON_ONCE(current->mm);
856 current->active_mm = &init_mm;
857 switch_mm(mm, &init_mm, current);
861 static void cleanup_lazy_tlbs(struct mm_struct *mm)
863 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
865 * In this case, lazy tlb mms are refounted and would not reach
866 * __mmdrop until all CPUs have switched away and mmdrop()ed.
872 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
873 * requires lazy mm users to switch to another mm when the refcount
874 * drops to zero, before the mm is freed. This requires IPIs here to
875 * switch kernel threads to init_mm.
877 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
878 * switch with the final userspace teardown TLB flush which leaves the
879 * mm lazy on this CPU but no others, reducing the need for additional
880 * IPIs here. There are cases where a final IPI is still required here,
881 * such as the final mmdrop being performed on a different CPU than the
882 * one exiting, or kernel threads using the mm when userspace exits.
884 * IPI overheads have not found to be expensive, but they could be
885 * reduced in a number of possible ways, for example (roughly
886 * increasing order of complexity):
887 * - The last lazy reference created by exit_mm() could instead switch
888 * to init_mm, however it's probable this will run on the same CPU
889 * immediately afterwards, so this may not reduce IPIs much.
890 * - A batch of mms requiring IPIs could be gathered and freed at once.
891 * - CPUs store active_mm where it can be remotely checked without a
892 * lock, to filter out false-positives in the cpumask.
893 * - After mm_users or mm_count reaches zero, switching away from the
894 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
895 * with some batching or delaying of the final IPIs.
896 * - A delayed freeing and RCU-like quiescing sequence based on mm
897 * switching to avoid IPIs completely.
899 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
900 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
901 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
905 * Called when the last reference to the mm
906 * is dropped: either by a lazy thread or by
907 * mmput. Free the page directory and the mm.
909 void __mmdrop(struct mm_struct *mm)
911 BUG_ON(mm == &init_mm);
912 WARN_ON_ONCE(mm == current->mm);
914 /* Ensure no CPUs are using this as their lazy tlb mm */
915 cleanup_lazy_tlbs(mm);
917 WARN_ON_ONCE(mm == current->active_mm);
920 mmu_notifier_subscriptions_destroy(mm);
922 put_user_ns(mm->user_ns);
925 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
929 EXPORT_SYMBOL_GPL(__mmdrop);
931 static void mmdrop_async_fn(struct work_struct *work)
933 struct mm_struct *mm;
935 mm = container_of(work, struct mm_struct, async_put_work);
939 static void mmdrop_async(struct mm_struct *mm)
941 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
942 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
943 schedule_work(&mm->async_put_work);
947 static inline void free_signal_struct(struct signal_struct *sig)
949 taskstats_tgid_free(sig);
950 sched_autogroup_exit(sig);
952 * __mmdrop is not safe to call from softirq context on x86 due to
953 * pgd_dtor so postpone it to the async context
956 mmdrop_async(sig->oom_mm);
957 kmem_cache_free(signal_cachep, sig);
960 static inline void put_signal_struct(struct signal_struct *sig)
962 if (refcount_dec_and_test(&sig->sigcnt))
963 free_signal_struct(sig);
966 void __put_task_struct(struct task_struct *tsk)
968 WARN_ON(!tsk->exit_state);
969 WARN_ON(refcount_read(&tsk->usage));
970 WARN_ON(tsk == current);
974 task_numa_free(tsk, true);
975 security_task_free(tsk);
977 delayacct_tsk_free(tsk);
978 put_signal_struct(tsk->signal);
979 sched_core_free(tsk);
982 EXPORT_SYMBOL_GPL(__put_task_struct);
984 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
986 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
988 __put_task_struct(task);
990 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
992 void __init __weak arch_task_cache_init(void) { }
997 static void __init set_max_threads(unsigned int max_threads_suggested)
1000 unsigned long nr_pages = PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size());
1003 * The number of threads shall be limited such that the thread
1004 * structures may only consume a small part of the available memory.
1006 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1007 threads = MAX_THREADS;
1009 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1010 (u64) THREAD_SIZE * 8UL);
1012 if (threads > max_threads_suggested)
1013 threads = max_threads_suggested;
1015 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1018 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1019 /* Initialized by the architecture: */
1020 int arch_task_struct_size __read_mostly;
1023 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1025 /* Fetch thread_struct whitelist for the architecture. */
1026 arch_thread_struct_whitelist(offset, size);
1029 * Handle zero-sized whitelist or empty thread_struct, otherwise
1030 * adjust offset to position of thread_struct in task_struct.
1032 if (unlikely(*size == 0))
1035 *offset += offsetof(struct task_struct, thread);
1038 void __init fork_init(void)
1041 #ifndef ARCH_MIN_TASKALIGN
1042 #define ARCH_MIN_TASKALIGN 0
1044 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1045 unsigned long useroffset, usersize;
1047 /* create a slab on which task_structs can be allocated */
1048 task_struct_whitelist(&useroffset, &usersize);
1049 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1050 arch_task_struct_size, align,
1051 SLAB_PANIC|SLAB_ACCOUNT,
1052 useroffset, usersize, NULL);
1054 /* do the arch specific task caches init */
1055 arch_task_cache_init();
1057 set_max_threads(MAX_THREADS);
1059 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1060 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1061 init_task.signal->rlim[RLIMIT_SIGPENDING] =
1062 init_task.signal->rlim[RLIMIT_NPROC];
1064 for (i = 0; i < UCOUNT_COUNTS; i++)
1065 init_user_ns.ucount_max[i] = max_threads/2;
1067 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
1068 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
1069 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1070 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
1072 #ifdef CONFIG_VMAP_STACK
1073 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1074 NULL, free_vm_stack_cache);
1079 lockdep_init_task(&init_task);
1083 int __weak arch_dup_task_struct(struct task_struct *dst,
1084 struct task_struct *src)
1090 void set_task_stack_end_magic(struct task_struct *tsk)
1092 unsigned long *stackend;
1094 stackend = end_of_stack(tsk);
1095 *stackend = STACK_END_MAGIC; /* for overflow detection */
1098 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1100 struct task_struct *tsk;
1103 if (node == NUMA_NO_NODE)
1104 node = tsk_fork_get_node(orig);
1105 tsk = alloc_task_struct_node(node);
1109 err = arch_dup_task_struct(tsk, orig);
1113 err = alloc_thread_stack_node(tsk, node);
1117 #ifdef CONFIG_THREAD_INFO_IN_TASK
1118 refcount_set(&tsk->stack_refcount, 1);
1120 account_kernel_stack(tsk, 1);
1122 err = scs_prepare(tsk, node);
1126 #ifdef CONFIG_SECCOMP
1128 * We must handle setting up seccomp filters once we're under
1129 * the sighand lock in case orig has changed between now and
1130 * then. Until then, filter must be NULL to avoid messing up
1131 * the usage counts on the error path calling free_task.
1133 tsk->seccomp.filter = NULL;
1136 setup_thread_stack(tsk, orig);
1137 clear_user_return_notifier(tsk);
1138 clear_tsk_need_resched(tsk);
1139 set_task_stack_end_magic(tsk);
1140 clear_syscall_work_syscall_user_dispatch(tsk);
1142 #ifdef CONFIG_STACKPROTECTOR
1143 tsk->stack_canary = get_random_canary();
1145 if (orig->cpus_ptr == &orig->cpus_mask)
1146 tsk->cpus_ptr = &tsk->cpus_mask;
1147 dup_user_cpus_ptr(tsk, orig, node);
1150 * One for the user space visible state that goes away when reaped.
1151 * One for the scheduler.
1153 refcount_set(&tsk->rcu_users, 2);
1154 /* One for the rcu users */
1155 refcount_set(&tsk->usage, 1);
1156 #ifdef CONFIG_BLK_DEV_IO_TRACE
1157 tsk->btrace_seq = 0;
1159 tsk->splice_pipe = NULL;
1160 tsk->task_frag.page = NULL;
1161 tsk->wake_q.next = NULL;
1162 tsk->worker_private = NULL;
1164 kcov_task_init(tsk);
1165 kmsan_task_create(tsk);
1166 kmap_local_fork(tsk);
1168 #ifdef CONFIG_FAULT_INJECTION
1172 #ifdef CONFIG_BLK_CGROUP
1173 tsk->throttle_disk = NULL;
1174 tsk->use_memdelay = 0;
1177 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1178 tsk->pasid_activated = 0;
1182 tsk->active_memcg = NULL;
1185 #ifdef CONFIG_CPU_SUP_INTEL
1186 tsk->reported_split_lock = 0;
1189 #ifdef CONFIG_SCHED_MM_CID
1191 tsk->last_mm_cid = -1;
1192 tsk->mm_cid_active = 0;
1193 tsk->migrate_from_cpu = -1;
1198 exit_task_stack_account(tsk);
1199 free_thread_stack(tsk);
1201 free_task_struct(tsk);
1205 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1207 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1209 static int __init coredump_filter_setup(char *s)
1211 default_dump_filter =
1212 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1213 MMF_DUMP_FILTER_MASK;
1217 __setup("coredump_filter=", coredump_filter_setup);
1219 #include <linux/init_task.h>
1221 static void mm_init_aio(struct mm_struct *mm)
1224 spin_lock_init(&mm->ioctx_lock);
1225 mm->ioctx_table = NULL;
1229 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1230 struct task_struct *p)
1234 WRITE_ONCE(mm->owner, NULL);
1238 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1245 static void mm_init_uprobes_state(struct mm_struct *mm)
1247 #ifdef CONFIG_UPROBES
1248 mm->uprobes_state.xol_area = NULL;
1252 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1253 struct user_namespace *user_ns)
1255 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1256 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1257 atomic_set(&mm->mm_users, 1);
1258 atomic_set(&mm->mm_count, 1);
1259 seqcount_init(&mm->write_protect_seq);
1261 INIT_LIST_HEAD(&mm->mmlist);
1262 #ifdef CONFIG_PER_VMA_LOCK
1263 mm->mm_lock_seq = 0;
1265 mm_pgtables_bytes_init(mm);
1268 atomic64_set(&mm->pinned_vm, 0);
1269 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1270 spin_lock_init(&mm->page_table_lock);
1271 spin_lock_init(&mm->arg_lock);
1272 mm_init_cpumask(mm);
1274 mm_init_owner(mm, p);
1276 RCU_INIT_POINTER(mm->exe_file, NULL);
1277 mmu_notifier_subscriptions_init(mm);
1278 init_tlb_flush_pending(mm);
1279 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1280 mm->pmd_huge_pte = NULL;
1282 mm_init_uprobes_state(mm);
1283 hugetlb_count_init(mm);
1286 mm->flags = mmf_init_flags(current->mm->flags);
1287 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1289 mm->flags = default_dump_filter;
1293 if (mm_alloc_pgd(mm))
1296 if (init_new_context(p, mm))
1297 goto fail_nocontext;
1299 if (mm_alloc_cid(mm))
1302 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1306 mm->user_ns = get_user_ns(user_ns);
1307 lru_gen_init_mm(mm);
1313 destroy_context(mm);
1322 * Allocate and initialize an mm_struct.
1324 struct mm_struct *mm_alloc(void)
1326 struct mm_struct *mm;
1332 memset(mm, 0, sizeof(*mm));
1333 return mm_init(mm, current, current_user_ns());
1335 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1337 static inline void __mmput(struct mm_struct *mm)
1339 VM_BUG_ON(atomic_read(&mm->mm_users));
1341 uprobe_clear_state(mm);
1344 khugepaged_exit(mm); /* must run before exit_mmap */
1346 mm_put_huge_zero_folio(mm);
1347 set_mm_exe_file(mm, NULL);
1348 if (!list_empty(&mm->mmlist)) {
1349 spin_lock(&mmlist_lock);
1350 list_del(&mm->mmlist);
1351 spin_unlock(&mmlist_lock);
1354 module_put(mm->binfmt->module);
1360 * Decrement the use count and release all resources for an mm.
1362 void mmput(struct mm_struct *mm)
1366 if (atomic_dec_and_test(&mm->mm_users))
1369 EXPORT_SYMBOL_GPL(mmput);
1372 static void mmput_async_fn(struct work_struct *work)
1374 struct mm_struct *mm = container_of(work, struct mm_struct,
1380 void mmput_async(struct mm_struct *mm)
1382 if (atomic_dec_and_test(&mm->mm_users)) {
1383 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1384 schedule_work(&mm->async_put_work);
1387 EXPORT_SYMBOL_GPL(mmput_async);
1391 * set_mm_exe_file - change a reference to the mm's executable file
1392 * @mm: The mm to change.
1393 * @new_exe_file: The new file to use.
1395 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1397 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1398 * invocations: in mmput() nobody alive left, in execve it happens before
1399 * the new mm is made visible to anyone.
1401 * Can only fail if new_exe_file != NULL.
1403 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1405 struct file *old_exe_file;
1408 * It is safe to dereference the exe_file without RCU as
1409 * this function is only called if nobody else can access
1410 * this mm -- see comment above for justification.
1412 old_exe_file = rcu_dereference_raw(mm->exe_file);
1415 get_file(new_exe_file);
1416 rcu_assign_pointer(mm->exe_file, new_exe_file);
1423 * replace_mm_exe_file - replace a reference to the mm's executable file
1424 * @mm: The mm to change.
1425 * @new_exe_file: The new file to use.
1427 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1429 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1431 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1433 struct vm_area_struct *vma;
1434 struct file *old_exe_file;
1437 /* Forbid mm->exe_file change if old file still mapped. */
1438 old_exe_file = get_mm_exe_file(mm);
1440 VMA_ITERATOR(vmi, mm, 0);
1442 for_each_vma(vmi, vma) {
1445 if (path_equal(&vma->vm_file->f_path,
1446 &old_exe_file->f_path)) {
1451 mmap_read_unlock(mm);
1457 get_file(new_exe_file);
1459 /* set the new file */
1460 mmap_write_lock(mm);
1461 old_exe_file = rcu_dereference_raw(mm->exe_file);
1462 rcu_assign_pointer(mm->exe_file, new_exe_file);
1463 mmap_write_unlock(mm);
1471 * get_mm_exe_file - acquire a reference to the mm's executable file
1472 * @mm: The mm of interest.
1474 * Returns %NULL if mm has no associated executable file.
1475 * User must release file via fput().
1477 struct file *get_mm_exe_file(struct mm_struct *mm)
1479 struct file *exe_file;
1482 exe_file = get_file_rcu(&mm->exe_file);
1488 * get_task_exe_file - acquire a reference to the task's executable file
1491 * Returns %NULL if task's mm (if any) has no associated executable file or
1492 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1493 * User must release file via fput().
1495 struct file *get_task_exe_file(struct task_struct *task)
1497 struct file *exe_file = NULL;
1498 struct mm_struct *mm;
1503 if (!(task->flags & PF_KTHREAD))
1504 exe_file = get_mm_exe_file(mm);
1511 * get_task_mm - acquire a reference to the task's mm
1514 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1515 * this kernel workthread has transiently adopted a user mm with use_mm,
1516 * to do its AIO) is not set and if so returns a reference to it, after
1517 * bumping up the use count. User must release the mm via mmput()
1518 * after use. Typically used by /proc and ptrace.
1520 struct mm_struct *get_task_mm(struct task_struct *task)
1522 struct mm_struct *mm;
1524 if (task->flags & PF_KTHREAD)
1534 EXPORT_SYMBOL_GPL(get_task_mm);
1536 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1538 struct mm_struct *mm;
1541 err = down_read_killable(&task->signal->exec_update_lock);
1543 return ERR_PTR(err);
1545 mm = get_task_mm(task);
1546 if (mm && mm != current->mm &&
1547 !ptrace_may_access(task, mode)) {
1549 mm = ERR_PTR(-EACCES);
1551 up_read(&task->signal->exec_update_lock);
1556 static void complete_vfork_done(struct task_struct *tsk)
1558 struct completion *vfork;
1561 vfork = tsk->vfork_done;
1562 if (likely(vfork)) {
1563 tsk->vfork_done = NULL;
1569 static int wait_for_vfork_done(struct task_struct *child,
1570 struct completion *vfork)
1572 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1575 cgroup_enter_frozen();
1576 killed = wait_for_completion_state(vfork, state);
1577 cgroup_leave_frozen(false);
1581 child->vfork_done = NULL;
1585 put_task_struct(child);
1589 /* Please note the differences between mmput and mm_release.
1590 * mmput is called whenever we stop holding onto a mm_struct,
1591 * error success whatever.
1593 * mm_release is called after a mm_struct has been removed
1594 * from the current process.
1596 * This difference is important for error handling, when we
1597 * only half set up a mm_struct for a new process and need to restore
1598 * the old one. Because we mmput the new mm_struct before
1599 * restoring the old one. . .
1600 * Eric Biederman 10 January 1998
1602 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1604 uprobe_free_utask(tsk);
1606 /* Get rid of any cached register state */
1607 deactivate_mm(tsk, mm);
1610 * Signal userspace if we're not exiting with a core dump
1611 * because we want to leave the value intact for debugging
1614 if (tsk->clear_child_tid) {
1615 if (atomic_read(&mm->mm_users) > 1) {
1617 * We don't check the error code - if userspace has
1618 * not set up a proper pointer then tough luck.
1620 put_user(0, tsk->clear_child_tid);
1621 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1622 1, NULL, NULL, 0, 0);
1624 tsk->clear_child_tid = NULL;
1628 * All done, finally we can wake up parent and return this mm to him.
1629 * Also kthread_stop() uses this completion for synchronization.
1631 if (tsk->vfork_done)
1632 complete_vfork_done(tsk);
1635 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1637 futex_exit_release(tsk);
1638 mm_release(tsk, mm);
1641 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1643 futex_exec_release(tsk);
1644 mm_release(tsk, mm);
1648 * dup_mm() - duplicates an existing mm structure
1649 * @tsk: the task_struct with which the new mm will be associated.
1650 * @oldmm: the mm to duplicate.
1652 * Allocates a new mm structure and duplicates the provided @oldmm structure
1655 * Return: the duplicated mm or NULL on failure.
1657 static struct mm_struct *dup_mm(struct task_struct *tsk,
1658 struct mm_struct *oldmm)
1660 struct mm_struct *mm;
1667 memcpy(mm, oldmm, sizeof(*mm));
1669 if (!mm_init(mm, tsk, mm->user_ns))
1672 err = dup_mmap(mm, oldmm);
1676 mm->hiwater_rss = get_mm_rss(mm);
1677 mm->hiwater_vm = mm->total_vm;
1679 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1685 /* don't put binfmt in mmput, we haven't got module yet */
1687 mm_init_owner(mm, NULL);
1694 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1696 struct mm_struct *mm, *oldmm;
1698 tsk->min_flt = tsk->maj_flt = 0;
1699 tsk->nvcsw = tsk->nivcsw = 0;
1700 #ifdef CONFIG_DETECT_HUNG_TASK
1701 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1702 tsk->last_switch_time = 0;
1706 tsk->active_mm = NULL;
1709 * Are we cloning a kernel thread?
1711 * We need to steal a active VM for that..
1713 oldmm = current->mm;
1717 if (clone_flags & CLONE_VM) {
1721 mm = dup_mm(tsk, current->mm);
1727 tsk->active_mm = mm;
1728 sched_mm_cid_fork(tsk);
1732 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1734 struct fs_struct *fs = current->fs;
1735 if (clone_flags & CLONE_FS) {
1736 /* tsk->fs is already what we want */
1737 spin_lock(&fs->lock);
1738 /* "users" and "in_exec" locked for check_unsafe_exec() */
1740 spin_unlock(&fs->lock);
1744 spin_unlock(&fs->lock);
1747 tsk->fs = copy_fs_struct(fs);
1753 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1756 struct files_struct *oldf, *newf;
1760 * A background process may not have any files ...
1762 oldf = current->files;
1771 if (clone_flags & CLONE_FILES) {
1772 atomic_inc(&oldf->count);
1776 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1786 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1788 struct sighand_struct *sig;
1790 if (clone_flags & CLONE_SIGHAND) {
1791 refcount_inc(¤t->sighand->count);
1794 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1795 RCU_INIT_POINTER(tsk->sighand, sig);
1799 refcount_set(&sig->count, 1);
1800 spin_lock_irq(¤t->sighand->siglock);
1801 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1802 spin_unlock_irq(¤t->sighand->siglock);
1804 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1805 if (clone_flags & CLONE_CLEAR_SIGHAND)
1806 flush_signal_handlers(tsk, 0);
1811 void __cleanup_sighand(struct sighand_struct *sighand)
1813 if (refcount_dec_and_test(&sighand->count)) {
1814 signalfd_cleanup(sighand);
1816 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1817 * without an RCU grace period, see __lock_task_sighand().
1819 kmem_cache_free(sighand_cachep, sighand);
1824 * Initialize POSIX timer handling for a thread group.
1826 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1828 struct posix_cputimers *pct = &sig->posix_cputimers;
1829 unsigned long cpu_limit;
1831 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1832 posix_cputimers_group_init(pct, cpu_limit);
1835 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1837 struct signal_struct *sig;
1839 if (clone_flags & CLONE_THREAD)
1842 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1847 sig->nr_threads = 1;
1848 sig->quick_threads = 1;
1849 atomic_set(&sig->live, 1);
1850 refcount_set(&sig->sigcnt, 1);
1852 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1853 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1854 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1856 init_waitqueue_head(&sig->wait_chldexit);
1857 sig->curr_target = tsk;
1858 init_sigpending(&sig->shared_pending);
1859 INIT_HLIST_HEAD(&sig->multiprocess);
1860 seqlock_init(&sig->stats_lock);
1861 prev_cputime_init(&sig->prev_cputime);
1863 #ifdef CONFIG_POSIX_TIMERS
1864 INIT_LIST_HEAD(&sig->posix_timers);
1865 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1866 sig->real_timer.function = it_real_fn;
1869 task_lock(current->group_leader);
1870 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1871 task_unlock(current->group_leader);
1873 posix_cpu_timers_init_group(sig);
1875 tty_audit_fork(sig);
1876 sched_autogroup_fork(sig);
1878 sig->oom_score_adj = current->signal->oom_score_adj;
1879 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1881 mutex_init(&sig->cred_guard_mutex);
1882 init_rwsem(&sig->exec_update_lock);
1887 static void copy_seccomp(struct task_struct *p)
1889 #ifdef CONFIG_SECCOMP
1891 * Must be called with sighand->lock held, which is common to
1892 * all threads in the group. Holding cred_guard_mutex is not
1893 * needed because this new task is not yet running and cannot
1896 assert_spin_locked(¤t->sighand->siglock);
1898 /* Ref-count the new filter user, and assign it. */
1899 get_seccomp_filter(current);
1900 p->seccomp = current->seccomp;
1903 * Explicitly enable no_new_privs here in case it got set
1904 * between the task_struct being duplicated and holding the
1905 * sighand lock. The seccomp state and nnp must be in sync.
1907 if (task_no_new_privs(current))
1908 task_set_no_new_privs(p);
1911 * If the parent gained a seccomp mode after copying thread
1912 * flags and between before we held the sighand lock, we have
1913 * to manually enable the seccomp thread flag here.
1915 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1916 set_task_syscall_work(p, SECCOMP);
1920 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1922 current->clear_child_tid = tidptr;
1924 return task_pid_vnr(current);
1927 static void rt_mutex_init_task(struct task_struct *p)
1929 raw_spin_lock_init(&p->pi_lock);
1930 #ifdef CONFIG_RT_MUTEXES
1931 p->pi_waiters = RB_ROOT_CACHED;
1932 p->pi_top_task = NULL;
1933 p->pi_blocked_on = NULL;
1937 static inline void init_task_pid_links(struct task_struct *task)
1941 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1942 INIT_HLIST_NODE(&task->pid_links[type]);
1946 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1948 if (type == PIDTYPE_PID)
1949 task->thread_pid = pid;
1951 task->signal->pids[type] = pid;
1954 static inline void rcu_copy_process(struct task_struct *p)
1956 #ifdef CONFIG_PREEMPT_RCU
1957 p->rcu_read_lock_nesting = 0;
1958 p->rcu_read_unlock_special.s = 0;
1959 p->rcu_blocked_node = NULL;
1960 INIT_LIST_HEAD(&p->rcu_node_entry);
1961 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1962 #ifdef CONFIG_TASKS_RCU
1963 p->rcu_tasks_holdout = false;
1964 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1965 p->rcu_tasks_idle_cpu = -1;
1966 INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1967 #endif /* #ifdef CONFIG_TASKS_RCU */
1968 #ifdef CONFIG_TASKS_TRACE_RCU
1969 p->trc_reader_nesting = 0;
1970 p->trc_reader_special.s = 0;
1971 INIT_LIST_HEAD(&p->trc_holdout_list);
1972 INIT_LIST_HEAD(&p->trc_blkd_node);
1973 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1977 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1978 * @pid: the struct pid for which to create a pidfd
1979 * @flags: flags of the new @pidfd
1980 * @ret: Where to return the file for the pidfd.
1982 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1983 * caller's file descriptor table. The pidfd is reserved but not installed yet.
1985 * The helper doesn't perform checks on @pid which makes it useful for pidfds
1986 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
1987 * pidfd file are prepared.
1989 * If this function returns successfully the caller is responsible to either
1990 * call fd_install() passing the returned pidfd and pidfd file as arguments in
1991 * order to install the pidfd into its file descriptor table or they must use
1992 * put_unused_fd() and fput() on the returned pidfd and pidfd file
1995 * This function is useful when a pidfd must already be reserved but there
1996 * might still be points of failure afterwards and the caller wants to ensure
1997 * that no pidfd is leaked into its file descriptor table.
1999 * Return: On success, a reserved pidfd is returned from the function and a new
2000 * pidfd file is returned in the last argument to the function. On
2001 * error, a negative error code is returned from the function and the
2002 * last argument remains unchanged.
2004 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2007 struct file *pidfd_file;
2009 pidfd = get_unused_fd_flags(O_CLOEXEC);
2013 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2014 if (IS_ERR(pidfd_file)) {
2015 put_unused_fd(pidfd);
2016 return PTR_ERR(pidfd_file);
2019 * anon_inode_getfile() ignores everything outside of the
2020 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2022 pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2028 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2029 * @pid: the struct pid for which to create a pidfd
2030 * @flags: flags of the new @pidfd
2031 * @ret: Where to return the pidfd.
2033 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2034 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2036 * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2037 * task identified by @pid must be a thread-group leader.
2039 * If this function returns successfully the caller is responsible to either
2040 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2041 * order to install the pidfd into its file descriptor table or they must use
2042 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2045 * This function is useful when a pidfd must already be reserved but there
2046 * might still be points of failure afterwards and the caller wants to ensure
2047 * that no pidfd is leaked into its file descriptor table.
2049 * Return: On success, a reserved pidfd is returned from the function and a new
2050 * pidfd file is returned in the last argument to the function. On
2051 * error, a negative error code is returned from the function and the
2052 * last argument remains unchanged.
2054 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2056 bool thread = flags & PIDFD_THREAD;
2058 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2061 return __pidfd_prepare(pid, flags, ret);
2064 static void __delayed_free_task(struct rcu_head *rhp)
2066 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2071 static __always_inline void delayed_free_task(struct task_struct *tsk)
2073 if (IS_ENABLED(CONFIG_MEMCG))
2074 call_rcu(&tsk->rcu, __delayed_free_task);
2079 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2081 /* Skip if kernel thread */
2085 /* Skip if spawning a thread or using vfork */
2086 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2089 /* We need to synchronize with __set_oom_adj */
2090 mutex_lock(&oom_adj_mutex);
2091 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2092 /* Update the values in case they were changed after copy_signal */
2093 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2094 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2095 mutex_unlock(&oom_adj_mutex);
2099 static void rv_task_fork(struct task_struct *p)
2103 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2104 p->rv[i].da_mon.monitoring = false;
2107 #define rv_task_fork(p) do {} while (0)
2111 * This creates a new process as a copy of the old one,
2112 * but does not actually start it yet.
2114 * It copies the registers, and all the appropriate
2115 * parts of the process environment (as per the clone
2116 * flags). The actual kick-off is left to the caller.
2118 __latent_entropy struct task_struct *copy_process(
2122 struct kernel_clone_args *args)
2124 int pidfd = -1, retval;
2125 struct task_struct *p;
2126 struct multiprocess_signals delayed;
2127 struct file *pidfile = NULL;
2128 const u64 clone_flags = args->flags;
2129 struct nsproxy *nsp = current->nsproxy;
2132 * Don't allow sharing the root directory with processes in a different
2135 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2136 return ERR_PTR(-EINVAL);
2138 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2139 return ERR_PTR(-EINVAL);
2142 * Thread groups must share signals as well, and detached threads
2143 * can only be started up within the thread group.
2145 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2146 return ERR_PTR(-EINVAL);
2149 * Shared signal handlers imply shared VM. By way of the above,
2150 * thread groups also imply shared VM. Blocking this case allows
2151 * for various simplifications in other code.
2153 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2154 return ERR_PTR(-EINVAL);
2157 * Siblings of global init remain as zombies on exit since they are
2158 * not reaped by their parent (swapper). To solve this and to avoid
2159 * multi-rooted process trees, prevent global and container-inits
2160 * from creating siblings.
2162 if ((clone_flags & CLONE_PARENT) &&
2163 current->signal->flags & SIGNAL_UNKILLABLE)
2164 return ERR_PTR(-EINVAL);
2167 * If the new process will be in a different pid or user namespace
2168 * do not allow it to share a thread group with the forking task.
2170 if (clone_flags & CLONE_THREAD) {
2171 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2172 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2173 return ERR_PTR(-EINVAL);
2176 if (clone_flags & CLONE_PIDFD) {
2178 * - CLONE_DETACHED is blocked so that we can potentially
2179 * reuse it later for CLONE_PIDFD.
2181 if (clone_flags & CLONE_DETACHED)
2182 return ERR_PTR(-EINVAL);
2186 * Force any signals received before this point to be delivered
2187 * before the fork happens. Collect up signals sent to multiple
2188 * processes that happen during the fork and delay them so that
2189 * they appear to happen after the fork.
2191 sigemptyset(&delayed.signal);
2192 INIT_HLIST_NODE(&delayed.node);
2194 spin_lock_irq(¤t->sighand->siglock);
2195 if (!(clone_flags & CLONE_THREAD))
2196 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2197 recalc_sigpending();
2198 spin_unlock_irq(¤t->sighand->siglock);
2199 retval = -ERESTARTNOINTR;
2200 if (task_sigpending(current))
2204 p = dup_task_struct(current, node);
2207 p->flags &= ~PF_KTHREAD;
2209 p->flags |= PF_KTHREAD;
2210 if (args->user_worker) {
2212 * Mark us a user worker, and block any signal that isn't
2215 p->flags |= PF_USER_WORKER;
2216 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2218 if (args->io_thread)
2219 p->flags |= PF_IO_WORKER;
2222 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2224 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2226 * Clear TID on mm_release()?
2228 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2230 ftrace_graph_init_task(p);
2232 rt_mutex_init_task(p);
2234 lockdep_assert_irqs_enabled();
2235 #ifdef CONFIG_PROVE_LOCKING
2236 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2238 retval = copy_creds(p, clone_flags);
2243 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2244 if (p->real_cred->user != INIT_USER &&
2245 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2246 goto bad_fork_cleanup_count;
2248 current->flags &= ~PF_NPROC_EXCEEDED;
2251 * If multiple threads are within copy_process(), then this check
2252 * triggers too late. This doesn't hurt, the check is only there
2253 * to stop root fork bombs.
2256 if (data_race(nr_threads >= max_threads))
2257 goto bad_fork_cleanup_count;
2259 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2260 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2261 p->flags |= PF_FORKNOEXEC;
2262 INIT_LIST_HEAD(&p->children);
2263 INIT_LIST_HEAD(&p->sibling);
2264 rcu_copy_process(p);
2265 p->vfork_done = NULL;
2266 spin_lock_init(&p->alloc_lock);
2268 init_sigpending(&p->pending);
2270 p->utime = p->stime = p->gtime = 0;
2271 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2272 p->utimescaled = p->stimescaled = 0;
2274 prev_cputime_init(&p->prev_cputime);
2276 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2277 seqcount_init(&p->vtime.seqcount);
2278 p->vtime.starttime = 0;
2279 p->vtime.state = VTIME_INACTIVE;
2282 #ifdef CONFIG_IO_URING
2286 p->default_timer_slack_ns = current->timer_slack_ns;
2292 task_io_accounting_init(&p->ioac);
2293 acct_clear_integrals(p);
2295 posix_cputimers_init(&p->posix_cputimers);
2297 p->io_context = NULL;
2298 audit_set_context(p, NULL);
2300 if (args->kthread) {
2301 if (!set_kthread_struct(p))
2302 goto bad_fork_cleanup_delayacct;
2305 p->mempolicy = mpol_dup(p->mempolicy);
2306 if (IS_ERR(p->mempolicy)) {
2307 retval = PTR_ERR(p->mempolicy);
2308 p->mempolicy = NULL;
2309 goto bad_fork_cleanup_delayacct;
2312 #ifdef CONFIG_CPUSETS
2313 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2314 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2315 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2317 #ifdef CONFIG_TRACE_IRQFLAGS
2318 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2319 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2320 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2321 p->softirqs_enabled = 1;
2322 p->softirq_context = 0;
2325 p->pagefault_disabled = 0;
2327 #ifdef CONFIG_LOCKDEP
2328 lockdep_init_task(p);
2331 #ifdef CONFIG_DEBUG_MUTEXES
2332 p->blocked_on = NULL; /* not blocked yet */
2334 #ifdef CONFIG_BCACHE
2335 p->sequential_io = 0;
2336 p->sequential_io_avg = 0;
2338 #ifdef CONFIG_BPF_SYSCALL
2339 RCU_INIT_POINTER(p->bpf_storage, NULL);
2343 /* Perform scheduler related setup. Assign this task to a CPU. */
2344 retval = sched_fork(clone_flags, p);
2346 goto bad_fork_cleanup_policy;
2348 retval = perf_event_init_task(p, clone_flags);
2350 goto bad_fork_cleanup_policy;
2351 retval = audit_alloc(p);
2353 goto bad_fork_cleanup_perf;
2354 /* copy all the process information */
2356 retval = security_task_alloc(p, clone_flags);
2358 goto bad_fork_cleanup_audit;
2359 retval = copy_semundo(clone_flags, p);
2361 goto bad_fork_cleanup_security;
2362 retval = copy_files(clone_flags, p, args->no_files);
2364 goto bad_fork_cleanup_semundo;
2365 retval = copy_fs(clone_flags, p);
2367 goto bad_fork_cleanup_files;
2368 retval = copy_sighand(clone_flags, p);
2370 goto bad_fork_cleanup_fs;
2371 retval = copy_signal(clone_flags, p);
2373 goto bad_fork_cleanup_sighand;
2374 retval = copy_mm(clone_flags, p);
2376 goto bad_fork_cleanup_signal;
2377 retval = copy_namespaces(clone_flags, p);
2379 goto bad_fork_cleanup_mm;
2380 retval = copy_io(clone_flags, p);
2382 goto bad_fork_cleanup_namespaces;
2383 retval = copy_thread(p, args);
2385 goto bad_fork_cleanup_io;
2387 stackleak_task_init(p);
2389 if (pid != &init_struct_pid) {
2390 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2391 args->set_tid_size);
2393 retval = PTR_ERR(pid);
2394 goto bad_fork_cleanup_thread;
2399 * This has to happen after we've potentially unshared the file
2400 * descriptor table (so that the pidfd doesn't leak into the child
2401 * if the fd table isn't shared).
2403 if (clone_flags & CLONE_PIDFD) {
2404 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2406 /* Note that no task has been attached to @pid yet. */
2407 retval = __pidfd_prepare(pid, flags, &pidfile);
2409 goto bad_fork_free_pid;
2412 retval = put_user(pidfd, args->pidfd);
2414 goto bad_fork_put_pidfd;
2423 * sigaltstack should be cleared when sharing the same VM
2425 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2429 * Syscall tracing and stepping should be turned off in the
2430 * child regardless of CLONE_PTRACE.
2432 user_disable_single_step(p);
2433 clear_task_syscall_work(p, SYSCALL_TRACE);
2434 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2435 clear_task_syscall_work(p, SYSCALL_EMU);
2437 clear_tsk_latency_tracing(p);
2439 /* ok, now we should be set up.. */
2440 p->pid = pid_nr(pid);
2441 if (clone_flags & CLONE_THREAD) {
2442 p->group_leader = current->group_leader;
2443 p->tgid = current->tgid;
2445 p->group_leader = p;
2450 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2451 p->dirty_paused_when = 0;
2453 p->pdeath_signal = 0;
2454 p->task_works = NULL;
2455 clear_posix_cputimers_work(p);
2457 #ifdef CONFIG_KRETPROBES
2458 p->kretprobe_instances.first = NULL;
2460 #ifdef CONFIG_RETHOOK
2461 p->rethooks.first = NULL;
2465 * Ensure that the cgroup subsystem policies allow the new process to be
2466 * forked. It should be noted that the new process's css_set can be changed
2467 * between here and cgroup_post_fork() if an organisation operation is in
2470 retval = cgroup_can_fork(p, args);
2472 goto bad_fork_put_pidfd;
2475 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2476 * the new task on the correct runqueue. All this *before* the task
2479 * This isn't part of ->can_fork() because while the re-cloning is
2480 * cgroup specific, it unconditionally needs to place the task on a
2483 sched_cgroup_fork(p, args);
2486 * From this point on we must avoid any synchronous user-space
2487 * communication until we take the tasklist-lock. In particular, we do
2488 * not want user-space to be able to predict the process start-time by
2489 * stalling fork(2) after we recorded the start_time but before it is
2490 * visible to the system.
2493 p->start_time = ktime_get_ns();
2494 p->start_boottime = ktime_get_boottime_ns();
2497 * Make it visible to the rest of the system, but dont wake it up yet.
2498 * Need tasklist lock for parent etc handling!
2500 write_lock_irq(&tasklist_lock);
2502 /* CLONE_PARENT re-uses the old parent */
2503 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2504 p->real_parent = current->real_parent;
2505 p->parent_exec_id = current->parent_exec_id;
2506 if (clone_flags & CLONE_THREAD)
2507 p->exit_signal = -1;
2509 p->exit_signal = current->group_leader->exit_signal;
2511 p->real_parent = current;
2512 p->parent_exec_id = current->self_exec_id;
2513 p->exit_signal = args->exit_signal;
2516 klp_copy_process(p);
2520 spin_lock(¤t->sighand->siglock);
2524 rseq_fork(p, clone_flags);
2526 /* Don't start children in a dying pid namespace */
2527 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2529 goto bad_fork_cancel_cgroup;
2532 /* Let kill terminate clone/fork in the middle */
2533 if (fatal_signal_pending(current)) {
2535 goto bad_fork_cancel_cgroup;
2538 /* No more failure paths after this point. */
2541 * Copy seccomp details explicitly here, in case they were changed
2542 * before holding sighand lock.
2546 init_task_pid_links(p);
2547 if (likely(p->pid)) {
2548 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2550 init_task_pid(p, PIDTYPE_PID, pid);
2551 if (thread_group_leader(p)) {
2552 init_task_pid(p, PIDTYPE_TGID, pid);
2553 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2554 init_task_pid(p, PIDTYPE_SID, task_session(current));
2556 if (is_child_reaper(pid)) {
2557 ns_of_pid(pid)->child_reaper = p;
2558 p->signal->flags |= SIGNAL_UNKILLABLE;
2560 p->signal->shared_pending.signal = delayed.signal;
2561 p->signal->tty = tty_kref_get(current->signal->tty);
2563 * Inherit has_child_subreaper flag under the same
2564 * tasklist_lock with adding child to the process tree
2565 * for propagate_has_child_subreaper optimization.
2567 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2568 p->real_parent->signal->is_child_subreaper;
2569 list_add_tail(&p->sibling, &p->real_parent->children);
2570 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2571 attach_pid(p, PIDTYPE_TGID);
2572 attach_pid(p, PIDTYPE_PGID);
2573 attach_pid(p, PIDTYPE_SID);
2574 __this_cpu_inc(process_counts);
2576 current->signal->nr_threads++;
2577 current->signal->quick_threads++;
2578 atomic_inc(¤t->signal->live);
2579 refcount_inc(¤t->signal->sigcnt);
2580 task_join_group_stop(p);
2581 list_add_tail_rcu(&p->thread_node,
2582 &p->signal->thread_head);
2584 attach_pid(p, PIDTYPE_PID);
2588 hlist_del_init(&delayed.node);
2589 spin_unlock(¤t->sighand->siglock);
2590 syscall_tracepoint_update(p);
2591 write_unlock_irq(&tasklist_lock);
2594 fd_install(pidfd, pidfile);
2596 proc_fork_connector(p);
2598 cgroup_post_fork(p, args);
2601 trace_task_newtask(p, clone_flags);
2602 uprobe_copy_process(p, clone_flags);
2603 user_events_fork(p, clone_flags);
2605 copy_oom_score_adj(clone_flags, p);
2609 bad_fork_cancel_cgroup:
2611 spin_unlock(¤t->sighand->siglock);
2612 write_unlock_irq(&tasklist_lock);
2613 cgroup_cancel_fork(p, args);
2615 if (clone_flags & CLONE_PIDFD) {
2617 put_unused_fd(pidfd);
2620 if (pid != &init_struct_pid)
2622 bad_fork_cleanup_thread:
2624 bad_fork_cleanup_io:
2627 bad_fork_cleanup_namespaces:
2628 exit_task_namespaces(p);
2629 bad_fork_cleanup_mm:
2631 mm_clear_owner(p->mm, p);
2634 bad_fork_cleanup_signal:
2635 if (!(clone_flags & CLONE_THREAD))
2636 free_signal_struct(p->signal);
2637 bad_fork_cleanup_sighand:
2638 __cleanup_sighand(p->sighand);
2639 bad_fork_cleanup_fs:
2640 exit_fs(p); /* blocking */
2641 bad_fork_cleanup_files:
2642 exit_files(p); /* blocking */
2643 bad_fork_cleanup_semundo:
2645 bad_fork_cleanup_security:
2646 security_task_free(p);
2647 bad_fork_cleanup_audit:
2649 bad_fork_cleanup_perf:
2650 perf_event_free_task(p);
2651 bad_fork_cleanup_policy:
2652 lockdep_free_task(p);
2654 mpol_put(p->mempolicy);
2656 bad_fork_cleanup_delayacct:
2657 delayacct_tsk_free(p);
2658 bad_fork_cleanup_count:
2659 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2662 WRITE_ONCE(p->__state, TASK_DEAD);
2663 exit_task_stack_account(p);
2665 delayed_free_task(p);
2667 spin_lock_irq(¤t->sighand->siglock);
2668 hlist_del_init(&delayed.node);
2669 spin_unlock_irq(¤t->sighand->siglock);
2670 return ERR_PTR(retval);
2673 static inline void init_idle_pids(struct task_struct *idle)
2677 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2678 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2679 init_task_pid(idle, type, &init_struct_pid);
2683 static int idle_dummy(void *dummy)
2685 /* This function is never called */
2689 struct task_struct * __init fork_idle(int cpu)
2691 struct task_struct *task;
2692 struct kernel_clone_args args = {
2700 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2701 if (!IS_ERR(task)) {
2702 init_idle_pids(task);
2703 init_idle(task, cpu);
2710 * This is like kernel_clone(), but shaved down and tailored to just
2711 * creating io_uring workers. It returns a created task, or an error pointer.
2712 * The returned task is inactive, and the caller must fire it up through
2713 * wake_up_new_task(p). All signals are blocked in the created task.
2715 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2717 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2719 struct kernel_clone_args args = {
2720 .flags = ((lower_32_bits(flags) | CLONE_VM |
2721 CLONE_UNTRACED) & ~CSIGNAL),
2722 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2729 return copy_process(NULL, 0, node, &args);
2733 * Ok, this is the main fork-routine.
2735 * It copies the process, and if successful kick-starts
2736 * it and waits for it to finish using the VM if required.
2738 * args->exit_signal is expected to be checked for sanity by the caller.
2740 pid_t kernel_clone(struct kernel_clone_args *args)
2742 u64 clone_flags = args->flags;
2743 struct completion vfork;
2745 struct task_struct *p;
2750 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2751 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2752 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2753 * field in struct clone_args and it still doesn't make sense to have
2754 * them both point at the same memory location. Performing this check
2755 * here has the advantage that we don't need to have a separate helper
2756 * to check for legacy clone().
2758 if ((clone_flags & CLONE_PIDFD) &&
2759 (clone_flags & CLONE_PARENT_SETTID) &&
2760 (args->pidfd == args->parent_tid))
2764 * Determine whether and which event to report to ptracer. When
2765 * called from kernel_thread or CLONE_UNTRACED is explicitly
2766 * requested, no event is reported; otherwise, report if the event
2767 * for the type of forking is enabled.
2769 if (!(clone_flags & CLONE_UNTRACED)) {
2770 if (clone_flags & CLONE_VFORK)
2771 trace = PTRACE_EVENT_VFORK;
2772 else if (args->exit_signal != SIGCHLD)
2773 trace = PTRACE_EVENT_CLONE;
2775 trace = PTRACE_EVENT_FORK;
2777 if (likely(!ptrace_event_enabled(current, trace)))
2781 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2782 add_latent_entropy();
2788 * Do this prior waking up the new thread - the thread pointer
2789 * might get invalid after that point, if the thread exits quickly.
2791 trace_sched_process_fork(current, p);
2793 pid = get_task_pid(p, PIDTYPE_PID);
2796 if (clone_flags & CLONE_PARENT_SETTID)
2797 put_user(nr, args->parent_tid);
2799 if (clone_flags & CLONE_VFORK) {
2800 p->vfork_done = &vfork;
2801 init_completion(&vfork);
2805 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2806 /* lock the task to synchronize with memcg migration */
2808 lru_gen_add_mm(p->mm);
2812 wake_up_new_task(p);
2814 /* forking complete and child started to run, tell ptracer */
2815 if (unlikely(trace))
2816 ptrace_event_pid(trace, pid);
2818 if (clone_flags & CLONE_VFORK) {
2819 if (!wait_for_vfork_done(p, &vfork))
2820 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2828 * Create a kernel thread.
2830 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2831 unsigned long flags)
2833 struct kernel_clone_args args = {
2834 .flags = ((lower_32_bits(flags) | CLONE_VM |
2835 CLONE_UNTRACED) & ~CSIGNAL),
2836 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2843 return kernel_clone(&args);
2847 * Create a user mode thread.
2849 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2851 struct kernel_clone_args args = {
2852 .flags = ((lower_32_bits(flags) | CLONE_VM |
2853 CLONE_UNTRACED) & ~CSIGNAL),
2854 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2859 return kernel_clone(&args);
2862 #ifdef __ARCH_WANT_SYS_FORK
2863 SYSCALL_DEFINE0(fork)
2866 struct kernel_clone_args args = {
2867 .exit_signal = SIGCHLD,
2870 return kernel_clone(&args);
2872 /* can not support in nommu mode */
2878 #ifdef __ARCH_WANT_SYS_VFORK
2879 SYSCALL_DEFINE0(vfork)
2881 struct kernel_clone_args args = {
2882 .flags = CLONE_VFORK | CLONE_VM,
2883 .exit_signal = SIGCHLD,
2886 return kernel_clone(&args);
2890 #ifdef __ARCH_WANT_SYS_CLONE
2891 #ifdef CONFIG_CLONE_BACKWARDS
2892 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2893 int __user *, parent_tidptr,
2895 int __user *, child_tidptr)
2896 #elif defined(CONFIG_CLONE_BACKWARDS2)
2897 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2898 int __user *, parent_tidptr,
2899 int __user *, child_tidptr,
2901 #elif defined(CONFIG_CLONE_BACKWARDS3)
2902 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2904 int __user *, parent_tidptr,
2905 int __user *, child_tidptr,
2908 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2909 int __user *, parent_tidptr,
2910 int __user *, child_tidptr,
2914 struct kernel_clone_args args = {
2915 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2916 .pidfd = parent_tidptr,
2917 .child_tid = child_tidptr,
2918 .parent_tid = parent_tidptr,
2919 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2924 return kernel_clone(&args);
2928 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2929 struct clone_args __user *uargs,
2933 struct clone_args args;
2934 pid_t *kset_tid = kargs->set_tid;
2936 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2937 CLONE_ARGS_SIZE_VER0);
2938 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2939 CLONE_ARGS_SIZE_VER1);
2940 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2941 CLONE_ARGS_SIZE_VER2);
2942 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2944 if (unlikely(usize > PAGE_SIZE))
2946 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2949 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2953 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2956 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2959 if (unlikely(args.set_tid && args.set_tid_size == 0))
2963 * Verify that higher 32bits of exit_signal are unset and that
2964 * it is a valid signal
2966 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2967 !valid_signal(args.exit_signal)))
2970 if ((args.flags & CLONE_INTO_CGROUP) &&
2971 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2974 *kargs = (struct kernel_clone_args){
2975 .flags = args.flags,
2976 .pidfd = u64_to_user_ptr(args.pidfd),
2977 .child_tid = u64_to_user_ptr(args.child_tid),
2978 .parent_tid = u64_to_user_ptr(args.parent_tid),
2979 .exit_signal = args.exit_signal,
2980 .stack = args.stack,
2981 .stack_size = args.stack_size,
2983 .set_tid_size = args.set_tid_size,
2984 .cgroup = args.cgroup,
2988 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2989 (kargs->set_tid_size * sizeof(pid_t))))
2992 kargs->set_tid = kset_tid;
2998 * clone3_stack_valid - check and prepare stack
2999 * @kargs: kernel clone args
3001 * Verify that the stack arguments userspace gave us are sane.
3002 * In addition, set the stack direction for userspace since it's easy for us to
3005 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3007 if (kargs->stack == 0) {
3008 if (kargs->stack_size > 0)
3011 if (kargs->stack_size == 0)
3014 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3017 #if !defined(CONFIG_STACK_GROWSUP)
3018 kargs->stack += kargs->stack_size;
3025 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3027 /* Verify that no unknown flags are passed along. */
3029 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3033 * - make the CLONE_DETACHED bit reusable for clone3
3034 * - make the CSIGNAL bits reusable for clone3
3036 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3039 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3040 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3043 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3047 if (!clone3_stack_valid(kargs))
3054 * sys_clone3 - create a new process with specific properties
3055 * @uargs: argument structure
3056 * @size: size of @uargs
3058 * clone3() is the extensible successor to clone()/clone2().
3059 * It takes a struct as argument that is versioned by its size.
3061 * Return: On success, a positive PID for the child process.
3062 * On error, a negative errno number.
3064 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3068 struct kernel_clone_args kargs;
3069 pid_t set_tid[MAX_PID_NS_LEVEL];
3071 #ifdef __ARCH_BROKEN_SYS_CLONE3
3072 #warning clone3() entry point is missing, please fix
3076 kargs.set_tid = set_tid;
3078 err = copy_clone_args_from_user(&kargs, uargs, size);
3082 if (!clone3_args_valid(&kargs))
3085 return kernel_clone(&kargs);
3088 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3090 struct task_struct *leader, *parent, *child;
3093 read_lock(&tasklist_lock);
3094 leader = top = top->group_leader;
3096 for_each_thread(leader, parent) {
3097 list_for_each_entry(child, &parent->children, sibling) {
3098 res = visitor(child, data);
3110 if (leader != top) {
3112 parent = child->real_parent;
3113 leader = parent->group_leader;
3117 read_unlock(&tasklist_lock);
3120 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3121 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3124 static void sighand_ctor(void *data)
3126 struct sighand_struct *sighand = data;
3128 spin_lock_init(&sighand->siglock);
3129 init_waitqueue_head(&sighand->signalfd_wqh);
3132 void __init mm_cache_init(void)
3134 unsigned int mm_size;
3137 * The mm_cpumask is located at the end of mm_struct, and is
3138 * dynamically sized based on the maximum CPU number this system
3139 * can have, taking hotplug into account (nr_cpu_ids).
3141 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3143 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3144 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3145 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3146 offsetof(struct mm_struct, saved_auxv),
3147 sizeof_field(struct mm_struct, saved_auxv),
3151 void __init proc_caches_init(void)
3153 sighand_cachep = kmem_cache_create("sighand_cache",
3154 sizeof(struct sighand_struct), 0,
3155 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3156 SLAB_ACCOUNT, sighand_ctor);
3157 signal_cachep = kmem_cache_create("signal_cache",
3158 sizeof(struct signal_struct), 0,
3159 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3161 files_cachep = kmem_cache_create("files_cache",
3162 sizeof(struct files_struct), 0,
3163 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3165 fs_cachep = kmem_cache_create("fs_cache",
3166 sizeof(struct fs_struct), 0,
3167 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3170 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3171 #ifdef CONFIG_PER_VMA_LOCK
3172 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3175 nsproxy_cache_init();
3179 * Check constraints on flags passed to the unshare system call.
3181 static int check_unshare_flags(unsigned long unshare_flags)
3183 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3184 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3185 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3186 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3190 * Not implemented, but pretend it works if there is nothing
3191 * to unshare. Note that unsharing the address space or the
3192 * signal handlers also need to unshare the signal queues (aka
3195 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3196 if (!thread_group_empty(current))
3199 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3200 if (refcount_read(¤t->sighand->count) > 1)
3203 if (unshare_flags & CLONE_VM) {
3204 if (!current_is_single_threaded())
3212 * Unshare the filesystem structure if it is being shared
3214 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3216 struct fs_struct *fs = current->fs;
3218 if (!(unshare_flags & CLONE_FS) || !fs)
3221 /* don't need lock here; in the worst case we'll do useless copy */
3225 *new_fsp = copy_fs_struct(fs);
3233 * Unshare file descriptor table if it is being shared
3235 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3236 struct files_struct **new_fdp)
3238 struct files_struct *fd = current->files;
3241 if ((unshare_flags & CLONE_FILES) &&
3242 (fd && atomic_read(&fd->count) > 1)) {
3243 *new_fdp = dup_fd(fd, max_fds, &error);
3252 * unshare allows a process to 'unshare' part of the process
3253 * context which was originally shared using clone. copy_*
3254 * functions used by kernel_clone() cannot be used here directly
3255 * because they modify an inactive task_struct that is being
3256 * constructed. Here we are modifying the current, active,
3259 int ksys_unshare(unsigned long unshare_flags)
3261 struct fs_struct *fs, *new_fs = NULL;
3262 struct files_struct *new_fd = NULL;
3263 struct cred *new_cred = NULL;
3264 struct nsproxy *new_nsproxy = NULL;
3269 * If unsharing a user namespace must also unshare the thread group
3270 * and unshare the filesystem root and working directories.
3272 if (unshare_flags & CLONE_NEWUSER)
3273 unshare_flags |= CLONE_THREAD | CLONE_FS;
3275 * If unsharing vm, must also unshare signal handlers.
3277 if (unshare_flags & CLONE_VM)
3278 unshare_flags |= CLONE_SIGHAND;
3280 * If unsharing a signal handlers, must also unshare the signal queues.
3282 if (unshare_flags & CLONE_SIGHAND)
3283 unshare_flags |= CLONE_THREAD;
3285 * If unsharing namespace, must also unshare filesystem information.
3287 if (unshare_flags & CLONE_NEWNS)
3288 unshare_flags |= CLONE_FS;
3290 err = check_unshare_flags(unshare_flags);
3292 goto bad_unshare_out;
3294 * CLONE_NEWIPC must also detach from the undolist: after switching
3295 * to a new ipc namespace, the semaphore arrays from the old
3296 * namespace are unreachable.
3298 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3300 err = unshare_fs(unshare_flags, &new_fs);
3302 goto bad_unshare_out;
3303 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3305 goto bad_unshare_cleanup_fs;
3306 err = unshare_userns(unshare_flags, &new_cred);
3308 goto bad_unshare_cleanup_fd;
3309 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3312 goto bad_unshare_cleanup_cred;
3315 err = set_cred_ucounts(new_cred);
3317 goto bad_unshare_cleanup_cred;
3320 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3323 * CLONE_SYSVSEM is equivalent to sys_exit().
3327 if (unshare_flags & CLONE_NEWIPC) {
3328 /* Orphan segments in old ns (see sem above). */
3330 shm_init_task(current);
3334 switch_task_namespaces(current, new_nsproxy);
3340 spin_lock(&fs->lock);
3341 current->fs = new_fs;
3346 spin_unlock(&fs->lock);
3350 swap(current->files, new_fd);
3352 task_unlock(current);
3355 /* Install the new user namespace */
3356 commit_creds(new_cred);
3361 perf_event_namespaces(current);
3363 bad_unshare_cleanup_cred:
3366 bad_unshare_cleanup_fd:
3368 put_files_struct(new_fd);
3370 bad_unshare_cleanup_fs:
3372 free_fs_struct(new_fs);
3378 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3380 return ksys_unshare(unshare_flags);
3384 * Helper to unshare the files of the current task.
3385 * We don't want to expose copy_files internals to
3386 * the exec layer of the kernel.
3389 int unshare_files(void)
3391 struct task_struct *task = current;
3392 struct files_struct *old, *copy = NULL;
3395 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©);
3403 put_files_struct(old);
3407 int sysctl_max_threads(const struct ctl_table *table, int write,
3408 void *buffer, size_t *lenp, loff_t *ppos)
3412 int threads = max_threads;
3414 int max = MAX_THREADS;
3421 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3425 max_threads = threads;